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FOREWORD

This final report describing the formulation of the Six~
Degree-of-Freedom Program to Optimize Simulated Trajectories
(6D POST) 1is provided in accordance with Part 3.0 of NASA Con~-
tract NAS1-13300. The report is presented in three volumes as
follows:

Volume I -~ 6D POST - Formulation Manual; NASA CR-132741
Volume II =~ 6D POST - Utilization Manual; NASA CR-132742

Volume III - 6D POST - Programmer's Manual. NASA CR-132743

This work was conducted under the direction of Mr. Howard Stomne

and Mr. Richard Powell of the Space Systems Division, National
Aeronautics and Space Administration, Langley Research Center.
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SUMMARY

This report documents the basic equations and models used
in the six-degree-of-freedom version of the program to optimize
simulated trajectories (GD POST). ~

6D PUST, a direct extension of the point mass version of
POST, is a general purpose rigid body six-degree-of-freedom pro-
gram. The program can be used to solve a wide variety of
atmospheric flight nechanics and orbital transfer problems for
powered or unpowered vehicles operating near a rotating oblate
planet. The principal features of 6D POST are: an easy to use
NAMELIST type input procedure, an integrated set of Flight Con-
trol System (FCS) modules, and a general-purpose discrete
parameter targeting and optimization capability.

6D POST is written in FORTRAN IV for the CDC 6000 series
computers.

Other volumes in the final report ave:

Volume II - Utflization Manual - Documents information
pertinent to users of the program. It describes the
input required and output available for each of the
trajectory and targeting/optimization options.

Volume 111 - Programmers lianual - Documents the program

structure and logic, subroutine descriptions, and other
pertinent programming information. '
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1. INTRODUCTION

The six (6)-degree-of-freedom program to optinize simulated
trajectories .8 a general purpose FORTRAN program cfor simulating
rigid body trajectories of aerospace type vehicles. The program
can be used to solve a wide variety of performance, guidance, and
flight control problems for atmespheric and orbital vehicles. For
example, typical applications of 6D POST include:

1) Gutdance and flight control system simulation and analysis;
2) Loads and dispersion type analyses;

3) . General~purpose 6D simulation of controlled and uncon-
trolled vehicles;

4) 6D performance validation.

One of the key features of 6D POST is an easy to use NAMELIST-
type input procedure. This feature significantly reduces input
deck set-up time (and costs) for 6D studies that require the normal
large amount of input.data. In addition, the general applicability
of 6D POST is further enhanced by a general-purpose discrete param-
eter targeting and optimization capability. This capability can
be used to solve a broad spectrum of problems related to the impact
of the control system design on the performance characteristics of
aerospace vehicles.

The . -ic simulation flexibility is achieved by decomposing
the trajectory into a logical sequence of simulation segments.
These trajectory segments, referred to as phases, enable the tra-
jectory amalyst to model both the physical and the nonphysical
aspects of the simulation accurately ani efficiently. By segment-
ing the mission into phases, each phase can be modeled and simulated
in a manner most appropriate to that particular flight regime. For
example, the planet model, the vehicle model, and the simulation
options can be changed in any phase to be compatible with the level
of detail required in that phase.

Every computational routine in the program can be categorized
according to five basic functional elements. These elements are:
the planet model, the vehicle model, the trajectory simulation
model, the auxiliary calculations module, and the targeting and
optimisation module, The planet model is composed of an oblate
spheroid model, a gravitational model, an atmosphere model, and
a winds model. These models define the environment in which the
vehicle operates. The vehicle model comprises mass properties,
propulsion, aerodynamics and aeroheating, an zirframe model, a
navigation and guidance model, and a flight control sy.cem model.
These models define the basic vehicle simulation characteristics.
The trajectory simulation models are the event-sequencing module

1-1
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that controls the program cycling, table interpolation routines,
and several standard numerical integration techniques. These
models ars used in numerically solving the translational and ro-
tational equations of motion. The auxiliary calculations module
provides for a wide variety of output calculations. For example,

conic parameters, range calculations, and tracking data are among

the many output variables computed. The targeting and optimiza-

tion module provides a general discrete parameter iteration capa-

bility. The user can select the optimization variable, the de-
pendent variables, and the independent variables from a list of
more than 400 program variables. An accelerated projected
gradient algoritlim is used as the basic optimization technique.
This algorithm is a combination of Rosen's projection method for
nonlinear programming and Davidon's variable metric method for
unconstrained optimization. In the targeting mode, the minimum
norm algorithm is used to satisfy the trajectory constraints.
The cost and constraint gradients required by these algorithms
are computed as first differences calculated from perturbed tra-
jectories. To reduce the costs of calculating numerical sensi-
tivities, only that portion of the trajectory influenced by any
particular independent variable 1s reintegrated on the perturbed
runs. This feature saves a significant amount of computer time
when targeting and optimization is performed.

Basic program macrologic is outlined in figure I-1, which

illustrates the linkage between the simulation and the iteration
modules.

I-2
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1I.
Math symbol

a

Avp = (Ayxp» Aav® Aazs)
[AB)

Ags = (Asxe® Asyp* Asz)
Agr = (‘sxx' Agyr» Agzr)

A * (Arxe* Arvs® Arzs)

A

Azr» Agps Az

Internal Fortran symbol

LIST OF SYMBOLS AND .ABBREVIATIONS.

Definition

SEMJAX

AB(1)

AMXB, AMYB, AMZB

A(1)

ASM

AXB, AYB, AZB

ASXI, ASYI, ASzl

AZL

AZVELL, AZVELR,
AZVELA

semimajor axis, m (ft)

aerodynamic acceleration
in the body frame, mps?
(fps?)

matrix transformation from
the A-frame to the B-frame

nozzle exit area of each
rocket engine, m? (ft2) -

constants

total aerodynamic wmoment
about the roll, pitch, yaw
axes, N-m (ft-1b)

Davidon deflection matrix
component

total sensed acceleration,
mps? (£ps?)

tota) sensed acceleration
in the body frame, mps?
(fps?)

total sensed acceleration
in the inertial frame,
mpe? (fps?)

thrust acceleration in the
body frame, mps? (fpe2)

azimuth of the 5 axis,
rad (deg)

azimuth of the inertial,
relative, and atmospheric
relative velocity vectors,
rad (deg)
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Math symbol
Aow

AZT

Cyr Gy

Cpyr By

Cpr CL
Ch »
Do C"o‘

11-2

Internal Fortran symbol

AZNT

TKAZMI

B(I)

-on o

CL

Definition
wind azimuth, rad (deg)

azimuth of the slant range
vector to the tracking
station, rad (deg)

boundary for ith con~
straint

Davidon deflection matrix
boundary of region R

local boundary hyper-
surface

axial, side force, and
normal aerodynamic force
coefficients

component of C_, Cy, cN

that is not multiplied
by a mnemonic multiplier

drag and 1lift coefficients

drag and 1lift coefficient
components that are not
multiplied by a mnemonic
variable




Math asymbol Internal Fortran symbol Definition

cu. cn cM, CW pitch and yaw moment co-
efficients

Cs cs speed of sound, mps (fps)

Clw) E(I) constraint functions

D DRAG aerodynamic drag, N (1b)

E ECCAN eccentric anomaly

(E) - Euler parameter matrix

e ECCEN eccentricity

[ (‘0’ e, 9y ‘3) ' E@(I) Euler parameters

e E(I) active constraint error
vector

1 WE(I) weighted error vector

F ¢gPTVAR optimization function

£ ——— nonlinear vector-valued
function

F.. = (F F F FAXB, FAYD, FAZB aerodynamic forces in the

“AB ( " TAYB? AZB) body frame, N (1b)

Fa = (F F Frounl’ FTXB, FIYB, FT2B thrust forces ir the body

~TB ( TXB® "1YB’ ‘1‘) ’ frame, N (1b)

{GA) GA(I) patrix transformation from
the G-frame to the A-frame

G, = (G G GXI, GYI, GzI total gravitational
=1 ( xr’ Gu. ZI) ' ’ acceleration in the ECI-
frame, mps? (fps?)




PO —

- Meth symbol Internal Fortran symbol  Definition

; 8 DG(1) difference in the gradlent

- vector VF between the cur-

; rent and previous itera-

tion

- H - gravitationa const. nt

h ALTITQ oblate altitude. .- ,. 3)

h= (hXI’ h‘ll’ hZI) ANGMZM ary: nomet.. ¢, WMPS

o h,h ALTA, ALTP altitude of apogee and
*p

- a perigee, km (n mi)

HB HB base altitude used in —— ——
atmospheric calculations,

= m (ft)

‘*~ hc P2 constraint function

' H HT geopotential altitude, m

8 (ft)
H - heating ratios
Ry
h'l‘ TRKHT1 altitude of tracker, m
J (fe)
2 h, PINET estimated net cost func-
- tion
) i INC relative-frame orbital
inclination, rad (deg)

: (1B] 1B(L) matrix transformaticn from
the ECl-frame to the body
frame

z (1G] 16(1) matrix transformation from

, the ECI-frame to the geo-
graphic frame

11-4
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Math symbol

fiv)

(1P]

(LB]

= =X = e

Internal Fortran sxgbol

1L(1)

IP(I)

ISPV

AC#B(J)
J2, J3, J4

LIFT

LB(I)

LREF

MACH

MASS

NAC

matrix transformation from
the ECl-frame to the
launch frame

Definition i
|

matrix transformation from |
the ECI-frame to the
planet frame

rocket specific impulse,
8

constraint Jacobian matrix

gravitational constants

Runge-Kutta constants

constants

aerodynamic lift, N (1b)
matrix transformation

from the launch frame to
the body frame

aerodynamic reference
length, m (ft)

Mach number
mean anomaly, rad (deg)

pitch and yaw moment equa-
tions

vehicle mass, kg (slug)

mnemonic table multiplier
for table f

number of active con-
straints
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Math symbol

n
c

e), ¥

pth)

. P

1

P,

T

Qlam’ Qturb

Q®), §(w

Internal Fortran symbol

NDEPV

PRAJ (1)

PRES

Pl

P2

TLHEAT

DYNP

HEATRT, HTURB

RTASC

AP@RAD

RB(I)

DPRNG1

Definition

number of constraints

projection operators used
in the projected gradient
method

atmospheric pressure,
N/m? (psf)

weighted optimization
variable

weighted constraint error
function

total heat, J/m? (Btu/ft?)

dynamic pressure, N/m?
(1b/£t2)

laminar and turbulent heat
rate, W/m?/s (Btu/ft2/s)

linear manifold and its
orthogonal .complement

right ascension of out-
going asymptote, rad (deg)

apogee radius, m (ft)
matrix transformation from

the body reference frame
to the body frame

dot-product range, km
(n mi)

equatorial and polar
radius, m (ft)

nose radius, m (ft)

g s

'w NTgen S Aot S
T
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Math symbol Internal _Forxtran symbol Definition

Rau REYN¢@ Reynolds number

" (xl, Vs zl) X1, YI, 21 inertial radius vector
from center of planet *o
the vehicle, m (ft)

rr GCRAD geocentric radius, m (ft)

rp PGERAD perigee radius, m (ft)

R.8 RS radius to oblate surface,
m (ft)

' Lo ——— slant range vector, m (ft)
x - slant range vector in geo-
=8RG graphic frame, m (ft)
Em ——— radius vector to tracking

station, m (ft)
8 S(1) direction of search
gf ——- direction of search to
satisfy the constraints
S, SL@SIJ space losses for tracking
088y stations, dB
S P SREF aerodynamic reference
re area, m? (£t2)
g? - direction of-search for
optimization
T ATEM atmospheric temperature,
°K (OF)
t TIME time, s

jet engine thrust, N (1b)
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Math symbol

™(y)

e

I1-8

Internal Fortran symbol

THRUST

TVAC
TIMSP

TIMTP

u(1)

Definition

denotes nth'otdet table
interpolation on the
variable y

total rocket thrust for
all engines, N (1b)

total resultant rocket
thrust for engine i, N
(1b)

vacuum thrust for rocket
engines, N (1b)

time since perigee pas-
sage, 8

time to'next perigee pas-
sage, 8

gravitational potential
function

independent variable




th symbol Inte ortyan symbol Definition

Voo = s Voo W UB, VB, Wh components of the atmos-

—AB (uB B B) pheric relative velocity
vector expressed in the
body frame, mps (fps)

Sor — ’ unit vector along.the.
radius vector

frem —-— unit vector along the
velocity vector

| : Au DU(I) change in the independent
< variables
) v a : APVEL inertial velocity at
. . apogee, mps (fps)
: -V-AG UA, VA, WA atmospheric relative
= velocity in the G-frame, ,
- mps (fps) |
!AI VAXI, VAYI . VAZI atmospheric relative ]
velocity vector ir the !
inertial frame, mps (fps) :
Yy = (Vors Vogs V ' vAE, WI, V21 inertial velocity vector
I ( xr* ‘vt 21) and its magnitude, mps
(fps)
V: ‘ VELI magnitude of gI, ups (£fps)
EIG- ' U; Vv, W inertial velocity in the 1
L G-frame, mps (fps) l
] 23. VELR relative velocity, mps 1
(fps) !
y-RG UR, VR, WR relative velocity in the ‘
G-frame, mps (fps)
o Var ® (Vowrs Vovrs V VRXI, VRYI, VRZI relative velocity vector
B ( RXI" "Y1 RZI) in the inertial frame,
wps (fps)
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Math symbol Internal

Fortran symbol

Definition

Voo = (Yuxre Ve Vazi)

L4

VWXL, VWYI, W2l

W

UW, W, WW

PGVEL

RYPVEL

WDAT

WEICON

WEIGHT

WJETTM

WPR@P

WGTSG

WU, W@PT, WE

wind velocity vector in
the inertial frame, mps
(fps)

wind velocity, mps (fps)

wind velocity vector. in
the G-frame, mps (fps)

perigee velocity, mps
(fps)

outgoing asymptote
velocity, mps (fps)

total time rate of change
of vehicle weight, N/s
(1b/s)

total weight of propel-
lant consumed, N (1b)

gross vehicle weight, N
(1b)

jettison weight, N (1b)

weight of propellant con-
sumed per phase, N (1b)

initial propeliant weight,
N (1b)

maximum flowrate for the
1th engine, N/s (1b/s)

weight of propellant re-
maining, N (1b)

vehicle stage weight, N
(1b)

weighting matrices for u,
f,and e - .




Math symbol

Xgs Ypr %3
%gr* Y8R’ *BR

X s Y. 0 E

cg "cg cg

Xg* Yo %g
xI’ on zI

x5
X Ypo %
X
ﬂ

xR-O YR: zR

Xcef® Yref® Zref

a, B, O

Internal Fortran symbol

XcG, YCG, 2CG

X1, Y1, 21

XREF, YREF, ZREF

DGENV

ALPHA, BETA,
BNKANG

ALPT@T

Definition

coordinate axes of the
body frame

coordinate axes of the
body reference frame

coordinates of the center
of gravity in the body
reference system, m (ft)

components of a vector in
the geographic frame, m

(£¢)

components of the radius
vector in the inertial
frame, m (ft)

general state variable

coordinate axes of the
launch frame

state vector at the nth
event

components of the radius
vector in the planet
frame, m (ft)

coordinates of the aero-
dynamic reference point
in the body reference
system, m (ft)

general dependent variable

aerodynamic angle of at-
tack, sideslip, and bank,
rad (deg)

total angle of attack,
rad (deg)

11-11




Math symbol

YI’ YR’ YA

Ah
At
AV

Av

AV

AV
c

11-12

Internal Fortran symbol

GAMMAL, GAMMAR,
GAMMAA

GAMMA (1)

- an

-1

DT

DV

VIDEAL

DLR

DVCIR

DVEXS

GLR

DVMAR

ATLR

RTASC

Definition

inertial, relative, and
atmospheric relative
flight path angles, rad
(deg)

step-size parameter on the

jth trial step

increment in eccentric
anomaly, rad (deg)

increment in altitude, m

(ft)

increment in time or inte-
gration step size, s

increment in velocity,
mps (£ps)

ideal velocity, mps (fps)

atmospheric velocity loss,
mps (fps)

velocity required to
circularize an orbit,

mps (fps)

excess velocity, mps (£fps)

gravity loss, mps (fps)
velocity margin, mps (fps)

atmospheric pressure
loss, mps (fps)

thrust vector velocity
loss, mps (fps)

right ascension, rad (deg)

; .




symbol

ternal Fortran bol
ETA

LONG

LONGI

LONL, LATL, AZL

TRUNMX

TRKLNI

AZREF

STPMAX

-

Definition

engine throttiing param~
eter

planet relative longitude,
rad (deg)

longitude reference, rad
(deg)

inertial longitude, rad.
(deg)

longitude, latitude, and
azimuth of L-frame, rad .
(deg)

maximum true anomaly for
hyperbolic orbit, rad
(deg)

longitude of tracker i,
rad (deg)

azimuth reference, rad
(deg)

maximum admissible step
size for the iteration
algorithm

gravitational constant,
nd/s2 (££3/82)

index

11-13
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Math symbol
)

p(h)

wkt eR’ ¢R
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Internal Fortran symbol

ARGV

GCLAT
GDLAT

ROLI, YAWI, PIT1

YAWR, PITR, ROLR

¢MEGA

R@LBD, PITBD,
YAWBD

ROLBDD, PITBDD,
YAWBDD

Definition

argument of vehicle (i.e.,
angular location of ve-
hicl¢, measured from
ascending node in orbital
plane), rad (deg)

atmospheric density, kg/m?
(slug/ft3)—-

trajectory propagation

geocentric latitude, rad
(deg)

geodetic latitude, rad
(deg)

inertial roll, yaw, and
pitch measured as positive
rotations from the L-frame,
rad (deg)

relative yaw, pitch, and
roll, measured in a posi-
tive sense from the geo-
graphic frame, rad (deg)

longitude of ascending
node, rad (deg)

angular rotation rate of
planet about the polar
axis, rad/s (deg/s)

argument of perigee, rad
(deg)-- --

inertial angular velocity
components about the body
axis, rad/s (deg/s)

inertial angular acceleration
components about the body
axis, rad/s? (deg/s?)
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Math symbol
O,

g

()

)
)

(g

(et
( Vvac

Oy

)+

)

)

Internal Fortran symbol

Definition

refers to atmosphere rela-
tive variables

refers to center of
gravity

refers to inertial
variables

refers to nth event

refers to thrust applica-
tion

refers to Earth-relative
variables

refers to aerodynamic ref-
erence point

refers to sea-level condi-
tions

refers to vacuum condi-
tions

pefera to wind relative
variables

refers to state from which
downrange and crossrange
are referenced; refers to
optimal conditions

denotes vector quantity

denotes transpose of a
vector

denotes total derivative
with respect to time

11-15




e Ty
——.

Math symbol
O

()

Internal Fortran symbol

Deiinition

denotes occurrence at the
positive side of an event

denotes occurrence at the
negative side of an event

is a member of
intersection of
uninn of

set

such that

addition operator

The following symbols have been added to the six-degree-of -freedom

portion of the program.

Math symbol

Casa® Case

Casf

» CpoR?

1

Cpsa* Cpse’ Cpsr’

cnsf1

c
c

» Crsar ©

L8a

9.6f1

2de’® "E4R,

1I-16

Internal Fortran symbol

Definition

CADA, CADE, CADR,
CAF(1), 1=1,3

CDLA, CDDE, CDDR,
CDF(1), I=1,3

CLLDA, CLLDE, CLLDR
CLLF(1), I=1,3

Incremental axial force
coefficient per rad (deg)
for the aileron, elevator,
rudder, and general
deflector

lacremental drag force
coefficient per rad (deg)
for the aileron, elevator,
rudder, and general
deflector

Incremental rolling
moment force coef-
ficient per rad (deg)

for the aileron, elevator,
rudder, and general

def lector

S
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Math symbol,

Crea® CLier CLon?
C .
l"
L i
“mea® mie’ Lm:R’
Cm%f‘
1
Cnfa’ ane' Cnoﬂ’
n6f1

Chsa® Snse® Gusr®

cNGfi

Cysa* Cyse’ Gyor:
Cree,

dR' dP’ dY

Internal Fortran symbol

CLba, CLDE, CLLR,
CLF(1), I=1,3

CmDA, CMDE, CMDR,
CMF(1), Is=1,)

CWDA, CWDE, CWDR,
CWF(Ll), 1=1,3

CNDA, CNDE, CNDR,
CNF(1), I=1,3

CYDA, CYDE, CYDR,
CYF(1), I=1,3

DREFR, DREFP,
DREFY

PTTXB(I), I=1,3

RCSFXB(1), I=1,3

tm(l) ] 1-1.3

Definition

Increment 01 1if{t turce
cocft lcient per rad (deg)
for the aileron, e¢levator,
rudder, and guncral

def lector

Incremental pitching
moment force coef-
ficient per rad (deg)

for the aileron, elevator,

rudder, and general
deflector

Incremental vawving roment
force .nefficivnt per

rad (deg) for the aileron,
elevator, rudder, and
gencral deflector

Incremental normal force
coefficient per rad (deg)
for the aileron, elevator,
rudder, and general
deflector

Incremental side force
coefficient per rad (deg)
for the aileron, elevator,
rudder, and general
deflector

Reference lengths for roll,

pitch, and yaw cerodynamic .

moment coefficients m (ft)

Total of all nongravita~
tional forces calculated
in the body frame, N (1b)

Force of the RCS engines
in the body frame, N (1b)

Total force due to the

non-RCS engines calculated
in the body frame, N (1b)

11-17
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Math_symbol

Loys tyye 12

b Lyye B2z
e vz 1na
1

I 1

Xy' "Xz2* vz

(K]

KPl‘a’ KPoe’ KP.'r
Krsa® ¥roe® Frsr

Kysa® Kysa® Kysr

M]

--AB

'y!
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Internal Fortran symbol

Dafinition

1XX, Iyv, 122
IXXD, 1YYD, 122D,
IXYD, IYZD, TXZD

INY, X4, 1YZ

KRDP (1), KPDP(1),
KRDY (1), KYDY(I)

tPDA, KPDE, KPDR

~*RDA, KRDE, KRDR

KYDA, KYDE, KYDR

AMXB(1), I=1,3

TTMXB(1), I=1,3

RCSMXB(1), I=1,3

TMXB(1), [=1,3

Moments of inertia
about the body axis
system

Time derivations of the
moment = and products
of inurtia

Products of inertia
about the body axis system

Roll nozzle deflection
mactrix ‘

Mixing logic gains for the
aileron, elevator, and
rudder about the y-body
(pitch) axis

Mixing lugic gains for
the aiieron, elevator,
and rudder about the
x=-body (1011) axis

Mixing logic gains for
the z-body (yaw) axis

Matrix representation
of the mixing gains

Externa’ moment due to
the aerodynamic forces,
N-m (ft-1b)

Total exiernal moment
duc to thrust, RCS, and
aerodynamic forces,
N-m (ft-1b)

Net moment due to the RCS
forces, ti-m (ft-1b)

External moment due to
thrust forces, N-m (ft-1b)




Math symbol

Py q°, t°

“Il 3[0 OI

X »Y .o F

8p

Internal Fortran symbol

Definition

PND, QND, RND

ALPHL, BETAI, BANKI

DELA, DELE, DELR
DELF(L), I-1,3

DER(1), DEY(I)

YAWAC, PITAC, ROLLAC

DXR(I), I=1,3

DXP(I), DYP(I), DZP(I)

GXP, GYP, GZP '

Nondimensional roll,
pitch, and yaw body
rates

Attitude reference
angles measured in the
same sense and order as
the aerodynamic angles
but with respect to the
inertial velocity vector,
rad (deg)

General vector represent-
ing an ergine or aero-
dynamic control surface
deflection, vad {d2g).
the subscript denotes

the null value.

Deflection angles for the
aileron, elevator, rudder,
and general aerodynamic

control surfaces rad (deg)

Pitch and yaw gimbal angles
for the i-th engine, rad
(deg)

Yaw, pitch, and roll auto-
pilot commands, rad (deg)

Vector difference between
the center of gravity

and the reference point
for the aerodynamic forces
(usually the aerodynamic
center of pressure), m (ft)

Vector difference between.
the center of gravity and
the engine gimball point
for the i-th engine, m (ft)

Location of engine gimbal
in bodv refcrence system

11-19
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III, COORDIMATE SYSTEMS

6D POST uses numerous coordinate systems to provide the neces-
sary reference systems for calculating required and optional data.

:h;se coordinate systems and the key transformations are described
elow.

Coordinate System Definitions

Earth-centered inertial (ECI) axes (xI, Yp» zI).- This sys-

tem is an Earth-centered Cartesian system with z; coincident
with the North Pole, X; coincident with the Greenwich Meridian
at time zero and in the equatorial plane, and Yq completing a
right-hand system. The translational equations of motion are
solved in this system (fig. III-1).

Earth-centered rotating (ECR) axes (xR, Yg? zR).- This sys-

tem is similar to the ECI system except that it rotates with the
Earth so that is always coincident with the Greenwich Merid-
ian (fig. I1I-1).

Earth position coordinates (¢ , 0, ?).- These are the fa-

miliar latitude, longitude, and altitude designators. Latitude
is positive in the Northern Hemisphere. Longitude is measured
positive East of Greenwich, Altitude is measured positive above
the surface of the planet (fig, III-1),

Geographic (G) axes (xb. Yo quf - This system is located

at the surface of the planet at the vehicle's current geocentric

latitude and longitude. The X, axis {8 in the local horizontal

plane and points North, the Yo axis is in the local horizontal
plane and points East, and zg completes a right-hand system.
This system is used to calculate parameters associated with azi-
muth and elevation angles (fig. 111~2).

Inertial launch (L) axes (EL: Yo» zL). - This is an iner-

#
tial Cartesian system that is used as an inertial reference
system from which the inertial attitude angles of the vehicle are
measured. This coordinate system is qutomatically located at the

1II-1
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Figure 1II-1,~ Coordinate Systems
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Figure I1I-2,~ Launch Frame
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geodetic latitude and inertial longitude of the vehicle at the
beginning of the simulation unless eoverridden by user input of
LATL and LONL. The azimuth, Ay» 1s zero unless overidden by

user input. The orientation of this system is such that X is
along the positive radius vector if ¢L is input as the geocen-
tric latitude, or along the local vertical if ¢L is not input
or is input as the geodetic latitude. 3 is in the local hori-
zontal plane and is directed along the azimuth specified by §ZL’
and Yy, completes a right-hand system. This system is intended

for use in simulating ascent problems for launch vehicles that
use either inertial platform or strapdown-type angular commands.
The inertial angles, (°I’ *1' OI) are always measured with

respect to this system and are automatically computed regardless
of the steering option (IGUID) being used (fig., II1-2),
M@(MamsEyyrzanMbMyu%fumquﬂb

hand Cartesian system aligned with the axes of the vehicle and
centered at the vehicle's center of gravity. The Xy axis is

directed forward along the longitudinal axis of the vehicle,. g
points right (out the right wing), and zB points downward, com-

pleting a right-hand system. All aerodynamic and thrust forces
are calculated in the body system. These forces are then trans-
formed to the inertial (I) system where they are combined with
the gravitational forces (fig. II1I-3)

Figure 111-3.--Body Frames

111-3
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Body reference (BR) axes (“BR' Ygr® ZBR) .~ The body reference

system is a right-hand Cartesian system aligned with the body axes
a¥ follows. Tge R axis is direc{ed alonqgthe negative xg zx S,

the Ygr axis is directed along the positive Yg axis, and the 2gR
is directed along the negative zg axis. This system is used to

Tocate the vehicle's center of gravitv, aerodynamic reference point,
??? gggine gimbal locations for the static trim operation (fig.

Orbftal elements (ha’ hn, i, 9, 0, w).- This is a nonrectangular

coordinate system used in describing orbital motion. The orbital
elements are apogee altitude, perigee altitude, inclination, longi-
tude of the ascending node, true anomaly, and argument of perigee.
The apogee and perigee altitudes replace the standard orbital ele-
ments of semimajor axis and eccentricity (fig. I1I-4).

K

Perigee

Satellite

Figure 1I11-4.- Orbital Parameters
Apogee

111-4
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Attitude Angles

The program contains the following standard attitude refer-

ence systems:

1) 1Inertial Euler angles;

2) Relative Euler angles;

3) Aerodynamic angles;

4) 1Inertial aerodynamic angles;

These variables are defined and illustrated below:

1) Inertial BEuler angles (fig, III-5):

¢I - Inertial roll angle. The roll W xB
angie with respect to the L- I
frame (first rotation), vy \ wl .
Iy 4 R
WI - Inertial yaw angle. The yaw 1
angle with respect to the L- Vg

frame (second rotatiom),

8. - Inertial pitch angle. The pitch
frame (third rotation);
2) Relative Euler angles (fig. III-6):

wR - Relative yaw angle. This is *3
the azimuth angle of the Xy
axis measured clockwise from X e
the reference direction (first wR.R

rotation),

OR - Relative pitch angle. This is . '
the elevation angle of the Xy

axis above the local horizontal ’/
plane (second rotation), %
B

)

QR - Relative roll angle. This is
the roll angle about the x;  Figure III-6.- Relative Euler Angles
axis (third rotation).

111=5

angle with respect to the L- Figure I1I-5,~ Inertial.Euler Angles
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3) Aerodynamic angles (fig. IIl=7)t

o =~ Bank angle. Positive o 1is a
positive rotation about the
atmosphere relative velocity
vector (first rotatiomn),

B =~ Sideslip. Positive £ 1is a nose-
left (negative) rotation when
flying the vehicle upright (sec-
ond rotation), yB

a = Angle of attack. Positive a
is a nose-up (positive) rotation
when flyiug the vehicle upright
(third rotetion);

4) 1Inertial aerodyramic angles (fig. III-8):

- Bank angle; Positive 9y is a

positive rotation about the
atmosphere inertial velocity
vector (first rotation),

°1

B, - Sideslip. Positive BI is a. nose-

left (negative) rotation when s

flying the vehicle upright (sec-
ond rotation),

@ - Angle of attack. Positive a

is a nose-up (positive) rotation
when flying the vehicle upright
(thirxd rotation);

111-6

Figure 11I-7.~ Aerodynamic Angles

1 Pigure II1-8.- Inertial Aerodynamic
Angles




Transformations

Numerous matrix transformations are required to transform
data between tha coordinate systems described in the previous
- section. The most important of these transformations is the [IB)
. matrix. The inverse (transpose) of this matrix is used to trans-
) form accelerations in the body frame to the planet-centered in-
ertial frame. The remaining transformations are generally used
to either compute [IB] or to transform auxiliary data into some
convenient output coordinate system.

The [IB] matrix is functionally dependent on the attitude
of the vehicle. This dependence is described by equations re-
lated to the attitude steering option selected by the user. The
following matrix equations, which depend on this steering optiom, .. . .
are used to compute the [IB] matrix.

A T

{1B) = [LB]}[IL] (body rates or inertial Euler angles)
[1B] = [GB][IG] (relative Euler angles) (111-1)
{1B] = [AB]}[GA][IG] (aerodynamic angles)

The basic relationships between the coordinate systems de-~
fired by these equations are illustrated in figure III-9, The in-
verse transformation can generally be computed by merely trans-
posing the matrix elements because of the orthonormality of
these matrices.

i
T Figure I11-9,~ Matrix Transfcrmations

111-7
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A summary of these matrices is given below. The symbols ¢
and s denote sin and cos,_.respectively.

[IL), inertial to launch.- The [IL] matrix depends on 0
and AZL’ and 18 given by

)

L’
" co. co 0. 89 7
¢ €689, 89y,
[IL] = 8¢, c0 8A,, - cA, 8Y, cA, c0, + “AZL“LBOL ~8A,, cé; (111-2)
-8A,, 80, - cA; 8¢,ctp shy cd) - chy, 86,88, cAypcty,

_ [LB], launch to bedy.- The [LB] matrix is computed indi-
rectly from the body rates by integrating the quaternion equa-
tioms, or directly from inertial Euler angles. When the body
rate option is used, the quaternion rate equation

& ey e &[]

. X

-3} 1 (1) e) -e3

&) 21 ey =-e e’ “y (111-3)
é e e -e

L3 L 0 ! ‘d b

is inteprated to compute the (LB] matrix, which is then given

by
el + e - el - el 2(eje; + ege3) 2(eje3 - egez) 7 |
[(LB] = |2(eje; - epes) e% - e% + e% - e% 2(ege; + eze3) (111-4)
L?(elea + ege?) 2(eze3 - ege)) e2 - e} - e + €3
111-8
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When the inertial Euler angle option is used, [LB]° is computed
directly as

°¢I°°I -cwl ¢:wIseI 7]

(LB] = °¢1°W1°°1 + "1“1 cé ¥y c¢IszseI - solcel ] (III-5)
ulswlcel - c@IseI solcwl s¢1w1961 + °°1°°1
b -

1G], inertial to geographic.- The [IG] matrix depends on
the geocentric latitude and the inertial longitude, and is given

by
. -s¢cceI -8 c“I °¢J
(1G] = | -s6, ct, 0 (X11-6)
-c¢ccle -c¢cael -8d,

" [GB eographic to body.- The [GB] matrix depends on the
relative Euler angles, and is given by

-Eancwk . censqpk -seR N
[GB] = oonaencwa = céo8vp “R“R“'R + chpcip “n"en (J11-7)
Lf¢R80RcwR + 3¢RawR c¢R§OR§¢R - S¢Rc¢n cQRcBR

[GA], geogra%hic to_atmospheric relative velocity system
(ARVS) .- The [GA] matrix depends on the atmospheric relative

flight asimuth end flightpath angles, and is given by

™ ey A cY,8h, -8y A'T
[GA) = |-8A A cA A 0 (111-8)
L“Ac}‘A syAsAA Y, |

I11-9
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[AB], ARVS to body.- The [AB] matrix depends on the aerody-
namic angles, and is given by ‘

cacB ~cagfco + saso -cagfad - sacy
[AB] = | 88 cdco ciisa (111-9)
sach ~-gagfico = caso -gu8psc + coco | .

Other transformaticens, which are not related to the calcula-
tion of the [IP] matrix, are presented Lelow.

{zrl, inertial to planet relative.- The [IP] matrix trans-
forms between the Earth-centered inertial frame and the Earth-
centered rotating frame. This matrix depends on the rotation
rate of the planet and the total elapsed time of flight, and 1is
given by :

e t sl t 0‘1
P P
(tP] = |-a02 ¢t clt 0 (111-10)
P P
e O 0 1 - ®

[RB], body reference to body.- The ([RB] matrix transforms
data in the body reference system to the body frame. This matrix
has a constant value and is given by

-1 0 0
[RB] =} O 1 0 (111-11)
0 0 ‘-1 .

111-10
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IV. PLANET MODEL

The planet modcl 1s composed of three types of data and equa-
tions. These are: (1) oblate planet geometry and constants, (2)
an atmosphere model that computes atmospheric pressure, density,
temperature, and speed of sound, and (3) a gravitational model
that computes the gravitational accelerations. The user selects
the appropriate models and inputs the corresponding data. The
input data and the equations used in these models are described
below.

Oblate Spheroid

The 1960 Fisher Earth model is preloaded into the program.
This model is defined by the equatorial radius RE’ the polar
radius R?, the rotation rate np, the gravitational constant

4, and the second, third, and fourth gravitational harmonics,
Jo, J3, and Jy, rvespectively. The stored values for these
constants are:

Rp = 2.0925741 x 107 fe,

Rp = 2.0855590 x 107 fe,

p = 7.29211 x 10-° rad/s,

1.4076539 x 106 ft3/s?,

J, = 1.0823 x 10-3,

J3 =0,

Jy, = 0.
The constants J3 and J, are preloaded as zero, but can be ini-
tialized by input. For example, if the Smithsonian Earth model
is desired, then these constants would be input as

J, = 1.082639 x 1073,

J3 » -2.565 x 1076,

J, = -1.608 x 1076,

u = 1.407645794 x 10'€ £t3/e?,

IvV-1
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Gy = 7.29211515 x 10™% rad/s,

Rg = 2.092566273 x 107 f¢,

R, = 2.08550242 x 107 fe,

The geometry of this spheroid is illustrated in figure LV-l,
The pertinent equations related to this model are

$g = win”! (’1/‘1) )
08 « tan™' (k tan ¢c)’ k= (RE/RP)d

. XN (‘ (IV-1)
R, = Ry (14 (k - Dain” 4 )

h'tI'Rs. ‘

where °c is the geoucentric latitude, @g is the geoﬁetlc lati-

tude, 01 is the inertial longitude, ¢ is the relative longi-

tude with respect to the planet, r_. 4is the distance from the

I
center of the planet to the vehicle, R8 is the distance from

the center of the planet to tle planet surface, and h is the
distance from the planet surface to the vehicle.

Iv-2
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Figure IV-1,- Oblate Planet

Gravitational Model

The gravitational model includes optionally second, third,
and fourth harmonic terms. The potential function for this model

is
- 1_ 32 2(32% 1)\ _Jagafszl_3e
o """[r 2"3(,5 g T RPT S
‘ 3
gl J 4 2
S w (3s§§-3o§,-+%5-)]. (1v-2)
1Iv-3
% e - e = ﬂ,—.-—lg.v ~5= == =3 *"*’f‘;“,



The gravitational accelerations calculated from this potential
function are:

Cyr

%1

o

Z1

where

3
P (z, ) -[14-.132 (1-522)-0-11%—(3-7 z2)s

-
381

'-ul‘-gP(z. r)
r

w
»

Rg/*1

1v-4

3 . .
"‘u—g'[(l*'JR?' (3-52"’)) z+HR (621_722 zz_%rz)

x.xI’y-yIPz.

\ .

X

+ BR* (%5— - 1022 + 92‘*) z} .

y
20 r= rI, and

+ DR (92“ - 622 +-%j].
o

(Iv-3)

‘ (1v-4)
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Atmosphere Models

POST has thé optional capability of three atmospheric models--
the general table lookup, the 1962 U.S. standard atmosphere, and
the 1963 Patrick AFB atmosphere using polynominals. The general
table lookup model gives the user the flexibility of inputing his
own atmospheric model if none of the preloaded models is adequate.
This is particularly useful in performing trajectory analysis for
planets other than Earth. The parameters required to define the
atmospheric effects are the atmospheric pressure p, atmospheric
density p, speed of sound Cs, and atmospheric temperature

T. These parameters are functions of the oblate altitude h.

Table lookup atmosphere model.- The table lookup atmosphere
model cau be defined entirely by using tables that show pressure,
temperature, speed of sound, and density as functions of altitude.
The speed of sound and density tables can be omitted if desired;
in this case, the speed of sound and density are computed_as.

cy VT

(1v-5)
p = Ky %o

where
*
KIBMLR-‘
0
M

0
Kg"ﬁ:

y = ratio of specific heats
Mb = molecular weight

R* = universal gas constant.

1962 U.S. standard atmosphere model.- The 1962 U.S. stand-
ard atmosphere model is given as a function of geopotential alti-
tude (Rs). which 1s computed as

H =B (1V-6)

1v-5




vhere

R, = average Earth radius = % (RE + RP)

h = oblate altitude.

The molecular scale temperature, TM’ is defined by a series
of linear segments (LM) as a function of geopotential altitude

H \.
(%)

The cornmer points commecting the straight-line segments are
referred to as base altitudes (HB)’ base temperatures (TMB),

etc. From a table of base altitudes, base temperatures, and
dTM/dH (LM) (the slope within the linear segments), the tempera-

ture at any desired altitude can be calculated from the following
equation:
+ H "u . -
LMB ( 8 8) (xv=7)
Values of P, T, , and I.MB versus HB ar2 presented in

table 1v-1. B Mp

The atmospheric pressure is determined as follows:

T

| 8o o
P=P | — for segments with ¢ 0, and

B| T, /LMB "
(1v-8)
8p My (H - Hy)

Ps= PB exp |- g TMB for segments with LMB =0,
whare PB is the base pressure corresponding to the given base

altitude Hs. These base pressures can be calculated once the
sea~level pressure, PO’ and the temperature profile have been

specified.

1v-6




Having calculated the temperature and preseure, the density,
p, opeed of sound, cs. and atmospheric viscosity, Hye are:

determined as follows:
M
- _0)2..
e (R

L
c, = (1—&'5\ 7 (IV-9)

3/2
.
?
A TM + 8
where 8p ie the acceleration of gravity at sea level, Mo is

the molecular weight of air at sea level, R* is the gas con-
stant, Yy is the ratio of specific heats, and B and S are
Sutherland's constants.

M.o = 28.9644

R®

3 J
8.31432 x 10 (°%) (kg-mol)
y= 1.40

(Iv-10)
k

eec4§~%°K) %

1.458 x 10-6

w
)

S = 110.4°K = 198.72°R

8 - 9.80665 m/sec? = 32,174 ft/sec?.

In the 1962 U.S. standard atmosphere, the molecular weight
varies with altitude above approximately 90 km; in POST the molec-
ular weight is assumed constant, resulting in a slight discrepancy
above 90 km. In the 1962 U.S. standard atmosphere, geometric alti-
tude is transformed to geopotential altitude, which is used throagh-
out. Thus, above 90 km, a constant slope of molecular scale tem-
perature versus gaeopotential altitude is used inatead of the con-
stant slope of temperature versus geometric altitude.

Iv=-7
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TABLE IV-l.- 1962 U, S. STANDARD ATMOSPHERE PROFILE
“B’ ft PB: psf TMB‘ °R LMB, oR/ft
0.0 0.21162166 + 4 518.67 -0.35661600 - 2
36 089,239 0.47268050 + 3 389.97 0.0
65 616.797 0.11434543 + 3 389,97 0.54863995 - 3
104 986.87 0.18128948 + 2 411.57 0.15361920 -~ 2
154 199.48 0.23163263 + 1 487 .17 0.0
170 603.68 0.12322603 + 1 487.17 -0.10972801 ~ 2
200 131.23 0.38032532 + 0O 454,77 ~-0.21945600 ~ 2
259 180.35 0.21673064 - 1 325.17 0.0 -
291 151.57 0.34333824 - 2 325.17 0.16953850 - 2
323 002,74 0.62b;4785 - 3 379.17 0.28345707 - 2
354 753.59 0.15361733 - 3 469.17 0.56867005 ~ 2
396 406.39 0.52676024 - 4 649,17 0.11443751 - 1
480 781,04 0.10566108 - 4 1729.17 0.86358208 ~ 2
512 046.16 0.77263469 - 5 1 999,17 0.57749093 - 2
543 215,48 0.58405376 -'5 2 179.17 0.40610461 « 2
605 268.45 0.35246030 ~ 5 2 431.17 0.29274135 - 2
728 243,91 0.14559124 - 5 2 791.17 0.23812804 - 2
939 894.74 0.39418091 - 6 3 295.17 0.20152600 -~ 2
|1 234 645.7 0.84180249 - 7 3 889,17 0.16354849 ~ 2
11 520 799.4 0.22945543 - 7 4 357.17 0.11010085 - 2
1 798 726.4 0.72259271 - 8 4 663,17 0.73319725 -~ 3
2 068 776.5 0.24953752 - 8 4 861,17 0.0
1v-8
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1963 Patrick AFB atmosphere using pol nals.~ In this

model, pressure and temperature are calculated as functions of
geometric -altitude (h). These parameters are calculated in met-
ric units and converted to English units if required.

Pressure:

1) Altitude regioa = 0 to 28 000 meters:

P =P exp (A+ A h+ Ay h2 + A3 h3 + Ay h* + A5 B5)
where P; = 10.0 Newtons/cm*;

2) Altitude region = 28 000 to 83 004 meters:

r-goxlo-“ exp (A+ A; h + & h2 + A3 h3 + A, h* + A5 b5)3

3) Altitude region = 83 004 to 90 000 meters:

-1.373301523 x 10!2 h =~ hy
P.= P exp :
B (rn (6344860 + h) (6344860 + hy) )’

4) Altitude region = 90 000 to 700 000 meters:

Ly ® =L, (Pg) * T (6344860 + h) (6344860 + hg)

1.373301523 x 1012 )

T

Ln (TMB ¥ L:?h = hn))‘ )

1v-9
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Temperature:
1) Altitude region = 0 to 10 832.1 meters: 1
T=Tk= A+ A h+ A, h2 + A3 h3 + A, h"* + A, h3;
2) Altitude region = 10 832.1 to 83 004 meters:*
T=A+A h+A I +A; h’+ A, h* + Ag h5;
3) Altitude region = 83 004 to 90 000 meters:
T =Ty 4L, (b= hy). ? (1v-12)
However, in this region Lk = 0, and thus

T = TB = 180065°K; *

4) Altitude region = 90 000 to 700 000 meters:

‘T-TM-TMB-i-Lm(n-hB)'.

s
Density:
1) Altitude region = 0 to 28 000 meters: 7
o=p)exp (A+ A h+ Ay h’ + Az h3 + A, h" + Ay h%);
2) Altitude region = 28 000 to 700 000 meters: } (1v-13)
. ' P
p = (34.83676) .

o

*Virtual temperature is the same as kinetic temperature
above the 10 832,1-meter altitude.

1v-10
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TABLE IV-3,- 1963 PATRICK AFB MOLECULAR
TEMPERATURE PROFILE AND GRADIENT PROFILE

hy, kat Tig, °K - Ly» °K/km

£ : 90 180.65

: - ' -‘"' " 3.0
. 100 210,65

5.0
110 260,65

2 10.0
- ' 120 360.65
150 960.65

15.0
160 1 110,65

10.0

» 170 1 210.65 )

7.0
190 1 350,65

.' s.o
s 230 1 550,65

) 4.0
300 1 830.65

¢ 303
N 400 2 160,65

A 2,6
500 2 420,65

1.7
600 2 590,65

1.1
700 2 700.65

®*Altitude range: 90 000 to 700 000 meters.
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Pressure and density ratios:

Altitude region = 0 to 700 000 meters:

l‘D

p -
R0 ' (1V-14)
p
PR L ‘ro ’
o
Velocity of sound:

Vg = (20.046707) (™. (1V-15)

The atmosphere model-derived coefficients are presented in
-able IV-2. The melecular temperature gradient is documented in
table 1V-3 for geometric altitudes from 90 to 700 km.

Winds

The atmospheric wind velocity components are input in tables
using either meteorological or vector uotation. If these tables,
which are normally functions of oblate altitude, are not input,
then the atmosphere is assumed to'rotate uniformly with the
planet.

The wind velocity components can be input directly in the
geographic frame by definiug Bos Vs and wys ©F by defining
the wind speed (Vw), the wind azimuth (A, ), and the wind
azimuth bias (Asz) .
the G-frame are:

The resulting wind velocity components in

Vw (h) cos (AZW (h) + Asz) -

Voo = Vw (h) sin (Azw (h) + AZWB) (1v-16)

wa ¢}

1v-14
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It is clear from the above equation that in order to input vector

wind data Asz must be input as zero, whereas for meteorologic

data the preloaded value of 180° should be used.
The wind velocity in the ECI frame is then given by

- 0] -l . o
Vut [16) Ve (1v-17)

Thus, the acmospheric relative velocity vector in the ECI frame
is

! = -y » - -
Yar =Y -3 - Yy (1v-18)
and its magnitude is given by

v (Iv-19)

1vV-15
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V. VEHICLE MODEL

The various physical properties of the vehicle are modeled
by the user when ha selects the pertinent options from the sat of
vehicle simulation modules. The equations used in these modules
are presented below.

Mass Properties Model

The gross weight of the vehicle at the beginning of each
phase is given by

uG - "stg + wpld’

where wstg is gross weight without payload and wpld is the pay-

load weight. For phases other than the first, the gross weight
can optionally be computed as
+

W. =W,

G G- “jet: - v

PR’

where W; is the gross weight on the positive side of the cur~
rent event, w; is the gross weight on the negative side of the

wjett is the jettison weight, and wPR is the
weight of propellant remaining. These options are obtained au-~

tomatically, based on user input.

current event,

The propellant remaining is given by

Wpg * "p1 = Wpe»

where NP is the initial weight of propellant and wpc is the
i
amount of propellant consumed. This latter term is given by

"PC- det'O-Hco

where W 1is the total rate of change of the vehicle's weight.

(v-1)

(V-2)

(v-3)

(V-4)
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The composite inertin matrix is input with respect to the
body axies syastem which Is located at the instantaneous composite
center of gravity of the vohicle.® In 6D POST, the moments and
products of fnercia are defined aa the integrals

L ™ fy” + 27 dv lxy = xy dv
Iyy - {x' + 2 dv Lo " §xz dv (V=-5)
!zz = Sx‘ + y dv lyz ] Syz dv, (V=5)

The inertia matrix is then given by

B - -1 |
Vex Ixy, Lo

(1) = »lxy 1” -1yz , (V=-t)
L:lxz -[yz Iz{_

The composite center of gpravity is referenced with respect
to the vehicle referenca i:ame, ard the compoients (xc s ¥ z )
are generally input as a function of vehicle weight. g8 "cg cg

Propulsion Calculations

6 POST can simulate both rocket and jet engines. The pro-
grum can simulate up to 15 engines in either mode.

Rocket engines.- There are two input options for engine data
in the rocket mode. In the first option, tables for vacuum thrust
and maximum weight flowrate are input for each engine. In the
second option, tables for vacuum thrust are input, along with the
vacuum specific impulse for each engine. The vacuum specific im-
pulsc is then used to calculate the mass flowrate.

The rocket thrust per «ngine is given by

TRi = Tvac‘ - AEi p(h), v=7)

#In 6D POST the center of gravity is assumed to coincide
with the center of mass.

V-2
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vhere n 4is the throttle setting, Tva c is the vacuum thruet
i

of the ith engine, AF is the nozzle exit area, and p(h) 1s the

atmospheric pressure. Summing over all engines yields the total-
rocket thrust

eng
- v-8) -
Tp T“i' (v-8)
i=1
where N eng is the number of thrusting engines, and Neng < 15,
The weight flowrate in the rocket mode is given by
ueng
" max
n E (w:a 1)
. i=]
Ws= " (v-9)
eng
" 2 Tvac 8 )
1=l Pyac/1
Jet engines.- In the jet engine mode the net jet thrust per
engine is given by
TJ
‘3") = f(M, n), (v-10)

i

where

§ = p(h) /og;

V-3
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and Ei (M) 18 a monovariant table. The total jet thrust is then

given by

N
e

ng
T = Zp(h) P\ (T./8.). (v-11)
: 3T L /( sL) (J/ 1)

The weight flowrate in the jet engine mode is

N
eng T
Wea - gihl g.m (37!_;9) (gl) 5. (V-12)
sL \'sL ) 1
i=]
The thrust equation for each engine is given by
ons de  cos e ]
Py Vi
e T ) -1
Emi B, sin Seyi ’ (V-13)
~ cos fe sin fe
| i Py

where the pitch and yaw engine deflection angles de_ and Se
are defined in Figure V-1. P y

'S

Figure V-1.- Engine Gimbal Angles

V-4
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Aerodynamic Calculaticras ‘
The aerodynamic force coefficients can be expressed in terms
of the 1ift, drag, and side-force coefficients cL. CD. and
Cy (fig. V-2), where—C, and C, are directed normal to, and
along the velocity projection in, the Xp=2g plane. Note that
cY produces a side-force, FAYB’ acting in the direction of g

Lift and drag force coefficients are transformed to axial
and normal force coefficients as follows:

C cos a -gin o CD

A . (V-14)

CN sin a cos a cL

where a 1is the angle-of-attack.

Figure V-2.- Aerodynamic Angles

The aerodynamic coefficients can also be expressed in terms
of the axial force, normal force, and side force, CA’ CN’ and

Cy, respectively. Here CA and cN produce forces that act in
the Xy and 25 directions, and CY produces a force acting

along Y¥pe

V-5
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Each serodynamic coefficient is computed by interpolating
the values in the table. In general, eight tables are allocated
to each coefficient. These tables can be-monovariant, bivariant,
or trivariant, and seven tables per coefficient can have arbi-
trary hollerith mnemonic multipliers. This generality enables
all standard forms of aerodynamic data to be directly input into
the program.

The aerodynamic force coefficients are obtained by summing
the individual contributions as follows:

3
" = B A 6 S -
C = C +Cu(nM) +C, Sa+C, Se+Cy &4 ) C 8, (V-15)
0 , da Se §r 33
i=] i
3
CN = CN + CN(Q,M) + CN . da + CN de + CN ér + E CN 6fi, (V-16)
0 . Aa Se Sr of
i=1 i
or optionally
3
CD = CD + CD(a,M) + CD' da + CD de + CD ér + E CD Gfi, v-17)
0 - se Sr es) Gfi

CL - CL + CL(a,M) + CL Sa + CL Se + CL dr + § CL Gfi, (v-18)
0 Aa Se (14 Tol Gfi

and

3 )
cy = cY + cY(ﬁ.M) + cY. ha + cY Se + cY Sr + E cY “1' (v-19)
0 ba Se ér ol Gfi

The aerodynamic moment coefficients are given by:

CQ =C, + CQ(P.H) +C, éa + C, be f Cz or

Fo) da 60 Gr
(v-20)
]
+ C"sf S 4Gy TGy P
1=1 1 t P
V-6
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C = cm + cu(a.u) + cm éa +.cm Se + cm ér

° fa Se ér
3 (v-21)
. .
+ E c"af “1 _-_v-"cm . q',
11 1 9
C =C +C.(B,M) +C 8a + C de+ C ér
n % R %sa Nse Rsr
3 (Vv-22)
+ 2 C 8f, + C p' + ¢C r'
n i : ’
=1 o % et
where 8f 4 i =1,2,3, are arbitrary user defined deflection
angles; and

p' = pdp/2V, = w dp/2V,
q' = qu/ZVA = wydP/sz
r'= rdY/sz - ude/ZVA.

The Mach thumber and dynamic pressure are given by:

Va
Me2
Cs
(v-23)
1
q=30 Vi

where p 1is the atmospheric density, VA is the velocity of the
vehicle with respect to the atmosphere, and cs is the speed of

sound. These atmospheric parameters are determined from the atmo-
spheric models as a function of the altitude h above the oblate
spheroid; i.e.,

p = p(h)
Cg = Cg(h)
p = p(h) (V-24)

T = T(h).

V-7
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The angle of attack in pitch (a) and the angle of sideslip
(B) required to determine the aerodynamic coefficients are
calculated as follows:

a = tan~! [219-2]
cos a

- -1 {8in B8
B = tan [_cos B]’

(v=25)

COBQ’W

sin 8 =

cog B = —F—
‘A-

The total angle of attack is

ay = cos (?Asq/VA)h‘ (V-26)

The aerodynamic forces in the body frame are

-CA

-q8| ol - (v-27)
%

where q 1s the dynamic pressure and S is the refererce area.

LAY

Aerohcating Calculations.

6D POST provides for a wide variety of aeroheating calculations.
Some of these options are specific in nature and apply only to
particular vehicles, whereas others are quite general. The gen-
eral heat rate option is based on trivariant table interpolation
and provides complete flexibility with regards to vehicle shape
and heat-transfer methodology. The various heat rate equations
are described below.

V-8




Heat rate equations.-

1) Chapman's equations. In this calculation the heat rate

is given by
3,15 —...n
o 11600 (¢ ol A}
/§; Psy ~‘Vc ’ (v-28)

where RN is the nose radius, p 1is the atmospheric density,

and V. is the reference circular orbital velocity.

c
2) General table lookup. This heat rate is given by

Q= Qt (x1, X2, X3), (V=-29)

where x;, Xy, and x3 can be any internally computed variables.
For example, the values that would normally be selected are x; = a,
X =h, and x3 = VR

3) Modified Chapman's equation. Here the heat rate is given

.oy
Q= Q, (xm, x20 X3) Qs (v-30)
where- Qt is an arbitary table and dc is the standard Chapman's
equation.
4) Turbulent-flow heat rate. The turbulent-flow heat rate
is given by
. 3.18
0.8,V
. [3 _e__ __A__ -
Q=Q, (xy, %2, x3) |1500 (°8L) ( 10“) . | (v-31)

§) Maximum centerline heating. The equations for this method
are ‘given below in sequence.

a) Altitude-velocity correction:

Ah = 10% [1.06112 - 6.16586 vA/xo“] 7

+ 51.12090 [V o“)“ - zo.eszse(v /10“ 5]
? ( A/i A ) }(v_32)

+ 22,52598 (VA/IO")z - as.zeoeo( v, /10‘*)3

hr.f = h + Ah. . P

V-9




b) Maximum centerline heat rate at reference conditions:

-~ 4f h . > 103 600 m: N

i"f = 102 [277.93332 + 134.55760 I-amf/lo5 - 807.75941 (hmf/lof‘)2
+ 2.90536 (href/105)3 + 722.36896 (href/los)“ - 311.40176

< 103 600 m; (Pree/t 0%) 5]‘

L p(v-33)
&ref = 10 [7115.39692 - 34 881.13588 href/mS + 69 844.2314%
: (href/i.os)2
- 71 534.98453 (href/105)3 + 37 506.13054 (href/los) “ -
- 8048.55112 (href/los) 5]. J
¢) Angle of attack correction:
&max.a/gmax,a-50° = = ()2,
where
x = 102 [0.01136 + 0.01343 «/102 + 1.42672 (a/10%)* - 0.75623
. (V=34)
(2/102) %) + 0.30535 (a/102)2 - 1,06269 (a/102)3.
d) Maximum centerline heat rate:
&max = (émax,a)//xanax.a-50°) (éref)° (v=-35)

In addition to the heat rate calculations, the program also
provides the capability to calculate other aeroheating indicators
that can be used for trajectory shaping purposes.

Aerodynamic heating indicators.- The heating rate for zero

total angle of attack O is

Q= qV,. (v-36)

v-10




The aerodyriamic heating indicator for gzero total angle of attack
is

t
Q= f Q de. (v-37)
0

The heating indicator for non-zero angles of attack is
given by

t
Q° -fe (a*, M Q dt, (v-38)
0
wheré
7 §/7
f (a4 M) '(1 + 's-Mz sin? a‘) K,
R=l1eds [ - (1 + 312 g1n? u.)Z/?]‘?g
and
a’ = q
} for a < 0° T
Qf =Q
a’ =g
} for a > 0°
Q; = Q°
} (V-=39)
a* =8
} for 8 < 0°
o) =Q
a’ = 8
} for B > 0°.
Q; =0a°} )

V-3l




The—heating indicator for laminar flow is calculated as

- ] 17 600 K [ &~ ®( A e d (V=40)
0

where

K“T = f (ap). (V-41)

The heating indicator for turbulent flow i8 calculated as

p 08V, (318
Qyp ™ f 1500 K, ("o) (——-—-—10 000) at (V-42)

Ten-Panel Vehicle Heating Model.~- Special aeroheating calcu-
lations are available for a ten-panel vehicle model. The heating

ratios are referenced to the heat rate calculation. The total
heat for each panel is given by

BURL W (v-43)

]

)

where Q 4is the total heat and HR is the heat ratio for panel
i

i. The weight for each panel is the product of the weight per

unit area and the area of the panel. The total weight is the sum

of the individual weights for each panel:

10 .
= V-“
Wy z W uh, A (V-44)
i=1
where W is the weight per unit area and Ai 1s the area

udy
of the ith panel.
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Sensor Module

The sensor module computes information that describes the
behavior of the sensing ulements of the vehicle's navigation sys-
tem.. Thus, the primary functional responsibility of the module
is that of siwulating hardware characteristics of sensors. For
example, the behavior aof an inertial measurement unit (IMU) can
be described by a mathematical model of the platform and the ac-
celerometers. Frequently this module is used for error analysis
purposes.

Sensor models called by this module are necessarily vehicle
and subsystem dependent. As a consequence, the sensor model must
te designed and implemented for each particular application.

There are many applications of the program that do not re-
quire a specific simulation of the seusors. Therefore, for con-
venience, a "perfect" sensor model is coded into this routine.
This "perfect" sensor model sets -the sensed program variables
equal to their actual values as calculated in the simulation
models.

Navigation Module-

The function of the navigation model is to estimate the state
(position, velocity, etc) of the vehicle based on the sensor out-
puts. Clearly, this module is also vehicle and subsystem depen-
dent and must be designed and implemented for each specific ap-
plication. This version of the program contains no navigation
models. As a consequence, the estimated state is set equal to
the actual state. This is equivalent to simulation of perfect
navigation.

Guidance Module

The guidance module takes the output of the navigation model
and computes a guidance command. Typically, the guidance com-
mand represents a desired change in the current attitude of the
vehicle. This command is computed on the basis of meeting some
specified trajactory condition, such as, inject conditions or
landing conditions. The autopilot is designed to remove the er-
rors between the commanded values of the guidance variables and
their actual (or sensed) values. This is accomplished by deflect-
ing engines, control surfaces, and/or firing RCS jets.

v-13
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The current vereion of 6D POST contains three preloaded
guidance options: (1) an open-loop profile steering; (2) a closed
loop v-h profile ascent algorithm; and (3) the constant drag Space
Shuttle reentry scheme (ref. H-1). If these methods are inade-
quate, the user may implement his own guidance algorithm into this
module.

Autopilot Module

The function of the autopilot module is the generation of a
command, which, when implemented through the deflection equatiomns
contained in the controls module, causes the vehicle to respond
as prescribed by the guidance module. This functional responsi-
bility is depicted in Figure V-3.

accelerdtion, attitude,
attitude rate

f;om Si{mulator

Nomenclature:

® - Guidance command
=
8 - Actual or sensed values of guidance variables

e - Generalize error signal
60 - Pitch, yaw, and roll autopilot command

8 - Deflection (engine or aerodynamic surfaces) angles

- -
Guidance module 8. . ¢ & - % Autopilot module " Controls model
Models: Modela: =
1) V vs h profile 1) Shuttle ascent LI g LN
2) Shuttle reentry LN 2) Shuttle reentry
Actusl or sensed— To airfrane
vehicle state, €.8.y model

Figure V-3.- Functional Flow

V=14
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The autopilot modula calculates only sutopilot commands
based on the input guidance commands, and does not calculate en-
gine or control surface deflaections. The aengine and centrol sur-
face deflaectinns are computed in the controls module as a linear
function of the autopilot commands. The autopilot commands 60,
8¢y 6y represent changes in vehicle attitude. The mixing equa-
tions determine the engine and control surface deflections that
create the control forces and moments.

Currently, there are two Space Shuttle autopilot models avail-
able in 6D POST. One autopilot is for ascent and the othar fur
reentry. The ascent autopilot is somewhat standard and could be
used on most ascent problems with little or no modification. The
basic inputs to this model are: attitude commands from the guid-
ance, inertial attitude angles, body rotational rates, transla-
tional accelerations, und preloaded engine deflectinn commands.
The outputs are pitch, yaw, and roll autopilot coimmands, which
are sent to the controls module to determine the engine deflec-
tion angles. The reentry autopilot is Space Shuttle oriented and
is probably not applicable to other vehicle configurations. This
model is intended to provide attitude control for Space Shuttle
beginning at approximately 400,000-ft altitude and ending in the
high subsonic flight regime. The control logic makes use of both
aerodynamic control surface torques and reaction control jets. A
complete description of this model is presented in ref. H-2.

Controls Model

The controls model converts pitch, yaw, and roll autopilot
commands into aerodynamic control surface deflection angles and/
or engine gimbal angles. The conversion of the autopiloc com-
mands into deflection angles is implemented through the matrix
mixing logic given by the equation

8= 89+ [M) 6, -9

where § denotes a general deflection angle with a null posi-
tion of 4, (M) the mixing gains, and &9 the autopilot com-

mands. The gains contained in the mixing matrix, [M), and the
null deflections, §,, are spacified by user input.

v-15




The standard aerodynamic surface daflection mixing aquations
used in the program are

[ ] [ ] [ ] [}
fa = fa_ 4 KR, 6b + KP, 66 + KY, 60, (V~46)
fa = Gao + KRGo & + KP6e 68 + KYﬁg &y (V=47)
9 (3 [ 14 [}
R = &R+ KR“ 8¢ + KPy. 80 + KY 8¢, (V=-48)
and the standard engine deflection anglc mixing cquations are
gimilarly
Se_ = e 4+ KP, 66 + KR, & V=4
Py Pio ép 6p (V=49
Se = éde + KY, 6y + KR, § V=50
where 65, 6&, and 65 are the pitch, yaw, and roll autopilot
commands . ‘
Airframe Model
The airframe model computes the total thrust and moments
acting on the vehicle. The forces and moments are computed from
the engine and aerodynamic deflection angles and the RCS thrust
and moments.
The nongravitational force acting on the vehicle is computed
in the body frame as
Ep = Erp * Fpp * Egese (v-31)
where ETB is the total force due to the engines, 2%3 is the
total force due to aerodynamic effects, and F is the total

-RCS
force resulting from the reaction-control system. Similarly,
the total moment acting on the vehicle is computed as

_}1‘ -Myp MAB + _chs. (V=-52)

The thrust vector components for both rocket and jet engines
are determined from the thrust magnitude TR or TJ and the
i i
engine gimbal angles Gep and Gey . The total thrust Force
i i
in the body frame is given by:

V=16

[TV O P

ool

{




where the individual engine components,

For roll nozzles, the thrust vector is given by

where for a roll nozzle the deflection matrix [K] is given by

where

or

1

0

0

°1 = input value

%y an (?Bpi/ygpi’ not inpu

{=]
ETBi‘ are given by
rc.:os de cos de N
Py Yy
sin Se . (V=54)
Yy
-cos 8¢ sin de
-cos de cos Se 7]
1 Yy
sin Ge (V=-55)
1 Yy
-cos Se sin Gep
L 1 1]
0 0|
c¢1 s¢1 (V-56)
86, oy
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The thrust moments are obtained by summing the thrust moments
for each engine as follows:

Nens
Moy "Z-Ernf x Aﬁs’ri
i=1
where

—~ -
"(*ep, ™ *es)

Rgr " | (ep, ~ Yesl|

)

The aerodynamic forces and moments are given Sy;

~ - -
FaxB Ca
Ep ™ |Fayp|= 98 | G p
F -c
AZB
|_A%B R
and
dy cﬂ
Myp = a5 |dp C | =Epp % By
d, ¢
REY
where

-(xref - xcg)
Ryp (yref B ycg)'
;(zref - zcg)

The aerodynamic reference point X s Yo g2 2
calculated from tabular input. (*ref* Yref’ “ref)

is

The RCS forces and moments are computed in the autopilot
model and are merely added to obtain the resultant force and mo-

ment vectors.
v-18
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Vi, TRAJECTORY SIMULATION

The following sections present the equations used in the
trajectory simulation subroutines. These equations summarize the
principal computations performed by the program, and motivate many
of the program input procedures.

Events/Phases

simulation data are input according to phase, where the
phases are defined by a user-specified sequence of events. The
simulation equations are then solved sequentially by phase.
Therefore, the user is required to input a sequence of trajectory
segments that define the problem being simulated from beginning
to end. These trajectory segments, or phases, are defined by
tWo events--a heginning event and an ending event. An event i8
an interruption of the trajectory gimulation that oe¢curs when a
user-specified variable reaches a user-specified value. An event
must be created whenever the user wishes to change any input data
for the problem or to cause any change in the method of simulating
the problem. For example, the sequence of events for a typical
ascent problem could result in a simulation setup similar to that
shown in figure VI-1l.

3 Phase 2
2
gGvent  Description
1 Lifeoft
2 inttiste pitch rate 1 at 20 sec
3 Inftiate pitch rate 2 4t 30 sec
1 4 Initiete pitch rate 3 at 60 sec

A S Initiste angle of attack control st 75 sec
é Jettison stage ) when propellant consumed
? Initiste pitch rate &4 20 sec after staging
[ ] initiste yav rate 3 100 sec afcer event ?
9 orbit injection at inertial velocity of 25 368.0 fps

Figure VI-1,- Event Sequence Setup
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The event numbers for a given problem must be specified as
real numbers by the user in monotonic increasing order. These
event numbers are then used by the program to determine the order
in which the events are to occur. The program requires that each
ptoblem have a minimum of two events--an initial event and a final
event. Since a phase is initiated by the corresponding event, the

event criterion for a given event specifies the conditions at the

beginning of the corresponding phase. A problem is terminated
by specifying the last event that is to occur. The problem can
also be terminated in a psuedo-abort mode by specifying the maxi-
mum trajectory time, maximum altitude, or minimum altitude.

Although event numbers must be monotonic increasing, they
need not be consécutive. This allows tlie user to easily add or
delete events from an input deck.

Three types of events have been defined to provide flexibility
-in setting up a given problem:

1) Primary events - These describe the main sequential
events of the trajectory being simulated. These events
must occur, and must occur in ascending order according
to the event number. Most problems will usually be
simulated by a series of primary events;

2) Secondary events - These are events that may or may not
occur during the specified trajectory segment. Secondary
events must occur in ascending order during the interval
bounded by the primary events. The occurrence of a

primary event will nullify the secondary events associated

with the previous primary event if they have not already
occurred;

3) Roving primary events - These events can occur any time
after the occurrence of all primary events with smaller
event numbers. They can be used to interrupt the tra-
Jectory on the specified criterion regardless of the
state of the trajectory or vehicle.

The program monitors as many as ten events at a time, depend-
ing on the types of events to determine which event is to occur
next. This gives the user a powerful tool for simulating complex
problems.

Vi-2
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Multiple events are monitored in the following sequence:

1) The next primary event is monitored;

2) As many as nine primary roving events are then monitored,
: T " Vprevided there are no secondary events. A roving pri-
2N mary event is added to the list of those being monitored
: as soon as the primary event immediately preceding that
roving event has occurred;

3) Next, as many as nine secondary events are monitored,
provided there are no primary roving events. (Note that

- ‘ caution must be exercised when using secondary events

b because of their nature. Since as many as nine sec-

b ondary events are monitored at a time, any one of those

: nine will occur as soon as its criterion has been met.

| Because they are secondary events, the event that occurs

: will cancel all secondary events with smaller event

5 numbers.);

4) Finally, a total of nine primary roving and sécondary
events are monitored.

Since the program can only monitor nine events (in addition
to the next primary event), the sum of the primary roving events
and the secondary events must be less than or equal to nine or a
fatal error will result.

The time-to~go model (TGPM) determines when the events
occur during the trajectory simulation. Basically, TGPM checks
the values of the critarion being monitored at each integration
step. If none of the :riterion values has bracketed the desired
cutoff value, then another integration step is taken. If a
criterion variable is bracketed with the input step size, then
TG#M computes a new stepsize equal to the predicted time-to-go.

The predicted time-to~go for each event is computed from the
equation

at* = - y2(£)/(y(t + At) = y(t)) (Vi-1)

wvhere y(t) 4s the difference between the actual and the desired
value of the event criterion. If more than one event is bracketed,
then the minimum predicted time-to-go is used as the integration
stepsize. This process is repeated until the criterion value is

VI-3




within the specified tolerance of the desired value. If the
desired condition cannot be achieved in 20 iterations,.an error
message is printed and the program stops. Cenerally this situa-
tion is caused by an input.error. The fundamental features of
the time-to-go logic are shown in figure VI=2... .

Figure VI-2.- Illustration of Time-to-Go Logic

Translational Equations ‘

The translational equations of motion are solved in the |
planet-centered inertial coordinate system. These equations are

I - _Y_I (VI-Z?
;= (1817 [Ag + A5 + G0 (V1-3) ;

where éTB ia the thrust acceleration in the body frame, éAB
is the aerodynamic acceleration in the body frame, and 91 is
the gravitational acceleration in the ECI frame.
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Initialization.- There are five options for initializing
the velocity vector and two options for initializing the position —rme
vector.-. .These options are described below. . .

Inertial position components (xI, Yp» 21)°” The inertial-.

position components can be input directly since no transformation
is required.

Earth-relative position (OI or 6, ¢c or 4>8, h or r).- In this

option the equations vary and the sequence of calculation varies
according to the choice of input. However, the basic equations
used are:

6, =0+ Qp (t - to) if 6 is input, )
¢, = tan~! (k2 tan ¢g) if ¢g is input, ? (Vi-4)
rI = h «l-'Rs (¢c) if h 18 input, )
and
-coe-¢c cos eI'
Ly = rp | cos ¢c sin 61 (VI-5)
.Loin e _

Inertial velocity components (VXI’ vYI’ VzI).- These variables

can be input directly.

Inertial local horizontal (VI’ Yps AZI) The inertial com~

ponents in the horigontal frame are first first transformed to the
geographic frame as

cos vy er- AZI

Yoo = Vg |co8 Vg sin A,, (V1-6)

-gin YI
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- T,

and then transformed to the ECI frame by

- -1
Yy = 1617 gy
Earth-relative local horizontal (VR’ YR AZR)'- The. Earth~

relative velocity components are first transformed to the geo~
graphic frame as

cos YR cos AZR

gRG = VR cos Yo gin AZR

-g8in YR

and then transformed to the ECI frame by

!I = [IG]"1 +Q xr
—p—-

L 1

Atmospheric relative local horizontal (VA’ YA’ AZA)'- The

atmospheric relative velocity components are first transformed
to the geographic frame as

cos YA cos AZ;T VWX;T
!AG = VA cos YA sin AZA .+ VWYG .
B K1

and then transformed to the ECI frame by

- -1
Y= (G Yo+ 3, x5y

(Vi-7)

(Vi-8)

(Vi-9)

(Vi-10)

(V1-11)

Orbital parameters (hp. ha’ i, 4, w e 6).- This option initializes

both positioh and velocity. The equations used to transform the

orbital parameter to the ECI position and velocity are:
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=h + : 3
TRt
ta - ha + RE i
a = [r + r.) 2
a 12
e = (ra - rp)/(ra + l'p)- ‘ 1
|
p =0 +w :
} (Vi-12)
= a (1.~ 22)
H = up 1
r = p/(l + e cos 8) |
cos 8 =-8inQ O 1 0 0 cos p
u. - sin Q cos & - 0 0 cosi -sin i sin p
0 0 1 s8indi cos i 0' J
and
2 1
voeulf-d]
y = sin~l (H/rV)
cosp =-sinp O 1 O 0 >(v 3
' I-1
4 - sin o cos p O 0 cosi =-sin i ;
0 0 1l 0 s8ini cos i
cos @ =8in @ 0] [cosy
sin cos i 0 ein v
0 0 1 0 )
|
Vi-7




Rotational Equations

The rotational equations of mwtion are solved in the body-
centered coordinate system, These equations are

&= [E] (VI-14)
Gy = (17V My = (1) wp - wpx(I) wyl, (VI-15)

Mg = Myp + Mo + Mecs

where e is a four dimensional vector of quaternion parameters,
[E] is the quaternion matrix, wg is the inertial angular velocity
expressed in the body frames ﬂB is the total external moment act-~

ing in the vehicle as a result of the thrust, the RCS, and the
aerodynamic forces, and [I] is the inertia matrix for the compos-
ite vehicle. The_[l] and [E] matrices are given by

Iex = Ixy = lxz
(1) = |~y Iy = Ty . (VI-16)
-1, -1 I

-] ey e.

eg &2 —-e.
. (E] = (Vi-17)
3 ey -e; e,
L_eg . el -e‘_

The body rates are Jefined below and illustrated in Figure
vi-3.

i_ "B
B w, - Roll body rate. The angular ,225”'

’ rate about the xB~axis in w

) deg/sec, ’//////,,r" 3

w = Pitch body rate. The angular

w
rate about the y_-axis in deg/ I < y
4 : ¢l ( }
sec, w
‘ . \yp
v, = Yaw body rate, The angular rate
7 about the zB-axis in deg/sec. zg

Figure V1-3,- Body Rates
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Initialization.~ The rotational equations of motion are ini-
tialized by defining both the sttitude angles and the attitude
rates. There are three options for initializing the attitude:
(1) inertial Euler angles; (2) relative Euler angles; and 3)
aerodynamic angles., There are three options for initielizing
the attitude rates: (1) body rates; (2) inertial Euler angle.._-
rates and (3) relative Euler angles rates, The attitude angles
are used to compute initial values of the quaternions in order
to initialize equation VI-l4, The rates are used to initialize
the moment equations. The equations for these options are pre-
sented below.

When inertial Euler angles are input the initial quater-
nion vector is given

Bme )t () e o)

where the asterisk denotes quaternion multiplication and where

e (¢I).= cos (0.5 ¢I) + sin (0.5 ¢1) 1 h
g_(wl) = cos (0.5 wI) + sin (O.b wI) k' >
g,(el) = cos (0.5 BI) + sin (0.5 91) 3. )

When aerodynamic angles are input, then the initial quater-
nion vector is given by

PR

(Vvi-18)

(VI-19)

m (bn) * 8O0t () *a () te (o) e () * 20"

e (2)"e (Ya)* e(o) * e(-B) * e(a),

vVi-9
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where
e (AZL) = cos (0.5 AZL) ~ ain (0.5 AZL) k
e(90) = ros (45) + sin (45) 3
e (¢L) = cos (0.5 ¢) +sin (O.S ¢L)

e (-0) = cos (0.50) - sin (0.5 ¢,) ® (vI-21)
e (61) = cos (0.5 OI) + sin (O.S eI)

e

=

| S

e (¢c) = cos (0.5 fbc) - sin (0.5 'pc)
e(0) = cos 0.5¢ + (sin 0.50) i
e(-8) = cos 0.54 - (sin 0.58) k-

e(a) = cos 0.5a + (sin 0.5a) 3.

When relative Euler angles are input, then the initial quater-
nion vector is given

e " e (AZL) * e(90) * e (:L) * e (-eL) * e ('31 ),* e (-oc) * e(-90) *
%* 9_(!') * _e_(E) * g_(':), (VI-22)

wheore

=

e (AZL) = cos (O.S AZL) -.sln (0.5 AZL)

e(90) = cos (45) + sin (45) i

[ (¢L) = c;os (O.S "L) + sin (0.5 ¢L)

Code

e (-6,) = cos (0.59) - stn(0.50,) k (VI-23)

e (01) = cos (0.5 GI) + sin (O.S 6,) k

Sde

e (¢c) = cos (0.5 ¢c) - sin (O.S ¢c)
e(y) = cos 0.5y + (sin 0.5¢) k
e(@) = cos 0,56 + (sin 0,56) 3

2(0) = Cco8 0050 + (ﬂin 0.5¢) i

Vi-10




The available optiona for initialiging the moment equatien
Ares

1) Input W wy, “, direccly

2) Input the inertial Zuler angle ratecs 61’ @1. 51 and cal-

culate s wy, ”z via

~ " . -

Wy ¢Icos *1 cos 01 - WI ein el

wy |7 %1 = ¢p oin Vg (VI~24)
L?z _?1 cos wl ein 91 + wI cos e£

3) 1Input the relative Euler angle rates @R, éR’ $R and

calculate w , w , wz via
X y

wx ¢R - gin eR wR Wi25)
wy = a + | cos °R en + 8in °R cos eR WR ’
wz cos ‘R cos OR WR - gin ‘R eR
where
o ! 1
1
a= (e8] |
L ¢
-y
5 tan Oei
I
and
u
vy=- (:G] "V"I’
w
Vi-11
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Integration Variables
- The numbaer of integrals computed during any particular phase
e is determined from the options raquested by the user, As a min-
= - imum, the translational equations of motion are integrated to
: give the poatition and veloclty of the center of maas of the ve=
hicle., The user may nlso relect additional variables to be in-
. tegrated, The only restriction is that no more than 40 integrals
can be computed per phaue,
o
Vi-12
o | o
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VII. AUXILIARY CALCULATIONS

In addition to computing the basic variables, POST also com-
putes numerous auxiliary variables that are related to: (1)
conic parameters, (2) range calculations, (3) tracking data, (4)
analytic impact calculatlons, (5) velocity losses, and (6) veloc~
ity margins. The equations used to calculate these variables are
presented below.

Conic Calculations

The following Keplerian conic variables are computed.

v12

gy ——— - B

8 energy, 3 T

a semimajor axis, -u/28&

h angular momentum, I;I x yll
p semilatus rectum, h?/u

e eccentricity, /|1 - p/a]

av velocity required to circularize orbit, /av - AV, where
y, =h/h
Y1 " I/

w, =y upg/le <ol
v, = (W)t
v

DR I

i inclination, coa“,(hz/h)

by longitude of ascending node, cos~! (21 . gﬂ’, where

vii-1




Eﬂ'.g.lx;‘l/lél“"ll

) argument of vehicle, p = cos~! (31' . l._lﬂ)
P
TSP time since perigee, 27 M
TTP time to perigee, P - TSP
¢-p latitude of perigee, tan~! (ua/»’u% + uzz), where

us= cos(w)g_n + sin(w)(g_h X 39)

ep longitude of perigee, tan~! (u,/u;)
hp altitude of perigee, rp - Rs(¢p)
ha. altitude of apogee, r, - Rs(q:p)
, v velocity at perigee, v L3 (}LLS_’
P a\l~e
: /u (L - e\
Va velocity at apogee, al\l+e e)
v, hyperbolic excess velocity, v 26
"max maxinum true anomaly for hyperbolic orbit, cos~! (-1/e)
GRA declination of outgoing asymptnte, sin-! [ur (3)], where
-
up "y Xy
urw - <:os(9max - 0) Yoy + sin (emax - 0) Y
u% (2)
R, right ascension of outgoing asymptote, tan~! T
rw
v Vii-2




=

0 true anomaly, cos~! (% (%-- 1))

E eccentric anomaly, 2 tan'l(f-i:i:——:- tan %)
M mean anomaly, - ~ e 8in E

W argument of perigee, p - 6

rp perigee radius, a(l - e)

r, apogee radius, a(l + e)

3
P period, 27 ’%—

Range Calculations

The progam provides for various types of range calculations.
The equations for these calculations ire given below.'

Dot product dovmrange.- The relative range angle, measured
from the vehicle's initial position to its current position, is
glven by

¢, = cos~! [u v u '\, (VII-1)
R . (—Tso —Ts)
where u. is a unit vector along the initial position vector

8o

in Earth-centered rotating coordinates and u, is a unit vector
8

along the current position vector in Earth-centered rotating co-
ordinates. The range over an oblate spheroid is calculated from
the average radius to the surface, and is given by

r _+r
80 8
RD - [ ) ] ¢R (VII-2)
Crossrange and downrange via orbital plane reference.- Re-
ferring to figure VIi-1, identify the vehicle's position at time
» *
t by O, and at a later time t by P. At time t , the ve-
" " .
hicle has a latitude of ¢ , a longitude of 6 , and a velocity

Vii-3




Note: O - position at initial time,

p - position at subsequent time.

Figure VII-1l.- Downrange and Crossrange Angles

Vii-4
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heading of A". At time t the vehicle-is at latitude ¢ and .
longitude 6. The downrange angle (u) and the crossrange anhgle
(v) shown in the 1llustration are measured along, and normal to,
the great circle through 0, and are inclined to the meridian by
A*, From analytical geometry, v and u can be expressed as

* * . *
sin v = =gin A s8in ¢ cos ¢c cos 6° - cos A cos ¢c sin 6

%*
+ sin A* cos ¢ sin ¢_
(VII-3)
* * .. * -
8inu = (-cos A sin ¢ cos ¢ cos 6 + sin A cos ¢c sin ©

® *
+ cos A cos ¢ sin ¢c)/cos v

*® . *
cos U = (cos ¢ cos ¢ cos 6 + sin ¢ sin Qc)/coe Vv, .

* *
where 6 and A can be defined in either of two ways:

1) The great circle to which v and u are referenced is
fixed and rotating with the Earth. Then

* Yr
A = Earth's relative heading = sin-! =
Jd+ 'R (VII-4)

'y
0° =08 -0 3
2) The great circle to which u and v are referenced is
inertially fixed, having the Earth rotating below it.
Then

A* = inertial heading = sin-! 4
~/02 + v2

[ ] ]
8’ = 9 - 0 +np(c-t).

(VI1-5)
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Knowing v and 4, and crossrange cR and downrange DR
distances are

(V11I-6)

where Rave is the average Earth radius between the initial and
final poiats.
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Auxiliary Position and Velocity Calculations

The solution from the translational equations is then used
to calculate numerous output variables. The key variables directly
computed from (xI. Yo zI) and (vxl. V&I. VZI) summarized below.
r, ® geocentric radius

(e s \

V. = magnitude of the inertial velocity

" (% w)

*<

= relative velocity

X I

=Yy - 1

L
V, = atmospheric relative velocity

"Lt

V., = magnitude of the relative velocity
- cv\E
(% - %)
VA = magnitude of the atmoaéhertc relative velocity
=" . ;‘
(Y * %)
Moy * unit vector along radius vector
=k ¢
Y ® unit vector along inertial velocity vector
“ Y/

Yy *® inertial flight path angle

= sin~} [g_m . a.n] > (Vi1-7)
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g " relative—£light path angle

= sin”! [9a1 .+ Yyp ]

Yo " atmospheric relative flight path anjle

= -1 . b
sin [ERI Sya

!IG = inertial velocity in the G-frame

= [IG] !I
!RG = relative velocity in the G-frame

= [16] ¥y
V.. = atmospheric relative velocity in the G-frame
= [16] ¥,
AZI = {nertial azimuth
-1
= tan [VYG/va]
AZR = relative azimuth

o ran-1
tan [VRYG/VRXC]

AZA = atmospheric relative azimuth

- -1
tan [vAYG/vAXG]

¢ = geocentric latitude

= gin~! ['I/rl]

8, = inertial longit ‘e

= tan~! [yI/xI]

Vii-8
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]

R relative longitude

8 = 8 (t = &)

ABB = gensed acceleration in the B-frame ... _. —
" At Ag
As = magnitude of the sensed acceleration
(A - A \M
(4s - 4)
A " sensed acceleration in the ECl-frame

Ag
- (817 [ﬁmn + é'»An]

) (V1L-7)

Vii-9
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Auxilary Attitude Calculations

The attitude angles that are not used to generate the steer-

ing commands arc computed for output in the auxiliary calculation

subroutine. Thesc equations are summarized below:

1) Aerodynamic angles:

() .’

o = vant (vaif g’ + “ ) ) (VI1-8)

GB,3 + sin 8 sinA
g = tan™! GB,,» cos - GBpy 8in A co8 ¥ )
22 €08 Ay = B2 2A A

2) 1Inertial Euler angles:

¢I - t:an'l (LBz 3/‘11‘322 ) N

Yy = -sin~! (LBy;), (VII-9)
o, = tan~! (LBg;/LBlI);
3) Relative Euler angles:
bg = tan~! (GBIZ/cBll)o 7
6, = -ain”! (GB
R ( 1) ‘ (VII-10)

g

.

= tan™! (GBzg/Gng) .

VII-10




Tracking Data

o Q08T computas tracking information for as many as ten
' tracking stations per phase. The tracking atations are located
on a reference ellipsoid and are specified in terms of their lati-
K% tude, longitude, and altitude above the ellipanid., These variables
' are illustrated in figure VII-2,

Figure VI1-2.- Radar Tracking Schematic

ViI-11 |
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The position componente of the tracker in the Farth-relative
frame are given by

con ¢T cos ﬁT

L * (Ra + h,r) c08 ¢, 8in 0|, (VII-11)
8in ¢T

where hT is the altitude of the tracker,
the tracker, and 6

G the latitude of
T the longitude of the tracker.
The slant range vector in the ECI frame is given by

op = Iy - (1p)-!}

~8R (Vi1-12)

IR
and the slant range is then computed as

Cep ™ /ESR "Ikt (VII-13)

The elevation angle can then be computed as

- -1 . -
Yo sin (—u-TR ESR/tSR)’ (VII-14)
where
Ypp = (1p)-! ETR/IIIP]"I Epgl (V1I-15)
The slant range vector, transformed to the geographic frame,
is
Tgpe = [16) rgps (V1I-16)

and thus the tracker's azimuth is given by

Ayp = tan~! (Ysac / "sac)' (VII-17)

The look angles are calculated from the slant range vector
transformed to the body frame; i.e.,

(Vii-18)

Iggp = [1B] Zgg:

ViI-12




Using the components of Xg the cone angle 1s then given by

RB’
-1
by = coml (xgpp /¥ap)
and the clock angle ia given by
-1
a, = tan (Vsns//“snn)'

Space losses are calculated for the tracking stations as
follows:

SLy = 36.56 + 20 Logg (st « ¥Ry)
SLp = 36.56 + 20 Logyo (Rgpy * FR; )
SL3 = 36.56 + 20 Logo (Rsm . FRa)o

where

FR; = 420.0 (command frequency)

FR2 o 2287.5 (telemetry frequency)

FR3 = 5765.0 (:tacking frequency)

RSLM = glant range distance in statute miles.

Analytic Impact Calculations

The analytic impact calculations predict the geodetic lati-
tude, longitude, and time of flight at impact for a vehicle with
a given poesition and velocity to its intersection with the sur-
face of the oblate planet. These calculations assume Keplerian
motion and are not corrected for drag effects.

The basic problem in determining an impact point from a
specified position and velocity (£I0’ 210) is in calculating

the impact eccentric anomaly. This angle is determined by
iteratively solving the equation

VII-13

(VIiLI-19)

(VI1I-20)
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v, (E) = RB(¢C) + hip (V;I~22)
. where hjp In the denlred 1mpact altltude above the oblate
. planet and the posdtlon vector La glven by

[‘(I".) R vyt )V
'-_ 1 (1) = (vun (l-. - "'0) -Q COB I-IQ) / (I ~ 0 co8 Izo) (VII-23)
(F) = gg-(“ln E - L)) =-e sin bl + e sin K

- Once the impact eccentric anomaly, Eip' is Jutermined, then

the time, latitude, and lougitude of impact are catuulated as

: 4
' ) a’ . e . PR ’
: Ly =t t ’ By, 7 By e sin By e sin Ey)

i /f"'"‘*~“ (VI1-24)
= "1 2 K .
'i)sip tan (kzlp/ xip S yip)
y
by = tan-l(“j>- At
. P xin) PP

ViI-14

ST °
iAo ok

£

. . W
o e ; e g e -
. ‘ v W - | v u



VIII. TARGETING-AND OPTIMIZATION

POST uses an accelerated projected gradient algorithm (PGA)
as the basic targeting/optimization technique. PGA is a combina-
tion of Rosen's projection method for nonlinear programming (refs.
3, 4, and 5) and Davidon's variable metric method for unconstrained
optimization (ref. 6). The program also contains backup single-
poenalty function methods that use steepest descent, conjugate
gradients, arnd/or the Davidon method. These standard gradient
methods are well documented in references 6 and 7 and are only
briefly described in the following discussion.

The projected gradient algorithm is an iterative technique
designed to solve a general c¢lass of nonlinear programming prob-
lems. PGA employs cost-function and constraint gradient informa-
tion to replace the multidimensional optimization problem by an
equivalent sequence of one-dimensional searches. In this mannmer,
it solves a difficult multidimensional problem by solving a se-
quence of simpler problems. In general, at the initiation of the
itoration sequence, PGA is primarily a constraint-satisfication
algorithm. As the iteration process proceeds, the emphasis
changes from constraint satisfaction to cost-function reductidn.
The logic used to effect this changeover process will be dis-
cussed below.

Since numerous analytical developments of this technique are
available (see raefs. 3, 4, and 35), this presentation will pri-
marily emphasize the geometrical aspects of the algorithm. This
geometric interpretation clearly motivates the equations and
logic contained in PGA, and a basic understanding of these con-
cepts is usually sufficient to enable the user to efficiently
use the algorithm.

Problem Formulation

The projected gradient method solves the following nonlinear
programming problem:

Determine the values of the independent variables, u, that mini-
mize the cost function (optimization variable)

P(w), (VIII-1)

VIiI-1




subject to the constraints (dependent variables)
c(u) » 0, (VIII-2)

where u ¢ R"; ¢ is a vector-valued function, i.e., g;RP + Y

and F 1s a scalar-valued function, i.e., F:R® + Rl.

The algorithm is actually more versatile than this simple
formulation might indicate. In order to maximize any particular
function, say W(u), all that is required is to define
F(u) = -W(u) and determine the minimum of F(u). The equality
constraint case is also contained within the above formulation
since constraint equations of the form

cj(g) =0 E (VIII-3)

are special cases of Ed (VIII-2).

In the trajectory optimization, the cost function and the
constraints are not explicitly a function of the independent
variables, but rather depend explicitly on the sta“e variables

;s gi, m, and Q. The explicity equations relating the state

(dependent) variables to the independent variables are the in-
tegrals

r. =, + (V dt
-1 —10 )-—I

yom v [y * 4] * g
° (VIII~4)
m=m +/:B dt

fé dt.

L
L}
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1f x denotes the above etate variables-of the system being
simulated at the nth event, and §a+ and Eu- denote the value
of X, on the plus and minus sides of that event, then

- .‘. .
Lo = T u]- (v111-5)
where u, are the independent variables ir phase n, and Ta

represent the snlution of the state differential equations over
phase n. The values of the state variables on the positive side
of event n are then

+ -

where Agn represents the discontinuity in state (e.g., velocity

impulse at the nth event).

The cost function and the trajectory constraints are computed
at the positive side of the specified events, and are therefore
given by

F(u = f(:_:: f) (VIII-7)
and
<, (<)
cu) = . . (VI1I-8)
(%)

vhere Ve denotes the event at which the optimization variable
is specified and vh denotes the events at which the dependent

variables are specified. This generality enables the program to
solve problems in which intermediate constraints are defined, as
well as problems where the cost function is not specified at the
final event.

ViiI-3




Thé trajectory propagator, Tn’ can represent either numer-

ical integration or analytical Keplerian equations.

Fundamental Concepts and Nomenclature

To facilitate the discussion of the projected gradient algo-
rithm, the following nomenclature and basic concepts will be in-
troduced.

A real k-dimensional Euclidean vector space is denoted by
k

R, and x denotes a column matrix whose elements are’
ﬁ,VMu i=1, 2, ..., k. The vector inequality x > 0 im-

plies x, > 0 for each i, and A" denotes the transpose of the

i
real matrix A.

The cost gradient is an m-vector of partial derivatives de-
noted as VF or 3F/iu, and 1s defined as )

@m, = ,%%' (VIII-9)

‘th

The gradient to the 1*® constraint is similarly represented.

The Jacobian matrix of the constraint vector function with

respect to the independent variable is a matrix whose ith row is
the gradient vector Jc,. This matrix is denoted as

dc

J(u) = — (VIII-10)

du
and contains n rows and m columns. Clearly,

3ci

Joy = (VIII-11)

1] auj

VIII-4
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The +tP constraint is said-to.be active at y 4f and only if

a) ¢y (ﬁ) <0, (VI11-12)

An active constraint is said to be unconstraining if and only if

b) ey (l_:.) - 0 and - [(ss')’1 S&]j < 0. (VIII-13)

Condition a) implies that the j cons:raint is either vio-
lated at u, while b) indicates that the negative of the cost
function gradient "points" outside the feasible region.

The sengitivity matrix is that matrix whose rows are the
gradients to the active constraints, and is denoted by

de
S(u) = 2’ (VIII-14)

where e 1is the na-vectot of active constraints. Equality con-

straints are always active and thus are loaded into the upper
elements of the e. Thus, e 1is essentially the error vector
for the active constraints. The error function is defined to be

E(b) = e’e. (VI11-15)
The seneitivity matrix, S, 48 obtained from the Jacobian
matrix, J, simply by deleting those rows that correspond to
inactive constraints.

Corresponding to each constraint function ¢ (u) is a
boundary hypersurface, B,, defined by

B, = t-!:ci(!) - 0;. | (VI1I-16)

Clearly, Bi is an m-1 dimensional nonlinear manifold. 1t can,

however, be approximated at each point 4 in " by an m-1
dimensional linear manifold

¢, (@ {g:lcio(g_) (u~-9) + °1® - 9}, (VIII-17)

VIII-5
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The feaeible region for the 1t inequality constraint is the
half-space in the independent-variable space defined by the set

R, = {g;ci(_g) > o}. (VI1I-18)

while the complete feasible region for all of the constraints is

n
R= N R,. (VIII-19)
1e]

The boundary of the complete feasible region must be

n
BRY = U (B, N R) (VIII-20)
) i=1
The intersection in the preceding equetion is required to select
from the unbounded boundary, B g of the feasible region of the
ith constraint that portion which is adjacent to the feasible
region, R, for all of the constraints.

At any particular @ « R® 41t is useful to define the Zocal
boundary hypersurface, B(d), . to the complete feasible region as
the intersection of the active constraints at @. Let N(Q)
denote the set of indices of the fi tight constraints at 4.
Then, symbolically,
B@® = N By (VII1-21)
. ieK(u)
Clearly B(d) is an m-k dimensional nonlinear manifold in the

a
m-dimensional independent variable space.

An m-ka dimensional linear manifold C(d4) approximating

B(4) 4s the intersection of the active linearized constraints at
4; that is,

VIIi-6
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co= N cW (VI11-22)

1eK(Q)
- {ys @ (u - ) + e(0) = g} (VIII-23)

Now let 8:.9) denote the linear space spanned by the gradients
to the active constraints; that is,

k
a
8(&) -{3:3 Ayy eees ana for which u = E aj sij(_g) ,} (VIII-24)
i=]

and let Q(d) denote the orthogonal complement to 3(3); that
is,

- Q@ @ . (VIII-25)

It can be shown that Q(d) is the unique linear space that can
be translated to obtain the linear manifold C(8).

Furthermore there exist unique orthogonal projection oper-~
ators P(3) and ?(&) that resolve any vector in the independent-
variable space into Its corresponding components in Q(d) and

3(31), respectively; that is, for any u €

u=P@u + @y, (VII1-26)
where
P(@)u ¢ Q@ and ¥(@u e §@. (V111-27)
In particular,
¥wsg(ss)ls (V111-28)
and |
Pe1-F, (VI11-29)
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An additional concept is the idea of problem scaling. The
purpose of problem scaling is to increase the efficiency of the
targeting/optimization algorithms by transforming the original
problem into an equivalent problem that is numerically easier to
solve.

To numerically scale a problem, two general types of scaling
are required: (1) independent-variable scaling, and (2) dependent-

variable scaling. Independent-variable scaling is accomplished
by defining a po-itive diagonal scaling matrix, wu, such that,

the weighted independ nt variables are given by
N
u= \'f’u].!- (VI11-30)

Simularly, .dependent-variable weighting is accomplished by
defining an optimization-variable scale factor, wF. and a

positive, diagonal, dependent-variable scaling matrix, we, such
that the weighted optimization variable is

3
and the weighted dependent variables are given by
e - -1 3 . -
Sl [W‘]g (v~ &) (VIII~32)
yielding a weighted error funetion

‘e (). (VII1-33)

L.X4

Pz =

The program contains several options for computing the in-
dependent-variable weighting matrix. However, the option most
often used is the percentage scaling matrix

[“u] T ) (VIII-34)

Viii-8
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The dependent-variable weighting matrix is always computed
as the reciprocal of the constraint tolerances, and is given. by

1
wl =i (VLI1-35)
[ °}11 €y’

th

where €y is the tolerance for the i~ constraint. The optimiza-

v tion scale factor is merely input so that Pz is approximately
Sy equal to onme.

#, For simplicity, the following discussion of the algorithm
assumes an appropriately scaled problem. However, the scaled
equations can be obtained by making the following simple sub~-

., ; stitutions:
u replaced by I_':,
F replaced by P
g n
L ¢ replaced by ¢
- \ hc replaced by Pz
. | S replaced by [wG] (s] [wu] -1
w o P replaced by Wy V. IF.
; . The final key concept employed by PGA is the idea of a direc~-
& tion of search. Heuristically, the direction of search is nothing
' more than a perticular line in the independent-variable space
: .along which the constraint error is reduced, or along which the
= cost-function is decreased. In a more precise sense, the direc-
tion of search at 0 is a half-ray emsnating from Q. Thus, for
. ) any positive scalar, Y, the equation
u=0+v8 ’ (VI11-36)
g ' sets the limits of this half-tay and represents '"movement" in the

direction 8 from G. This is 11lustrated in figure VIII-1.

VIilI-9
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Figure VIIL-1.- Direction of Search in the
Independent-Yariable Space

If & is a unit vector, then y represents the actual dis-
tance "moved" in the direction 8. This concept of direction-of-
search is particularl. important since it enables the m-dimen~
sional nonlinear programming problem to be replaced by a sequence
(hopefully finite) of one~dimensional minimizations. What remains
to be explained then is: (1) how to select the direction-of-
search; and (2) how to determine the step size in that direction.
All "direct" optimization methods employ this concept and, hence,
differ only in their answers to the two preceding questions. The
technique by which ER and v, are gselected by PGA will be de-

scribed in subsequent sections.

irection of Search

The projected gradient method uses two basic search direc-
tions. For this discussion, they will be termed the constraint
and optimization directions, respactively. PGA proceeds by tak-
ing successive steps in one or the other of these two directions.
The computation of each of these search directions is described
below at a particular point 4 in the independent-variable space
where ﬁa of the constraints are active.

ViIiI-10




Constraint direction.~ The conatraint direction depends
cricicafiy on the number of active constraints. Tnree casas axa
distinguished below:

1) Case 1l.- If ﬂ. < B, then that unique c. .trol corre -

tion A0 1s eought, which solvas the linearized con~
straint equation

S(8) tu+ e(0) = 0 (VI11-37)

and minimizes the length of Au. The solutions to the
preceding vector equatious define the m-ﬂ dimensional

linear manifold C(Q), which approximntus the local
boundary at ( a8 described in detail in the preceding
section. The desired minimum norm correction, Ad, 1s
then the vector or minimum length in the 1ndcpdcndont-
variable space from Q4 to the linear manifold C(g).
Analytically, it is given as

a0 = -8-[38°) 2a(a). (VII1-38)
This correction is illustrated in figure VIII-2,
The direction of search then is simply taken to be this

ninimum-norm correction to the lorally active linearised
constraints; that is,

s°(0) = ag. (VII1-39)
AQ, minimum norm C(d), intersection of
correction = 1inearized conetraints

il il :i? il hwma? ii
3 ‘ {

Ji!

‘;t

m
Al ,w*

Piret lineariszed Second linearized
constraint constraint

;% ' Pigure VIII-2,- Illustration of Minimum-Norm Constraint,
- Direction for ﬂ. »2c<me 3

“MHMIWHNHHMH&HHMHWVRUGa”“ %“
H
h
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2) If da = m, then the linearized local boundary C(d)

reduces to a single point. Thus, there is a unique solu-
tion to the linearized constraint equations without the
additional requirement that the length of the independent-
variable correction be minimized. The minimum-norm cor=-
rection formula then reduces to the familar Newton-
Raphson formula for solving m equations in m unknowns;
name 'y

ra = - 71 oe(a). (VI1I~-40)

The Newton-Raphson correction is illustrated geometrically
in figure VIII-3.

Second linearized

constraint
Ad, Newton-Raphson

Third linearized N correction
constraint

\\ b B,
. AN NV
E , N7 o izinid

le>

L
7

/',",l/ .
»
\\\\\\\\\\ C(d), intersection of
Firet linearized _1inearized constraints
consetraint

Figure VIII-3,~- Illugtration of Newton-Raphson Constraint, Direction
for n, =m= 3

A The direction of search is taken to be this unique cor-
o rection vector satisfying the linearlzed constraints;
v that is,

s°(a) = ag. (VII1-41)

J VI11-12




3) 1f A, >m, then C(d) 1s empty, since a simultanecus

, solution of all of the linearized constraint equations

, does not exist. Hence, an entirely new methoed for choos~-

x ing the search direction muet be deviaed. PGA deals
with this problem by seeking the unique independent~
varisble correction AQ that minimizes the sum of the
squares of the deviations from the linearized cunstraints.
Thus, th. function

£(bu) = |S(Q) du + e(d)|? (VIII-42)

is minimized with respect to A4u. Gauss demonstrated
that the formula for this "least squares' correction is

60 = -(5°8)~! s°a(@). (VIII-43)

Figure VIII-4 illustrates the least-squares coriect..n pic¢
torially. As in the preceding two cases, the search
direction is then taken to be this optimal correctiun;

v that is,
@ = 2. (VIII-44)
Third lineariczed [ Second linearized
| constraint ) constraint

Pourth 1 .iearized /// /I 'E\\\ = 49, least-squares
i constraint / \\ i correction
urj; . /,/£§ ,I X a

L@ﬁﬁi Second linearized Fi
B constraint co:::ri:::.r‘..d
e Figure VIII-4.~ Illustration of Least-Squares Constraint,
o Direct forn = 4>m=3
ﬂg .
= Viii-13
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Optimization direction.~ When the number of active constraints
18 less than the number of independent variables, it ie then pos-
eible to reduce the nonminimil cost-function. Obviously the
steepest descent direction, -VF(d), would be the best local
search direction for rrducing the cost function. Such a direec~
~ion, however, would generally produce unacceptable constraint
vialations. To avoid this difficulty PGA orthogonally projects
the unconstrained negative gradient, ~VF(d), into a direction
parallel to the local linearized constraint boundary C(4). By
searching in the direction of this negative-projected gradient
the algorithm can guarantee that there is no further constraint
violation than that of @ for the case of linear constraints.
To calculate this direction, it is only necessary to apply to
the unconstrained negative gradient the projection operator P(B),
which maps any vector in the independent-variable space into its
component in Q(d), the unique linear space that can be trans-
lated into coincidence with the linear manifold Q(Q). Thus,

$°(8) = -P(8) YF(@
= -[I - B(3)] YF(Q) : (VILL-45)
= -[I -8~ (8§°)"! s(@)] VF(a)

The direction of search for the accelerated projected gradient
method is :

. .
s, @ = -5 P IF(Q) (VIII-46)

where

H =1 (VIII-47)

and

-
L]

A +B, where n = 2

H
n
n E’-’En “3,;] / Ax. By»
B ‘[“n-l Bn&n‘“,{-l] / BH 18 (VI11-48)
AR = My g
By = TF(8) - i)

- 4
[ ]

VIIl-14




Pigure VIII-5 illustrates the direction of the negative-projected
gradient for the case—of-a single active constraint. .

Y e

Pirst insctive
constraint

Sole active
constraint
(paradoloid
of revolution)

Linearized approximation

to sole sctive constraint

aty
Unconstrained negative
geadient to cost
function st @

Second inactive

Negative orojected constraint

gradient at u

Figure VIII-5.~ Direction of Negative-Projected Gradient for n, = 1

and m = 3 (Peasible region is that region inside
paraboloid, above lower plane, and below upper plane;
cost~function is vertical height)

1f there are no equality constraints, and if all the inequality
constraints are inactive, then S is the zero matrix and the
direction of search becomes the standard deflected gradient

direction

s°@ = -1 YF(a). ' (VIII-49)

Similarly, if the single-penalty-function methods are used,
then the directions of search that minimize

Py

are!

1) Steepest-descent method

E? g) = '2?2(9)3

VIII-15
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2) Conjugate gradient method (steepest-deacent starter)

AL
DRI 985 (ug1) 285 (80-1) 8,.1» ¥Where n > 2,

3) Davidon's method (steepest-descent starter)

o

s, = -4, g?z(gn), where n > 2
and

Hn = Hn-l + Ah + Bn,

where Ah and Bn have the same definitions as in the
accelerated projected gradient mode.

Step-Size Calculation

At any particular point 4 in the independent-variable
space, the PGA algorithm proceeds by reducing the multidimen~
sional problem to a one-dimensional search along the constraint
direction to minimizé the sum of the squares of the constraint
violations, or along the optimization direction to minimize the
estimated net cost-function. In either case, once the initial
point 4 and the direction ofsearch § are specified, the prob-
lem reduces to the numerical minimization of a function of a single
variable--namely, the step size. PGA performs this numerical
minimization via polynominal interpolation, based on function
values along the search ray and the function's value and slope at
the starting point. Consider then, in detail, the calculation of
this latter pair of quantities for the respective functions asso-
ciated with the constraint and optimization directions.

Constraint direction.- The function to be minimized .along
ehe constraint direction, 8°, 1s the sum of the squares of the
constraint violations; namely

- at) |2 UTTT -
h () = lefa + v&%) |2 (v1i1-51)

Vi11-16
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CIearli
h (0) = |e(@ |2. " (V11I-52)

Differentiation via the chain rule yields
h,“(0) = 2¢°(Q)S(®) 8¢, (VIII-53)

Recall that the search direction s was obtained as an in-
dependent-variable correction either satisfying all the linearized
constraint equations if ﬁé < m, or minimizing their violation 1if

m < ﬁa. Thus, if the constraints are reasonably linear, a good
initial estimate for the y minimizing hc is one.

Optimization direction.- The function to be minimized along

the optimization direction, §°, is the estimated net cost-
function whith is defined as

B (r) = F(a + v&°) - R(@) + LR |-s°(s5")"! efa + ya°)] . (VIII-S54)

L\ J \ J
N g
change in cost- linearized approximation to
function produced . change in cost-function re-

by step of length quired to perform minimum-
norm correction back to the

]
Y along 8 feasible region
Clearly
h (0) = -LF(Q) 8-(s8*)"1(a)e(d). (VI1I-55)

By expanding h° in a8 Taylor series in y about y = 0,

and by making use of the fact that 35? = 0 since é? lies in
Q(8), . it can be shown that

h3(0) = L'F(Q) 8°%. (VII1-56)

These properties of ho are illustrated in figure 25.
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‘4; Estimated change /
in cost function /p
due to constraint //

correction ‘,
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Cost index

Estimate net
cost function

-
=" 0 Slope

Equal
slopes

'] g Ao [ Y

~{
|-
!
Yo (optimal step lenghth)

Change in cost
function along

-anu_._.___ ///_-direction of

search

Figure VI1I-6.~ Properties of Estimated Net Cost Function

Both the constraint and optimization directions are based on
a sensitivity matrix that depends critically on which constraints
are active. Hence, for searches in either direction, it is im-
portant to limit the step size so that the set of active constraints
does not grow. Such a limit can be cobtained based on linear ap-
proximation and suffices to decal wit': inactive constraints becom-
ing active.

The reverse situation--of actlve constraints becoming in-
active--poses no difficulty. To see this, note that because of
our treatment of the active constraints as linear manifolds, a
first-order approximation of the distance to a particular active
constraint boundary would not change along the optimization direc-
tion. Furthermore, along the constraint direction any change in
the status of an active constraint will be appropriately treated
by minimizing hc with respect to the step length.

VIII-18
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Let K(8) denote the set of active constraint indices at

4, and let

r, = 8 (®%, (0, (VIII-57)

vhere 8(Q) 4s the search direction at vector 4. Then assign
to each k in K the number

-, @/r, if T, <0 l

A(k) = ’(VIII-SS)

R if rk_>_0

where R is a very large real number. Then A(k) is a linear
approximation to the distance along the search ray from u to

ihe boundary, B of ‘the kth constraint. Hence a resonable

k,
upper bound for the step length is
A=min [A(k)]. ' (V1II-59)
kekK

One-Dimensional Minimigzation

Monovariant minimization in PGA 18 performed exclusively by
polynominal interpolation. Pirst the actual function, £, to be
minimized is fitted with one or more quadratic or cubic poly-
nominals until a sufficiently accurate curve fit, p, is ob-
tained; that is,

. . :
ply) = E aiyigf(y) for all y of interest. (V111-60)

i=0

Then the independent varisble value, Yn. that minimizes £ 1is

approximated by the value, y:, which minimizes p. Clearly,

y: can be determined analytically if n < 3.

ViIl-19
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The minimization routine makes ingenious use of all the in- .
formation it accumulates about £ to obtain a good curve fit.
First, f 1is fitted with a quadratic polynominal, p), based
on:

1) *(0)
2) £°(0)
3) f \: , Wwhere 73 > 0 1is an initial estimate of the

y value that minimizes f£.

The coefficients of this quadratic polynominal are then calcu~
lated from the formulas:

ag = £(0)

a) = £7(0) (VIII~61)

@ [1f2) - ] [ e/

The value of the independent variable that minimizes this poly-
nominal is

Y] = -a;/2a3. (VIII-62)

1f Y? and Y% do not differ significantly, Ym is taken
to be y? and the minimization procedure is considered complete.
Similarly, if pl(y?) is not significantly different from

f y?), then Ym is taken to be equal to y? and the process
is terminated. Otherwise f 1s fitted with a cubic polynominal,
p2, based on

1) £(0)
2) £°(0)
3) £ (v?) and y? >0
» £ (VF).
VIii-20
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If f 48 fitted using p,, then coetficients are calculated
from the following formulas: -

ag-= £(0) W
a; = £°(0)

A = max (Y'g,y’f)

nin (Y‘goyl?)/)‘

ay = [Aa; o + ag (1 + a) + (a2 £Q0) - £(ar))/(1 - «))/(A3a?)

> (V111-63)

-]
|}

ag = [(£(a2) =~ a3£(A))/Q - a)=2a(d + a)a;-(1 +a = az)aoll(xzazb

The value ‘of' the independent variable, A?,- that minimizes this
cubic polynomial is

Y2 = (a2 + V(g - 3a50)) [ 383, (VITI-64)

1f yg and yT do not differ significantly, ym is taken
to be y? and the minimization is stopped. Similarly, if p; (y?)
is not e:l.gnifieahtly different from f(y?) s then ym is taken
to be equal to y'z' and tl;e procedure is terminated.

If none of these stopping conditions is met, & third quad-
ratic curve-fit 1s attempted. The accumulated set of sample

tints on-f, namely [0,£(0)], [y%‘, f(y?)], [yT,f(yT) , and
¥

?, £ (Yg , 18 arranged in the order of their ascending abscissa
lues. Then the first point whose ordinate value is less than
that of the following point is selected.

To simplify the notation in the following pages, relable this

point as [y2, £(y2)], the preceding point as [vyi, £(v1)], and
the following point as [vy3, £(v3)].
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' ) Another quadratic polynomial, p3, 1s then fitted to

L 1) £(v1)
; 2) f£(vz)
) . Py
5 3) £(v3).
The formulas for these quadratic coefficients are as follows:
' \
Byy " Y1y
1_ ey "Y1t Yy
dyy = Y4 "y
T b3 ' b3 b2 &(vzu-ﬁ)

» ag = ——— £(1)) + —— £(vp) *+ 73— £
o 0 =T fOV *oag 09 T o, Y

., 23 ) - e £12) = g £C13)

a B e evmm—— - —— c— - ———
N TP TP PYY PY R P PY 13

. . 1 1 1

- a, = —— f(yy) +——— f + —— f .

2 " dyadys Gr) dz1d23 (v2) d3id32 (rs) )

_ . The value of the independent variable that minimizes this quad- !

ratic is 1
Y3 = -a;/2ay. (VII1-66)

!

4

£ _ 1
1f v} and Y7 do not differ significantly, v,  1is taken 1
to be 'v? and the search ig discontinued. On the other hand, if ' ‘i

P3 (y?) 18 not significantly different from f(y?\, then ym
¢ . |

is taken to be (Y?) and the process is terminated.

1f neither of these stopping conditions is met, then a cubic
polynomial is fitted to
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D fvidy 7y
2) £(v2), Y2
3) £(v3)y v3

&) £0Cry), Yy * Y3e

The formulas for these coefficients are as follows:

Dy = (vo2 = y1)(ra3 = y)(yy = Y1) W
Dy = (v; = v2)(va = v2)(vy = v2)

D3 = (v = va)(vz2 - Y3)(vy = v3)

Dy = (11 = ) vz =) (V3 = va)

Y2Y3Y4 Y1Y3Yy Y1Y2Yy Y1v2y3 v
&y = b, f£(vy) + 5, £(yg) + B; f(v3) + Dn £(vy)

YaY3 + vavy + v3vu (viv3+ v 1;. + Y4v3)

&(vm-n)
(Yiva + vivy + Yoy (ryva + vivs + v2v3)
D £(y3) + D, £(vy)

(v + v3 +vy)
£(vy) + s f(va)

-

(vg +v3+ Yy
Dy

a =

+ Yo + + vy +
(v1 + v2+ vy) Cep + v2 + vy) £(vy) -

ag = - %—1- £(v1) - %,; £(va) - %; £(v3) - %; £(v)e J

The value of the indpendent variable minimizing this fourth cubic

polynomial 1is
Yh = (-ay +/a§ ~ 3a3a;)/3a;. (VILI--68)
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1f y? and y? do not differ significantly, Y” is taken

to be y: and the minimization 1s-stoppod. Similarly, if
Pg(yf) is not significantly different from f(y? , then yn
is taken to be equal to y? and the procedure is terminataed,
If none of these stopping conditions is met, the acuumulated

set of sample points is searched for the point with the minimum
ordinate value. The abscissu value of this point is taken to be

ym. and the minimization is considered complete.

Algorithm Macrologic

After being initialized the projected gradient algorithm
proceeds as a sequence of iterations, each consisting of an op-
timization step followed by a constraint-correction step (see
fig. VIII-7). The very tirst step from the user's initial independ-
ent-variable estimate is however, one of constraint correction.
Furthermore, the optimization step is also omitted on any itera-
tion for which the constraint-violation function, hc’ wis not

reduced by the constraint correction step of the preceding itera-
tion.

The optimization search direction that emanates for u is

based on the sensitivity matrix, S(gn); that is,

s = so(g_n ) - ~PYF(u ). (VIII-69)

as discussed previously. Hence, g: lies in the subspace Q(gn).

The value of the independent-variable vector, gﬁ, after
the optimization is

O [+
vy + Yo B0 (VI11-70)

where Yo is the optimum step size.
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The direction of the constraint-correction search emanates
from g:: however, since gencrating a new sensitivity matrix

i is such an expensive calculation, the old Jacobian matrix, J,
i of the constraints with respect to the controle evaluated at

u, is used in conjunction with the error at 2:. Thus,

| ﬁ ‘ s = -s‘(SS’)"(E,,)P.(l":)° (VIII-71)

It can be shown by direct computation that

c c
¥(0) 25 = 20 (V111-77)
fi where 3(!n is based-on S(gn). Thus, g: lies in the sub-
? space a(gn in the independent-variable space.

Since Q u and a(gn) are orihngonal complements, it
follows that the optimizatiou and constraiut directions for any

‘ 32 iteration are exactly orthogonal; that is,
‘f{‘ . o\ ¢ _ _
‘ lﬁ | ) (gn) 8 0. ' (VI11-73)
g The result of the constraint correction step is then the inde-
L pendent-variable vector for the next iteration. Thus
%f: B T oY, +v, & (VII1I-74)
. Figure V1II-8 geometrically illustrates a complete PGA iteration.
-
=
3
".“,-
(0]
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Figure VIII-8.- Complete PGA Iterationm, Consisting ofAOPtimization

Step Followed by Constraint Step for n, = 1 and

m = 3 (Feasible region is the unbounded region
below the indicated nonlinear constraint manifold)

Finally, the algorithm has two stopping conditions. First,

the search is stopped if the
change in the length of the

change in the cost function and the
independent-variable vector between

two successive iterations fall below their respective input
tolerances; that is, if

Second, the proc
rent iteration equa

the user.

{F(u - Flu )] < :
(—nﬂ) (—“) (V111-75)

|y = 8l e

edure is discontinued if the number of the cur-
1s the maximum permissible number input by
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