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I. Introduction

During the past six months, considerable progress has been made under

the present grant. Since the primary purpose of the grant is to include

viscous interaction effects in the transonic airfoil design and analysis

program 
(1,2) 

developed under grant NGR-44-001-157, various boundary layer

computational schemes have been investigated as to their suitability and

accuracy. As a consequence, the Nash-McDonald (3) method was selected,

and it has been appropriately modified and included in both the analysis

and design modes of the program. The results to date are promising, and

a brief discussion of these efforts and results is presented in the fol-

lowing sections.

II. Discussion of Research

a. Boundary Layer Scheme

Several different boundary layer methods have been examined in

order to determine those methods most suitable for inclusion in the pre-

sent computer program. Since the boundary layer has to be computed ap-

proximately every ten relaxation cycles, finite difference methods were

eliminated as being too time consuming and costly, and emphasis was placed

on integral methods. Primarily as a result of the Stanford Conference (4)

and the success of Bauer et.al. (5) , three methods were selected for de-

tailed study--the Walz Method II (6) , the Nash-Kc-Donald Method (3) , and

Nash-McDonald with smoothing(5).

The Walz methad can handle compressible laminar and turbulent boun-

dary layers, permits wall temperature variations, and allows for the in-

clusion of a transition criteria. It yields accurate results but uses a

variable step size that is determined by the solution. In addition, it
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numerically fails at separation due to the nature of some of the empirical

equations it utilizes. The Nash-McDonald approach, on the other hand, is

not computationally limited by separation and is approximately six times

faster. However, its results sometimes exhibit oscillations, which for-

tunately, can be eliminated by smoothing.

Figure 1 compares displacement thickness predictions from each of

these methods with those obtained by Bavitz (7) using the method of Brad -

shaw(8) . These results are for a Garabedian-Korn 75-06-12 airfoil at

Mach 0.702, 1.10
0
 angle of attack, and a Reynolds number of 21.18x106.

Notice that even on the exaggerated scale of Figure 1, the predictions

are essentially identical. Further, all four methods predict separation

at essentially the same location. Based upon these and other results,

upon speed, and upon the ability to predict boundary layer properties at

a priori selected coordinates, the Nash-McDonald method with smoothing

was selected for incorporation into the present transonic airfoil pro-

gram.

b. Design Program

In the design mode, the actual airfoil shape computed by the

program is the displacement surface, and the actual airfoil is determined

by subtracting the displacement thickness calculated by the boundary layer

scheme from this surface. If, however, the input pressure distribution

does not lead to a displacement surface having a cusped trailing edge,

the inviscid program will yield a final pressure distribution having a

rear stagnation point. Physically, such a distribution would lead to

separation and would induce near the trailing edge a large displacement

thickness. While this effect is reasonably correct on conventional air-

foils, on supercritical airfoils having lower surface pressure buckets
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trailing edge separation would relieve the adverse pressure gradient,

lower the displacement thickness, and lead to a trailing edge pressure

far from stagnation.

In order to account for this phenomena, a simple trailing edge modi-

fication has been introduced into the viscous calculation package of the

design program. If upper surface separation occurs prior to last compu-

tational point before the trailing edge, the lower surface pressures at

the three points before this point are used to determine a curve fit and

to recompute the trailing edge pressure. This curve fit is also used to

recompute the last lower surface pressure value. On the upper surface,

the pressure distribution is modified by assuming a linear variation from

the separation point pressure to the new base pressure. This modification

is shown on Fig. 1(a). Then, the boundary layer is recomputed with the

modified distribution and the resultant displacement thickness is used

to determine the ordinates of the actual airfoil. Notice that this modi-

fication would not extensively change the pressures on a conventional air-

foil. Of course, further tests will be required in order to determine if

this approach is reasonable.

c. Viscous Interaction in the Analysis Program

The Nash-McDonald boundary layer analysis method with smoothing

has been programmed and incorporated into the direct analysis part of the

program. The approach utilized is essentially the same as Bauer et.al .(5)

except that the boundary layer is computed every ten relaxation cycles and

that the computational points coincide with the inviscid x-coordinates in

all grids. This latter approach seems to assist the convergence between

the inviscid and viscous calculations.
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In order to test the present scheme comparisons have been made with

the detailed results presented by Bavitz (7) , and these comparisons are

shown on Figures 2-4. The results shown were obtained on a medium grid

(4909) that yields 66 pressure points on the airfoil surface. In gen-

eral, the agreement is reasonable, even though the medium grid did not

resolve the sharp shock. Figures 2 and 4 are for different angles of

attack because the present coordinates for the 75-06-12 airfoil were ob-

tained from Ref. (5) while Bavitz based his coordinates on different chord

line. Thus, the required angles of attack will be different. Neverthe-

less, good agreement on lift and moment coefficients is obtained; and the

present drag coefficient prediction is close to those measured experi-

mentally at these conditions 
(9) 

(i.e. near 0.0100).

Figure 3 compares the predictions for displacement thickness for the

same conditions. Both results agree on the location of separation and

are in reasonable agreement on the actual values. The Nash-McDonald re-

sult, however, does predict the expected decrease in the lower surface

displacement thickness near the trailing edge, which is prohibited in the

Bavitz scheme.

Comparisons between results obtained with the present viscous in-

teraction approach and experimental data 9) obtained at the NAE for sub-

critical flow past a 75-06-12 airfoil are shown on Figure 5. In the

tests, the lift and moment coefficients obtained by pressure integration

and by force balance measurement differed slightly, yielding in the case

Of C
L
 0.44 and 0.49, respectively. Also, the drag value was measured by

a wake rake while the theoretical prediction was obtained by pressure in-

tegration. As can be seen, the agreement between the measured and theo-

retical aerodynamic coefficients is quite good, particularly when it is
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realized that the theoretical angle of attack had to be estimated.

A high lift supercritical case comparison is shown on Figure 6.

Again, the airfoil is a Korn 75-06-12. On the figure, the experimental

results (10) are represented by the symbols and the theory, obtained'on

a 4909 grid, by the solid line. With the exception of the drag coef-

fic i ent, all of the aerodynamic coefficient predictions are in reason-

able agreement with the measurements. It is believed that even better

agreement could be obtained for the pressure distributions by further

adjustments in the theoretical freestream Mach number and angle of at-

tack.

Now one of the features of the Korn airfoil is that near its design

point (Mach No. = 0.75) its upper surface pressure distribution is char-

acterized by multiple shocks. These shocks are difficult to detect the-

oretically and pose a severe test for any analysis technique. Figure 7

shows such a shock system obtained using T Vine 9709 grid, which yields

130 pressure points on the airfoil. In order to resolve these weak shocks

with viscous interaction, 400 iterations were required on the fine grid.

While this case does not correspond exactly to any ME test, comparison

with a close case (9) indicates that the aerodynamic predictions are quite

yood. (Although the predicted drag coefficient is high.) Also, the

shock locations etc. do fit the pattern exhibited by ME pressure distri-

butions (10) . Figure 8 shows the corresponding boundary layer properties.

In examining cases near the design point, Bauer 
(5) 

et.al . discovered

that occassionally the double shock system was not resolved on a medium

grid and that many iterations on the fine grid were required to achieve

convergence. A similar phenomena has been discovered with the present

program, and it is il'ustrated on Figure 9. Here the medium grid
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converged in 212 relaxation cycles and had exhibited no essential changes

for the last 100 cycles. On the tither hand, like Bauer (5) et.al . the

fine grid required 400 cycles. While Ref. (5) attributes this behavior

to the artificial viscosity introduced by the difference scheme, this

author believes that the inclusion of the boundary layer is just as in-

strumental. This belief is based on the fact that similar weak double

shock systems have frequently been found with the medium grid for pure

inviscid flows. Hence, more investigation will be required before the

origin of this numerical phenomena is determined. Nevertheless, it should

be noted that lift, drag, etc. are usually quite well predicted on a med-

ium grid, and that frequently the results from a medium grid computation

will suffice for engineering comparisons and studies.

As implied above, one of the primary uses of a viscous analysis pro-

gram would be to estimate the aerodynamic coefficient characteristics of

an airfoil. For example, the results of several computations near the

design Mach number of a 75-06-12 airfoil are shown on Figures 10 and 11.

These predictions, when compared to experiment, all show the correct

trends, including the dip in the moment coefficient near a C
L
 of 0.7.

The drag values are, however, too high, but they do show the correct be-

havior. These high values for CD will be discussed later.

Finally, Figure 12 shows the beginning of a drag versus Mach Number

plot for the 75-06-12 airfoil. While, once again the C 0 values are high,

the trend of these results is in agreement with experiment(9).

Based upon the above results, it is believed that the only major

problem so far with the present scheme is the prediction of too high val-

ues for CO , and even there the trends are correct. Nevertheless, an at-

tempt will be made to correct these values. In the present scheme, the
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skin friction drag is determined by the Squire-Young correlation and the

wave drag is computed via integration of the pressure. Each of these may

be in error, and in the future the Squire-Young formula will be checked

by actually integrating the skin friction. Likewise, the method of in-

tegrating the pressure will be improved, particularly in the leading

edge region. In this manner, it is believed that the drag predictions

will be improved.

III. Future Work

In the next reporting period, the following topics, among others,

will be investigated:

1. A suitable trailing edge correction will be developed and incor-

porated into the analysis program in order to handle those cases

having large trailing edge separation.

2. Green's lag-entrainment method of boundary layer analysis will

be investigated and possibly adopted for use in the program.

In this case primary emphasis will be on the design case.

3. An attempt will be made to determine more explicitly why weak

shocks are not found on the medium grid.

4. The drag compv tational scheme will be improved so that accurate

values can be found.

5. The development of suitable documentation and manuals for the

computer programs will be initiated.

IV. Publications

The following has been partially supported by this grant:

"Transonic Airfoil Analysis and Des-ign Using Cartesian Coor-

dinates," Journal of Aircraft, (to be published).
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