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COMPUTED LATERAL RATE AND ACCELERATION POWER SPECTRAL
RESPONSE OF CONVENTIONAL AND STOL AIRPLANES
TO ATMOSPHERIC TURBULENCE

Jacob H. Lichtenstein
Langley Research Center

SUMMARY

Power-spectral-density calculations were made of the lateral résponses to atmospheric
turbulence for several conventional and short take-off and landing (STOL) airplanes. The
turbulence was modeled as three orthogonal velocity components, which were uncorrelated,
and each was represented with a one-dimensional power spectrum. Power spectral densities
were computed for displacements, rates, and accelerations in roll, yaw, and sideslip. In
addition, the power spectral density of the transverse acceleration was computed. Evaluation
of ride quality based on a specific ride quality criterion was also made for these airplanes.

The results show that the STOL airplanes generally had larger values for the rate and
acceleration power spectra (and, consequently, larger corresponding root-mean-square values)
than the conventional airplanes. The ride quality criterion gave poorer ratings to the STOL
airplanes than to the conventional airplanes. This result indicates that the STOL airplanes
would have a less comfortable ride than the conventional airplanes.

INTRODUCTION

One present technique of achieving the short take-off and landing (STOL) operation is
to utilize a relatively light wing loading for the vehicle. Unfortunately, the motion and
acceleration response of an airplane to atmospheric turbulence is inversely related to its wing
loading. The large response of such an airplane to atmospheric turbulence could result in
poor riding qualities. An evaluation report (ref. 1) on the suitability of a typical STOL
type airplane for airline operation includes a discussion of its unsatisfactory riding qualities
in rough air, particularly in the lateral-directional mode.

The subject of riding qualities of airplanes has been investigated, and a synopsis of the
current knowledge of the subject can be found in reference 2. At present, few generally
accepted criteria for defining good or acceptable riding qualities are available. Moreover, the
specific airplane characteristics which contribute to good riding qualities are not clearly
understood. It is apparent, however, that the motion of the airplane in response to atmo-
spheric turbulence is one of the contributing factors.



Because atmospheric turbulence is most appropriately treated analytically as a random
quantity, airplane motion resulting from turbulence excitation is also random and can be
described only in a statistical manner. An overall discussion of the dynamic response of
airplanes to atmospheric turbulence is given in reference 3. Three descriptions of the
response are the response power spectrum, the response root-mean-square (rms) value, and
the expected number of exceedances of a given response level. Of these, the output power
spectrum yields information most directly related to configuration differences. A correlation
of the frequencies at which maximum response occurs with those that cause the most
discomfort in airplane passengers may indicate areas in which the airplane dynamic behavior
should be altered.

The power spectral densities (psd) of the lateral angular response of a group of 12 air-
planes of various configurations, including potential STOL vehicles, computed by the method
presented in reference 4 have been presented in reference 5. In the present paper, the same
method is used to extend the study to obtain the power-spectral-density functions of the
lateral response for angular velocities and accelerations and the transverse linear accelerations
for the same airplanes. The gust field was represented by three orthogonal velocity compo-
nents, which are uncorrelated, and each is represented with a one-dimensional Dryden power
spectrum. The power spectral densities of the transverse acceleration were obtained for
several locations forward of, rearward of, above, and below the center of gravity of each
airplane. The root-mean-square values of the responses were obtained from the power
spectra and were used in calculating a ride quality index for each airplane by using a

criterion as presented in reference 6.
SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and calcu-

lations were made in U.S. Customary Units.

A aspect ratio
at transverse acceleration, g units or m/sec2 (ft/sec2>
b wing span, m (ft)
C d fficient at lify, Dras
D,o rag coefficient at zero lift, _21?
CL lift coefficient, Lift
qS



rolling-moment coefficient, Rolh%w_nt
q

. .. Yawing moment
yawing-moment coefficient, Sb
q

Side force

side-force coefficient,
qS

cle
&l

nondimensional operator,

matrix containing stability derivatives relating airplane moments and forces to
gust velocities

acceleration due to gravity, m/ sec2 (ft/secz)

altitude, m (ft)

height of center of pressure of vertical tail above X-axis, m (ft)
=1

nondimensional radius of gyration about X-axis, kx/b
nondimensional radius of gyration about Z-axis, kZ/b
nondimensional product of gyration, kxz/b2

radii of gyration, m (ft)

product of gyration, m2 (ft2>

scale of turbulence, m (ft)

tail length measured from center of gravity to center of pressure of vertical
tail, m (ft)

mass of airplane, kg (slugs)



XY,Z

XY,z

rolling velocity, ¢, rad/sec

gust rolling velocity (Dcpg of ref, 4), rad/sec
dynamic pressure, %pUz, N/m2 (lb/ ft2>
computed ride quality index

yawing velocity, gb., rad/sec

gust yawing velocity (D\l/g of ref. 4), rad/sec
wing area, m?2 (ftz)

profile height (refer to sketch in section entitled ‘“‘Aircraft Parameters™),
m (ft)

time, sec

relative velocity between airplane and general air mass, m/sec (ft/sec)
velocity along X-axis, m/sec (ft/sec)

mean square of gust-velocity components (see eq. (19a))

velocity along Y-axis, m/sec (ft/sec)

weight of airplane, N (1b)

velocity along Z-axis, m/sec (ft/sec)

three orthogonal stability axes of airplane

coordinates with reference to X-, Y-, and Z-axes, m (ft)

angle of attack, deg (rad)

trim (steady-state) angle of attack, deg (rad)



angle of sideslip, rad

dihedral angle, deg

flight-path angle, rad

matrix of airplane equations of motion in still air (see ref. 1)

damping ratio for Dutch roll mode
relative mass parameter, L

pSb

density of atmosphere, kg/ m3 slugs/ ft3)

sidewash angle, rad

root-mean-square value of quantity R
power-spectral-density function

power-spectral-density function of quantity R

angle of roll, rad

angle of yaw, rad

circular frequency, rad/sec

undamped natural frequency of Dutch roll mode, rad/sec
absolute value of quantity or determinant of matrix

rectangular matrix

row or column matrix



Stability derivatives of airplane are indicated by subscript notation; for example,

2U 2U/ U,
Subscripts:
F fuselage
g gust
T vertical tail
w wing
0 general air mass

Bar over a quantity denotes a mean value.

Dot over a quantity denotes differentiation with respect to time.
MATHEMATICAL DEVELOPMENT

Response Power Spectra

The governing equations for the power spectra of the airplane angular displacements
are developed in detail in reference 4 and outlined herein. This development was used to
calculate the power spectra for the angular velocities and accelerations. The angular veloci-
ties and accelerations, in turn, are used in developing the term for the transverse acceleration.

The airplanes considered in this investigation are assumed to be rigid bodies with fixed
control surfaces and no auxiliary damping devices, and to be flying in straight and level flight.
Quasi-steady aerodynamic forces are employed. The gust field of the atmosphere is modeled
as three orthogonal velocity components, which are uncorrelated, and each is represented
with a one-dimensional power spectrum. Variations in the lateral gust velocity along the
spanwise direction are assumed to be negligible. The airplane is executing small motions in
sideslip, yaw, and roll, as described by the linear equations of motion normally employed in



stability analyses. Expressions for the response power spectra, which are numerically evaluated
for the various airplane configurations given in this paper, are described in the following dis-

cussion.

The lateral equations of motion for an airplane are given by

2.2 1 _ 2, _ 1 - =
2uKXD %o 2C1pD‘P 2uKXZD t,bo 2C1rD1,l/ CIBB 0
2 1 2.2 1
—2quzD ch - E‘CnpDcp + 2MKZD \l/o - E‘CnrDl[I - Cn‘pkl/ - Cnﬁﬁ =0 (1)

1
-0y Do~ Cpep + 2uDyy - %cyrnw - €L tan 7o + 24Dy - Cy f = 0

where the subscript 0 in the inertial and weight terms is used to denote angular displace-
ment with respect to an absolute system of axes fixed in the general air mass. The reason
for including the term C, v in equation (1) is discussed later. In calculations of the

motion of an airplane in still air, the angular displacements and velocities appearing in the
aerodynamic terms are identical with these zero-subscript values. When flying in turbulent
air, however, the airplane is subjected to the motion of local air masses, generally referred
to as gusts. Both the relative linear and angular velocities of the airplane with respect to
the local air mass may be considered as made up of two parts

Dy = Dyg + pg
Dy = Dyg + 14 (2)
B =18y * By

where the terms Pg and Ty are the same as D«,ag and Dx,[/g, respectively, in
reference 4.

Substitution of equation (2) into equation (1) and transposition of the terms resulting
from gust disturbances to the right-hand side of the equation gives the result written in
matrix form

A} voy = [G){r, 3)
ﬁ() Bg ’



where the equation |[[A]| = O is the familiar still-air rigid-airplane characteristic equation
and the matrix G gives the relationship between the aerodynamic moments and forces
resulting from the gust velocities.

The frequency response of the airplane is obtained by taking the Fourier transform of
equation (3) and is given by

po(w) 1 Pg(w)
(@) = [Aw) (6] {ryw) 4)
Bo(w) Bg(c)

Equation (4) is meaningful only if the airplane is stable. In order to calculate the frequency
response of the airplanes for a stable condition, the term Cp g was introduced in the equa-
tions. This term could represent a yawing moment introduced by the pilot to correct heading
changes. When this term was present, the roots of the characteristic equation of the airplanes
were generally stable. It could be shown that.as the value of an was reduced to negligi-
bly small values, the power spectra approached those values which were obtained if an =0
in the frequency range presented. This procedure demonstrates that the results are valid for
the condition with Cp, = 0, even though in this case, the equations have a zero root, thereby
indicating neutral stability. It should be mentioned that if instabilities occur in other modes
or investigations which require frequency response analyses, a similar approach of inserting addi-
tional terms to compensate for the instabilities should be used. The frequency-dependent forms
of [A] and [G] are given by

—

202 2 1. . L S P
_2uKZs 2 - =C uK,,~mw* - 5C -C
X2 T2 Xz 2 2@ 8
[Bw) = |2k 022 Lo 222 Loy C 5
XZU2 5 “Np M ZU2w 5 nrlw ~ ng 5)
1 . 1 . .
_2CYp1w - CL (2;1 - —Z-CYr)ua - CL tan v 2uiw - Cy 5
C _J
and
Ged G (4 hr
[G) = |(5¢ lc c ©6)
2nylw \2Tngw (ng(w))FT
0 0 Cy ()
( Yg )FT
L .




The effects of the distribution of the side gusts along the length of the airplane are accounted
~ for in the frequency-dependent coefficients Clﬁ(w)’ CnB(w), and Cy B(w). (See ref. 4.)

The product [A(w)]—l[G(w)] is the matrix of the frequency-response functions which
relates the airplane response to the gust velocities. Equation (4) can be expressed as

(o (w)\ —fQ ¥o 20 N ( po(w)
0 Pg (w) = (w) By (W)| [ pglw

v v v |

gy =| D@ 2w 2@ | g %
Pg T Bg

B g

Bo(w) ) f,—o(w) D) 2w | By )

8 g 5g _ .

In the development, it is assumed that the cross-power spectra terms of the gust-velocity
input are negligible (see ref. 4) so that the final equations for the power spectra are of the

form (see ref. 4)

¥ 2 iy 2 |y ZT
o, @) ||| D] | P, () P, ()
0 Pg g By g g
vo 2o, 2| v, |2
oy @) =[| 2@ 2@ | 2@ ] { @ @ )= (Tl {2 () ®)
0 Pg e Bg g g
Bo 2 1Bp 21 By 2
i ik -~ o] P
<I>Bo(w) by (w) Y (w) 6 (w) Bg(w) 5g(w)
. |

where [T(w)] is used symbolically to represent the first matrix after the equal sign.

All numerical results presented in this paper were obtained through the application of
equation (8) and the appropriate form for the input gust spectrum.

Angular velocities and accelerations.- The angular velocities and accelerations are given by

A ©0

Yol = 4y 9)
. dt

% Bo



and

%0 %0

op = -2y

Yo( =520 (10)
Bo Bo

Equations (9) and (10) can be transformed into the frequency domain by substituting
ico for d/dt, and the power spectral densities of the angular velocities and accelerations

obtained from them are given by

. ®
%Q(w) pg(w)
B (@)} = w2[T(w)] Cbrg(w) (11)
B () 25,
and
fb‘b'o(w) q’pg(w)
Bj (@) )= w3 T(w)] 2 (@) (12)

Transverse accelerations.- The transverse acceleration at consists of the acceleration at

the center of gravity plus terms to account for effects of angular accelerations at points
displaced from the center of gravity along the X- and Z-axes. It was assumed that the
effect of possible displacement of airplane passengers along the Y-axis would be negligible.
The transverse acceleration is given by

a; = Uy + Uy - spg + x¥g - 299 (13)

Here the quantity UB.O + U\[;O - 8pg is the acceleration of the center of gravity of the

airplane.
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The Fourier transform of equation (13) is
wo(w)
ay = {(zw2 - g),(iUw - xwz),(iUw)} Yolw) (14)
Bo(w)

Substitution of equation (7) for the column matrix in equation '(14) yields the transverse

acceleration
Pg(w)
a = {all(w),alz(w),aw(w)} rg(w) (15)
Bg(w)
where

ap) = iUw(w—O(w) + B—O(w)> + w2< w—o(w) - X @(w)> - g —@(w)
Pg g Pg Pg Pg

ajy = iUw<£Q(w) + B—O(w)> + w? <z P0w) - x @(w)> _ g Dy
Tg Tg Tg Tg Tg

aj3 = iUw(Z—gQ(w) + %(w)) + w? <z ;;0((0) - X Z;O(w)> - g ggg(w)

The power spectral density of the transverse acceleration can be expressed as
) <I>pg(w)
a13()| i @ () (16)
Dp (W) |
B g

fbat(w) = “all(co)'z,' 312(&))|2,

Gust-Velocity Power Spectrum

For the purpose of this paper, the Dryden spectrum was chosen rather than the
von Ki4rmén because of its simpler mathematical form. The Dryden formulations of the
power spectra for the lateral gust-velocity components are expressed as

_ L1+ 3k)2 (17
aU ) 2
[+«

oo | 2
]
Al 8
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The power spectrum of the longitudinal gust velocity is expressed as

]
g 2L 1 (18)

— = U
ul s O (k')2
g

wL

he k' = ==,
where =

As. a result of the assumptions of homogeneity and isotropy, the mean-square values

of the three components of the gust velocities are equal; thus

= ;— (19a)

ol
030
I
ol
0a 10
I
o5t |
[N ]

By using the relationship Bg = vg/U and equation (17), the resulting gust spectra relation-

ships are

Dy () = By () = szbﬁg(w) (19b)

As a consequence of equations (19a) and (19b) the power specira of the lateral and vertical
gust velocities may be specified in terms of a single quantity, the side gust spectrum ‘bﬁg,

which is given by

w2 )
_ Vg L1+ 3&) (20)

gy = 2 U [1 . (k’)2]2

In the analysis performed in reference 4 the airplane response spectra were developed
in terms of the rolling gust spectrum fbpg, yawing gust spectrum ‘I’rg, and side gust
spectrum q)ﬁg' Because the development in this paper follows the same method as that
in reference 4, the same gust spectra are used as input to the airplanes.

A description of how the linear gust velocity spectra ((I)ug, <I>Vg, @Wg) are related
to <I>pg, ‘I’rg, and <I>ﬁ is given in reference 4. The effective rolling gust velocity Pg is
derived from the spanwise gradient of the vertical gust distributions Vg The effective
yawing gust To is derived from the spanwise gradient of the loggitudinal gu;t veloci-
Pg g
g g

and , which

ties Ug. These relationships are incorporated in the terms

12



are the ratios of the rolling and yawing gust spectra to the side gust spectrum. Therefore
the power spectra of the gusts can be expressed as

the side gust power spectra.

By

IR

B
L2\

- (2
0| [

S

> g,

Response Power Spectra as Functions of Side Gust Power Spectra

(21)

Substitution of the gust power spectrum equation (21) into the response power spec-
trum equation (8) results in an equation for the response power spectra as a function of

angle response is given by

(

ﬁ

L‘I’ﬁo(w)

N

¢’¢0(w)

‘I’wo(w)

/

—

—

"7
0 (w)
Pg

2
Y
—O(w).
Pg
B
20w
Pg

@ 2 @ 2]
0w 0w
Tg By
2
vo |2 ¥
70wy "0
g Bg
2 2
8 8
20 (w) 0w
g ﬁg
J

Pg
Be (w)

T
g
é ﬁ——g (w)

<

%)

> <I>5g(w)

S

The resulting equation for the power spectral density of the

(22)

Substitution of equation (21) into equation (11) for the power spectral density of the

angular rate results in

d A
%O(w)

< NG

%O(w)

L

> = T

)

>‘I’Bg(°°)

(23)
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When the substitution of equation (21) into equation (12) for the power spectral density of
the angular acceleration is made, the resulting equation is

CN (D
By (<) [f(w)
r 2
(@ (@) = T e >‘I’Bg(°’) (24)
35 (@) 1
. \ J

Similarly, the substitution of equation (21) into the equation for the power spectral density
of the transverse acceleration (eq. (16)) yields an expression for the power spectral density

in terms of the side gust

.

@at(w) = {lall(w)lz,lalz(w)l2,|a13(“’)® B{:i(w) ><I>ﬂg(w) (25)

Root-Mean-Square Values

In addition to the power spectra discussed previously, the root-mean-square (rms) values

of the various responses were computed from the power spectra. The root-mean-square

values are indicative of the total power in the system as a result of the disturbances in the
frequency band that is being considered.

The root-mean-square value of a quantity R as used in this study is given by

50.222 12
oR = f Dp(w)dew 26)
0.622

The integration was truncated at the limits shown. The upper end was cut off at about 8 Hz

(50.222 rad/sec) and was considered adequate because the data at higher frequencies generally

14



were several orders of magnitude lower than those in the region of primary interest

(about 1 Hz), and thus their contribution to the root-mean-square value would be negligible.
The lower end was cut off at about 0.1 Hz (0.622 rad/sec). This value was considered a
practical limit because any motion with a period of 10 seconds or longer probably would be
subconsciously corrected by the pilot before it would fully develop.

Ride Quality Evaluation

A ride quality response rating mode was developed empirically in reference 6. The
computed ride quality index from this model is a measure of the ride quality of the airplane
and is given by

_ 43 =\ s\
o= 1+ log;oSmax * 0.000176<log103max> Z(loglosi> - <10g10$max> 27)
=1

R

where R is the computed ride qlléality index. The terms S:. are defined as the effective
i

i
- S: - -
stimuli and are given by §; = s ,and S is the largest of the §. terms.
ST. max i
i

The S; terms are the root-mean-square values of the various turbulence responses (i.e., o,
¥, and at). The terms Sy, are the human perception threshold for the response being

i

considered. The values for the constants K.

i and Sq, are listed in the following table:
i

i Response K; STi

1 | Roll rate 0.650 [ 0.000166
2 | Yaw rate 1.194 | .000763
3 | Transverse acceleration |1.140 | .001220

In order to obtain values for the computed index the root-mean-square value from the trans-
verse acceleration and rate power spectra must be used. This index is the type that obtains
one rating number for each’airplane encompassing the total frequency spectrum. It does not
account or allow for the variation in sensitivity of the subject with frequency.

Interpretation of the computed ride quality indices in terms of riding quality rating and
the percentage of passengers with no doubts about flying again are given in the following
table:

15



Computed ride ) ) ) Passengers with no doubts
quality index Ride quality rating about flying again, %

1 Very comfortable 100

2 Comfortable 95

3 Acceptable 80

4 Uncomfortable 40

5 Very uncomfortable 20

AIRPLANE PARAMETERS

A listing of the airplanes, pertinent geometric and aerodynamic characteristics, and
flight conditions are given in table I. The flight conditions considered are representative of
either the cruise condition or a low-altitude holding-pattern condition. The roots of the

characteristic equation of each airplane are presented in table II.

Because the airplanes investigated in this paper are the same ones discussed in refer-
ence 5, the airplane grouping is also the same. The airplanes are grouped in the following
manner: The three conventional airplanes are designated C-A, C-B, and C-C; the five large
STOL airplanes are designated LS-A, LS-B, LS-C, LS-D, and LS-E; and the four relatively
small STOL airplanes are designated SS-A, SS-B, SS-C, and SS-D.

The first group represents conventional type of airplanes. The stability derivatives for
the first of the conventional airplanes, C-A, were obtained by using the method presented in
reference 7; the derivatives for the second airplane, C-B, are for the same airplane, but in
this case the stability derivatives were obtained by the Datcom method presented in refer-
ence &; the third airplane, C-C, represents an enlarged version of the same airplane, and the
derivatives were obtained by a combination of the methods used for airplanes C-A and C-B.

The next group consists of airplanes currently representative of large STOL vehicles.
There are two versions of the first airplane, designated LS-A and LS-B. The first was
represented with stability derivatives obtained in a manner similar to the conventional air-
plane, C-B; the second used aerodynamic derivatives obtained during a riding qualities
investigation conducted on an NASA moving-base simulation of the airplane. The derivatives
were developed by modifying the initial derivatives used in the simulator until the pilots
judged that the flight characteristics of the simulator closely matched those of the actual
airplane. The derivatives are used in the present paper so as to compare the responses of
the same airplane described with data obtained by two alternate procedures. The stability
derivatives for airplanes LS-C, LS-D, and LS-E were obtained by the Datcom procedures with

16



the wing-alone derivatives being computed by the method given in reference 9. Airplanes
LS-D and LS-E are the same airplane but flying at different velocities representing Mach
numbers of 0.36 and 0.75, respectively.

The last group consists of small STOL airplanes. The first three sets of airplane
parameters (SS-A, SS-B, and SS-C) are for the same airplane but with different inertias and
flight altitudes. The aerodynamic derivatives were the same for the three airplanes and were
obtained by the Datcom method. Two versions, SS-A and SS-B (original and modified
inertias), differed only in their moments of inertias; the third version, SS-C, was computed
for a different flight altitude which was comparable with most of the other airplanes. The
aerodynamic derivatives for airplane SS-D were obtained from reference 10,

The development of the frequency-dependent expressions for C, (w), C, (w),
and Cy (w) are given in appendix C of reference 4. These derivatives were computed by
using the s- and x-dimensions given in table I. The s- and x-dimensions are illustrated in

Sl / | 5]
na —
SRR DI S

the following sketch:

PROCEDURE

The power spectral densxtles of the responses for the lateral angular displacements
(wo, ¥os BO), velocities (‘pO’ xllo, {30>, and accelerations (wo, 1,[/0, BO) as given by
equations (22), (23), and (24), respectively, and for the transverse acceleration obtained from
equation (25) were computed for 12 airplanes. The data presented for the power spectra

were normalized with respect to a unit 1 m/sec root-mean-square gust velocity Vé = 1 m/sec
The scale length of the turbulence L was 335.28 m (1100 ft). Reference 11 has shown
that people are most sensitive to and least tolerant of linear accelerations in the transverse
direction. For this reason, the transverse acceleration a; has been chosen for presentation
in this paper. The transverse accelerations were computed for 13 different locations in

each of the 12 airplanes, generally covering the spread in seating positions. The positions

17



considered were the center of gravity, four positions forward and four rearward of the center
of gravity, and two above and two below the center of gravity. The longitudinal spread in
the seating locations for the various airplanes is presented in table III. The distance to per-
missible seating locations to the side of the center was considered too small to have an
appreciable effect on the transverse acceleration. The computed ride quality index given by
equation (27) was computed for three locations on each airplane: the pilot’s position, the
center of gravity, and the rear passenger position.

PRESENTATION OF RESULTS

The computed power spectral densities for the 12 airplanes are presented in figures 1
to 12. Each figure consists of five parts. Part (a) shows the lateral angular power spectral
densities for the roll angle, yaw angle, and sideslip angle; part (b) shows the power spectral
densities for the angular rates; part (c¢) shows the power spectral densities for the angular
accelerations; parts (d), (e), and (f) show the power spectral densities of the transverse
acceleration for the various locations in the airplane. The airplanes were divided into three
groups: the conventional airplanes, C-A, C-B, C-C (figs. 1 to 3); the large STOL airplanes,
LS-A, LS-B, LS-C, LS-D, LS-E (figs. 4 to 8); and the small STOL airplanes, SS-A, SS-B,
SS-C, SS-D (figs. 9 to 12).

A comparison of the power spectral densities of the transverse acceleration for the air-
planes in each group (conventional, large STOL, and small STOL) at three longitudinal
positions (pilot’s position, center of gravity, and rear passenger position) is shown in fig-
ures 13, 14, and 15. A comparison of the power spectral densities for transverse accelera-
tions for four airplanes from the three groups (conventional, large STOL, and small STOL)
is presented in figure 16. The data are presented for the pilot’s position, center of gravity,
and rear passenger position in each airplane, Figure 17 shows the variation of the power
spectral densities of the transverse acceleration as a function of longitudinal location for the
three groups of airplanes at a frequency of 0.45 Hz. In figure 18 the same variation is
shown for airplanes representative of each group (C-A, LS-B, SS-C, and SS-D) for four
frequencies varying from 0.2 Hz to 2.42 Hz. The data presented in figure 19 show the
location of the minimum point of the data in figure 18 as a function of frequency.

The root-mean-square values for the angular displacements, angular rates, angular
accelerations, and transverse accelerations are presented in table IV. The ride quality indices
obtained for the pilot’s position, center of gravity, and rear passenger position are presented

in table V for each airplane.
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DISCUSSION

Airplane Comparisons

Part (a) of figures 1 to 12 is the same as that presented in reference 5 and is repro-
duced herein for completeness.

Conventional airplanes.- As mentioned previously, airplanes C-A and C-B are the same
airplanes for which the stability derivatives were computed by two different methods.
Comparison of each power-spectral-density curve in figures 1 and 2 shows that there is little
difference between them. As pointed out in reference 5, the difference in results is due

mainly to the difference in the derivatives C,
T

and Cnﬁ. The root-mean-square values
presented in table IV show that generally airplanes C-A and C-B had similar values. Because
both methods of obtaining the stability derivatives are valid, the results indicate that differ-
ences in the power spectra and root-mean-square values of the magnitude shown herein are
indicative of the spread that could be obtained for a given airplane. Thus differences of

this magnitude between two airplanes should not be considered particularly significant.

Airplane C-C is an enlarged version of airplanes C-A and C-B, and, consequently, the
stability derivatives are very similar to those for airplane C-A. However, the power spectra
and root-mean-square values are lower for airplane C-C than for the other two as can be
seen by comparing the power spectral densities in figure 3 with those in figures 1 and 2
and the root-mean-square values in table IV. This comparison is also valid for the power
spectral densities of the transverse acceleration (‘I’at shown in figure 13. At the low fre-
quencies the value for airplane C-C is lowest of the three, and above about w = 2 rad/sec,
even though its stability derivatives are similar to airplane C-A, its Pa¢ s still somewhat
lower. This difference is due to the different flight conditions for the two airplanes;
airplane C-C is flying at 7620 m (25 000 ft) and 241.4 m/sec (792 ft/sec), whereas air-
planes C-A and C-B are flying at 1524 m (5000 ft) and 134.8 m/sec (442.2 ft/sec). The
relatively small difference in relative mass parametér is not an important factor.

airplane with two sets of aerodynamic coefficients, LS-A and LS-B, has been analyzed. A
comparison of the results, both the power spectra in figures 4 and 5 and the root-mean-
square values in table IV, shows that the second version of the airplane, LS-B, had larger
values for both, and the response peaked at a lower frequency (2.49 rad/sec vs 3.24 rad/sec).
This difference would indicate a larger amplitude of the motion but at a lower frequency for
airplane LS-B. In figure 14 the CI)at values for the two airplanes are compared directly and
. the effects of the two sets of derivatives are similar in that LS-B had larger values. The

values for w, and ¢ in table II show less damping and a lower natural frequency for
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airplane LS-B than for airplane LS-A. These differences are due mainly to the different
values of Cny and Cp, for the two versions and indicate that accurate stability deriva-
tives are necessary to obtain a truly representative result.

Airplane LS-C is included in this group because it had been considered as a STOL
design. The shape of the power-spectral-density curves was different from that of the other
airplanes in this group; it had a broader response peak and at a much lower frequency.
The at root-mean-square values for airplane LS-C in table IV are large compared with the
values for the other airplanes in this group, thereby indicating that it may be a relatively
poor riding airplane. These results probably are due to the large value of Cn, and low
value of Cp,.  The large value of Cp, is responsible for the high Dutch roll damping
(flatter peak) and the low value of Cnﬁ results in a lower Dutch roll frequency.

Airplanes LS-D and LS-E are the same airplane but flying at two different velocities,
121.92 m/sec and 250.85 m/sec, respectively. The difference in the results is due entirely
to the different flight conditions. For the high-speed condition, both the natural frequency
and damping (table II) are higher, and, as a result, the peak amplitude and the angular dis-
placement power-spectral-density curves are less and occur at a higher frequency (4.5 rad/sec
vs 2.26 rad/sec). As a result of the higher natural frequency the high-speed condition air-
plaﬁe (LS-E) has more power in the higher frequencies. Similar effects can be seen from
the comparison of @3, made in figure 14.

Small STOL.- Airplanes SS-A and SS-B also are the same, differing only in the weight
and moments of inertia. The moments of inertias were larger by about 100 percent for
airplane SS-B. This decreased the value for w, (table II), as expected, but had a rela-
tively minor effect on the power spectra. It resulted in lower values for the angular rate
and angular acceleration power spectral densities at frequencies above about 0.4 Hz (compare
figs. 10(b) and 10(c) with figs. 9(b) and 9(c)). However, the transverse acceleration was
slightly higher throughout the frequency range (fig. 15). Airplane SS-C is the same airplane
as SS-B but is flying at a slightly lower altitude (1524 m compared with 2591 m) which
resulted essentially in a decreased relative mass factor (4.88 compared with 5.50). This
difference had no appreciable effect on the angular rate and acceleration power spectral densi-
ties but caused a slight increase in the transverse acceleration power spectral density. Air-
plane SS-D is a larger and heavier airplane than the previous SS airplanes and all the power
spectra for this airplane are considerably lower than the others.

Groups.- The data in figure 16 present @at for airplanes representative of each
group (C-A, LS-B, SS-C, and SS-D) for three longitudinal locations along the fuselage. The
pilot and rear passenger positions are not the same for the various airplanes (see table III).
Nevertheless, it can be seen from the curves in figures 16(a) to 16(c) that the conventional
airplane had lower values across almost the entire frequency range. The lightest STOL (SS-C)
had the highest values, whereas the results for the large STOL (LS-B) and the largest of the
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small STOL airplanes (SS-D) were between the other two. Actually, airplanes LS-B and SS-D
had very similar results. Although their stability coefficients were appreciably different, the
combination was such that the values for wp and ¢ for the two airplanes were very
close and probably played a significant factor in the results turning out so similar.

The variation of @3¢ with location along the longitudinal axis is shown in figure 17
for the various groups of airplanes at a frequency of 0.45 Hz. This frequency was chosen
because the data presented in reference 11 showed that people were most sensitive to trans-
verse accelerations at about 0.45 Hz. The data in figure 17 show that generally all the
airplanes follow a similar pattern with a minimum point approximately 0.2x/b forward of
the center of gravity.

The results for the conventional airplanes presented in figure 17(a) show that for the
two versions of the same airplane, C-A and C-B, the curves are similar but the power-spectral-
density curve for C-B was higher than for C-A. This spread indicates how well the power
spectral density computed from a given set of parameters is likely to represent the airplane.
The variation of @3 for airplane C-C is less dependent on location than the variation
of ®,; for the other conventional airplanes because it is a larger and heavier airplane.

The results in figure 17(b) for the large STOL airplanes show the effect of Mach
number on the variation of @5 with location (airplanes LS-D and LS-E, Mach num-
bers 0.36 and 0.75, respectively). Although the curves for the two airplanes were not
particularly separated from each other, the variation for the higher Mach number showed
less variation with the minimum point farther forward. The results for airplane LS-C again
were unusual in that it was the only airplane that exhibited no minimum point at this
frequency (0.45 Hz).

The information in figure 17(c) for the small STOL airplanes shows the effect of
moment-of-inertia changes. Airplane SS-B has higher values for @3¢, and its minimum point
is farther forward than that for airplane SS-A.

Figure 18 shows how the variation of @3¢ with longitudinal location changes with
the frequency of the motion. Curves for the same representative airplanes (C-A, LS-B, SS-C,
and SS-D) are presented for four frequencies from 0.2 Hz to 2.42 Hz. The pattern of the
variation is similar for all four airplanes. However the minimum point has a noticeable shift
rearward as the frequency increases. This change in minimum point is specifically shown in
figure 19. The change is rapid at low frequencies, but above 0.8 to 1.0 Hz there is little
change. The curves should approach the center-of-gravity location at the higher frequencies.
This information could have some bearing on the location of components within an airplane;
for example, components that may be sensitive to the transverse acceleration at certain fre-
quencies should be located in the vicinity of the minimum point for those frequencies, whereas
insensitive components can be located elsewhere.
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Ride Quality Evaluation

The ride quality indices were computed for each airplane and are presented in table V.
Because the airplanes were considered rigid bodies with no auxiliary damping devices, the
computed ride quality indices may be higher than those for operational airplanes in flight.
Therefore, the indices can be considered to represent relative values only; that is, an airplane
with a lower index would be a more comfortable flying airplane than one with a higher
index. The data show that all conventional but only two versions of STOL airplanes have a
better than uncomfortable rating. The rest of the large STOL airplanes have ratings between
uncomfortable and very uncomfortable. The small STOL airplanes generally are in the very
uncomfortable range. This means that flight in STOL airplanes probably would generate an
adverse opinion in about 60 percent of the passengers. A brief check on the terms com-
prising the criterion showed, at least for the airplanes considered in this paper, that the
yaw-rate term (1[}) contributed most to the value of the index.

CONCLUDING REMARKS

An analytical investigation was made in which the power spectra of the lateral angular
rates, angular accelerations, and transverse accelerations were computed for 12 airplanes.
These airplanes were divided into three classifications: conventional, large short take-off and
landing (STOL), and small STOL. The atmospheric turbulence was represented by three
orthogonal velocity components, which were uncorrelated, and each was represented with a

one-dimensional -Dryden power spectrum.

Two methods of determining the stability derivatives for the same airplane were found
to result in somewhat different power spectra. This comparison highlights the necessity of
utilizing the best methods available to insure the most representative power spectra for the
airplane. For the airplanes considered in this study, the conventional airplanes generally had
the lowest root-mean-square values for the power spectra, the large. STOL airplanes had values
somewhat higher than the conventional, and the small STOL airplanes had the highest values.

The power spectra result pattern generally carried over to the ride quality results in
that the conventional airplanes had the most favorable index, the large STOL airplanes had a
less favorable index, and the small STOL airplanes had the worst index of the three.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

August 20, 1975
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TABLE 1.- FLIGHT CONDITIONS, PHYSICAL DIMENSIONS, AND STABILITY DERIVATIVES OF AIRPLANES
CONSIDERED IN INVESTIGATION

Conventional Large STOL Small STOL
tit
Quantity A B | ¢ A B C D E A B C D
Flight conditions, mass and inertia parameters
' hym 1524 | 1524 | 7620 | 1524 | 1524 | 1524 | 1524 | 1524 | 2591 | 2591 | 1524 | 1524
(fo) (5000) | (5000) | (25000)| (5000) | (5000) | (5000) | (5000) | (5000) | (8500) | (8500) | (5000) | (5000)
U, m/sec 13478 | 13478 | 24140 | 12070 | 12070 | 12192 | 12192 | 25085 | 7376 | 7376 | 7376 | 7718
(fifsec) | (4422) | (4422) | (792) (396) | (396) | (400) | (400) | (823) | (242) | (242) | (242) | (253.2)
m, kg 27751 | 27751 | 38029 | 22226 | 20412 | 16982 | 24993 | 24993 | 1542 | 1315 | 1315 | 5216
(slugs) (1901.8) | (1901.8) (2606.2) (1523.2)' (1398.8) | (1163.8) (1712.8)] (1712.8) (1057) | (90.1) (90.1)| (357.5)
W,N 272142 272142 372939 217963 ' 200170 166537 245097 © 245097 . 15124 12899 12899 51155
. (b) (61180) (61180) (33840)  (49000)| (45000) (37439) (55100) (55100) (3400) ~ (2900) (2900) (11500)
‘ |
[ ‘

mS,kg/m? 3197 3197 4094 . 2691 ;. 436 3420 3192 3192 719 613 61.3 133.7
- (Sugs/ft2)  (2.036)  (2.036)  (2.606)  (1.713) (1551) (2.178)  (2032) (2.032) (0458) (0.390) (0.390) . (0.851)
W/S,N/m? 31353 31353 40144 © 2639.1 23887 33542 31298 31298 7048 6011 6011 13110
(b/it2)  (6548) (65.48) (8384) (55.12) | (49.89) (70.02) (6536) ' (6536) (1472) (1255) (1255  (2738)
m 11163 | 11163 262 1099 © 999 15746 12721 1272 6477 5.50 488 . 6397
oL 33 33 251 343 | 343 429 4 0946 2765 2358 2094 4174
tan 0 0 0 0o i 0 0 0 0 0 0 0 0
&g, rad 031 0318 0310 -0349 © -0349 1101  .086 01 0614 0524 . 0465 0227
K% 00137 00137 00128 = 00325 | 00315 00327 . 00234 ! 00234 00075 00175 00175  0.0103
K3 0656 0656 0700 . 0578 . 0604 0504 0443 0443  O0IS6 0328 | 0328 0247
EKXZ 00468 | 00468 0043 f 004 | 00022 . 0045 ' 00195 | 00195 | -00103 00241 00241 | .00085




[ 38}

TABLE I.- Continued

' _ Conventional Large STOL Small STOL
Quantity
A B C A B C D E A B C D
Dimensions
b, m Y2713 . 2713 28.47 23.20 23.16 20.57 23.77 23.77 11.89 11.89 11.89 19.81 .
(ft) 89) 89) (93.4) (76.1) (76.0) (67.5) (78) (78) (39) 39) 39 (65)
S, m?2 86.80 86.80 92.90 82.59 83.80 49.65 78.31 78.31 21.46 21.46 21.46 39.02 .
(ftz) (934.3) (934.3)  (1000) (889) (902) (534.4) (843) (843) (231 (231) (231) (420) .
S{, m? 18.09 19.56 19.46 20.35 20.35 12.08 16.62 16.62 2.40 240 240 9.20
ftz) (194.7)  (210.5)  (209.5) (219) (219) (130.0) (178.9) (178.9) (25.8) (25.8) (25.8) 99)
A 8.25 8.25 8.72 6.52 6.52 8.53 7.75 7.75 6.58 6.58 6.58 10
T, deg 3 : 3 3 4 4 —.2.12 -3.5 =35 0 0 0 3
i
h,, m 3.712 3.712 4.243 3.000 3.000 2.990 3.575 3.575 2.179 2.179 2.179 1.829
(ft) (12.18) . (12.18)  (13.92) (9.84) (9.84) (9.81) (11.73)  (11.73) (7.15) (7.15) (7.15) (6.1)
1sm 11.08 : 11.08 15.00 11.29 11.29 6.52 7.78 7.78 5.79 5.79 5.79 7.96
(fY (36.34)  (36.34)  (49.20) (37.05) (37.05) | (21.40) (25.53) (2553 19) 19 19 (26.1) ¢
X, 14.48 14.48 17.53 7.39 7.39 6.72 11.04 11.04 233 233 233 . 594
- (ft) (47.50) : (47.50)  (57.50) (24.26) (24.26) | (22.04) (36.23) (36.23) (7.63) (7.63) (7.63)  (19.5) i
‘X, m 836 836 11.92 9.48 9.48 4.97 5.42 542 5.19 5.19 5.19 6.71
(ft) (2743) (27.43) (39.10) (31.09) | (31.09) | (16.31) (17.77) (17.77)  (17.04) | (17.04) (17.04) . (22.0)
Xp,m 15.94 15.94 18.36 , 14.81 14.81 8.69 9.61 9.61 6.72 6.72 6.72 9.97
(ft) (5230)  (5230)  (60.25) | (48.59) | (48.59) | (28.52) : (31.53) . (31.53) (22.06) | (22.06) (22.06) (32.7)
" spom 1.82 182 247 1.50 1.50 1.88 122 122 0.63 0.63 j 0.63 i 1.22
(ft) (5.96) ! (5.96) (8.10) (4.92) (4.92) (6.18) (4.01) (4.01) 2.07) 2071 ; (207 @)
$1,m 563 1 563 6.39 6.22 6.22 6.50 6.11 6.11 2.86 2.86 2.86 4.11
{ (ft) i (18.47) | (18.47) | (20.95) | (20.52) | (20.42) | (21.33) | (20.06) | (20.06) (9.39) (9.39) (9.39) | (13.5)
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TABLE I.- Concluded

Quantity Conventional Large STOL Small STOL
A | B [ ¢ A [ '8 ] ¢ T » E A | 8 | ¢ | b
Stability derivatives for airplane
" ~04783 | -0.388 | ~04783 | -0.443 | -04974 | -0.73 | -0438 | ~0.51 | -0.4875 | -0.4875 | —0.4875 | —0.548
cIr 1623 168 1623 1965 | -.0671 20 1436 10 1034 1034 1034 107 |
clﬁ3 -.1419 | -.1489 | -.1419 | -1397 | -.0952 | —.175 | -2443) -20 0651 | -0651| -.0651| -.113
C 0.00322! -0.0584 { 0.00322| -0.0733 | -0.1519 | -0.050 | -0.092 | -0.05 ﬁ 00209—] ~0.0209 | -00209 ' 0.0132
Ca -2277 1 -2973 | -328 | -5833 | —45 | -.73 -203 | -20 l ' ~.149 ‘ -.149 . -.1827
ng .1383 1709 | 1657 ¢+ 463 267 060 ] 200 i 20 ! 0605 ‘ 0605 0605 | .1247}
Cy, 0.0568 | 0.039 00568 ~0079 | -0079 | 0500 | 0044 | 0.0 00637  -00637 00637 | 0
‘CY[ 5365 706 5365 117 1.17 | 400 70 702549 2549 f 2549 0 il
ECYﬁ -899 -116 | -1.081 1 -148 -135 165 1146  -1.146 | —460  -460 | —.460 - 8457,
CLa,perradL 5.872 3 5.872 | 5872 | 655 | 655 | 3.89% 468 | 468 | 45 1 45 1 as 575 |
: Wing or tail stability derivatives and parameters }
:?C_lb)w -0.4676 | 04676 | 04676 | 042 | -042 | -05185 | -0452 | -0.524 |-0.123 | -0.123 | -0.123 | -0548 |
.(Clr)w 437 437 437 0803 .0803 0627 067 0235 0419 0357 0317 107
(C1ﬁ>w -05% | -072 | -05%6 i -0703 | -.0703 | -0165| -.0608 | -0166 | -.0177 | —.0151 | —.0134 | —.0441
(C“P)w 040 [ -040 | -040 Z0.0382 | —0.0382 | ~0.0553 | ~0.0544 | ~0.0129 | ~0.0368 | ~0.0314 y -0.0279 ! 0.0132
(C“r)w 023 023 023 | -.0061 | -.0061 | -.0074 | -0074 | -.00436| —.0240 : ~0241  -0237 -2
Cpe 018 | .0052 018 | .oosssi 00656 0071 01 01 0073 0073 | 0073 01
Gy, rad 031 , 0318 0310 L-.o349 | - 0349 1101 086 01 0614 { 0524 . 0465 | 0227
1 F- ; , _ h_ } ,
(CYB)T -0.607 1 -08512 | -0.607 l ~1.185 | 1.185 | -0.647 | 0537 -0.537 0575 ' -0.575 ' -0575  -0.6921
"o/By 2 332 2 489 1 489 0068 ' 3455 3455 ' - 241 - 241 -.241 0849
l*;‘;f:reme . 8 8 K | ® 8 [ 8 8 8 8 8 10 E

3Aerodynamic coefficients modified for use on a NASA moving-base simulator to give realistic handling qualities.



TABLE II.- COMPUTED ROOTS OF CHARACTERISTIC EQUATION,

Spiral-mode
Airplane roots,
1/sec
C-A | -9.987 x 1073
C-B -13.843
Cc-C -9.463
LS-A 3.408
LS-B | -36.342
LS-C -215.052
LS-D | -14.195
LS-E | -68.636
SS-A | -14.166
SS-B | ~13.949
SS-C | -13.939
SS-D | -13.034

Roll-mode
roots,
1/sec

-4.123
-3.519
-3.313

-1.683
-2.257
-2.343
-2.328
-4.958

-15.791
-8.000
-8.990
-8.150

Roots, 1/sec

NATURAL FREQUENCY, AND DAMPING RATIO

Dutch roll mode

Real

-0.1723
-.2024
-.1318

-.7676
-.5501
-.5985
-.1167
-.4806

-1.314
-.6896
-.7912
-.6453

Imaginary

+1.562
+1.802
+1.790

+3.151
12.428

916
£2.262
t4.474

+3.303
+2.580
+2.730
+2.423

. Natural
D?;:ﬁ;ng frequency
’ of Dutch roll,
§ wy, radfsec
0.110 1.57
112 1.81
.073 1.79
237 3.24
221 2.49
.547 1.09
.052 2.26
107 4.50
.370 3.55
258 2.67
278 2.84
257 2.51
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TABLE III.- SEATING POSITIONS LIMITS FOR VARIOUS AIRPLANES

Airplane

Fraction of span from center of gravity

Forward limit
(pilot’s position)

C-A
C-B
cC

LS-A
LS-B
LSC
LS-D
LS-E

SS-A
SS-B
SS-C
SS-D

0.56
.56
.65

.28
.28
25
.38
.38

.06
.06
.06
A5

Rearward limit
(rear passenger’s position)
0.21
21
35

24
24
.26
.30
30

.14
.14
.14
.18
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TABLE 1V.- ROOT-MEAN-SQUARE TURBULENCE RESPONSES OF DISPLACEMENT,

RATE, ACCELERATION, AND TRANSVERSE ACCELERATION?

Displacement, Rate, Acceleration, Transverse acceleration,
rad rad/sec rad/sec? g units . 102
. . m/sec m/sec m/sec m/sec
Airplane Uat 0y, Uat
Y 0 0 o 0, o3 o o) o3 . Center Rear
Y, )
0 Yo Bo ©0 Yo Bo ") Yo Bo Pilot’s of  passenger’s

position . .
gravity  position

C-A 0.0262 0.0122 0.0135 0.0369 0.0181 0.0196 0.0821 0.0340 0.0355 0.890 1.120 1.661
C-B .0233 .0103 .0108 0376 0168 0177 .0949 .0351 .0363 .840 1.145 1.700
CC .0193 .0066 .0069 .0317 0114 .0120 .0769 .0249 0253 .700 956 1.630
LS-A  .0157 .0078 .0068 .0172 0153 .0150 .0498 .0505 0506 .40 677 1.530
LS-B  .0155 .0135 .0124 0211 0234 0227 .0584 .0598 .0589 . .705 1.402 2.354
LS-C .0815 .0208 0277 .0695 .0230 .0282 .0750 .0405 .0443 | 2.910 3.348 3.850
LS-D .0330 0160 . .0171 .0596 .0344 .0358 1326 .0799 .0825 .420 1.421 3.300
LS-E  .0197 0069 | .0072 .0395 0256 0259 1648 1191 1196 .850 2.273 4950
SS-A .0540 .0398 0457 | 0666 0874 . .0916 .1892 .3345 3410 | 1.41 1.825 3.250
SS-B 0578 * .0449 .0507 0712 .0885 .0932 .1509 2528 2594 | 2.11 2.532 3.610
SS-C 0567 ' .0435 | .0491 .0692 .0880 .0925 1525 .2674 2737 | 2.308 2.730 3.893
SS-D | .0185 \ 0161 [ .0180 0283 0299 0321 1174 0828 0864 478 919 1.769

8Values obtained by integrating normalized power spectrum from w = 0.0622 rad/sec to 50.222 rad/sec.
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TABLE V.- COMPUTED RIDE QUALITY INDEX

(a) Computed values of ride quality index

Airplane

LS-A
LS-B
LS-C
LS-D
LS-E

SS-A
SS-B
SS-C
SS-D

Range of 'corr-lpu-te-d ride quélitil index from pifdf to

c.g. to rear passenger locations

3.72 to 3.73
3.66 to 3.66
3.31 to 3.31

3.55 to 3.55
3.94 to 3.95
4.05 to 4.06
4.37 to 4.39
4.06 to 4.10

5.46 to 5.51
5.57 to 5.62
5.58 to 5.63
4.18 to 4.17

to
to

to

to
to
to
to
to

to
to
to

to

3.74
3.67
3.32

3.56
3.98
4.07
4.48
4.19

5.68
5.76
5.77
4.21

(b) Interpretation of ride quality index

Computed index

A W =

and higher

Very uncomfortable

Ride quality rating

Very comfortable
Comfortable
Acceptable
Uncomfortable

Passengers_ with no doﬁbts

about flying again, %

100
95
80
40
20
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Figure 1.~ Response of airplane C-A to random gusts for assumed scale

length of 335.28 m (1100 ft). Note that units for gust spectrum are
different from those for response spectra.
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(a) Normalized power spectral density response for each lateral angular

Figure 5.- Response of airplane LS-B to random gusts for assumed scale
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Figure 8.- Continued.
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Figure 9.- Response of airplane SS-A to random gusts for assumed scale

length of 335.28 m (1100 ft). Note that units for gust spectrum are
different from those for response spectra.
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Figure 9.- Continued.
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Figure 9.- Concluded.
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Figure 10.- Response of airplane SS-B to random gusts for assumed scale
length of 335.28 m (1100 ft). Note that units for gust spectrum are
different from those for response spectra.
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Figure 10.- Continued.
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locations forward of center of gravity.

Figure 10.- Continued.
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Figure 10.- Concluded.
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(a) Normalized power spectral density response for each lateral angular
displacement.

Figure 11.- Response of airplane SS-C to random gusts for assumed scale
length of 335.28 m (1100 ft). Note that units for gust spectrum are
different from those for response spectra.
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longitudinal location for several representative airplanes at four
frequencies. Solid-line curve represents spread in possible seating
locations on airplane. Dash-line curve represents extrapolation to

arbitrary limit 0.5x/b.
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Figure 18.- Continued.
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Figure 18.- Continued.
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Figure 18.- Concluded.
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