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ABSTRACT

A TDF rate integrating gyro in the strapdown mode is an atbractive
candidate for attitude sensing in a spacecraft navigation system, since
it provides an additional axis of information for a relatively small
increase in hardware complexity. 4 type of gyro which has not been fully
exploited is of the dry, tuned, TDF design, in which the spring constant
of the suspension system is effectively cancelled by the "dynamic anti-~
spring" of a éwiveling, rotating, gimbal. The use of this unconventional

gyro in a digital rebalance loop is investigated.
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CHAPTER T
INTRODUCTTION

The usge of gyroscopes as attifude sensors in spacecraft appli-
cations is well knowm. Efforﬁs to impfove sensor performance while
decregsing cost, welght, and power requirements are continuously
béing mede. One such effort which has been successfully exploited
is the strapdown concept,l in which the gimballed platform upcn
which the gyros reside is functionally replaced by an electroniq
rebalance loop for each gyro. Thls loop senses float motion away
from & nuil position with respect to the case and applies the correct
amount of current to the forquer colls to drive the fioat back tQ.

null, or rebalance it., Since the gyro Ploats' attitude with respect
‘to the case is-invariant, the case mey be mounted %o the: spacecraft
frame, eliminating the need of a separate platform. Thus the gimr
balled platform is said to be replaced by a computer, or analytical
platform, and the quantity of sensor, and spacecraft, motion is found
by measuring the torquing current. The édvantage of the strapdown ¢
concept is that mechaﬁical éomponents are replaced with.electrenic

components with an impro%emént in cost, welght, and relisbility.

Although single~degree of freedom (SDT) floated gyros are pre-
sently used in str@pdown systems, two-degree of freedom dgsign woul&
glve ancther axis of information at a nominal increase in éost and
weight. Conventiocnal TDF floated gyros for platform use have not beén
adapted to strapdown applications because of difficuliy in torquer
design., The uncenventionsl mechanicel design described in this report
utilizegs a tuned suspension which eliminstes the nged for rotor
flbtﬁtion, ﬁigh gquality bearings, and elaborate gimbals. This design
utilizeg an inside-~out construction in which the gyro rotor is ex-
ternal to its support and drive mgchaniéms,‘making torquer design easy
to implement; In fact, this dry, tuned TDF gyro is ideally suited to
strapdown applications sincé its limited angular range requires a

rebalance loop.



In rebalance loops for strapdown applications, a digital tor-
quing scheme commonly used is known as a pulse torque servo amplifiler
(PTSA). Accurately known current pulses are delivered to the tor-~
quer coil. The advantages of using a PTEA are twofold:

1. Because the current is elther zerc, or a positive

or negatlive maximum, nonwlinearity of the torguer

coil is eliminated as a source of scale factor
error.

2. ' The current pulses may be counted to indicate the
restoring torque necessary for rebalance, and con-
sequently the sensor motiocn. This technique elim=
inates the need for additional analog to digital
conversion, provided the pulse gquantization is fine
enough for the required data resolution.

Toward the goal of using a TDF dry tuned gyro as a strapdowm
instrument, a feasibility study for a PTSA loop is included in this
report. For a better understgnding of the control problem the trans-
fer function of & tuned gyro is derived. As an example of a practical
rebalance loop, the U.T, binary width medulated loop can be modlified for

use on a TDF dry tuned gyro.



CHAPTER IT
DYNAMICS OF A DRY TUNED TDF GYRO

I. DESCRIPTION OF THE TUNED GYRO

In the early 1960's the need for a relatively inexpensive,
light welght, rate-integrating gyro was recognized for use as an in-

2’3’h’? Conventional floated gyro technology had be-

ertial sensor.
come sophisticated to the extent that additional improvements were
very expensive. Undesirable effects, such ag rotor mass unbalance
caused by asymmetry of the windings on thé spin motor, spring reétoring
torques caused by the motor power leads, and temperabure effects caused
by thermal gradients of the Tloatation fluid, could not he reduced
easily and cﬁeaply, Thus the stage‘was set for a radical departure

from conventional gyro design philosophy.

This new philosophy produced a "tuned" gyro (Figure 2-14) in
which the rotor, coupled by a rotating, bearingless, suspension system
to the drive shaft and motor, is "outside" its support mechanism,
rather than inside, as in éonventional design. The suspension system
consists of a single ring, or gimbal, connected te the shaft and rotor .
by elastic restraints which have finite stiffness in torsion (%Wist)
and infinite stiffness in flexure (bending). The axes of these re-
straints are orthogonal. It is the inertial reaction torque generated
by the motion of the glmbal relative to the rotor and shaft effectively
cancelling the elastic torque generated by twisting the restfaints,
which allows the rotor to be free, that is, torsionally decoupled from
the shaft about its axes of freedom, This inertial reaction torgue is

sometimes called a dynamic antispring.

The tuned gyro is termed unconventional, or inside out, to dis-~
tinguish it from the conventional gyre (Figure 2-1B), in which the
rotor, and its spin motor, to which it is directly coupled, are inside
the support mechanism. These gimbals do not spin with the rofor, as

in the tuned case, rather they decouple the rotor from the case through
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high quality bearings mounted on orthogonal axes. A gyro used in
navigation and guidance systems must have a highly refined suspension
for the rotor. One widely used means of "floating" the rotor con-
sists of suspending a sealed housing containing the rotor and a spin
motor in a high density fluid. The tuned gyre, which does not require
flotation, is called "dry". )

The principle difference between conventional and tuned gyros
is the physical phenomena utilized. Conventional gyro design has
exploited every means to provide the.perfect bearing, while tuned

gyros use the dynamics of the suspension system to give decoupling.

IT. THE DYNAMIC ANTISPRING

The gimbal motion which generates the inertial reaction torﬁue
is simple harmonic with a freguency equasl to twice the spin frequency.
Figure 2~-2 illustrates this motion, in which the gimbal plane ex-
periences a complete peried of its oscillation during one-half a rotor
revolution because the axes of the restraints coincide after one-half

revolution.

Anglytically, the antispring may be observed in the equations
of motion resulting from the gimbal action described in the preceeding

paragraph. These equations of motion are
. ” : 2
+ - - 5
(A + Ag/e) Oy * Doy + [K - N (Ag cg/a)] oy +

. 1. .
+ = == + -
N(C + Ag) Oy TDGY 2[A.geX 2AgNeY

. 2 1c, o
(EAg = cg) N oY] cos 2N - 2[Ag®

v - gAgNGX_-

2 .
- +
(QAg Cg) N @Y] gin 2N GX

and 7 (2-1)
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” ° 2
(A + Ag/E) eY + Do+ [K~N (Ag - cg/z)] Oy -

Y
. 1. .
+ - = = - -
n{c Ag) Oy TOx 2[AgeY 2AgN@X
(2-1)
2 LI : continued
(2Ag Cg) N @Y] cos 2N =~ 2[Ag®X + 2AgNeY

2
24 -~ C i + G..
( . g) N eX] sin 2N G-I

OX and OY are angular deflections of the rotor about the case-fixed X

and Y axes, in response to GX and Gy, externally applied torques to
rotor about these same axes. N is the spin frequency of the gyro, and
all other terms are physical constants:; C, A, Cg, and Ag spin and cross
axis moments of inertia of the robor and gimbal, respectively; D,
viscous damping:; K, spring constant; and T_, the rotor-to-case drag
coefficient. The dynamic antispring term, - NE(Ag - Cg/2), is always
negative because Ag mist be greater than Cg/2 {except for a gimbal of
zero thickness, where Ag = Cg/2). If the spring constant eguals the
dynamic antispring, the torque-~free operation is obtained provided the
second harmonic terms in (2-1) can be neglected, and the gyro is said
to be tuned. If these terms cannot be neglected, as in the case where
GX or GY contains 2N freguency components, then an unstable steady-
state solution is obtained, because there is no positive spring con-~
stant term %o cancel the antispring term in these second harmonié

coefficients. This phenomenon is called the 2N sensitivity of the

tuned gyro.

IIT. TRANSFER FUNCTION OF A SINGLE GIMBAL, TUNED GYRO

A useful mode of operation of the gyro as a sensor is the strapw
down mode, in which the gyro is strapped directly to the vehicle,
rather than being mounted on a gimballed platform, and a rebalance
torque applied to the rotor to meintain its attitude with respect to
the vehicle fram. Attitude sensing is obtained by measuring the torque

current necessary to rebalance the gyro. Accurate attitude information



depends on knowledge of the gyro transfer function., To give the
reader a better understanding of the dynamiecs involved in a tuned
gyro, a detailed derivation of its transfer function will be

given.

In this section the coupled differentisl equetions of motion
in rotating coordinates will be derived for a single gimbal gyro.
These differentisal .eguations will then be transformed into a trans-
fer function relating case=fixed variables via a method u51ng Sym~

6’7 The moment

metrical components and a complex ceordinate system.
equations are derived in a shaft-fixed frame rotating at spin veloeity
because the dynamics of the rotating suspension system are easier to
visualize in fhis frame. The method of symmetrical compenents provides
a useful means to analyze systems with asymmetries, while theAcomélex
coordinate system is easy to use for the transformaiion between a

rotating and stationary frame.

Moment Equations

Four coordinate systems (Figure 2-3) are needed for this de-
rivation:

(X,Y,2) == A case-fixed system, with 1ts 7 ax1s along
the shaft spin-axis.

(x,7,2) =——-— A shafbt-fixed system, with z along the shaft
spin-axis and x along the inner restraint.

(x .Y »% ) = A ginmbal-fixed system, with x_ along the inner
& restraint axis and yg the outer.

(x*,y",2") - A rotor fixed system, with y* along the outer
restraint axis and z“ the rotor spin axis.
Figure 2-b shows the detailed relation bebween case and shaft
systems, in which the x and ¥y axes rotate at N, the spin veloecity,
in the plane formed by the X and ¥ axes. The relation between the
absolute angular velocity of the shaft, w, resolved along the shaft
set, and the absolute case velocity, ép resolved along the case set,

is expressed with the aid of the Euler-angle transformation as



: yy

=~y

X, Y, % — Imbedded in Case (non-rotating)
Xy Vs @ - Imbedded in Shaft (rotating at N radians/sec)
Xys Vo By = TImbedded in Gimbal (rotates and moves with gimbal)

x, 7, 57 Tmbedded in Rotor {rotates and moves with rotor)

Figure 2-3. Coordinate Frames Defined
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W, $X cos Nt + éY sin Nt
@ = o, = _éX sin Nt + $Y cos Nt (2-2)
w, ¥ + éz S ) ’
'S ¢X
wher?'g)_ = lug and i = &,Y.
N ol

In Figure 2-5, the rotor is slightly tilted with respect to the

Pl

have been made gbout

shaft, such that angular displacements 6. and Sy

X ;
the x and y~ axes, respectively. The absolute rotor angular velocity,

w”, resolved along the rotor set, may be expressed as

absolute rotor absolute shaft rotor velocity
velocity along = velocity along + with respect
rotor set rotor set - %o shaft along
rotor set
or
w” = w + w . (2"3)
= ~(r) rs(r)

The term E{r) may be expressed in terms of w, as

_Eos 6 - 0 sino ~ 1 0 0 0
¥y N X
= : 6 in 6 -
9p) 0 1 0 0 - cos , Sin 6 g (2=1)
Lf:l.n By 0 cos By 0 -sin BX cos Bx w, .

In a tuned gyro, the angular deflections are small (in practice less
than 5°), since this is a null type instrument, in which rebalance
torques are used to make ex and By gpproach zero. Therefore, the

following small angle approximations are valid:

1l
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8 " = @
¥ ¥y
cosele,cose“~l
(2-5)
sin 8 ~08 ,s8in86 "% sin6_ =~ 8
b4 ¥
8 - =0
¥y x
Thus, (2-4) may be reduced to
1 0-6 111 0 o lfJal- [2 o0-8 1Tw]
¥ X ¥ X
= O = -
p) 1.0 jo 1 8 tla 0 1 6. ||uy (2-6)
8 0 1 0.-0 1 -6 X .
v « u)Z Ley xl mz

The second term on the right side of (2-3) allows time variations of

8 and 6 ~ and is
X ¥

cos 6~ [ cos 90 8
¥ , X
= 8 + 0 = -
Yps(r) cos 90 . cos 8 ey Sy (2-7)
3 - 0 +
sin Gy mfln 8%‘ _?yex Eixesl| )

using the small angle approximations. Adding (2-T7) to (2-6), and

cbhserving that

w ~N>006 +066 +wb —-wb ,
z yx XV¥ Xy ¥X

(2=3) becomes

w’ . w -~ N6 -+ 8
x X ¥ x
w* = lw L] = |w +Ne +6 (2~8)
- Y ¥y X ¥
w’ . N .
z
_ 7 L, —

Figure 2-6 shows a top view of the gyro and a detailed relation be-
tween the shaft, gimbal, and rotor sets. Nete that if the rotor is

not tilted, ex and ey‘ equal zero, and these sets are ceoincident.
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The absolute angular rate of the gimbal, gg"’ resolved along the

gimbal set, is

Absolute Gimbal Absdlute Shaft Gimbal Velocity
Velocity Along = Velocity Along + with respect to
Gimbal Set Shaft Set shaft along
Gimbal Set
or
w = [ + w . (2-9)
- =(g) —gs(g)

Using the same rationale-as previously,

1 0 -8 ®
¥yg X
= 0 2-10
Ye) 1 %xg by (2-10)
' 8 -9 1 o
¥g X8 2
| B I T
and
0
xg

(2~11)

D

[ih) =
~zs(g) R

o
| #&

The inner elastic restraints cause the shaft and gimbal axes, x and

xg, to coineide, while the outer restraints cause the gimbal and

rotor axes, yg and y*, to coineide. Thus the angles

0 =8,
Xg X

]
¥g

and their derivatives,
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exg = Bx,
6 =0
¥g

may be used with (2-10) and (2-11) to give

L ] w” w ’ + e
Xg x x
w_ = fw” = w_ -~ N© (2-12)
& yg 'S
w 2 N .

Figure 2-TA shows a free body diagram of the gimbal used to
derive its moment eguations with respect to the gimbal ccordinates.

These moment equations, about the xg and yg axes, respectively, are

T -T “=Ap”  +(C -B)we  w”
xg xg g x & &  ¥yg8 28
end g(2—13)
T ~T “=Bw™" =(C -A)uw'" w”
y&  y& g y& & ‘g = xg = 28

where the Txy and Tyg are from the rotor wvia the outer restraints, and
Tx‘g and Ty‘g Trom the shaft via the inner restraints, and Ag, B , and
Cg represent moments of inertia sbout the xg, yg, and zg axes, respec-—.
tively. As and Bg are called cross-axis, while Cg is called a spin-
axis moment of inertis., The twisting moments yield the feollowing

torque equations,

Sy (2-1h)

where 8§ ,=6_, 8 . * 6 _, and K_and K are spring constants, and D
x x>y ¥ x ¥ x

and Dy viscous damping. Substituting {2-Ik)} inte (2-13)} gives
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T =Ae"" +(C_ -B)w” w'"* +KB6_ +DB8
xg y X8 2] g vE Zg XX x X .
) (2-15)
-t ., =B &’ ~=-(C -A)Yw” " w'" =K6 ~-DB6_ .
vy e ¥y YVE E g Xy z2g Jy¥y yy
From Figure 2-7B, the moment eguations of the rotor about the-

x° and ¥y~ axes are

M_.=80" .+ (C-B)w .o .+T _+T sin 6 .
TR ¥

X X ¥y -z D
and : L o (2-16)
= - - - - - + - .
M . = Bam - (? A) w PN Ty’ ?D sin Gx,

¥

where Mk, and My” are ékternally applied moments, A, B, and C, rotor

moments of inertis, Tx‘ and Ty, torques applied through the sus-

pensilon, and TD the rotor drag torque. For small Bx and ey,,

=
hY
14

M and M . =M,
S ¥

H
\
1

SPF and T .21
g - ¥ JEg

and {2-16) becomes

= An” . + - N N - T R
Mx Aw”_. (C - B) w 59y Agm g (Cg Bg)lw ye® zg
+ +
Kiex Dxex TDey (2-17)
M =Bw” .- (C-4)w " .+K6 +D6 -T6,
¥y ¥y X7z Yy yy D'x

where the first of {2-15) has been substituted for Txg’ the second of
(2-14) for Tyg’ and the small angle epproximation used for sin 6 _ and
sin ey,. Substituting (2-8) and (2-12) into (2~17) to get all angular

velocities in terms of shaft rates gives



‘1o

- + - -
Mx A(mX ex Ney)+(c B) (my-l- ay-:»mex)m-;.
Afw +8)+(C =B )(w + N8 )W+XKB8
g X X g g ¥ X XX
+ DO+ TDey, > (2-18)
=Blw +86 +N6) - (C - + 0 N +
My (mx - Nex) (¢ - A) (mx x ‘Ny)N
K6 +D6 -T8 .,
Yy Yy Dx

collecting terms with angles, velocities, and their derivatives as
common factors, gives the coupled differential eguations of motion of

the rotor in shaft flxed coordinates:

2
e}é(A+Ag)+ xDx+9x[Kx+N(C"B+Cg'Bg)]+
WMCc-B-A)+ T +6 (A+A)+ONC-B+C_ =B
ey( ) v o, ( g) ey( . y)

=M
X

f(2—19)
- . 2
ey(B) + eyDy + ey{Ky + N°(C - A)] + -

3

- - -— -+ ’ - -
exN(c B - A) GXTD myB wa(c A)

Transformation Using the Complex Method

To transform the coupled differential equations of (2-~19) to a
transfer funetion relating variables in a case~fixed frame, a complex
Plane technigue will be used. First, define the following symmetrical

components:

I-’z(A+B+Ag)/2

I“= (A - B +Ag)/2



D= (Dx + Dy)/e

D’ = (DX - Dy)/2

K= (Kk + K&)/E
K* = (K# - y)/2
J=(20 -3 -4 + C, - Bg)/2

J°=(A~-B+C ~B)/2
( g g)/

L=C-B-A

L =0

P=(A+B+ Ag)/2

P"=(A~-3B + Ag)/E

R={(20-B-A+C_ -3B)/2
( g ™ Bgl/

R“=(A-B+C —~B )2
g g)

Substituting (2-20) into (2-19),.

M
X

M
¥

i

6 N(L - L") -6 ™
X X

.e - - . . 2. ;
ex(z + I°) + BX(D + D) + eX[K + K* 4+ N°(J + J°)] +

8 N(L -+ L*)8. T + 6 (P +P”) + o6_N(R + R”
T+ )8, + 6, (P + B7) + 8 N(R + R)

- L) 2 :
B (I ~-I*)+8 (D-D)+6 [K-K +8{(J]~J"
- ) y( ) y[ ( )]

D

- P*) - w N{R - R”).
+ wy(P ) W (R - R*)

— _

20

> (2-20)

> (2-21)

Next the equations of (2-21) are combined into a single equation

by multiplying the second by J ='5 -1 and adding it to the first,

using the following complex relations:



"their conjugates,

@|

48y

g1l

o 8 g

]

]

q>|-tﬁ

qﬂ:&

&

M =18 +I6

Xy xy
(K -§

2

Py - jNRw
Xy

Xy

.
.

Xy

g+
X

w +
X

+ (D

J - JTD) exy

+ JNR7w,

éey,
Jug,

JM_,

e
J ¥
ju
J ¥

M
J ¥

‘derivatives,

j6

J YQ

:';B
3,,3

jmys
ju

J .ya
jeya

jey.

- SNL) 6+ (D" + jNL°) B
JNL) - ( J ? -

5

2 -
+ ol_ - e +P
(K N°J“) C

Xy

+
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> (2-22)

> (2-23)

.

The. Euler angle transformation from a shaft-fixed (rotating)

frame to a case-fixed (non-rotating) frame for-angles, rates, and

their derivatives, are

i

E—th

O

' . -jNe
(GXY - JN@XY)E

11 - 2
(Oxr - jBNOXY - N OXT

)E—th

> (2-24)




22

_ i =iNg
mxy ¢XYE
(¢XY - jN¢XT

w 3N
L. Je J .

while conjugation of the above relations simply conjugates each term of

each relation, which changes the sign of the imaginary component. The

externally applled moment minus the rotor damping is

- ~3F6 -jit _
n.axy Mx.re DROXYE . (2-25)

Using the relations of (2-24) and (2-25) in (2-23) gives

01‘ . - 2 . . ha

{I[@X,r - JoWoL. - N eXY] + (D - jl\IL)_(eX.f - JN@H}
2 . . -jli%

+ (1.{ + N J - JTD) eXY + Dﬁew}e +

- = s = 2 - - - = Py
{1 [G)XY-E-JENXY-NOXY] + (D" + jWL") (eXY+ JNXY)
+ (X° + §°0) EXY} AR ) (2~26)
(M, = P(byn = JNbo) - 3RO} £90C &
Moy XY XY XY

.= e e +3Nt

which is the complex form of the rotor moment equation in case-fixed

coordinates. The following Laplace transformations are useful:

Lie(t)] = F(s)

)et 92Ny & p(s - som)

Li£(s
Llf(6)] = s¥(s) U (2-27)
L{£()] = &°F(s)

Ll2(6)ed?] = (s - jom) F(s -~ joN)

jENt} (32 - ths - hNe) E(S - jeN)

[}

Lif(t)e

where initial conditions are assumed zero. Equation {(2-26) is multi-

plied through by EJNt and Iaplace transformed using (2-27), giving



a3

{1(52 - joNs - Ne) + (D = JNL) (s « jN) - T, + K+ NEJ +

Dps} 6rp(s) + {I7(s% = joNs - ¥%) + (D” + gW9 (s - gW) !/, oo
B - . .

K™+ N°97} Ogy(s - J2n) = 1, (s) - {P(s = W) ~ JNR} ¢y y

- {P"(s = jN} + JNR*} igY (s - jow).

The coefficients of OXYS° a&Y(s - joN), - E&Y(S)’ and - EiY(s - joN)

are defined as

2 2 o L
Zl(s) =TI(s” -~ j2Ns - N°) + (D -~ JNL) (8 ~ jN) + X + N°J - JTp + Dps
ZQ(S) = I‘(S2 - JeNs -~ NE) + {D* + JNL*) (s -~ jN)} + K" + N2J
2,(s) = + {P(s - JN) - JWR} | (2-29)

Zh(S) = {P’(s - jN) + jNR"}

Bubstituting (2-29) into (2-28) yields

2, (s)opy(s) + By(s) B (s = J2) = Mo (e) = Z(s) dyy(s)

-7),(s) $£Y(S -~ jem). - (2=30)
Equation (2-30) is a statement in the complex frequency domain relating
complex rotor angle OXY(S)’ and its conjugate §t twicé spin frequency,
@XY(S --jEN), to the complex case input rate, ¢XY(S)’ and its 2N con-
jugate ¢XT(S - j2N), and externally applied complex moments, MﬁY(s).
This equation may be solved for either the direct or 2N frequency com—

ponent by the following means6:
1. Conjugate (2-30), using a dummy variable for s.
2, Substitute s - j2N for the dummy variable.

3. The new equation, which is

7, (s = J2N) 0y,(s = JoN) + Z(s - j2N) oy = _ (2-31)

H (s = 320) - T (s = 320) Gy (s = 320) = (s = 320) ¢, (s)
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may be solved simultaneously with (2-30) to give either

GXY(S) or XY(s ~ je2m). This solution , in matrix

form, is

’ka(s) i Zl(s) ZQ(S) -1 MXY(S)

EXY(S - joN) "z'a(s - jom) %,':L(s - jom) —MXY(s ~ 32N)

L _ L. . _

- (2-32)
z, () EAC R Rl PRES 5 | |y 7
€

_Ee(s - joN) El(s - j2Nl E*(S - joN) "'53(5 - j2Nl “éXY(S - 321\1_

Justification for the preceeding operation is given in Appendix A.

Solution of (2-32) is simplified using the follbwing ApProx-

imations:

1.

Rotor te case drag, and damping coefficients are ne-

gligably small, therefore

T.=D=D" =D

D R
By symmetry,
A = B,
A =B,
g g
and K =X
X ¥

therefore, (2-20) becomes

I=A+Ag/2
“ = A [f2
T g/

K" =0
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J=0C~A+1/2 Cy - 1/2 A,
J°=¢ /2 ~A /2
g/ g/

L=¢C-24
I* =0
> (2-33)
P=2A+A
g
Pe = A
g
R‘= C-A+ cg/2 - Ag/e
R* = cg/e - Ag/2
and (2-29) may be simplified to
_ 2 . 2 ]
Zl(s) = s2(A + Ag/2) - JNs;c + Ag) + N (Ag - cg/e)
22(3) = g Ag/2 - stAg - N (Ag - cg/e)‘  (5-3k)
Z,(s) = s(& + A [2) - JN(C + ¢ /2) '
A = sA /2 - (A - C /2).
h(s) 3 g/ o ( z g/ ) J|
conjugation and substitution of s - j2N in (2-34) yields
Z, (s - jam) = s°(a + 8 /2) - s(ba - €+ A) ¥
2
K- N (44 -2C + A - cg/e) S (2-35)

- 2 2
7.(s = j2N) = s°A /2 = jNelg « N°(A - C /2
o jeN) = s g/ jWsAg ( g g/ )

Z3(s - jon) = s(A + Ag/E) ~JN(2a~-C+ Ag - cg/z)

7, (s - j2N) = sA /2 - FNC_/2.
h( J ) g/ dJ g/
Solution of (2-32) for @XY(S) gives

OXY(S) = ﬁi(s - 32N) MXY(S) - Z2(s) ﬁ%Y(s - jON) T
- [Ei(s - joN) 23(5) - Za(s) Eh(s - joN)] ?XY(S)
- [2(s = jaw) 7 (s) - Zy(s) Eé(s - 3em)] ¢y, (s = jan)

[Zl(s) Ei gs - jen) - ZE(S) Z2(s - jem)l, F(E-SG)
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which is the complex form of the output angle, in case-fixed coordin-~

ates, as a function of input rates and moments.

Transfer Function

Reduction of (2-36) to a useful transfer function form, reguires

the following assumptions:

1. The rotor iz thin, that is, C = 2A, which allows
simplificatlon of the terms Z (s - joNW) and

Z3(s ~ joN).

2. Gimbal inertias are negligably small in comparison
with rotor inertias, which allows the following
simplifications: ‘

A, The product Z.(s) *+ Z.(s - JQN) in the
denomlnator may be neglected

B. The effect of M, (s - jEN) may be neglecihed
because Zg(s) is small.

C. The product Z2(s) v 7 (s - j2N) in the co-
efficient of ¢XY(S) may be neglected.

D. Because of A., the coefficient of ¢(s - joN)
may be reduced to

Z,(s) Z,(s)
z, (s) Z,(s) » (s - gam) °

which, since it contains only gimbal terms
in the numerstor, may be neglected.

Use of the preceeding assumptions and the condition of tuning,
K =N(a -C/2), (2-37)
2 £

to eliminate the constant terms in Zl(s) and Ei(s.— jen), reduces {2-36) .
to ’
MXY(S) d)H(S)

) T meoTEm T T o (238
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Equation (2-38) may be transformed using (2-22) into

o L e (@u/a) + M(s)  dls)
O, 1s = —— -
X 32 + hme 8(82 + hNe) s
? (2-39)
(s) » 20/& M _(s)/A b (5)
Opls) = X : 2. F Mg - 2 " it
s(s” + kN%) s + hN ] s
T

which is the transfer function' of a two-degree-of-freedom rate in-
tegrating gyro.

Transfer Function Tneluding 2N Rate and Moment Inputs

Some of the preceeding approximations used to 51mp11fy the
transfer function of a tuned gyro are inappropriate. In a gyro used .
in the strapﬁown:hodefaFigure 2-8, the rebalance torque is applied
Wwith a magnetic force, and proper design must provide an efficient
magnetic circuit for the tcrquer flux. Consequently, the rotor is
not thin, that is, 24 # C. For the rotor of Figure 2-8, 24 is about
10% greater than C, and the guantity 24 - C cannot be neglected in
Ei(s - jan) snd Eé(s — joN), since it is large compared With A, - cg/z.

Although higher ordered terms of ZQ(S) . Eé(s - JON} may be
neglected in comparison with those of Zl(s) . Zl(s - joN), its constant
term must be considered. The condition of tuning, which forces the

constant term of the characteristic equation (Zl(s) Ei(s - jEN) -
ZQ(S) . Eé(s - J2N)) to zero is

21( 2 ¢) [ 2 oy
K = §°{ Ag - cg/ t 2Arm C) (Ag - cg/z) + (24 - C)7] L

{2-ko)
Other terms of the characherilstic equation are

426" = yma2e3 - v & gursa [ag - cg/e)2 + (28 - 0)%]

{(2=41)

1/2

B,
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Figure 2-8. C(ross Section of Teledyne Gyro
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in vhich the constant term is negligably small, leaving
2%s%(s - 32m) (2-42)

as the charecteristic equation. The numerator of the transfer funce
tion 1s )

—A25[52 - jhNs -.hme] ;Xy(s) + As(s_- joun) MXY(S)
+ JNA(Ag -‘cgfe) st - W) i&Y(s-- jew) (2-43}

f(gg/E) s(s - ;gy) Wpy(s - 32M),

" where the constant terms are considered negligably small, because they
contain inertial differences due toL?inite thickness, i.e., Ag - Cg/2
and A - C/2, or in the case of the ¢XY(S ~ joN) term, the product of
these differences. The transfer function may be resolved into its X

and ¥ components, giving

bys) | sils) = 20 - 1 (s)
8 As(32 + hNE)

6, (s) = -

Ag/B SMX(S - JOoN) + 2N . MY(S -~ jom)

. -

A As(s2 + hNg)

N(Ag - cg/e) - (3N 52 + hN3) &X(s -~ joN) - s3 éy(s - jomw)
2)2 i

As(52 + Uy

and ‘ >(2-hY)
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byle) 20 - Myls) + smy(s).

B,(s) = =
! s As(s2 + hNg)

Ag/E 2N« M (s - joN) - s « M, (s - j2N)

A As(52 +* hﬁe)

' 37 , 2 3y .
N(Ag - cg/z) ~8 ¢X(s‘- JjoN) - (3Ms® + uy”) ¢Y(s - jem)

As(s2 + hNg)2 _

Equations .(2-kk) contain all the terms of (2-39) plus additional terms
to account for external moments and input-rates at twice the spin freg-
quncy. Of particulsr importance are the terms related to 2N rate in-
puts. An impulse rate input gbout either axis at 2N (a sinusoidal )
angular displacgment of constant anplitude and frequency of 2N) gives
outputs about both axes which have a non-zero average value. This
phenemenon is known as 2N rectification, and generates a drift error

in the gyro used as a sensor. The terms related %o 2N moment inputs
are not particularly important, because moment inputs are controlled
by currents in the terques, and the designer can eliminate currentg

at this frequency. A block diagram of (2-40) is shown in Figure 2-9.

IV. TRAWNSFER FUNCTION OF A TWO GIMBAL TUNED GYRO

For the single gimbal gyro with a thick rotor (24 > (), the
tuning condition (2-40) contains rotor inertias, indicating that rotor
dynamics enters the design of a single gimbal tuned gyro. The addition
of a second gimbal and pair of restraints (Figure 2-10) allows the
designer to eliminate rotor terms from the tuning equation and 2N

rectification from the output.

Moment Eguations

The second gimbal adds another coordinate system to the four

considered for the single gimbal case,
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(x g0 Yo zg2) ————— Fixed in the outer gimbal, with
% . along the outer restraint
a%s and y . along the gimbal
to ginmbal restraint,

also, the system for the inner gimbal is now designated by

(x ) R Fixed in the inner gimbal, with

s ¥ 19 B
gl' gl gl . X along the inner restraint and
¥°o along the gimbal to gimbal
1 .
réstralnt.
Equations (2-2) and {2-8) for shaft and rotor wvelocities are valid
for the two gimbal gyro. Following the development of (2-12), for

the inner gimbal,

- T 177
Opgr 1 | 0 -0 o, -
= = 1 3] + ]
g1 | “yed 0 xgl | * | % “ygl (2-45)
_?zgq; eygl “exgl 1 Yz ezgl *
while for the outer,
] — 5 7 7
wxg2 1 0 -eyg2 w, exgz
= = + °
Leo ygo 0 - exg2 21 Y eyg2 (2-k6)
ng2 eyge °exg2 1 L.mz' ezg2 ’

Referring to Figure 2-11, if the restraints from gimbal two to the
rotor have the same restoring torque as those between gimbal one and
the shaft, the angular deflection of the gimbalsg about the x-axis is
one-half that of the rotor., About the y—axi;, the inner gimbal has
no deflection, whille the outer experlences full rotor deflection.

Consequently, for the inner gimbal:
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Kotor — ////,

Elastic Restraimt -5
Gimbgl #2z.
!

B

_-—% %ﬁ? % ‘éﬂéqz\b\,w

C. Front

Figure 2-11. Relative Deflections of Gimbals and Rotor



xgl
xgl

yel

zgl

and (2-45) becomes

mxgg
iV} = w
~gl yel

ngl

while for the outer gimbal,

exgE

exgE
8
RLE

6
_YgQ

eng

and (2-~L6) becomes

xg2

[ = )
g2 "yeg2
wzge

1)
X

= |w +m8 /240
y x Y

[

~No_ + 0 /2
¥ X

35

> (2-bT}

(2-48}

> (2-kg)

pa—

(2=50)

Figure 2-12 A, B, and C shows free-body-diagrams of the inner

gimbal, outer gimbel, and rotor, respectively, of the two gimbal gyros

used to derive the moment equations of the rotor.

The moments ©f

inertia about the respective x, ¥, and z axes are designated 4, B, and

C, while the subscripts 1 and 2 denote inner and outer gimbals, with
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Al, Bl, C1 —— Moments of

i x
Inertia about 21° yél’ Zgl

A. Inner Gimbal

A2’ Be,'C2 —— Moments of

Inertia about Xy05 Tgo2 Zgn

y -j;',’l:":' e 5’ 2
/{?a ( Myez

B. Outer Gimbal

A, B, C — Moments
of Inertisz about

-

e -~
X ¥ s+ 2

C. Rotor

Figure 212, TFree-Body-Diagrams for Two Gimbal Gyros
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no subscript for the roter. The inner and outermost restraint torsional

gpring constants are le and K&2, vwhile that of the middle restraint is

Ky. Viscous damping coefficients are defined in a similar manner,

From Figure 2-12a, the moment equaetion about the xgl axis is

= . o - - . : A2 -
Mﬁl Almxgl _(cl Bl) wyglwzgl * K&lexgl * Dxlexgl ’ (2-51)

Vhére Mﬁl is the moment delivered from outer to inner gimbal via the

niddle restraints, which have zero bending. Consequently, for the outer

gimbal, Flgure 2-12b, the moment equations about xg2 and ygg
. b
- = + - -
Mg = Bgliygn + (Cy - Be)“yge e+ KxolOyp0 = O )
Dx2(exg2'q ex )
and . > (2-52)
= B - - + - :
M§2 2myg2 (02 AE)wxngzg2 K&(eyge eygl)
+ D {8 - B .
y( ye2 ygl) ? .

respectively, where M§2 is a bending moment from the rotor through
the outer restraints. For the retor, from Figure 2-12¢, the mement
equations are

ot

M “=Aw" ,+ (C-Ble" " L +K (8 *~06_ )

X x - ¥y oz X2 x xg2
+ . - + i -
4 ng(ex xg2) T “sin ey .
and : ' ‘ ' > (2-53)
My, -M,_ =3Bw" . - (C-A)w"_ " _. ,

ya N x 2 -

about the x™ and yv* axes. Egquations (2-51) and (2~52) may be combined
with (2-53) t6 give '
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= - -+ - - - + . - ]
M= Aw’ . (¢ - Blo 30 g AzwxgE + (02 Ba)myg2wzg2
+ + - +
Aoyem * (G Bl)myglngl K1 %xa1  Pxiran  (5-54)
,=B‘,— - '..a“+ - -
M& " - (C- 2o .» BawygE (C2 Ag)wxgewzg2
+ X (8 -8 + D (8 -5 .
y( yg2 ygl) y( ye2 ygl) _J

Using (2~47) and {2-49)}, and the small angle approximation which allows

M.*M and M,
x x ¥

M&;(E—BQ) bhecomes

= >, — - red +
M= Aw’ .+ (C -~ Blw” .o~ . A 21 +
+ +
Agwxgg (c2 BE) 20 +X .0
M& = Bw g " (C T Alw” . Bewygg
+ K6 +D6 - T8
vy Yy D'x

Now, substitute (2-8),

moment equation in terms of shaft velocities

Collecting

KN - -
A(wx eX Ney) + {C - B) (my

Al(;x +6 /2) + (c; - B)) (o, +

Ag(mx - NB& + axfz) f (02 - BQ)

° Bx/2 + T 8

K oYy

" BX/E + D

x1

B(é + 5 + Né ) - (c - 1) (wx

B (m + NB /2 + 0 ) - (c

(m - N+ e /2) N+K8 +0D e
y Yy Yy

terms in (2-56) gives

- (C

- A } e

(C Bl)myglngl
2+ D8 /2
xx 5 (2-55)
o = Aol ow, 0

(2~48) and (2-50) into (2~54) to get the rotor

+ 8 +NO )W+
N X

NSX/2) N + .
(my + NGX/2 + ey) N+
5 (2»56)
+8 -~NB )+ '
x ¥
- T 8
Dy
-
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M= HX[A + (Al + AE)/E] + éx D_,/2

Bx{Ne[C - B+ (cl - B, +C, - 32)1/2] + le/e}

éy N(C - A ~-B + 02 - A2 - 32) + eyTD +

LX(A AR A) v, N[c-B+C -B +C,-B,] L ost)
My = §y[B + Bz] + éyDy + By{N2(C - A+ 02'— AQ) + Ky} -

éxm(c - A-B+ 02/2 - A2/2 - 32/2) -

8 T, + Qy(B +By) -wN(C-Aa+C,~A),

|
which are the coupled differential equations of mobtion in shaft fixed

coordinates for the rotor of a two-gimbal gyro.

Complex Transformation

Proceeding as before, the symmetrical components are defined

I=[A+3B+ (A1 + Ag)/a + 32]/2

I“"=[A-BR+ (A1 + A2)/2 - 32]/2

D= [Dxl/E + Dy]/2

D* = [Dxl/e - Dy]/2

ﬁ = [lefz * Ky]/E

K* = [Kﬁl/E - K&]/e

1> (2-58)

J = (20~ B - A30,/2+ cl/z ~B,/2 ~B,/2 = Al

J*=[ -B-4A - (Bl + By + C + C2)/2 + A2}/2

L=[2(C-A~B)+ 3(02 - A2 - BE)/E]/Q

L” = (02 - A, - BE)/%



s)
P=(A+3B+ A kA, + Be)/e

P*=(4-B+ Al + A2 - 32)/2

R=(2C-A-3B + 202 + cl - Bl - B, - Ae)/e

"_—' - —-—
R“= (A -B+ cl B, 32 + Ae)/2

These symmetrical components (2-58) are substituted into (2-57) to

give the rotor moment equation in terms of symmetrical components,
vhich is identical symbolicelly to (2-21), only the components are
defined differently in(2-58). As in the single gimbal case, (2-21)

is combined into a single equation using.complex notation, transformed
to the case-fixed coordinate system, aﬁd Laplace transformed to give
(2~28). The coefficients of variables, Zl(s), Z,(8), ete,, are defined
ih {2~24) and substituted into (2-28) to give

Zl(s)c:)XY(s) + ZQ(S)EXY(S - jon) = M (s) - (5-30)
Z3(S)¢Xy(s) - Zh(s)¢XY(S - jBN)s

which is menipulated to give a conjugate equation at twice gpin fre-

quency,

XY(S - jom)

éﬁé(s - Jem)igy(s - joN) - EL(S - jem)EQT(sy . (2-31)

Zl(s - jEN)@XY(s - joN) + 22(3 - jEN)OXY(s) =M

Simultaneous solution of (2-30)and {2-31) yield

-l

Oy (s) o 7, (s) 7,(s) Mo (s)

bl

E&r(s'— 32N) Eé(s - Jan) 2, (s < jon) My(s ~ g2N)

Z3(s) Zh(s)
(2-32)
Eﬁ(s - joN) Z3(s - jom)
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Again the simplifying assumptions of
1. Negligable drag and dampiné, therefore

T =D=D"=D_=0

D ] R
2. Symmetry, A = B, Al = Bl’ A2 = BQ’ and
le = Kﬁz = K& = k.

allow us to evaluate (2-32) by simplif&ing (2=58) which becomes

I =A+ Allh + 3 Aa/h

I° = Alfh - A2/h
K=3/4x
K*=-1/b x

JT=C=A+3 c3/h - cl/h - Al/h -3 A2/h

Jf = (cl - c2 - Al N A2)/h
S (2-59)
L=C-2A+3 02/h -3 A2/2 :

L” = 02/h - A2/2

P=A+ Al/e + A2

B = A1/2

R=0C~ A+ C2 + 01/2 - A1/2 - A2

"R* = c,/2 ~ A /2

which may in turn be used in (2-29) te obtain
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z,(8) = s°(A + A /b + 30,/h) ~ j2Ns (/2 + 3¢,/8
+ A /B) +(3/5)k- W(a /2 = C /W)
7,(s) = s7(A = A )/ - Js(A /2 ~ C/b) - k/b
-z - 0/ , (260
Z3(s) = s(A + A1/2 + A2) - JN(C + 01/2 + 02)
Z),(s) = sA /2 - Ju(A) - C /2)

Conjugation and substitution of s - j2N for s in (2-60) gives

2z, (s - jon) = s2(A + A/ + 38,/4) - joNs(24 - cf2 ]
‘ + 8 /% + 38,/2 = 30,/8) +@/Mk - NO[hA - 2 + A /2
+ 38, = 3C,/2 - C /8] { (o)
T,(s = 320) = s°(A) ~ A)/% = JNs(A /2 - A, + Cy/%) - K/}
- NE(AI/Q - A, - cl/h + C,/2)
Eé(s - Jon) = s(A + A /2+4,) - JN(2A - C+ A ~C/2- C,)
7) (s - J2N) = sa /2 - gneC /2

Transfer Tunction

The transfer function for the two gimbal gyro may be found by

using

0yfs) = {Z,(s ~ Ja0Myyls) - zz(s)ﬁ?’q.(s - 321\1).
-[Ei(s ~ JeK)Z(s) - Za(s)gh(s ~ 320) Jogy(s)
~[2 (s ~ j2m)z) (s) ~ 2,(s)2 (s - 320) Joyy(s = Jem)}

/12,(s) « Z (s - JoW) = 2(s) » Z,(s - jem}],  (2-36)



b3

along with (2-60) and (2~61). The approximation used is that rotor

inertias are large compared with gimbal inertias. The constant term

of the charscteristic equation, Zl(s) . Ei(s - JEN) - z2(s) 4

is

2(5 - jQN),

[3/4x - N2(A1/2 - cl/h)] « [3/bk - N2(hA ~2C+ A/ 3A2

- 30,/2 = ¢ /4] - [-k/b - Wo(a,/2 - € /W] - [-k/4
~ Ne(Al/E - C /4 - A, + Cy /)]

(2-63)

which is forced to zere. It is expedient %o do this in the following

manner:
1. Make the constant term of % (s) equal zero. This
removes rotor inertias from the tuning condition,
aliowing the designer independent choice or rotor
and suspension characteristies.
2. Make the constant term of Z_(s - J2N) equal zero,
completing the tuning proceg
Thus
3/Mk - No(A /2 - C. /M) = O
A 1 ’
and

k/4 - Ne(AE - 02/2 - A1/2 + cl/h) =0,

which may be realized if

+

A2 - 02/2 - 2A1/3 + 01/3 =

one solution of which is

> (2~6L)

(2-65)

(0-66)
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Equation (2-36) may now be written

8 (&) =M_(s) z {s) M_{s - joN)
Xy Xy - 2 XY -
. Zl s) Zl(S - j2N)Zl(S) (2-67)
"z (s)" 7, (s) 7. (s) Z.(s = j2H)
37 (s) L 2 3 =, .
7 () %? o 7, (s) "B (s) Z (s - jom) 1 by (s = gam)

as the tuned transfer function. .Under this condition

7 (s) = s°A - jONsA
zl(é) - 7, (s - g2n) = 2%:%(s - jom)?
Z3(s) = sA - jONA

z‘3(s)/z1(s) =1/s

EB(s - jzm)/'z'l(s - 32N) = 1/(s - j2N)

and the transfer funection becomes

0,y (5) = M, (s) ) A /12 . ﬁn(s ~ JoN)
sA(s - jan) A? s(s . jou) ‘
(5-68)
&22:(8) 5 A ?H(s < Jem)
5 12 4 (s - jow) '

Separating {2-68) into its real and imaglnary component

M, (5) on + 1, (s) %K(s)

- va

Oy (s)

As(52 + hNg) As(s2 + hNe) a

Al/ie c sM (s - JoN) + on MY(S - J2D-I)

A? s(se E hNe)
s i—’; s¢x(s - JON) + 2N ¢f(5 - jom)
1z, (2 + hme)

l>(2--69)



oW - MX(S)

sMy (s)

éY(S)

0 (s}
v As(s? + LN°)

As(32 + hNg)

S

A /12 oWy (s - jeN) - sMy(s - jam)

2

s(s2 + hNe)

45

5 Ai 2N Gy (s - jow) - é$f(s - jon)

A (32 + hNE)

The transfer function for direct rate inputs, and moment inputs, boeth
direct and 2N is similar to that of the single gimbal gyro (2-Lk), .
differing only in the scale factor of the 2W moment input. A constant
angular displacement at 2N (impulse of rate) iz not rectified, which

improves the gquality of the gyro as a rate integrating sensor.

V. COMPARIZON OF ONE AND TWO GIMBAL GYRO DYNAMICS

The transfer function for direct rate and moment inputs, which
is required by the systém designer to use the gyro as a strapdown
instrument, is identical for both the single and two gimbal gyros.

The principle differences are (1) elimination of the undgsirable on
rectification effect, and (2) g tuning condition, (2-6&), which is
independent of rotor inertias, in the two gimbasl gyre. Both of these
characteristics are important. The 2N rectification in a single gimbal
gyro destroys its usefulness as a high quality attitude sensor. A
tuning condition which contains rotor inertias (2-~L0) means that the
dynemic antispring is not a function of gimbal inertiss and speed
alone, consequenily., the rotor cannot be considered free, the re-
gquirement of a high quality rate integrating gyre. This lack of
freedom is displayed in the 2N rectification of the single gimbel gyro.
The conclusion which may be reached here 1s that & tuned gyre must

have more than one gimbal For succesgful operation as a sensor,



CHAPTER IIX
REBATANCE LOOP ANATYSIS POR A DRY, TUNED, TDF GYRO

For strapdown applications, the plant dynamics derived for the
‘gyro of the preceeding chapter must be included in s closed loop. This
loop causes the gyro to be a null instrument, any sensed deviation of
the rotor position with respect to the case from null cauvses an applied
restoring or rebalance torgue to force the rotor back to null. As in
the case of the SDF gyro, the torguer current can he measurea to give
an indication of sensor motion. The plant dynamics, ineluding torguer
coil dynamics and pickoff gain, is shown in Figure 3-1. DBoth analog

and the digital rebalance loops will be investigated.

I. ANATOG LOOPS

For ease of design and hardware implementation, rebalance loops
using continuous signals are preferred. Two different analog rebalance

loop designs are presented in this section.

Teledyne Loop

The Teledyne design is based on meeting the following criteria:

1. The steady-state output angle (rotor hangoff) errors’
are zero for constant angular velocity inputs.

2. The maximum absolute transient error is less than 5
williradians to keep the rotor from hitting its stops.

3. The feedback loop gain must be attenuéfed at the spin
frequency., N, to avoid rectification errors at this
frequency.

This desigh was implemented using the plant transfer function in complex

form,

My (s) byy ()
As(s - jaw) ~ s

GXY(S) = (2-38)

L6
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TORGUER : DIRECT-AXIS GA/ FF
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Figure 3-1. Plant Dynamics of Dry Tuned TDF Gyro
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A root locus design was used resuliting in the rebalance of Figure 3-2,

a single loop with the following variables in complex form:

Rate input ———————r byv (5)
Moment input ———=—- Myy(s)
Output (rotor hangoff) angle ————w——w Oxy

This loop contains physically unrealizable poles and zeros, that is,
complex roots which are not accompanied by a conjugate. Using 2-22,
which converts the variables in complex form into their real variable
components, the feedback component of the loop of Figure 3-2 is trans-
formed to Figure 3-3 in which both direct and cross-~coupled tTerms
appear. The general effect of complex roots without conjugates in

the complex variable domain is to produce both direct and Cross-—

coupled terms in the real.variable domain.

Noninteracting Loop

Ancother analog rebalance loop uses the well known principle of
noninteraction,9 in which the maitrix of the open loop transfer function
is diagonalized. This diagonalization causes the closed loop matrix
to also be diagonal, Which decouples the response of all outpubts but
one Lo a given input. Thus, each input is paired with an ocutput, and
these input-output pairs are noninteracting with each other. This
noninteraction essentially reduces a multi-varisble system with n
inputs and n outputs to n separate single-input-single-output systems

which may be compensated individually using classical techniques.

The simplest method of diagonalizing a matrix, M, is to multiply
it by its inverse, Mnl, since MM‘1 = I, provided M is non-singular.

The plant gain matrix (which excludes the torquers and pickoffs) is

1 -2N/s

G = -—-l/—A-—-—- ’ (3"1)
2 + th
s oN/s 1 R
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which, inverted, becomes
G =As e (3-2)

Because of linearity of the system, this inverted plant gain matrix may
be placed anywhere within the feedback loop to obtain diagonalization.
In addition, each element of this matrix may be divided by s, or 32,

to give a type I, or II, closed loop response, respectively.

In order to compare the performance of the noninteracting loop
with that of the Teledyne loop a type II sysiem was designed. The
Bode plot of the open loop is shown in Figure 3-4. The gain of 105
gives_a steady-state error in the rotor hangoff angle of 0.5 milli-
radian for an acceleration input of 50 rad/secg, which is comparable
to the Teledyne response. A lead network is used to add a zero at
w = 200 so the slope of the open loop transfer function is ~-20 db/
octave at the zero db crossing. This gives a theoretical 10 to 90
percent rise time of 7.3 mseec and a 1.2% overshoot. The additional
poles in the transfer function are at w = 10000 rad for the torguer
coll and w = 20000 rad for the lead network pole. This design permits
the addition of a notch filber with imaginary zeros a w = + jN, and

two real poles at w = 3N, N = 628 rad, if one is considered necessary.

The single-input-single-output transfer function is

o 10” (/200 + 1)

xo—-
éx sg(s/zoooo + 1)(s/1.0000 + 1)

(3-3)

Figure 3-5 shows a block diagram of the noninteracting loop used to

achieve this transfer function.



49

— Gadn
db

Figure 3-h.

Bode Flot of £IS0 Noninteracting Open Loop

A



@{s) n
. A
GAIN _ COMPENSATION — DECOUPLING — TORQUER PLANT GAIN | PO
oot0z || stoo +1 g0 - 7.590% | 2573102 3N /20
/20000 + ! - K {sfot + | s2+/257% |
10° L5727 ||
s s(<*+1257%)
10® 1577
s s(s?+/2579)
+ + _.3 =
0102 $/200+ | . 800 . 2.5%10 /,zs'moz 120
g/20000+1 T [ shot+ | st H2e7 L
Zaun
S

Figure 3-5. "Noninteracting Analog Rebalance Loop

€3



5k

Comparison of the Teledyne and Noninteracting Ioops and the Results
of Simmlation

Both the Teledyne and noninteracting designs are satisfactory to

rebalance the dry tuned TDF gyro. The Teledyne loop, which in realizable
form is a two-input-two~output system, is the more difficult of the design
methods to implement. The implementation of this design involves using
system variables in the complex coordinate form (Figure 3-2, page 49)
which results in a root leccus design in which real-axis symmetry does

not exist. The notech filter is an essential part of this design; its re-

moval causes the loop to become unstable.

The noninteracting design, which reduces the design problém to
that of a single-input-single-output system, has one flaw. The non-
interaction depends on exact knowledge of decoupling and plant paran-
eters, in real world problems this never the case. The consequences
of this inexset noninteraction are imaginary axis closed loop poles
in the vieinity of 2N, and small off-diagonal elements in the transfer
matrix, which also contain imaginary closed leop poles near 2N. These

poles limit the closed loop bandwidth of the system.

Results of simulation shown in Table 3-1 of the Teledyne loop and
the noninteracting loop with a noteh filter included shows the Teledyne

loop having slightly superior performance.

Table 3-1: Rotor Hangoff Angle for Dry guned TDG Gyre with Acceleration
Tnput (x-axis) of 50 rad/sec

Rebalance Loop Rise time 5% Settling % Overshoot 8.5. Error
Loop 10%-90% Time Millirad
msec msec
Noninteracting 6.0 21.0 19.2 0.50

Teledyne 6.0 15.0 9,2 0.53
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II. DIGITAL REBALANCE

Pulse width modulators (PWM's) may be inserted ahead of the
torquers so that the loop may operate in the PTSA mode. TFrom the
equal area principlelo, a linear system gives. the same response at
the time of sampling, regardiess of the waveshape of the input, pro-
vided the area under the input curve is equal. Thus the current to

the torguer may be pulse width modulated witheut a deterioration of

sensor performance.

One type of PWM employed is binary width modulatien (BWM), in
which the torquer current assumes a constant magnitude of positive or
negative polarity, such that the net curreni time produce (area) over
a sampling period is propertional to the input of the BWM at the
sampling time. Because censtant current is delivered to the torquer
coil, its power is constant regardless of the net current; consequently,
unstationary thermal gradients in the torquer coils, which can cause’
scale factor change, are avoided. Data reselution is ebtained by

varying the positive and negative widths in smell discrete steps, as

ghown,in Figure 3-6.

~>] P% Resolution of Current

I g
; [
© |
|
- — [
ir— ‘ Sampling —>=
Period

Pigure 3-6. BWM Current
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Both the Teledyne and noninteracting designs were simulated with
BWM's in the loop ahead of the torquer coils (Figures 3-T7 and 3-8}.
The results of these simulations are shown in Figure 3-9 through 3-12
for sampling periods of 0.5 and 0.1 msec. A constant angnlar accele-
ration input about the x-axis of 50 rad/se02 is used in each case. The
x- and y—rotorlhangoff angles and inputs to the x— and y-BWM's are
plotted,

For‘e samplihé'period of 0.5-mBec, the Teledyne loop pfodueed
objectionably large 500 Hz ripple at the inputs to the BWM's, as well
as subsﬁentially‘large ?raneients in the rotor hangoff angles. For
the noninterecting'loop the inputs tolbe-BWM's are’ free of‘ripple,
but have constant offsets from the snalog case. The rotor hangoff
angles have approximately b mrad peak-to-peak ripple at 200 Hz.
Therefore, binary width modulation with a sampling period of 0.5 msec
is considered unsatisfactory for both the Teledyne and noninteracting

designs.

For & sampling pericd of 0.1 msec the Teledyne loop has a small
amplitude disturbance of undiscernable low frequency in both the rotor
hangoff angles and the inputs to the BWM's. The variables approach the
values of those of the case of analog rebalance, and the small amount
of deviation is not considered sufficient to degrade sensor performance.
The nonlnteractlng loop has a 200 Hz freouency component 1n the rotor
hangoff angles of approximately 0.k mrad peak—to-peak, which is acceptable.
The BWM inpuits contain no noticeable deviation from the anelbg cdse.. For
both the Teledyne and noninteracting deeigns, binary width modulation

with a sampling period of 0.1l msec is acceptable.

Existence of Limit Cyecles

In designing a PTSA loop, it is desirable to avoid limit eycles,
since they can cause signal excursions beyond acceptable limits of
operation of the system and can also generate extraneous information
regarding sensor motion. This sectiom is devoted to the determination

of the existence of limit cycles using a describing function (DF) for
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the non-lifiear element in the loop, in this case the PWM. - DF theory is
well documented in the literaturell for single non-linearities within

a system, and involves an approximation which linearizes the non-linearity.
Ordinarily, a single frequency input to the non-linearity produces an
output including this frequency and its harmonics. Most servo loops are
‘considered to be good low pass filters, and the higher harmonics are.
assumed to be attenuate by the 1oo§. Consequently, only the- fundamental
frequency=of-the output of the non-linearity is considered,'and its DF

nay be defined as

Fundamental Harmonie of Output
Input

N(A.$) = . (3-L)

The system 6f Figure 3-13 is separated into its linear L{w), and non-
linear, N(A,?), components where A is input amplitude to the non-'
Tinearity;:w ‘the frequency, and ¢ the phase eanglé of N, and if the input
to the system is zero, ’

1+ Liw) W(Ap) = O.  (3-5)

Linear Components
External ,_/’\\ -
Tnput '\\(/ L{w)
—_

Non-Linear Components

N(A,9)

Flgure 3-13. Equiwvalent Loop With Non-Linearity
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Equation (3-5) is gengrally solved graphically by plotting the linear
portion L(w) on an amplitude~phase plot of -1/N{A,$). Permissible limit

eycles occur at the intersection of the L{w) and -1/W(A,¢) curves.

In e sampled system, further constraints are placed on the per-
missible limit cycles. The period of the limit cyecle must be some in--
tegral multiple of the sampling period, and in the case of a loop which

contains at least one integration, this multiple must be even.

For a sampled system using a BWM as its non-linearity, Figure 3-1h
shows the lower bounds of 1limit cycles with periods of 2 through 8 times
the sampling period. If the operating point of the linear portiom, L(w),

lies above one of these boundaries, thep that limit cycle can exist:

For systems with multiple non-linearities, DF theory generally
cannot be used, unléss some unusual property is present. Fortunately,
the noninteracting design effectively‘deéouples one BWM from the other,
so that DF theory may be used on the single-inpub-single-~output equiva-
lent loop. TFigure 3-15 shows a plot of (3-3) on Figure 3-1%. Because
(3-3) represents a type II system, its phase approaches -180° for low
frequencies, making low frequenéy limit cyeles unavoldable. For this
reason a type I system is desirable, and modification of the feedback
loop to make the system type I includes a lag network with a pole at.

s = =14 and zero at,s = -200, so that the closed loop bandwidth can

remain unchanged. The transfer function for this type I system is

‘ ex(s) _ 8000(s/200 + 1) (3-6)
i (s) T s(s/1k + 1)(s/10000 + 1)
X

and is also plotted in Figure 3-15. At low frequencies, the phase of
this %ype I system approaches -90°, and lov frequency limit cycles can
be avoided. For a digital rebalance loop employing BWM, the linear

portion of the loop must be type I.
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Comparison of Types I and TIT Toops

In practice, the requirement of zero steady-state rotor hangoff
error to constant angular velocity input 1s unnecessary, & small con-
stant error can be tolerated. Althcugh angular acceleration inputs are
experienced in practice, their time integral is sufficiently small that

the rotor will not hit its stops in a properly -designed loop.

Regardless of whether the response of the votor hangoff angle
to case motion is type I or II, the response at the input to the
torquers is the same for a given motion input. The principle of con-—
servation of momentum causes the gyro to process with an angular

veloclty, w, when torque, T, is applied, according to the relstion
T=wxH - (357)

where E, the robor momentum, is the product of the spin veloecity and'
spin-axis moment of inertia. For a constant velocity input to the

¥x-axis, a constant restoring torque from.the y—axis torquer is neces-
sary to rebalance the gyro, ‘independent of whether steady-state rotor

hangoff angles are allowed for this input.



CHAPTER IV

PROPOSED PTSA LOCP FOR THE DRY TUNED TDF GYRC ANWD

CONCLUDING REMARKS

1. DIGITAL REBALANGE IMPLEMENTED FOR THE TELEDYNE GYRO

The digital rebalance loop of Figure L-1 gives the single—input—‘

singie—output transfer function,

x - 8000{s/200 + 1) . ,
o (s) ~ s(s/1k + 1)(s/10000 + 1)(s/20000 + 1} °*

(4-1)

wvhich is similar to (3-6) except for the pole at s = -20000. This
response is type I, but the pole &t s = =14 gives the same mid-

frequency response as the type IL system described by 3-3.

The Teledyne gyro has the physical characteristies shown in
Table b4-1.

Symbol Description - . ' Value
K ; Torguer Scale Factor 20.1°/amp.sec
KP Pickoff Scale Factor 2.26 volts/®
A Cross-axis Moment of Inertia 800 gm cn®
¢ Spin-axis Moment of Tnertia 1500 gm cm2
N Spin Frequency _ 100 Hz (638 rad/sec)
H - Angular Momentum 106 gm cme/sec
RT Torguer Coi; Resistance ‘ 12 ohm

Table L-1: Teledyne Gyro Characteristics.
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These characteristics constrain the digital rebalance loop, which is
the U.T. modification of the Hamilton Standard design.l2 This loop, a
BWM design originally developed for floated, gas spin bearing, SDP gyros,

has been adapted to accelercmeters as well.

From the physical characteristics of the gyro, the non-interacting
design transfer' function of (L-1) and the design procedures outlined in
Reference 12 for the U.T. loop, the following considerations must be

observed:

1. Two channels of the equivalent rebalance locp for an
SDF gyro are needed, as well as additional components
for decoupling.

2. The rather large rotor angular momentum of 106 em cme/sec
requires a large rebalance torque. A rate input of 60°/sec
requires 3 amperes of torguing current and over 100 watts
of power to the torquer coil.

3. The ramp slope constraint simply assumes that the error
signal at the input to the BWM does not change faster
than the ramp with which it is compared. Thus the ranp

R > KPCK,GKPI, : (13 of Ref. 12)

where KPc does not include the galn A in the decoupler.

L. The interrogation or sampling period, t,, of the BWM
puts a more stringent requirement on thd closed loop
bandwidth via the ramp slope constraint than through
the Nyquist sampling frequency. This relation is

£,
'y =+ (16 of Ref. 12)
cl i

max
where T, is 1/%..
i i

5. The gain, Kpc, is found from (8) of Ref. 12 at w = 1.

2 K,K K1
c

Gl = 1) = —BE B (4-2)
i

where I is the torguer current in amperes, and G{w = 1) is
8000. Kpc does not include the gain A.
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Figure 4-2 shows a block disgram which uses the U.T. rebalance
loop with a few additional components. The gain of 24000 is the produc
of A = 800 and KPc = 30 from (4-2). The interrogation period, ty. is
0.1 msec Lo avoid limit cyeles and provide sufficient closed loop band-

width.

The data resolution of the loop can be stated as

AB . = 7200 Maximum Rebalance Rate

a Data Bate (are sec) (4-3)

and is 0.7 arc sec for a 60°%°/sec maximum rebalance rate and 61h.L kHz
data rate. This resolution may be improved by dual mode operatibn of

the torguer current, or by increasing the data rate.

1I. CONCLUSIONS

This report includes the investigation of the feasibility of
using a PTSA rebalance loop for a dry, tuned TDF gyro in the strapdown
mode. This strapdown TDF gyro would be a welcome addition to the famil

of sensors available for spacecraft navigation.

Also included is a derivation for transfer function of this gyré
including tﬁe conditioﬁs of tuning for both_the gingle and two éimbal
cases. The single gimbal gyro is not a true "tuned" gyro, since its
tuning condition contains rotor inertia terms, except in the special
(and physically unrealizable) case where the rotor is infinitesimally
thin, causing the C-24 term involving rotor inertias to vanish from
the tuning eguation. In the strict sense, tuning is a function of
speed, gimbal inertias, and the torsional spring constants of the
restraints, and this can occur for a physically realizable rotor only

when the gyro has more than one gimbal.

Two analog rebalance loops for this gyro were simulated. These
loops were converted to the digital mode by the addition of binary
width modulatoré to digitize the torquer currents. Although these
loops performed well at the higher sampling rate of 10 kHz, the
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recommended final design for a digital rebalance loop for this gyro
should be Type I, to assure operation without low frequency limit

cycles.

A conceptual type I design using a modified version of the U.T.
rebalance electronics is given in the preceeding section of this chapter.
While this desién is feasible;'ﬁhe gyro used in-the loop has poor charac-
teristicé'for a high rate environﬁent reguiring excessive power to the |
torquer coils. However the concept of digital rebalance for g dry tuned

TDF gyro is sound and awaits a gyro with suitable characterlstlcs.
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APPENDIX T

4 USEFUL COMPLEX CONJUGATE PROPERTY

¥ B(s) = A(s - jv), then B(s) = A(s + jy).

Proof:

Let J be the imeginary rotation for the spatial domain, and i be the

imaginary votation for the time domain., The Laplace transform variable

s = v + 1B.
a(t)
therefore
alt)
Let
b(t)
then ‘
blt)
and
B(s)
B(s)

g

Hi

H

#

x(t) + dy{t). A(s) = x(s) + j¥(s)

x(t) - jy(t), and A(s) = X(s) - j¥(s).

a(t)sth )'sth

i}

(x(t) + jy(t)

28)e™Y = (x(t) - jy())eeIYT

X(s - Jy) + 3i(s - jv) = A(s - Jv),

Als + Jv),

X(s + Jy) - 3¥(s + jy)

QQEIDO



