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EVALUATION OF UPWELLING INFRARED
 

RADIANCE FROM EARTH'S TROPOSPHERE
 

by
 

S. K. Gupta and S. N. Tiwari
 

School of Engineering
 

Old Dominion University
 

Norfolk, Virginia 23508
 

SUMMARY
 

Basic equations for calculating the upwelling atmospheric radiation 

are presented which account for various sources of radiation coming out at 

the top of the atmosphere. The theoretical formulation of the transmittance 

models (line-by-line and quasi-random band model) and 'the computational 

procedures used for the evaluation of the transmittance and radiance are
 

discussed in detail. By employing the Lorentz line-by-line and quasi-random
 

computer programs, model calculations were made to determine the upwelling
 

radiance and signal change in the wave number interval of CO fundamental
 

band. These results are useful in determining the effects of different
 

interfering molecules, water vapor profiles, ground temperatures, and ground
 

emittances on the upwelling radiance and signal change. This information is 

of vital importance in establishing the feasibility of measuring the concen­

trations of pollutants in the atmosphere from a gas filter correlation instru­

ment flown on an aircraft or mounted on a satellite.
 



1. INTRODUCTION 

The present status of knowledge about the fate of the relevant
 

pollutants in the atmosphere Is limited. Determination of the concentra­

tion of various atmospheric pollutants is important because of their con­

siderable influence on the weather and environment.
 

The earth's surface with its temperature in the vicinity of 3000K
 

emits like a black body from the near to the far infrared region of the
 

spectrum. The emission in the near infrared (between 2 and 20 microns) is
 

particularly important because most of the minor atmospheric constituents 

(iie., C02 , N20, H20, CO, CH, NH3 , etc.) absorb and emit in this spectral 

region. The upwelling infrared radiation from the earth's atmosphere, 

therefore, consists of the modulated surface radiation and the radiation 

from the atmosphere. This radiation carries the spectral signature of all 

the minor atmospheric constituents amongst which gases such as CO, CH4 and 

NH3 are called the atmospheric pollutants. 

Detection of -the atmospheric pollutants from infrared radiation 

measurements requires a detailed knowledge of the atmospheric constituents 

which absorb and emit significantly in the spectral range of interest. A 

systematic representation of the absorption and emission by a gas, in the 

infrared, requires the identification of the major infrared bands and eval­

uation of the line parameters of these bands. The line parameters depend 

upon the temperature, pressure, and concentration of the absorbing molecules 

and, in general, these quantities vary continuously along a nonhomogeneous 

path through the atmosphere. With the availability of high resolution 

spectrometers, it is now possible to determine the line positions, intensi­

ties, and half-widths of spectral lines quite accurately. As a result, the 



line parameters of the strong infrared bands of most minor atmospheric
 

constituents are now known quite well [1-3].
 

An accurate model for the spectral absorption coefficient is of
 

vital importance in the calculations of the transmittance of an atmospheric
 

constituent and in the correct formulation of the radiative flux equations
 

which are employed in the reduction of data obtained from either direct or
 

remote measurements. High spectral resolution measurements make it neces­

sary to employ line-by-line models for data reduction. If, however, the
 

integrated signals over a relatively wide spectral interval are measured,
 

then one could employ an appropriate band model. The line models usually
 

employed in the study of atmospheric radiation are Lorentz, Doppler, and
 

combined Lorentz-Doppler (Voigt) line profiles. A complete formulation
 

(and comparison)-of the transmittance (and absorptance) by these lines, in
 

an infinite and finite spectral interval, is given in [4-6]. The most
 

appropriate band model for atmospheric application is the quasi-random
 

model which is discussed in detail in this report.
 

Ludwig et al. [3] have explored the possibilities of measuring the
 

amount of atmospheric pollutants through-remote sensing. An important
 

method of measuring the pollutant concentration by remote sensing is the
 

passive mode (also called the nadir experiment) in which the earth-oriented
 

detector receives the upwelling atmospheric radiation. The near infrared
 

region is particularly suitable for passive mode measurements simply because
 

the radiation in this region is practically free from the scattering effects.
 

Radiation in the visible and ultra-violet regions is severely affected by
 

the scattering processes which make meaningful passive mode measurements
 

impossible.
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The purpose of this study is to present a comprehensive analysis
 

procedure for calculating the atmospheric transmittance and fpwelling
 

radiance in the wave number interval of CO fundamental band (between
 

2070 and 2220 cm-r). For this purpose computer programs were developed
 

by employing the Lorentz line-by-line-model as well as the quasi-random
 

narrow band model. The basic equations for calculating the upwelling
 

atmospheric radiance are presented in Sec. II. The theoretical formula­

tions of the transmittance by the two spectral models is given in Sec. III.
 

Listings of the computer programs are provided in the Appendicies. By
 

employing the line-by-line and quasi-random computer programs, model cal­

culations were made to study the effects of different interfering mdlecules,
 

water vapor profiles, ground temperatures, and ground emittances on the
 

upwefling radiance. These are presented in Sec. IV.
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II.- iUPWELLING ATMOSPHERIC RADIATION 

As shown in Fig. 2.1, the radiation. emergent from the atmosphere, 

E(z) , may be given by the expression [3,5] 

E(w) = EG () + ERC(w) + E¢(W) + ER4&()) (2.1) 

where
 

EG(w) = thermal radiation emitted by underlying surface and 

atmosphere
 

ER(w) = incident solar radiation reflected by the surface
 

E( = radiation scattered by single or multiple scattering
 

processes in the atmosphere without having been reflected
 

from the surface
 

ER (w) = scattered energy which has undergone a reflection from
 

the surface.
 

In general, these quantities are functions of surface temperature, atmo­

spheric temperature, surface emittance, surface reflectance, sun zenith
 

angle, scattering characteristics of particles, and transmittance of the­

atmosphere.
 

In the spectral region of infrared measurements, the effect of scat­

tering is negligible. The incident solar radiation reflected by the
 

surface, however, is important especially if the surface reflectance is
 

assumed to be high (0.2 and higher).
 

Upon neglecting the scattering and solar radiation, the expression for
 

thermal radiation emerging from a plane-parallel atmosphere can be written
 

as 



[] InstrumentE0 ,Energ] From The Sun 

E ER "EG E R. 0 C• 

00 

E dz'h 

1-;0 dz 

Fig. 2.1 Radiative energy received by an aircraft or satellite'mounted instrument
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E(W) = E W) = 6(W) B.( ,T) T(c,o) 

(2.2)h 
+ f B(W,T(z)) [d (i,z)/dz]dz 

where s(u) is the surface emittance, B(w,T) is the Plank's blackbody
 

function, Ts is the surface temperature, T(z) is the temperature at
 

altitude z ,.and z(w,z) is the monochromatic transmittance of the
 

atmosphere. "The first term on the right hand side of this equation 

represents the radiation from the surface-while the second term is the
 

radiation from the atmosphere.
 

The contribution from -sunlight reflected from the surface becomes
 

significant at shorter wavelengths. This contribution is given by the
 

component ER(n) as
 

ER() = (l/m)[1 - ( C)] cos O'H (M [ ( )] (2-.3) 

where e is the sun zenith angle and = 1 + f(e) . Function f(0) = 

sec 0 for o < 0 < 60' and equals to Ch 0 for 0 > 60. with Ch 0 

denoting the Chapman function. Hs (w) is the sun irradiance on top of 

the atmosphere; and T(w)- is the transmission vertically through the 

atmosphere. 

The expression for the transmittance T(nz) is obtained by employ­

ing an appropriate molecular (band or line) model, and, in general, this
 

can be written as
 

f zT(W, = Ti (w,z)]= exp[- Z i(w,z') ni(z') dz'] 
0z i (2.4) 

z (Wz ' )exp[- i Ci(z') Pt(z') dz']
3-o 



where ti(w,z) is the extinction coefficient for species i (which 'is
 

equal to the sum of absorption and scattering coefficients), ni(z) is
 

the number density of the contributing molecules of species i in the
 

optical path, Ci(z) is the concentration of species i , and Pt (z) is
 

the total pressure. If scattering is neglected, then atmospheric trans­

mittance can be expressed in a convenient form as
 

m
 
x 

T(W,z) = [r[i(w,z) ] = exp[- Zic(wx') p x) 

o -2.5) 

m 

where K.(W,x') is the mass absorption coefficient for the ith absorbing
 

gas, pi is the mass density, and x is the depth of the level measured
 

from the top of the atmosphere.
 

Upon introducing new definitions for the absorption coefficient and
 

path length as [7,8]
 

K(W) = Km (O) (p r /P) (2.6) 

du = P (p/P) dx, (2.7) 
g gr
 

Eq. (2.5) can be transformed into an alternate form as 

z(w,z) = exp[- z i i(W) dui], (2.8) 

where P is the partial pressure and p is the mass density of the 

absorber, u is the optical path length in cm atm, and pr is the 

absorber density corresponding to reference conditions (usually chosen
 

as STP). 

A combination of Eqs. (2.2) and (2.8) yields a relation for thermal radia­

tion emerging from a plane-parallel atmosphere. This equation, with appro­

priate spectroscopic information, is used to obtain the concentration of
 



atmospheric pollutants from radiation measurements provided other -governing ­

parameters are known. 

'Inactual calculations of atmospheric transmittance, the nonhomogeneous 

atmosphere is, divided into a number of layers and for each layer an average 

value of pressure and temperature is assumed. 'With reference to Eq. (2.7), 

the pressure path length for.-each layer can be written as 

du ij(P/P)NTP)(TNTp/Tj) dxj , (2.9) 

where Qij is the volume .mixingratio of the ith constituent in the jth 

layer, dx. is the thickness of the jth layer, and P. and T. are the 

average pressure and temperature of the jth layer.- Since the line intensity
 

depends upon temperature and the line-width on temperature and pressure both,
 

the absorption coefficient will be slightly different for different layers.
 

Equation (2.8) can, therefore, be written as
 

u 
T(t,z) = exp [-C o ZKi. (w) duij  (2210) 

where Z indicates the summation over all the layers between the top and
I 

level z . 

In general, the absorption coefficient for a single line centered at
 

the wave number w is given by
 

S fn(, n (2.11)n 

where S is the intensity of the nth spectral line and is given by
 

Sn f K n d( hfo) (2.12) 



The line intensity may be described in terms of the molecular number
 

density and Einstein coefficients, i.e., it depends upon the transition
 

probabilities between the initial and final states and upon the popu­

lations of these states. For a perfect gas it may be shown that S
n 

is a function solely of temperature. The quantity fn (w,yn) is the
 

line shape factor for the nth spectral line. It is a function of the wave
 

number W and the line half width Yn and is normalized on (w-n)
 

such that
 

f d(-n) = 1 (2.13) 

Several approximate line profiles have been described in the
 

literature. Most commonly used profiles are rectangular, triangular,
 

Lorentz, Doppler, or Voigt (combined Lorentz and Doppler) profiles.
 

Lorentz, Doppler, and Voigt profiles are of special interest in the
 

atmospheric studies and these are discussed in detail in [4,6].
 

As indicated in Refs. [4,5,9], use of the Lorentz line profile is 

justified for radiative transfer analyses in earth's lower atmosphere. The 

shape factor, fn , for the nth rotational Lorentz line is such that the 

absorption coefficient for species i can be written from Eq. (2.11) as 

(Ki)n = Sn fn(,yn) = Sn yn/'r[(W.> n) + yJ} . (2.14) 

It should be emphasized here that the units for the absorption
 

coefficient and the pressure path length, in Eqs. (2.6) and (2.7), are
 

- - atm-1  
cm 1 and cm-atm respectively. In the case of water vapor,
 

however, the path length is expressed in precipitable centimeters (pr - cm) a
 

and the corresponding absorption coefficient in (pr - cm)-1o
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The total atmospheric transmittance is obtained by combining Eqs. (2.10) 

and (2.11) and integrating the resulting expression over the spectral range
 

of interest. The exact procedure for calculating this, by employing the
 

line-by-line and quasi-random band models, is discussed in the next section.
 

The total energy emergent from the atmosphere is obtained by integrating
 

either Eq.(2.1) or (2.2) over the specified spectral interval Aw as
 

= E = f E(w) d (2.15) 

The procedure for calculating the upwelling radiance, by employing the line­

by-line and quasi-random band model for the transmittance, is briefly discussed 

in Sec.IV.
 



III. EVALUATION OF ATMOSPHERIC TRANSMITTANCE
 

As pointed out earlier, an accurate model for the spectral absorption 

coefficient is essential in the calculation of atmospheric transmittance and 

in the correct formulation of the radiative flux equations which are used in 

the reduction of data obtained from either direct or remote measurements. 

While use of line-by-line models is essential in the data reduction of high 

spectral resolution measurements, an appropriate band model could be employed 

if integrated signals are measured over relatively wide spectral intervals. 

Several line-by-line and band models are available in the literature. In 

this section, the procedure for obtaining the atmospheric transmittance by 

employing the line-by-line model and the quasi-random band model is discussed. 

3.1 Direct Integration (Line-By-Line Model)
 

A computer program has been developed to determine the atmospheric
 

transmittance by employing the Lorentz line-by-line model. The procedure
 

for computing the transmittance is presented here and a listing of the
 

program is given in Appendix B. Explanation of the symbols used in the
 

computer program is given in Appendix A. The procedure can easily be
 

extended to incorporate other line profiles.
 

The direct integration method consists of calculating the absorption
 

coefficient, and then the transmittance, at a large number of frequencies
 

within the spectral range of interest. Since the absorption coefficient is
 

a highly varying function of the frequency (varying by orders of magnitude
 

over the width of a single line, which is often less than 1 cm-1 ), it has
 

to be evaluated at very closely spaced locations. The total absorption
 

coefficient at any frequency location is made up of contributions from a
 

large number of lines in the vicinity of that frequency. Some molecules
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have thousands of lines in the spectral range of a -particularband and the
 

contribution from each one of these lines should be evaluated at each
 

frequency location. It is, therefors, evident that the evaluation of the
 

atmospheric transmittance with high accuracy is a time consuming task.
 

Since the absorption coefficient varies rapidly only in the vicinity of
 

the line center, it should be evaluated at very close intervals near the
 

line centers,while away from the line centers bigger intervals could be
 

used without any serious loss of accuracy. Kunde and Maguire [8] and
 

Drayson [9] have proposed a scheme for selecting the frequency locations
 

for the calculation of absorption coefficients and transmittances. The
 

scheme essentially consists of numerically evaluating the average trans­

mittance over a narrow spectral interval by employing the Lengendre-Gauss
 

quadrature formula [10). The scheme employed in the present study is a
 

modified form of the formulation presented in [8,9] where a different set
 

of parameters are used. The choice of the parameters and the basic features
 

of the computational scheme is discussed in the following subsections.
 

3.1.1 	Spectral Divisions into Intervals and Subintervals
 

The entire frequency range of interest (usually the spectral interval
 

of a particular vibration-rotation band) is first divided into a large
 

number of rather narrow intervals A. Each of these Aw intervals is
 

then divided into a variable number k of subintervals depending upon the
 

number of lines falling in that interval. The arrangements of spectral 

divisions are illustrated in Fig. 3.1. Two very narrow subintervals are 

created on each side of the line center and these are denoted in the computer 

program by ALX (see Appendix B). As shown in Fig. 3.1, an interval Aw 

remains one subinterval if no line is present, but is divided into 6 or 11
 

subintervals in the presence of one or two lines respectively. For greater
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(W)
 

NO LINE
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- . (b) 
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Fig. 3.1 Variable number of subintervals in a narrow interval w 
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number of lines in the interval Ao , the number of subintervals will 

also be greater.- Four frequency locations are then obtained within each
 

subinterval by using the relation
 

S[ [( k- wAk)/2]xP + (WBk + cAk ) /2 , (3.1) 

where k refers to the kth subinterval w and w are the upper and 

lower frequency limits of the subinterval respectively, and x are the 

abscissa values for the four point Gauss-Legendre quadrature formula [10]. 

3.1.2 Evaluation of Absorption Coefficients
 

The resultant magnitude of the absorption coefficient at the wave number 

location 'k9 is due to two separate contributions; (a) direct contribution 

and (b) wing contribution and is given by the equation
 

K (3 1 ) = KD( ikz) + K (WU) (3.2) 

The contribution to the absorption coefficient from lines whose centers
 

lie in close vicinity (on both sides) of the wave number under consideration
 

is called the direct contribution and is obtained for Lorentz lines from
 

Eq. (2.14) as
 

KD (Wk,) = z n(kz) = (Sn Yn/{ [(W-n) + ]) (3.3)
nn 

where wn refers to the center of the nth contributing line. In the computer 

program, the range of direct contribution is denoted by DLIM. Thus, if 

<S(w-W) I DLIM , the contribution is called the direct contribution and is 

evaluated by using Eq. (3.3). 

The wing contribution to K(6kv) arises from lines located at wave numbers
 

farther than DLIM from 'kY (on both sides). The wave number range of the
 



wing contribution is denoted by WLIM and the absorption coefficient for
 

this range is calculated from the equation
 

(S K (Q\ (Sn{ Yn/[ W nW , (3.4) 
n n 

only for the interval DLIM < I(o- ) I < WLIM . The contribution from the 

lines for which [(C-o n ) > WLIM is found to be negligible. The range of 

WLIM is established by several trial calculations. 

Since the number of lines between DLIM and WLIM (on each side) is
 

very large, the wing contribution is-'not evaluated at each kk individually.
 

Instead, it is evaluated at the boundaries and the center of an interval. The
 

values at all the wk,'s within that interval is obtained by linear interpo­

lation. As pointed out by Drayson [9), this procedure does not affect the
 

accuracy of the results seriously.
 

Since Sn varies with temperature and Yn varies with temperature as
 

well as pressure, the nonhomogeneous atmosphere is divided into appropriate
 

numbers of homogeneous slabs for the purpose of calculating the absorption'
 

coefficients and the atmospheric transmittances. For each slab (or layer)
 

an average value of the temperature and pressure is assumed.
 

3.1.3 Optical Thickness and Transmittance
 

The path length of each homogeneous slab of a nonhomogeneous atmosphere
 

is evaluated separately. For any constituent, the path length for the jth
 

layer is found from either Eq. (2.7) or Eq. (2.9) to be
 

u. = Q. (P/PNTP) (T NTp/T) x. , (3.5) 

where x. is the thickness of the jth layer. 

The optical thickness of the jth layer at the wave number 'kZ is 

given by 
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K(Gi)j u., 	 (3.6) 

and 	the total optical thickness for the atmosphere by
 

For several absorbing species in the spectral range of interest, the total
 

optical thickness is given by
 

Z 	 2 [K(Wkt)ij tij] (3.8)j 	 i 

where the summation over i constitutes the contribution of all the absorb­

ing constituents.
 

The atmospheric transmittance at wk can now be expressed by
 

T(LkP.) = exp{- Z Z [K(Ok)ij U.j.]} 	 (3.9)j i
 

where K(ikl) is given by Eq. (3.2). 

The average transmittance over the interval At, is obtained from the 

equation 

k 4 
A 	 =kZ=l [(kk/A2][2 wj T( l]1/}Ao, (3.10) 

where the summation k extends over all the subintervals within the interval
 

Aw 	, and wPs are the weight factors for the four point Gauss-Legendre
 

quadrature formula [10].
 

3.1.4 	Optimization of Spectral Parameters 

The spectral parameters (such as Ao , ALX , DLIM , WLIM , etc.) 

entering {n the numerical calculation of atmospheric transmittance are 

optimized for accuracy and for saving the computational time., Various 
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parameters are carefully chosen on the basis of considerable numerical 

experimentation. In a particular numerical scheme for calculation-of the
 

atmospheric transmittance, the choice of an optimized spectral parameter 

may slightly depend on the nature of the molecules under consideration
 

(i.e. on the spectral distribution of the rotational lines). For the
 

present study, spectral parameters were optimized by considering the CO
 

-
spectral lines in the region 2070-2220 cm and by assuming a uniform CO
 

distribution of one part per million (1 ppm) by volume in the atmosphere
 

from zero to ten kilometers.
 

As pointed -out earlier, the entire spectral range of interest is first 

divided into a large number of narrow intervals Ao's . In the computer 

program, this parameter is denoted by DEL (see Appendix B). By employing 

Eq. (3.10), the transmittance values were calculated for AW = DEL = 

2.0, l.0l, and 0.5 cm-1 . These are given in Table 3.1 . It is seen that 

while the transmittance increases by about 0.1% when DEL decreases from 

2.0 to 1.0 cm-1 , it decreases by about 0.03% when DEL goes from 1.0 to
 

0.5 cm- I . This variation being significantly small, the intermediate 

value of Ao = DEL = 1.0 cm-1 is chosen for the present study as -opposed 

to the value of Aw = 0.1 cm 1 used by Kunde and Maguire [8]' 

The -effect of varying the width of the subintervals near the line centers
 

(denoted by AIX in the computer program) was also studied by- numerical 

experimentation.- Average transmittance values were calculated for
 

AIX = 0.04, 0.02, and 0.01 cm- 1  and these are listed in Table 3.1. Since 

there is no effect of changing the ALX values on the transmittance, a value 

of AIX = 0.03 cm-1 was selected simply because the subintervals on each side 

of the line center will cover a relatively larger portion of the important 

part of the line profile. 
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The effect of dhanging the value of DLIM on the average transmittance
 

was found to be insignificant (see Table 3.1) and a value of DLIM = 5.5 cm

was selected for the present study in order to save computational time. 

The effect of changing the WLIM values was, however, found to be significant 

and a value of WLIM = 45.5 cmi was adapted. This value of WLIM maintains the 

general accuracy of the program and provides savings of computational time.
 

It was not necessary to consider a WLIM value beyond 45.5 cm-1 in view of the
 

expected small gain in accuracy.
 

TABLE 3.1
 

Average Atmospheric Transmittance from CO
 

Fundamental Band as a Function of Various
 

Spectral Parameters.
 

Spectral Spectral Average Transmittance
 
Parameter Parameter Range (nondimensional)
 

(cm - ') 

2.0 0.79605
 
DEL 1.0 0.79678
 

0.5 0.79655
 

0.04 0.79678
 
AIX 0.02 0.79678
 

0.01 0.79678
 

DLIM 5.5 0.79678
 
7.5 0.79679
 

25.5 0.79678
 
WLIM 35.5 0.79655
 

45.5 0.79644
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In the literature [1-3], individual line widths are available for CO
 

and H20 lines while only the average values are available for C02, N200
 

and 03 lines. For CO and H 0, model -calculations indicate that the mean
 

transmittances obtained by using the average line widths are different than
 

those obtained by using the individual line widths. For CO, a value of
 

average transmittance of 0.83282 was obtained by using the average line
 

widths while a value of 0.82834 was obtained when individual line widths
 

were used. Similarly for H20, a value of T of 0.85563 was obtained for
 

average line widths while a value of 0.86948 was obtained for individual
 

line widths. In the.results of model calculations (reported in the next
 

section), individual line widths were used for CO and H20 lines.
 

The computer program listed in Appendix B calculates the atmospheric 

transmittance in the spectral 2070-2220 cm-1 . This is the range of CO 

fundamental band. The program accounts for the contribution of the inter­
fering molecules such as H20, CO, N2 0, The program can easily be 

ferifig mo ch as and 03.
 

modified to calculate the atmospheric transmittance in any spectral range. 
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3.2 Quasi-Random Band Model
 

The use of narrow band models (such .as Elsasser, statistical, random-


Elsasser, and quasi-random) is -justified if integrated signals are measured
 

over relatively wide spectral intervals. The use of these models in
 

transmittance calculations results in a considerable reduction in computa­

tional time. The results obtained from most of these models, however,
 

usually lack the high accuracy needed in atmospheric transmittance calcula­

tions. The quasi-random model, introduced by Wyatt; Stull, and Plass [11],
 

is probably the best mode! to represent the absorption of a vibration­

rotation band quite accurately. Discussions on various band models are
 

available in the literature [12-15]. The procedure for calculating the
 

*atmospheric transmittance by employing the quasi-random band model is dis­

cussed here in detail. A listing of the computer ptogram is given in
 

Appendix C and various -symbols used -in the program are explained in Appendix A. 

The fundamental features of the quasi-random .band model are discussed in
 

references [7,11]. For this model, the entire band span, A , is divided into
 

a number of small subintervals of equal spectral width 6 .. The average 

transmittance is first evaluated for each 6 subinterval. The lines within
 

each subinterval are assumed to be distributed randomly. The average trans­

mittance over the entire spectral range (i.e., over the band pass) is
 

obtained- by arithmatically averaging of the transmittances of all subintervals. 

The lines in a particular subinterval 6 are divided into intensity
 

subgroups. Reckoning from the intensity of the strongest line, five intensity
 

groups (each spanning one decade) are created. Thus, lines whose intensities
 

-
are within 10 5 times the intensity of the strongest line (in that group) are
 

taken into consideration. It was suggested in -[11] that the contribution
 

from still weaker lines is-negligible.
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Since the line positions and intensities are assumed to vary within
 

the narrow subintervals 6 (rather than the entire band pass A ), the
 

results obtained from this model are expected to be better than other band
 

models.
 

3.2.1 Evaluation of AverageTransmittance
 

For a homogeneous path, the spectral transmittance at w due to a.
 

line with center at wn is obtained by combining Eqs. (2.8) and (2.11) as
 

T(w) = exp[-Sn u fn Yn] = exp[-Sn u f ,(wn)] (3.11)
 

where the shape -factor f(mcn) for the Lorentz line profile is defined
 

in Eq. (2.14).
 

For theoretical line shapes (i.e., for Lorentz, Doppler, and Voigt
 

lines) the location of w' is symmetrical with respect to wn Thus, the
 
n
 

average transmittance of a line over 6 can be evaluated in two ways:
 

(a) keep n at its fixed location and average T(m) for location of w" 

varying -over 6 (b) keep w fixed at the center of the subinterval 

and average t(m) for location of w n varying over 6 . The second approach 

is adapted in the calculation of- the average transmittance while using the 

quasi-random band model.
 

The average transmittance over 6 due to a single spectral line may,
 

therefore, be expressed by
 

Tn(W) f exp[-S n u f in~03n)] du , (3.12) 

where it should be noted that w) is the variable of -integration. 

If N is the number of lines in an intensity decade then the average 

transmittance due to all the lines in that decade, Td , is given by 
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td(oJ) ={.fexp[-Sn u f(u,w )] dg}N 

where Sn is the average intensity of all the lines within the decade
 

under consideration. It is assumed that the range of intensity in a decade
 

is not large enough to cause any serious errors because of intensity
 

averaging. A considerable saving in computational time is realized if
 

the number of lines in each intensity decade is large.
 

The average transmittance due to all lines in the five intensity decades
 

of the subinterval 6 is given by
 

dL'l k n n n ' (3.13) 

where subscript k represents the.kth spectral subinterval (i.e., 6k) 

of the total spectral interval A. 

Equation (3.13) represents the transmittance due to the lines within 

6k The wings of the lines in the adjacent subintervals also make a 

significant contribution to the absorption in 6k The resultant trans­

mittance over the subinterval 6k therefore, is given by 

K 
Tk(W) = tk-k(W) r tkj() (3.1j=J (3.14) 

j+k 

where Tk-j (w) represents the transmittance in 6 k due to lines in 6. 

Large variations are observed between the transmittances of adjacent 

subintervals if the above procedure is employed directly. Wyatt, Stull
 

and Plass [11] attributed this to the arbitrary locations of the subinterval
 

boundaries and the resulting arbitrary distribution of lines between the
 

subintervals. This spurious variation in transmittances is smoothed out by
 

adapting the following procedure. (a) Divide the total spectral range A
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(starting at A6) into K subintervalswith boundaries at. A, -A 0 + 

A ..., A° and centers at A + A , ... etc. Evaluate 

transmittances at the centers, i.e. at A + , etc. 

(b) Shift the spectral mesh of subintervals -by 6/2 ., The, subinterval 

centers now lie at A,, Ao + 6 , A +126 , V.., etc. Evaluate,transmit-tances, 

at these shifted spectral locations. The resultant transmittances at the 

cenfers of original set of subintervals are obtained from these two sets by 

using the three point sliding average procedure. For subinterval between 

A
0 

and A0 + 6-, the resultant transmittance -at the center A= A + 6/2'C 0 

is given by
 

(3.15)
Tk(Ac) = ![Tk(A o ) + rk(A c) + Tk(A + 6)] 

The average transmittance for the entire range A is now expressed by
 

"KT(A) 
K= 1 k EK k=lkTk(A) . (3.16)k~~l = Z 

From the above description, it is evident that the basic quantity to
 

be evaluated is the average transmittance due to a single line over the
 

subinterval 6 . This is given by Eq. (3.12). Upon introducing the follow­

ing change of variables
 

y = W - w - 6/2, (a) 

z = W- wo - 6/2 , (b) 

n Sn u/Qr ' (3.17)( (c) 

p = 2yn/6 , (d) 

= n 2y/6 , (e) 

e= 2z/6 , (f) 
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Eq. 	(3.12) can be expressed for the Lorentz line-shape as
 
1 

= 
Tn (c) (1/2) exp{_02 gn/[(P_ )2 + p2]}
ex{p . 2 1dn .(3.18)
 

For direct contribution (i.e., contribution to the transmittance due
 

to lines in the same subinterval), 6 = o and the integrand in Eq. (3.18)
 

is symmetrical about T)= o . For this case, Eq. (3.18) reduces to
 

tn() = f exp[-p 2 n/(n2 + p2)] dn 	 (3.19) 

For evaluating the wing contribution, it is assumed that p2<<(_E--)2
 

and Eq. (3.18) reduces to
 

tn() = (1/2) f exp[-P 2 En an 	 (3.20) 

The 	numerical procedures used for evaluating the integrals in Eqs.
 

(3.19) and (3.20) are discussed in the next subsection.
 

3.2.2 	Optimization of Integration Procedure and Parameters
 

The integrand in Eq. (3.19) is a strong function of TI and, therefore,
 

an accurate procedure for evaluating the integral is required. Wyatt, Stull
 

and Plass [11] have obtained an analytical solution of Eq. (3.19). Following
 

the procedure suggested by Young [16], Kunde [7] divided the range of
 

integration (0-1) into seven subintervals as
 

q = 0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0
 

and 	used an eight point Gauss-Legendre quadrature formula for each subinterval.
 

In the present work, a much simpler scheme was used to evaluate Eq. (3.19).
 

Twenty-six abscissa points were chosen in the interval (0-1)and suitable
 

subintervals around them were created by a graphical experiment. Table 3.2
 

lists the abscissa valued and the subintervals associated with them. The
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integrand is evaluated-at the twenty-six abscissa points, multiplied by the
 

corresponding subinterval width, and the results are then summed. A com­

parison of results of this procedure with the results of ten subinterval
 

ten-point Gauss-Legendre quadrature formula (for the same interval)
 

revealed excellent agreement. It is, therefore, concluded that thisspro­

cedure yields results of high accuracy.
 

The integrand in Eq.(3.20) is a slow varying function of n Thus,
 

a simple twenty-one point Simpson's rule quadrature formula was used to
 

-evaluate the integral instead of a ten-point Gauss-Legendre quadrature
 

formula suggested by Kunde [7]. Accuracy checks were made on this quadrature
 

scheme, and no appreciable differences were observed.
 

.It sliould be emphasized here that the use of these simple quadrature
 

schemes results in considerable reduction in computational time.
 

TABLE 3.2
 

Abscissa Points and Subintervals Sel&cted
 

to Evaluate the Direct Contribution.
 

Abscissa Subinterval Abscissa Subinterval
 

0.0 0.0006 0.04 0.01
 

0.001 0.0006 0.05 0.01
 

0.0015 0.0006 0.06 0.015
 

0.002 0.0007 0.08 0.02
 

0.003 0.001 0.10 0.03
 

0.004 0.001 0.15 0.05
 

0.005 0.001 0.20 0.08
 

0.006 0.0015 0.30 0.10
 

0.008 0.002 0.40 0.10
 

0.01 0.003 0.50 0.10
 

0.015 0.005 0;60 0.15
 

0.02 0.00$ 0.80 0.20
 

0.03 0.01 1.00 0.10
 

http:Eq.(3.20
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The optimization of the computational parameters was carried out in a
 

separate study by considering-the CO spectral lines in the region 2070­

-
2220 cm 1 and by assuming a uniform CO distribution of one part per million
 

by volume.
 

Computations were made for four different values of the subinterval 

size- 6 . This is denoted in the computer program by4DEL (see Appendix C). 

Average transmittances obtained for the entire range of CO fundamental 

band (between 2070-2220 cm-1 ) are shown in Table 3.3 for the four subinterval, 

sizes. An attempt was also made to compute the transmittance for DEL = 

-
3 cm ' but was eventually abandoned as the computational cost became too 

large. A value of DEL = 6 cm- i was adapted for the present study simply 

because of the cost considerations. It was not considered necessary to go­

to even lower values of 6 in order to gain slight accuracy at higher cost. 

The number of adjacent subintervals (on each side of the main subinterval)
 

contributing to the wing effects were also investigated. The results shown
 

in Table 3.3 indicate that consideration of seven subintervals on each side
 

yields sufficiently accurate results. It was not necessary to consider the
 

influence of all neighboring subintervals in order to gain slight improvement
 

(<0.02%) in the final result.
 

Since averaging of the line widths over each decade in every subinterval
 

is unavoidable (because of the approximations in the basic formulation of the 

band model), no attempt was made to consider the individual line widths even 

for CO and H20 lines. Average line widths for these molecules were found
 

to have 10-15% standard deviation. 'The effect of using the average line
 

widths on the overall transmittance is expected to be minimal.
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TABLE 3.3
 

.Average CO Fundamental Band Transmittance as a
 

Function of Various Quasi-Random Band Model Computational Parameters
 

Parameters Range Average Transmittance 

(nondimensional) 

DEL (cm-) 15 0.81664 

10 0.81523 

6 0.81183 

5 0.81050 

Number of 4 0.81225 
Intervals 

7 0.81198 

8 0.81194
 

10 0.81190
 

all 0.81183
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IV. MODEL CALCULATIONS
 

In order to establish the feasibility of measuring the average concen­

tration of pollutants-in the atmosphere (either from an aircraft mounted
 

-instrument or from satellites), it is essential to perform model calculations
 

to evaluate upwelliig radiance and signal change under physically'realistic
 

conditions. By using the appropriate line parameters and employing the
 

Lorentz line-by-iine model and quasi-random band'model, upwelling radiance
 

(and signal change) calculations were made in the spectral range of CO
 

fundamental band (2070-2220 cm-1 ). Results were obtained to study the
 

effects of different interfering molecules, water vapor profiles, ground
 

temperatures, and ground emittances pn the upwelling radiance and the signal
 

change. In this section, the procedure for calculating the upwelling radiance
 

and signal change is briefly discussed, information regarding data sources is
 

provided, and finally,, the discussions of various results are presented.
 

4.1 Procedure for Calculating the Upwelling Radiance and Signal Change
 

In radiation modeling for pollution measurement in a nonhomogeneous
 

atmosphere, the upwelling radiation is calculated by dividing the atmosphere
 

into an appropriate number of sublhyers. Each sublayer is assumed to be
 

homogeneous in species concentration, temperature and pressure.
 

In a specified spectral interval in which a particular pollutant
 

absorbs, the total energy emergent from the atmosphere is obtained from
 

Eq.(2.15). If in this interval, n independent measurements (corresponding
 

to the number of homogeneous layers) could be made to find EDl' ED2--- EDn
,
 

then the uniform concentration of the pollutant in each layer (and therefore
 

the concentration profile in the actual atmosphere) could be determined from
 

Eq.(2.15). Because of low concentrations of pollutants in the atmosphere,
 

however, n such measurements are not feasible. Thus, only one independent
 

http:Eq.(2.15
http:Eq.(2.15
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measurement is usually made and an average value of the particular pollutant
 

concentration in the atmosphere is obtained. 'Even if only one value of the
 

pollutant concentration can be obtained from an independent measurement, it
 

is essential to divide the nonhomogeneous atmosphere into several homogeneous
 

layers for the purpose of data reduction. This is because the pressure,
 

temperature, and amount of interfering molecules vary in the atmosphere, and
 

spectroscopic parameters and pressure path lengths are strong functions of
 

these 	variables.
 

By employing the Lorentz line-by-line model for atmospheric transmittance, 

the upwelling radiance at the top of the atmosphere is obtained from Eq.(2.15) 

for each narrow spectral interval Aa . The exact procedure for doing 

this is to evaluate the average value of the Planck function for this interval
 

first, then by using the mean value of the transmittance for the interval,
 

Eq.(3.10), evaluate the upwelling radiance at the top of the atmosphere. The
 

total upwelling radiance (E = Z EA) at the top of the atmosphere for the
 

entire spectral range A is obtained by summing the radiances of individual
 

intervals. As pointed out earlier, for the present study the spectral range
 

of interest is the range of CO fundamental band. The computer program for
 

calculating the upwelling radiance in this spectral range is given in Appendix B. 

By employing the quasi-random band model, the total upwelling radiance 

at the top of the atmosphere can be evaluated from Eq.(2.15) in the following 

two ways. 

(a) 	First calculate the integrated Planck function for the entire spectral 

range A . Then by using the value of average transmittance for the 

range A , obtain the net (integrated) radiance at the top of the 

atmosphere. 

(b) 	Obtain the net (integrated) radiance at the top of the atmosphere for
 

http:Eq.(2.15
http:Eq.(3.10
http:Eq.(2.15
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each subinterval by calculating the Planek function and the average
 

transmittance for that subinterval. Obtain the total radiance for the
 

entire range A by summing the integrated radiances of each subinterval.
 

For the spectral range of CO fundamental band, total radiances at the 

top of the atmosphere were obtained by employing the above two procedures 

and these are 2.8102 E-05 and 2.8423 E-05 respectively. Procedure (b) was 

adapted for the present work because af its correctness in the formulation 

logic. Also, results obtained by this procedure were found to be in good
 

agreement with the line-by-line results. A further simplification was
 

introduced in procedure (b) in the final version of the computer program.
 

Planck functions were calculated at the center frequency of each subinterval.
 

This value was used as a mean for the subinterval rather than calculating it 

by integration over each 6 . No difference in the final results was observed. 

This is because Planck function is a slow varying function of the frequency 

(especially within the spectral range of subinterval 6 ).
 

The signal change SC = AE (in watts/cm 2-sr) can be calculated by
 

employing Eq.(2.15) as
 

SC = AE = f [E(w,To) - E(E,Tp)Jdw , (4.1)
JA 

where T represents the transmittance of a "clean" atmosphere in which the 

pollutant concentration is zero, and T refers to the transmittance of the
 

atmosphere in the presence of the pollutant. The numerical procedure for
 

evaluating Eq.(4.1) is identical to that described for calculating the
 

upwelling atmospheric radiance.
 

4.2 Data and Data Sources
 

Upwelling radiances and signal change values were calculated in the
 

spectral range of CO fundamental band. Contributions from the thermal
 

http:Eq.(2.15
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radiation and reflected sunlight terms in Eqs.(2.15) and (4.1) were
 

taken into consideration while that from scattering terms were neglected.
 

For the present study, the top of the atmosphere was considered to be
 

10 km which is approximately the top of the troposphere. For numerical'
 

calculations, this nonhomogeneous atmosphere was divided in,10 layers of
 

equal thickness. The sun zenith angle was taken to be zero (overhead sun,
 

e = o), for all calculations.
 

The data used in the present work were obtained from a number of well
 

known sources and are considered to be highly reliable.
 

The atmospheric temperature and pressure profiles were adapted from
 

the U. S. Standard Atmosphere, 1962 [17]. Distributions of infrared
 

active species, such as H20, C02 , N20, and 03 were taken from McClatchey
 

at al. [18]. Rotational and vibrational partition functions, needed to
 

account for the temperature dependence of line strengths, were obtained
 

from McClatchey et al. [2]. Table 4.1 shows the range of variation of some.
 

of these parameters. Values of the parameters listed in the table refer to
 

the conditions at the boundaries of each layer. Mean values of the parameters
 

in each layer (corresponding to the values at layer centers) were used in
 

actual calculations. Carbon dioxide and nitrous oxide are assumed to be
 

uniformly mixed in the atmosphere. For these gases, average values for
 

the concentration used in the calculations are: C02 = 330 ppmV , and
 

N20 = 0.28 ppmV.
 

http:Eqs.(2.15
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TABLE 4.1
 

Distribution of Pressure, Temperature, Water
 

Vapor, and Ozone in the Earth's Troposphere
 

Altitude Temperature Pressure Water Vapor Ozone Cone.
 
(km) (°K) (mb) (VpmV) (ppmV)
 

[Ref.17] [Ref.17] [Ref.18] [Ref.18]
 

0 288.15 1013.25. 7.756 E+3 2.663 E-2
 

1 281.65 898.76 6.068 E+3 2.936 E-2
 

2 275.15 795.01 4.637 E+3 3.239 E-2
 

3 268.66 701.21 3.187 E+3 3.321 E-2
 

4 262.17 616.60 2.162 E+3 3.391 E-2
 

5 255.68 540.68 1.399 E+3 3.691 E-2
 

6 249.19 472.18 9.268 E+2 4.118 E-2
 

7 242.70 411.05 5.731 E+2 4.914 E-2
 

8 236.22 356.52 3.676 E+2 5.973 E-2
 

9 229.73 308.01 1.586 E+2 9.181 E-2
 

10 223.25 265.00 7.008 E+I 1.315 E-1
 

Science Applications Incorporated (NASA-Contractor, responsible for the
 

development of the non-dispersive correlation instrument for pollution
 

measurement [3,19]) has compiled spectral line parameters (position, strength,
 

width, ahd lower energy level) for lines of CO fundamental band and for lines
 

of other molecules which interfere with the CO band. In the calculation of
 

transmittances, these line parameters are directly read from a tape provided
 

by SAI [19] to NASA-Langley.
 

Solar irradiances at the top of the atmosphere, at a few selected wave
 

numbers, are also available from the SAI tape [19]. Values obtained from the
 

tape, for the spectral range of present interest, are listed in Table 4.2.
 

In the evaluation of contribution of the reflected solar radiation to the
 

upwelling radiance, the solar irradiance for each spectral subinterval is
 

obtained from a linear interpolation of values given in Table 4.2.
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TABLE 4.2
 

Solar Irradiances at the Top of the Atmosphere
 

at Selected Wave Numbers
 

- 2 -1 )
Wave Number (cmt) Solar Irradiance (watts cm sr (CM-') - l


2061.86 0.307 E-6
 

2105.26 0.323 E-6
 

2150.54 0.330 E-6
 

2197.80 0.343 E-6
 

2247.19 0.359 E-6
 

4.3 Results of Model Calculations
 

By employing the Lorentz line-by-line and quasi-random band model for
 

atmospheric transmittance, upwelling radiance and signal change were calcu­

lated for several illustrative cases. As indicated before, all calculations
 

were made for the spectral range of CO fundamental band.
 

The results of integrated upwelling radiance at the top of the tropo­

sphere (i.e., at 10 km.) for different CO concentrations (uniformly distributed
 

through the troposphere), in the presence of,various interfering molecules,
 

are illustrated in Fig. 4.1. The solid curves represent the results of the
 

line-by-line model and broken curves for the quasi-random band model. As would
 

be expected, the upwelling radiance E decreases with increasing CO concen­

tration and with the inclusion of different interfering molecules. Inclusion
 

of 03 causes a slight decrease in radiance (not exceeding 0.5%) and it was
 

difficult to illustrate this decrease in Fig. 4.1. The agreement between the
 

line-by-line and the quasi-random band model results is seen to be excellent
 

for the case of CO + H20. The slightly lower radiances for the next two cases
 

is attributed to the over-estimation of absorption by the band model. The
 

reason for this lies in the assumption of random distribution of many lines
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(in the presence of interfering molecules) in the subintervals of the ban&
 

model. In the actual spectra, however, the lines are more closely spaced
 

in some regions than in others. The reason for slightly higher radiance
 

values, with the band model for the case of pure CO atmosphere (where
 

relatively small number of lines are present), is not clear at this time.
 

The variation in the signal change, AE , with the CO concentration is
 

illustrated in-Fig. 4.2. These results follow the general trend of the
 

results presented in Fig. 4.1.
 

The influence of different amounts of water vapor on the tpwelling
 

radiance and the signal change is shown in Figs. 4.3 and 4.4 respectively.
 

Increased water vapor concentration results in increased absorption in the
 

atmosphere. This, in turn, results in lower values for upwelling radiance
 

and signal change. It should be roted that the effect of CO concentration on 

- the signal change would be relatively small in the presence of larger quantity 

of water vapor.
 

Figures 4.5 and 4.6 show the upwelling radiances and signal changes for
 

surface temperatures of 280, 290, and 300 0K and a surface emittance of 0.8.
 

The strong dependence of the upwelling radiance and signal change on the
 

surface temperature is obvious from these results. The relatively lower
 

radiance values obtained with the band model are indicative of slight over­

estimation of absorption by this model.
 

Figure 4.7 shows the variation of upwelling radiance for three different
 

values of surface emittance and for a surface temperature of 288 'K. As
 

explained earlier, the radiances obtained from the band model are lower than
 

the line-by-line model because of overestimation of absorption by the band
 

model. The relative increase of the-difference for the lover s-values is due
 

to lower total emission from the earth for the small values of surface
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emittance. In these'cases, therefore, the increased absorption by the band
 

model has a greater relative effect on the radiance. Figure 4.8 shows the
 

signal change for the cases considered in Fig. 4.7 and the results indicate
 

the same general trend.
 

Figure 4.9 shows the variation of the upwelling radiance with the surface
 

temperature for a fixed concentration of CO (I ppm by volume) in the atmosphere
 

and for s = 0.8. The strong dependence of radiance on the surface temperature
 

may be easily explained on the basis of the Stefan's law. However, because of
 

the interference from the infrared active atmospheric molecules, the results
 

obtained here do not exhibit an exact fourth power relationship.
 

Figure 4.10 shows the variation of radiance with the surface emittance
 

for a fixed CO concentration (1 ppm by volume) and Ts = 288 *K. As would be
 

expected, the results indicate the linear dependence of radiance on the surface
 

emittance. Similar results were obtained in reference [3] for different values
 

of the surface temperature and the sun zenith angle. In general, the ground
 

emittance varies with the wave number. However, for the spectral range of
 

CO fundamental band, it was shown in-reference [20] that the radiance is not
 

influenced by a significant amount when the wave number dependent ground
 

emittance is replaced by an averaged value.
 

Figure 4.11 shows a comparison of the results obtained from the present
 

line-by-line program (given the name LINBLIN) and another line-by-line program
 

(called POLAYER) developed by the Science Applications Inc. [19]. In computing
 

the total absorption coefficient at any wave number, the present program con­

siders contributions from all the lines up to a fixed wave number location
 

-
(on both sides) of 45.5 cm 1 from the wave number under consideration. This
 

-
value of 45.5 cmf for the so-called wing effect was chosen after several
 

numerical experimentations. The POLAYER, on the other hand, considers the
 

effect of a fixed number of 20 lines on each side of the wave number under
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consideration. This causes the range of wing effect to change depending
 

upon the density of lines in the spectrum. Thus, in some cases, POLAYER
 

will not consider the influence of lines which are only 1 cm-1 away from
 

the wave number under consideration. This, of course, will result in under­

estimation of absorption. This, at least in part, is responsible for the
 

higher integrated radiance obtained from the POLAYER program. The difference
 

between the signal change curves, shown in Fig. 4.12, follows from the diff­

erence in the radiance values.
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V. CONCLUSIONS
 

A computer program has been developed for calculating the atmospheric
 

-1
transmittance and upwelling radiance in the spectral interval 2070-2220 cm 

which employs the Lorentz line-by-line model. The spectral region selected 

in the region of CO fundamental band. The program allows for variation in 

CO concentration and accounts for the radiative contributions from the inter­

fering gases such as H20, C02, N20, and 03. The program has been optimized 

for accuracy and running time by varying such computation parameters as the 

interval width, subinterval width and the width of the region from which lines 

make significant contribution to the absorption at a certain frequency. 

Furthermore, this program has been diversified so that radiances can be 

computed for several values of surface temperature or surface emittance in a 

single run, thereby drastically reducing the computational cost. This line­

by-line computer program is given the name LINBLIN. Upwelling radiance results 

obtained by using the present LINBLIN program are compared with the results of 

SAI-POLAYER program [19]. The agreement between the two results is within 2%.
 

For homogeneous gas columns, the results obtained by LINBLIN program compare
 

well with available experimental results. This LINBLIN program can easily
 

be extended to any line model and for any spectral region.
 

A computer program similar to the line-by-line program has been developed
 

which employs the quasi-random narrow band model. This program was given the
 

name QRANDOM. Comparison of results obtained from LINBLIN and QRANDOM programs
 

indicate small differences.
 

By employing the LINBLIN and QEANDOM programs, model calculations were
 

made to study the effects of different interfering molecules, water vapor
 

profiles, ground temperatures, and ground emittan6es on the upwelling radiance
 

and signal change. Physically realistic values of various parameters were
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used in the model calculations. This information is very useful in
 

establishing the feasibility of measuring the concentration of pollutants
 

in the atmosphere from a gas filter correlation instrument flown on an
 

aircraft or mounted on a satellite.
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APPENDIX A 

EXPLANATION OF SYMBOLS USED IN COMPUTER PROGRAMS 

A-i. Symbols Used in Program LINBLIN 

ALC ( Individual line widths for CO and H20 lines 
-
ALV respectively, cmr.
 

AIX Width of the narrow subinterval on each side
 

of the line center, cm-1 .
 

ALY 2 x (AIX)
 

AL3, AL2, Average line width for the molecules H20, C02,
 
-
ALD N20, 02 and CO respectively, cm .
 

DEL Width of an interval, cm -1 .
 

DLIM Wave number region around an interval from which
 
the contribution to the absorption coefficient is
 
considered direct, cmr.
 

EMI Surface emittance.
 

EL3, EL2, Energies of the lower states for the lines of
 
EU, EL4, the molecules, cm-1 .
 
ELDj
 

-
FRIL Lower frequency limit of the range (2070 cm 1.
 

-
FRU Upper frequency limit of the range (2220 cm 1.
 

FRB Wave number at the interval boundaries, cm-I.
 

FRC Wave number at the interval centers, cm-I .
 

FR3, FR2, 
 -
FR3, FR4, Wave numbers of the lines of the molecules, cm l 

FRD 

GAM 1 + f(6) where f(8) = sec 6 for 

6 < 60' and f(6) = Ch (6) for 6 > 600 

Ch(e) is the Chapman function. 

GR Gradients used in calculation of HL
 

*The same order subscripts 1,2,3,4, and D has been used for these
 

molecules throughout the programs.
 

A-I
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HS 


HL 


.INI, IN2, . 
IN3, IN4, 

IND 


JQ 


KR 


LC 


LEl,,LE2,

LE3,. LE4, ~ 
LED 


NG 


NGI, NG2, 1 
NG3, 14 

PCK 


PNTP 


PREC 


QV 


QVD 


RADNC 


RADNCE 


RCOM 


RP1, RP2, 

RP3, RP4, 

RPD
 

SI, S12, 

SI3, S14, 

SIDA
 

Tabulated values of the solar irradiance at the
 
- 2 1
top of the atmosphere, watts cm sr- (cm- 1)-'.
 

Computed solar irradiance at the top of the
 
-2 -1
atmosphere in an interval, watts cm sr .
 

An integer for the molecule which is 0 when
 
average line width is used and 1 when individual
 
line widths are used.
 

Number of different CO concentrations used in the
 
computation (8).
 

Number of spectral intervals (150).
 

Number of layers into which the atmosphere is
 
divided (10).
 

Number of lines in the spectra of the
 

molecules.
 

Number of interfering gases.
 

Identifying integers for the interfering molecules
 
H20 , C02, N20 and 03 respectively.
 

Planck's function.
 

Pressure at NTP, mbar
 

Pressure at the center of the layers, mbar
 

Altitude distribution of the molecules H20, C02,
 
N20 and 03 respectively.
 

Concentration of CO, ppm by volume
 

Radiance in each interval, watts cm-2 sr- 1.
 

Integrated radiance, watts cm-2 sr- .
 

Radiance component due to reflected solar radiation.
 

Exponent to account for the temperature dependence
 
of the rotational partition function for the molecules.
 

Integrated intensities for the lines of the
 
molecules, cm-zatom-1 .
 

A- 2
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TEMC Temperatures at the layer centers, 0K 

TEMR Reference temperature for line parameters, 0K 

TEMS Surface temperature, 0K 

THC Thickness of each layer (I km) 

TNTP Temperature at NTP (273 0K) 

TRA Transmittances for different intervals and 
and altitudes for one gas. 

TRF Combined transmittances of all the interfering 
gases. 

TRM Average transmittance over the entire frequency 
range for each CO distribution. 

TRT Transmittance for each interval and CO concentration, 
between the top of the atmosphere and surface. 

TRX Transmittance for an interval and altitude including 
the contribution from CO. 

VPF Vibrational partition functions for H20, C02 , N20 
and 03 . 

WLIM Wave number range of the wing contribution, cm -1 . 

WLI, WL2 Weight factors for the 4-point Gauss-Legendre 
quadiature formula. 

WN Wave numbers at which the solar irradiance at the 
top of the atmosphere is tabulated. 

XLI, XL2 Abscissa values for the 4-point Gauss-Legendre 
quadrature formula. 

A-3
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A-2. Symbols Used in Subroutine TRANS
 

AC Total absorption coefficient at the frequency 
specified by the subscripts. 

ACD Direct contribution to the total absorption 
coefficient. 

ACW Wing contribution to the total absorption 
coefficient. 

ACB Absorption coefficient at the lower boundary 
of the interval due to wing contributions. 

ACE Same as ACB, at the upper boundary of the interval. 

ACM Same as ACB, at the center of the interval. 

AL Average width for the lines 
under consideration. 

of the molecule 

ALA % Altitude dependent average width of the lines 
of a molecule. 

ALB Altitude dependent individual widths of the lines of 
a molecule (for CO and H20). 

EL Energies of lower states of lines of the molecule 
under consideration. 

FACT Factor used in the computation of altitude dependence 
of integrated intensity. 

FR Frequencies of the lines of the molecule under 
consideration. 

FRE Frequencies of the lines falling with an interval. 

FRG Frequencies of all the Gauss-Legendre quadrature 
points within an interval. 

FRS Frequencies at the subinterval boundaries within 
an interval. 

IG Number of Gauss-Legendre points within an interval. 

IN An integer for each molecule which is zero if 
average line widths are used and 1 if individual 
widths are used for that molecule. 

LE Number of lines for the molecule under consideration. 

A-4 
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NQ Number of subintervals within an interval. 

PART An altitude dependent factor which takes into 
account the vibrational and rotational partition 
functions. 

PL dptical path length at the frequency under consid­
eration. 

RP Exponent which accounts for the temperature 
dependence of the rotational partition function. 

SI Integrated intensities of the lines of the molecule 
under consideration. 

SMA Altitude dependent integrated intensities of lines 
of the molecule under consideration. 

SLI Gradient used in the calculation of the wing 
contribution between ACB and ACM. 

SL2 Same as SLI, between ACM and ACE. 

TR Transmittance at the frequency under consideration. 

WIDF Factor which takes into account the altitude 
dependence of the widths of the lines. 

A-5
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A-3. Symbols used in PROGRAM QRANDOM*
 

TRA 	 Combined transmittance of all the interfering
 
gases.
 

TRF 	 Combined transmittance including CO contribution
 
for all CO distributions.
 

TRFM 	 Average transmittances for the entire frequency
 
range for different altitudes and CO contributions.
 

TRG 	 Transmittances for a single gas returned by the
 
subroutine.
 

XI, Ti 	 Convolution parameters for integration of direct
 
contribution.
 

X2, T2 	 Convolution parameters for the integration of wing
 
contribution.
 

As far as-possible, same symbols have been used in the programs 
LINBLIN and QRANDOM. Only the symbols which are defined differently 
for QRANDOM are explained here. 

A-6
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A-4. Symbols Used in SUBROUTINE SMITH
 

AVSI Average value of intensity for the lines in one 
decade in an interval 

BIGI Intensity of the strongest line in an interval, 
cm- 2 atm-i. 

BIG Intensity values separating the five decades in 
each interval. 

ELE Altitude dependent energies of the lower states 
for lines in an interval. 

JB Number of adjacent intervals from which the wing 
contribution is considered. 

NSI Number of lines in a decade within an interval. 

SFE Intensities of the lines within a decade in an 
interval. 

SIB Intensities of the lines within an interval. 

SLE Altitude dependent intensities of the lines 
within an interval. 

SSI Sum of the intensities of the lines in a decade 
within an interval. 

SUMSI Optical thickness between the top of the atmosphere 
and the altitude under consideration. 

A-7
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APPENDIX B 

'LINE-BY-LINECOMPUTER PROGRAM TO CALCULATE 

ATMOSPHERIC TRANSMITTANCE AND UPWELLING RADIANCE 

B-1. Computer Program LINBLIN 

PROGRAM LINBLIN(INPUT.OUTPUT)
 

DIMENSION FRI (100),.SI1(1O0),ELI(100)
 
DIMENSION FR2(4O),SI2(400)EL2(400)
 
DIMENSION FR3(750),SI3(750),EL3(750)
 

DIMENSION FR4(12a0) , 14(1220),EL4(1220)
 
DIMENSION FRD('100),SID(100),ELD(100)
 
DIMENSION OVD(10 )QV'(O5),ALC(1'00)TRF(11,150) TRX(11.150).
 

/TRT(15098),PCK(11,1'50).GR(5),RADNC(15O,8),TRM(1O),RADNCE(IO)'t
 
/VPF(10.4iWN(5),HS(5SfHLI5O)
 

INTEGER G.X
 
COMMON FRC(150),FRB(151),PREC(10).TEMC(10),OG(10),TRA(1i15O).
 

/TEMP.XLIXL2.WLI ,WL2,ALXLC,KRPNTPTNTPDELADLIMIWLIM,'THC.
 

/ALV(100)-,VP(IU).ALYDEL,PART(10),FACT(10),WIDF(IO)
 

READ 109 FRLFRUt.DEL,THC,PNTPTNTPTEIRTEMS.EMI ,.ZEN
 

READ 11, LC.JO,NGLEILE2,LE3,LE4.LED
 
READ 10, DLIM.WLIM
 
READ 10. (QVD'(*J),J=I.JQ)
 
READ 15-, ((QV(LG} L-=I.LC),G=I"iNG)
 

READ 10, -PREC(L).L=ItLC) 

READ 10, (TEMC(L),'L=1.,LC) 
READ 12, XLIXL2,WLIWL2 ORIGINAL PAGE IS 
READ 13. ALl ,AL2,AL3',AL4,ALD.ALX OF POOR QUALITMY 
READ 10. RPl,RP2,RP3.Q0 4,RPO -

READ 17t ((VPF(LG),L=ILC),G=ING) 

'READ 11' NGI,NG2,NG3,NG4 

READ 11, INIIN2,IN3,IN4,IND 
READ 18, (WN(N)tN=1.5), (HS(N),N=1,5) 

READ 16, (FR1(X),SI1(X).EL1(X).ALV(X)X=ILEI) 

READ 14. (FR2(X),SI2(X),EL2(X)X=I,LE2) 
READ 14, (FR3(X).SI3(X),EL3(X).X=ILE3) 

READ 14, (FR4(X),SI4(X),EL4(X)sX=ILE4) 

READ 161 (FRD(X),SID-(X),ELD(X),ALC(X),X=',LED) 

10 FORMAT(IOFS.2)
 

I I FORMAT(1615)
 

12 FORMAT(SFIO.6)
 
13 FORMAT(IOFS.3)
 

14 FORMAT(2(F11.3,E13.4,FII.3.SX))
 
15 FORMAT(SEIO.3/2EI0.3)
 

16 FORMAT(2(FII.3.3E13.4.Fll.3.-FS..3))
 

1.7 FORMAT(IOF8.4)
 
18 FOPMAT(5FS.2.EB.3)
 

C CALCULATES THE NUMBER OF INTERVALS-DEFINES FREOUENCIES AT THE -INTERVAL
 

C 	 BOUNDARIES AND CENTERS
 

LB=LC+l
 

B-i
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DELA=O.5*DEL
 

RK=(FRU-FRL /DEL+Oo1
 
KR=RK
 

FRB(I)=FRL
 

DO 101 K-,KR
 
FRB-(K+I )=FRB(K)+DEL
 

101 'FRC(K)=FRB(K)+DELA
 

ALY=2°*ALX
 
C INITIALIZES THE COMBINED TRANSMITTANCES OF ALL THE INTERFERING GASES
 

DO 102 K=I*.KR
 
DO 102 L=1,LB
 

102 TRF(L,K)=I.
 
C DECIDE IF WATER VAPOR IS TO BE TAKEN INTO CONSIDERATION. IF SO, THE
 
C WATER VAPOR TRANSMITTANCES RETURNED BY THE SUBROUTINE ARE COMBINED
 
C WITH TRF
 

IF (NGI-2) 118,119,118
 

119 	CONTINUE
 

DO 107 L=19LC
 
VP(L)=VPF(LI)
 

107 	QG(L') QV(L,I.)/1245.
 
CALL TRANS(FRISII,ELILEIAL1,RP1IINi)
 

DO 103 K=IKR
 

DO 103 L:1.LB
 
103 	TRF(LK) TRF(L,K)*TRA(LK-)
 

C DECIDES IF CARBON DIOXIDE IS TO BE TAKEN INTO CONSIDERATION
 
118 IF CNG2-12) -165,166t-165
 
166 CONTINUE
 

DO 108 L1ILC
 
VPAL)VPF(L.2)
 

108 "OG(L,)=QV'(L.2)
 

CALL TRANS(FR2S12,EL29LE2,AL2iRP2, 1-N2)
 

DO 104 K=I,KR
 

DO lb4 L=ILB
 
104 	TRF(LqK)=TRF(LK)*TRA(LK)
 

C DECIDES IF NITROUS OXIDE IS To BE TAKEN INTO CONS-IDERATION
 

165 IF (NG3-7) 167,168,167
 
168 CONTINUE-


DO 109 L=!,LC
 
VP(L):VPF(L,3)
 

109 	OG(L)=.VL,3)
 

CALL TRANS(FR3,SI3,EL3,LE3,AL3,RP3,IN3)
 

DO 105 K=I,KR
 

DO 105 L=I.,LB
 
105 	TRF(L,K)=TRF(LK)*TRA(LK)
 

ORIGINAL PAGE 1. 
OF POOR QUALITl 
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C DECIDES IF OZONE IS TO BE TAKEN INTO CONSIDERATION
 

167 IF (NG4-19) 169v1709169
 

170 CONTINUE
 

DO 110 L='vLC
 
VP(L)=VPF(L,4)
 

110 OG(L)=OV(L94)
 
CALL TRANS(FR4,SI4.EL4.LE4.AL4.RP4.IN4)
 

DO 106 K=1,KR
 
DO 106 L=1LB
 

106 TRF(LK')=TRF'(L,K)*TRA(L,'K)
 

169 CONTINUE
 

C CALCULATES PLANCK FUNCTIONS FOR DIFFERENT ALTITUDES AND INTERVALS
 

CONS=18.*6.625*'1.E-07
 

CNST=6.625*O.3/1.38
 

DO 115 K=I,KR
 
RNUM=DEL*CONS*FRC(K)**3
 

EEX=CNST*FRC(K)
 
PCK(1,K)=RNUM/(EXP(EEX/TEMS)-.)
 
DO 1'15 L=ILC
 

115 PCKAL+,IK)=RNUM/(,EXP(EEX/TEMC(L))-1p)
 
EACH INTERVA
C CALCULATES SOLAR IRRADIANCE AT THE' TOP OF THE ATMOSPHERE IN 


DO 173 N=l4
 
173" GRCN)=(,HS(N+I)-HS(N))/(WN(N+1)-WN(N))
 

DO 174 K=.KR
 
N=O
 

177 N=N1
 
IF (FRC(K)-WN(N)) 174,175v175
 

175 IF (FRC(K)-WN(N+1)) 176,177,177
 

176 HL(K)=HS(N)+GR(N)*(FRC(K)-WN(N))
 
HL(K)=HL(K)*DEL
 

174 	CONTINUE
 

ZEN=ZEN/57*29578
 

GAM=I.+i./COS(ZEN)
 

DO 172 X=ILED
 
172 ALV(X)=ALC(X)
 

DO 178 L=I'LC
 
178 VP(LP=VPF(LI)
 

C CALCULATES TRANSMITTANCES FOR ALL CONCENTRATIONS OF CO ONE BY ONE-


C -COMBINES THEM WITH TRF AND CALCULATES RADIANCE AT THE TOP TAKING
 

C REFLECTED SOLAR COMPONENT INTO ACCOUNT
 

DO III J=1,JO
 

DO 112 L=I,LC
 

112 OG(L)=QVD(JY
 
CALL TRANS(FRD,SID,ELD,LEDALDRPD.IND)
 

B-3
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DO 113 K=IKR
 
DO 114 'L=iLB
 

114 TRX4L,K)=TRF(LK)*TRA(LK')
 
113 TRT(KJ)=TRX(1 9K)
 

DO 116 K=I,KR
 
RCOM=(I.-EMI)*(COS(ZEN.))*HL(K)*(TRT(KJ))**GAM
 
RADNC(KJ)=EMI*PCK(I,K)*TPT(KJ)*I.E-O7+RCOM
 
'DO 116 L=2,LB
 
COP=PCK(LK-)*(TRX(LtK')-TRX(L-I1KI)*I.E-07
 

116 	RADNC(K9J)=RADNC(KJ-)+COMP
 

TRM(J)=O.
 
RADNCE(J)=O.
 
DO 117 K=IKR
 
TRM(J)=TRM(J)+TRT(KJI/KR
 

117 RADNCE(J)=RADNCE(J)+RADNC(K,J)
 
111 	CONTINUE
 

PRINT 60, ((TRT(KJ).J=I.JQ).K=1 'KR)
 
PRINT 6'1. P(RADNC(K.J).J=IJO) K=IKR)
 
PRINT 62' (TRM(J),J=1,JQ).,(RADNCE(J),J=1,JQ)
 

60 FORMAT(IH1/SFS.5))
 
61 FORMAT(IHI/(8E15.4))
 
62 FORMAT(IH1/////(8FI,5.5////8E15.4))
 

STOP
 
END
 

B-4
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B-2. Subroutine TRANS for Program LINIBLIN
 

SUBROUTINE TRANS(FRSI.EL,LEAL.RP,IN)
 
D'IMENSION FR(l 220).SI(1220),EL(1220),SIA(1220),FRE(-40),FRS(SO)9
 

/FRG(200),ACD(200),ACW(200),AC(200,10),TR(200,11),ALB(100)

X
INTEGER 


COMMON FRC(15U),FRB(151).,PREC(IU)),EMC(u),OG'( U), IRAII,150)
 
/TEMRXL1,XL2,WLI,WL2,ALXLCKR,PNTP,TNTP,DELA,DLIM,WLIMTHC,
 
/ALV(lOO),VP(1G),ALYDELPART(1O),FACT(1O),WIDF(IO)
 
CST=SORT(TEMR)/PNTP
 

C DEFINES VARIABLES WHICH ACCOUNT FOR THE VIBRATIONAL AND ROTATIONAL
 
C PARTITION FUNCTIONS AND THE ALTITUDES VARIATION OF THE WIDTH OF LINES
 

DO 1'20 L=1.LC
 
PART(L)=VP(L)*(rEMR/TEMC(L))**RP
 

FACT(L)=I.439*(TEMC(L)-TEMR)/('EMC(L)*IEMR)
 
120 WIDF(L)=CST*PREC(L)/SRT(TENCCL))
 

X=O
 

C ONE INTERVAL CONSIDERED AT A TIME - FINDS ALL THE LINES FALLING WITHIN
 
C IT - DETERMINES SUBINTERVAL BOUNDARIES WITHIN THE INTERVAL
 

DO 123 K='I,KR
 
-M=O 
MP=M
 

126 IF (X-LE) 124,1.25,125
 

124 X=X+
 
IF (FR(X)-FRB(K)) 126.127,127
 

127 IF (FR(X)-FRB(K+I)} 128.125.125
 

.128 M=M+I
 
FRE(M)=FR(X)
 
NMP=M
 
GO TO 126
 

125 X=X-1
 
N= 1.
 

FRS (N )3FRB (K)ORGNLPg
 
IF (MP) 129,.429,130 pool,
 

130 CONTINUE
 
DO 131 M=,MP
 

DIF=FRE(M)-FRS(N)
 
IF (D'IF-ALX) 132,132.133
 

133 IF (DIF-ALY) 134,134,135
 
132 FRS(N+I)=FRE(M)
 

N=N+I
 

GO TO 136
 
134 FRS(N+1 )=FRE(M)'-ALX
 

FRS(N+2)=FRE(M)
 
N=N+2
 

GO TO 136
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135 FRS(N+I)=FRE(M)-ALY
 

FRS(N+2)=FRE(M)-ALX
 

FRS(N+3)=FREM)
 
N =N±3
 

136 IF (M-MP) 13713&.,138
 

137 DIF=FRE(M+I)-FR5(N)
 

IF(DIF-ALX) 139,139,14u
 
140 IF(DPF-ALY) 141,14191,A2
 

139 GO TO 131
 

141 FRS(N+1)=FRE(M)+ALX
 
N=N+1
 

GO TO 131
 
142 FRS(N+ )=FRE(M)+ALX
 

FRS(N+2)=FRE(M)+ALY
 

N=N+2
 

131 CONTINUE
 
138 DIE =FRB-(K+1)-FRE(M)-


IF (DIF-ALX) 143,143,144
 

144 IF (DIF-ALY) 145.3145,146
 

143 FRS(N+I)=FRB(K+1)
 

NP=M!1
 

GO TO 147
 
145 FRS(N+I,)=FRE(M)+ALX
 

FRS(N+2)=FRB(K+1I)
 
NP=N+2
 

GO TO 147
 

146 	FRS(N+I)=FRE(Kt)+ALX
 
FPS(N+2)=FPEIM)+ALY
 

FRS(N+3)=FPB(K+I)
 

NP=N+3
 

GO TO 1,47
 

129 FRS(N+I)=FRB(K+I)
 

NP=N+1
 

147 NQ=NP-I
 

C DETERMINES THE FREQUENCIES OF 


C WITHIN A SUBINTERVAL
 

DO 148 N=1,NQ
 
VAR=O.5*(FRS(N+1)-FRS(N'))
 

CON=O.5*(FRS(N+,)+FRS(N))
 

1=4*(,N-1 )+1
 

FRG('I)=CON-VAR*XLI
 

FRG(1+1 )=CON-VAR*XLE
 

FRG,(1+2)=CON+VAR*XL2
 
148 	FRG(I+3),=CON+VAR*XL1
 

THE GAUSS-LEGENDRE OUADRATURE POINTS
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IG=4*NQ
 
PI=3o14159
 

C EACH ALTITUDE CONSIDERED SEPARATELY-bIRECT CONTRIBUTION EVALUATED
 

C AT EACH GRID POINt AND WING CONIRI'BUFION Al THE BOUNDARIES AND
 

C CENIER OF IHL INRtAL
 

DO 149 L1I.LC
 
ALA=.AL*WIDFL) 


ACB=O.
 

ACM=O.
 

ACE=O.
 

DO 179 I=1.IG
 
ACD(I)=O.
 

179 ACW(I)=O.
 

[F (IN) 167,167,168
 
'167 	DO 150 X=ILE
 

DIF =ABS(FR(X)-FRC(K))
 
IF (DIF-WLIM) 151,151,150
 

151 	IF (DIF-DLIM) 152,152,153
 

152 	SIA(X)=S1(X)*PARfLL)*EAPtEL(X)*FAC;(IL))
 

DO 154 I=IIG
 
FD=FR(X)-FRG(I )
 

DEN=PI*(FD*FD+ALA*ALAI
 
154 	ACDUI)=ACDtI)+IAi^)*ALA/DEN
 

GO TO 150
 

153 	SIA(X)=bl (X)*PARftL)*-EAPVELLX)*Ft;;L))
 

FB=FR(X)-FRB(K}
 

FM=FR(X)-FRC(K)
 

FE=FR(X)-FRB(K+1)
 
PNUM=S'IA(X)*ALA
 

ACB=ACB+PNUM/(Pr +F3**2)
 

ACM=ACM+PNUM/(PI*FIM*2)
 

ACE=ACE+PNUM/(PI*FE**2)
 

150 	CONTINUE
 
GO TO 174
 

168 DO 169 X=ILE
 

DIF=ABS(FRLX)-FRCtK)).
 
IF (DIF-WLIM) 17 u,1 7 u,169
 

170 IF (DIF-DLIM) 1719171,I72
 
171 SIA(X)=SI (X)*PART(L)*EXPCEL(X)*FACT(L))
 

ALBOX)=ALV(X)* IDF(L)
 

DO 173 I=1,IG
 

FD=FR(X)-FRG(I)
 

DEN=PI*CFD*FD+ALBLx)**2)
 
173 ACD(I)=ACD(I)+SIA(X)*ALB(X)/DEN
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GO TO 169
 
172 	SIA(X)=SI(X)*PART(L)*EXP(EL(X)*FACf(-L))
 

ALB(X)=ALV-(X)*WI-OF(L)
 
FB=FRCX)-FRB(K)
 
FM=FR(X)-FRC(K)
 
FE=FPCX)-F.RS:K+1)
 
PNUM=SIA(X)*ALB(X)
 
ACB=ACB+PNUM/(PI*FB**2)
 
ACM=ACM+PNUM/(.P[*FM**2)
 
ACE=ACE+PNUM/(P-I*FE**2)
 

169 CONTINUE
 

C WING CONTRIBUTION EVALUATED AT EACH GRI-D POINT BY INTERPOLATION
 
174 	SLI=(.ACM-ACB)/(FRC(K)-FRB(K))
 

SL2=(ACE-AM)/(FRB(K+)-FRC(K))
 
DO 156 I=IIG
 
DIF=FRG(I)-FRB.(K)
 
IF (DIF-DELA) 157,158,158 

157 ACW(I)=ACB+SL1*DIF 
GO TO 156 

158 ACW(I)=ACM+bL2*(DIF-DELA) 
156 CONTINuE 

C TOTAL ABSOPIION COEFFICIlENi' LVAL.ATLU A, LACH GRID-POINt 

DO 4161 1=-I ,-G 
161 	AC(IL)=ACD(I)+ACWCI)
 
149 	CONTI-NUE
 

LB=LC+1
 
CONST=O.I*TNIP-IHC/PNIP
 

C TRANSMITTANCE EVALUATED-AT EACH GRID POINT
 

DO 163 I=IlIG
 
PL=O.
 
TR(I,LB)=EXP(-PL)
 

DO 163 M=2,LB
 
L=LB+1-M
 
SPTR=PREC(L)*OG(L)*AC(I,L)/TEMC(L)
 
PL=PL+CONST*SPTR
 

163 TR(I,L)=EXP(-PL)
 
"c AVERAGE TRANSMIfIANCE EvALuAIED FOR 'EACH INrERVAL AI' EACH AL'isIuDE
 

DO 164 L=I,.LB
 
TRA(L.K)=O.
 
DO 164 N-I.NQ
 
VAR=O,.5*(FRS(N+I )-FRS(N))
 

I=4*(N-I)+1
 
* SUMI=TR(IL)+IR'(I+3,L)
 
SUM2=TP(I+I,L)+IP(1+2.L)
 
SUMzWL1*SUM1+WL2*SUM2
 

164 	TRA(L,K)=TRA(LK)+SUM*VAR/DEL
 
123-CONTINUE
 

- RETURN
 

END
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APPENDIX C
 

QUASI-RANDOM COMPUTER PROGRAM TO CALCULATE
 

ATMOSPHERIC TRANSMITTANCE AND UPWELLING RADIANCE
 

C-i. Computer Program QRANDOM
 

'PROGRAM ORANDOM(INPUT',OUTPUT)
 

INTEGER XGW
 

DIMENS-ION FR1(VUU).SI1 (luu)hLltluu)
 

DIMENSION FR2(4UO),SI2(400),EL2t4UUY
 

DIMENSION FRD(I0),SID(1OO).ELD(IO0)
 

'DIMENSION OVD(1O),OVtIu,4),vPF(Iv,4),wN(S) ,H t5)-,GR(5}).
 

/TRAC(26,11),TRF(51,11,8),HL(25).PCK(25.11hTRFM(1198),TRT(25,8),.
 

/RADNC(25,8),TRM(8B, RADNCE(8)
 

COMMON DEL.X1(26),I1(26),X2(21),12{21(),TRG(26,11),FRB(27).FRC(26).
 

/PPEC(10),TEMC(1O),QG(1O),VP(IO),PNTPINIPTEMRLCKRJBTHC
 

READ 10, FRL,FRU,DELTHC,PNTP,INTPTEMRTEMSEMIZEN
 

READ 11, LCJO,NGJBLEILE2,LE3,LE4.LED
 

READ 10, (QVD(J).J=IJQ)
 
READ 10, (PREC(L).,L=1.LC)
 

READ 10, (IEMC(L),L=ILC)
 

READ 12. (COV LL.G),L=ILC),G=I.NG)
 
READ 14-, AL1,AL2.AL3JAL4,ALD
 

-READ 10, RPIRP2,RP3,RP4-,RPD
 
READ 11, MP:1,NR1,MP2,NR2,MP3,NR3,MP4,NR4,MPU,NRD
 

READ 15o (Xl(WIW='I,26)
 
READ 159 (Ti (Wt,.W=I,26.)
 
READ 151 (X2(W)'Wt=1,21)
 
READ 15. (T2(W)9W=I,21)
 

READ 15. ((VPF(L,G),L=I,LC),'G=,NG)
 

READ 11, NGLNG2,NG3,NG4
 
READ 18, (WN(N),N 1,5),(HS(&N).vN=.5)
 

READ 17, (FR1(X),bll(X),EL1'(x).A=x1LEI)
 
READ 17, (FR2(X),SI2(X),EL2(X),X:I,LE2:
 

READ 17. (FRD(X).SID(X).ELD(X).X=1.LED)
 

10 FORMAI(1UF8o2)
 

11 FORMAI(1615-)
 

12 FORMAT(BEIO.3/2E1U,3)
 

14 FORMAT(10F8.3)
 

15 FORMAT(IOF8.4)
 
17 FORMAT(2(FI1.3.EI3.4,FII.3,5X))
 
18 FORMAT(5F8.2.5E8.3)
 

C CALCULAIES IHE FREOuENCIE Ai ,HE INIERJAL BONDARIE AND CENERS FOR
 

C UNSHIFTED MESH AND INIIIALLLEb IHE REnuLIANI IRAN5MIIlANCES
 

RK=(FRU-FRL)/DEL+0.I
 

KR=RK
 

DELA=O.5*DEL
 
FRB(1)=FRL
 

00 IOU K=I,KR
 

FRB(K+I)=FRB(K)+DEL
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100 	FRC(K)=FRB(K)+OELA
 
LB=LC+
 
DO 1-01 L=1,LB
 

DO 101 K=I.KR
 
101 TRA(K.L)=I.
 

C DEC-IDES WHIPCH GASES ARE TO BE TAKEN INTO CONSIOERATION IN THE ORDER
 
C WATER VAPOR. CARBON DIOXIDE, Ni fROuV OAIDE AND OtONE AND COMBdINES
 
C THEI'R TRANSMITIANCEZ oBIAINED FROM IHE SwBROuINL w IH sHE RLaULI-AN1
 
C TRANSMITTANCE
 

IF (NGI-2) 102*-103102­

103 CONTINUE
 
DO 104 L=I,LC
 
QG(L)=QV(Ll')/1245.
 

104 VP(L)=VPF(L,1)
 
CALL SMITH(FRI,S[iEL1,LE1,AL1,RPI&'MP1,NRI)
 

DO 105 L=1.LB
 

DO 105 K l,KR
 
105 TRA(KL) TRA(K,L)*TRG(KL)
 
102 IF (NG2-12) 106,107,106
 
107 CONT-INUE
 

DO 108 L=ILC
 

QG(L.)=QVL,2)
 
105 VP(L)=VPF(L,2)
 

CALL SMITH(FR22,12,EL2,LEZAL2,RP2oMP2,NR2)
 

DO 109 L=I,LB
 
'DO 109 K=I,.KR
 

109 TRA(K.L)=TRA(K,L)*IIRG(KL),
 

106 IF (NG3-7). 11U,111.i1O
 

111 CONTINUE
 

DO 112 L=1.LC
 

OG(L)=0V(L.3)
 
112 	VP(L)=VPF(L,3)
 

CALL SMITH(FR3,b13,EL3,LE3,AL3,vRP3,MP3,NR3)
 
DO 113 L1I,LB
 

DO 113 K 1.KR
 
113 TRA(KL) TRA(K,L)*TRG(,L)
 

110 IF (NG4-19) 114,115,114
 

115 CONTINUE
 
DO 116 L 1LC
 

OG(L)=QV(L.4)
 
116 	VP(L)=VPF(L,4)
 

CALL SMITH(FR4.bs4,EL4,LE4,AL4.RP4,MP4,NR4)
 

DO 117 L=1,LB
 
DO 117 KIKR
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117 TRA(KL)=TRA(KL)*TPG(K.L)
 
114 CONTINUE
 

DO 154 L=ILB
 
DO 154 K=I-,KR
 

KKS2*K
 
154 TRF(KK,L,1)=TRA(KL)
 

DO 118 J=2,JQ
 

DO 119 L=ILC
 
OG(L)=OVD(J)
 

119 	VP(L)=VPF(L,1)
 

CALL SMITH(FRD,SIDELDLED,ALD.RPD,MPDNRD)
 
DO 120 L=ILB
 

DO 120 K=I,KR
 
KK=2*K
 

120 	TRF(KK&L9J)=TRA(KL)*IRG(KL)
 

118 CONTINUE
 

C CALCULATES THE FREQUENCIES AT THE INIERVAL BOUNDARIES AND CENIERP
 

C FOR SHIFTED ME5H AND INI'IIALIZL3 REowL'IANr '-RANMI1":ANcUS
 

KR=KR+I
 
FRBC I)=FPL-DELA
 

DO 12'1 K=IKR
 
FRS(K+I )=FRB(K)+DEL
 

121 	FRC(K)=FRB(K)+DELA
 
DO 122 L=ILB
 

DO 122 K=IKR
 
122 TRA(KL)=I. 

C CALCULArES IRAN5MIIIANCES AND COMBINEo tHEM wITH -IHE REULIAN, THE 

C SAME WAY AS FOR uN HIFED MFLH 
I (NG1-2) 123,124,123
 

124 	CONTINUE
 

DO 125 L=1,LC
 

QG(L)=QV(L,1')/'245.
 

125 VP(L)=VPF(L.i)
 
- CALL SMITH('FRI, II,ELI,LE1,ALIRPIMPI,NRI)
 

DO 126 L=1,LB
 

DO 126 K=IKR
 
126 TPA(KL)=TRAiK,L)*iRGLK,L)
 

123 	IF (NG2-12) 127,128.127
 

128 	CONTINUE
 

DO 129 L=ILC
 

OG(L)=0V(L,2)
 

129 	VP(L)=VPF(L,2)
 

CALL SMITH(FP2,S12,EL2,LE2,AL2,RP2MP2,NR2)
 
DO 130 L=ILB
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DO 130 K=1,KR
 
130 TRA(KL=IRA(K,L)*IRG(K,L)
 
127 IF (NG3-7) 131,1329131
 

132 	CONTINUE
 

DO -133 L=I.LC
 

QG(L)=QV(L.3)
 
133 	VP(L)=VPF{t,3)
 

CALL SMITH(FR3sI3,EL3.LE3,AL3.RP3.MP3.NR3)
 

DO 134 L=I,LB
 

DO 134 K=1.KR
 

134 TRA(KL)=IRA(K,L)*IRGtKL)
 
131 IF (NG4-19) 135ti36.lJ5
 

136 	CONTINUE
 

DO 137 L=1,LC
 
OG L)=QV(L,4)
 

137 	VP(LI=VPF(L,4)
 
CALL SMIIH(FR4,,SI4,EL4,LE4,AL4.RP4,MP4,NR4)
 
DO 138 L=!,LB
 

DO 138 K=IKR
 

138 TRA(K,L)=IRA(K,L)*,RGtK,L)
 

135 CONTINUE
 

DO 'I55'L=1,LB
 

DO 155 K=,KR
 

KK=2*K-1
 

155 	TRF(KK,L,I)=IRA(KL)
 

DO 139 J=2,JO
 

DO 140 L'=LC
 
OG(L}=QVD(J)
 

140 	VP(L)=VPF(LoI)
 
CALL 5MIIH(FRD,51I,ELD,LEDALU,RP,MPUNRO)
 

DO 141 L=1'LB
 
-DO 141 ,K=IKR
 

KK=2*K-1
 
141 TRF(KKL.J)=TRA(K,L)*IRG(K,L)
 
139 CONTI-NUE
 

KR=KR-I
 

C CALCULATES MEAN TRANSMITTANCES BY AVERAGING RESULTS FROM SHIFTED AND
 

C UNSHIFTED MEbH LALuLAiIONJ ANu FINALLY ObI'AINiNG inm AlcRAG. ,'RJNMIT'iANL
 

C FOR THE ENIIRE FREQuLNC? HAN ,t
 

DO 143 J=1.JO
 

DO 144 'L=ILB
 

DO 145 K=IKR
 
KX=2*K-1
 

KY=2*K
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KZ'2*K+ I
 

145 TRF(K.L.J)= (TRF'(KXLJ)+TRF(KYLJ)+TRF(KZL.J))/3.
 
TRFM(L.J,) O.
 

DO 144 K=I,KR
 
144 TRFM(LJ)=IRFM(LJ)+IRFiK,LJ)/KR
 

DO 143 K=I,KR
 

143 TRT(KJ)=TRF(K.1.J) 

C CALCULAIES SOLAR IRRADIANCE Ar fHE lOP OF IHE AiMO PHERE FROM tHE 

C TABULAED VALueo -U1 LINLAR' INiLRPOLMTION iN LIALm INLLRVAL 

DO 1-46 N=194
 

146 GR(N)=HS(N+1)-HSSN))/(WN(N+1)-WN(N))
 

DO 147 K=IKR
 
N=O
 

150 	N=N+1
 

IF (FRC(K)-WN(N)) 1479148,148
 

148 IF (FRC(K)-WN(N+I)) 149,1509,1b
 

149 HL(K)=OEL*(HS(N)+GPLN)*tFRC(K)-wNtN')))
 
147 CONTINUE
 

C CALCULATES PLANCK FUNCTION FOR EACH ALTITUDE AND FREQUENCY INTERVAL 

CONS"18.*6.625*1..E-U7 
CNST=6.625*u.3/'l .J 

DO 142 K=IKR
 
RNUM=DEL*CONS*FRC(K)**3
 
EEX=CNST*FRC-(K)
 

PCK(K,1)=RNUM/(EXPEEx/IEM)-I)
 

DO 1422 L= .'LC
 

PCKCKL+1)=RNJM/(EXP(EEX/IEMCL))-,)
 

142 CONTINUE
 

C CALCULAIES RADIANCE Af IHE 'OP OF iHt ATMOPHLRL INCLDING -IHL
 

C REFLECTED SOLAR COMPONENT
 

ZEN=COS(ZEN/57.29578)
 

GAM=I.+I/ZEN
 

DO 151 J=IJQ
 

DO 152 K=I,'KR
 
RCOM=(1.-EMI)*ZEN*HL(K')*(TRT(KJJ **GAM
 

RADNC(K,J)=EMI*PCK(K,1)*TRT(K,J)*lE-07+RCOM
 

DO 1,52 L=2,LB
 

COMP=PCK(K,L)*CTRF(K,L,J)-TRF(KL--,J ))*IoE-07
 

'152 RADNC(K,J.=RADNC(K,J)+COMP
 

TRM(J)=O.
 

RAONCE(J =O
 

00 153 K=1,KR
 
TRMCJ)=TRM(J)+TRT(KJ)/KR
 

153 	RADNCE(J)=RADNCE(J)+PADNC(K.J)
 

151 	CONTINUE
 

PRINT 60, ((TRT(KJ),J=1,JQ),K=I,KR)
 

PRINT 62, ((RADNC(K,J),J=I,JOy,K=.IKR).
 
PRINT 60, C(TRFM(LJ)i,J=IJQ)L=1,LB)
 
PRINT 61, (TRM(J)J=IJO),(RADNCE(J),J = 1,JO)
 

60 FORMAT(IHI//(SF15.5,/))
 
61 FORMAT(IHI/////(SFI5,5////8EIS4))
 

62 FORMAT(IH1//(8EI5.4#/))
 
STOP
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C-2. Subroutine-SMITH for Program QRANDOM
 

SUBROUTINE SMITH(FR,S1,ELLE,ALRP,.MPNR)
 

INTEGER XW
 
DIMENSION FR-(1220),SI (122-0),EL(1220),.SIE(2CO,.26),SLE(200,26),
 
/ELE(20026),SF.E(100,5,26),B'IG (26),BIG(6,26),NSI(5,26),-SSI(5,26),
 
/AVSI(5.26),SUMSI (5,26),PART(IO),FACT(10),WIDF(IO)
 
COMMON DELXI(26),T1(26),X2(21),T2(2"1),TRG(26,11),FRB(27),FRC(26).
 
/PREC(1O)-,TEMC(1O),QG(lO)VP(10),PNTPTNTP,TEMR.LCKRJB,THC
 

C SETS INTEGRATED INTENSI-TIES AND ENERGIES FOR EACH LINE TO ZERO
 
DO 120 K=1,KR
 
Do 120 ,M=IMP
 
SIE(-MK):O
 

120 ELE(MK)=O.
 
X=O
 

C DISTRIBUTES THE LINES INTO FREQUENCY INTERVALS
 
DO 121 K=,KR
 
M=O
 

124-IF (X-LE) 122i123.123
 
122 X=X+1
 

IF (FR(X)-FRB(K)) 124,125,125
 
125 IF (FR(X)-FRB(K+I)) 1264127,127
 
126 M=Mf-4
 

SIETM 9K)=SI ('X
 

ELE(MK =EL(X)
 
GO TO 124
 

127 IF (K-KR') 128-.23,123
 
128 X=X-1
 
121 CONTINUE
 
123 CONTINUE
 

.C SETS OPT-ICAL DEPTH IN EACH INTERVAL AT THE TOP OF THE ATMOSPHERE TO ZER
 
DO 151 K=I.KR
 
DO 151 1=1,5
 

151 SUMSICIvKI)=O.
 

LB=LC+I
 
PI=3.,141592654
 

- DELA=O.5*DEL
 

CONST=O*1*TNTP*THC/PNTP
 
CST=SQRT(TEMR)/PNTP
 
ULB=O.
 
BSU=O.
 

C EACH LAYER IS CONSIDERED SEPARATELY FROM TOP DOWN
 
DO 150 MM=ILC
 

L=LC+I'-MM
 
PART(L)=VP(L)*(TEMR/TEMC(L))**RP
 
F'ACT(L)=,o439*(TEMC(L)-TEMRI/(TEMCL)*TEMR)
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WIDF(L):CST*PREC(L)/SQR-T(TEMC(L))
 

,SPTR=PRECG(L)*OGCL)/TEMC(L)
 

ALA=AL*WIDF(L)
 
ULA=CONST*SPTR/(PI*ALAY,
 
ULB=ULB+ULA
 

BSU=BSU+ULA*ALA
 
ALB=BSU/ULB
 

RHO=ALB/DELA
 
C CALCULATES THE ALTITUDE DEPENDENT INTENSITY
 

DO 137 K=1KR
 

DO 137 M=1.MP
 

137 	SLE(M,K)=SIE,(MK)*PART(L)*EXP('FACT(L)*ELE(M,K))
 

DO 129 K=1,KR
 
DO 129 1=1.5
 
DO 129 N=,NR
 

129 SFE(N,ItK)=0.
 

C ASSIGNS LINES IN THE INTERVAL TO THE FIVE INTENSITY DECADES
 

DO 130 K=1,KR
 
BIGI (K)=SLE(IK)
 

DO 131 M=2,MP
 

IF (BIGI(K)-SLE(M,K)) 132.1341,134
 
132 BIGI (K)=SLE-(M,K)
 

131 	CONTINUE
 
DO 133 1=1,6
 

IX=-I+I
 
133 	BIG(IK)=BIGI(K)*10.**IX
 

DO 130 1=1,5
 

N=O
 

DO 130 M=1,MP
 
IF (SLE(M,K)-BIG(1,Kl) 134,134,120'
 

134 IF CSLE(MK)-BIG(I+IK)) 130.130.135
 
135 N=N+I
 

SFE(NIK)=SLE(MK)
 

130 CONTINUE
 

.C CALCULATES AVERAGE INTENSITY FOR ,EACH DECADE
 

DO 138 K=IKR
 
DO 138 1=1.5
 
NSI (IK)=O
 

SSI (I,K)=O.
 
DO 139-N 1,NR
 

IF (SFE(N,I,K)) 140.140.141
 
141 NSI(IK)=NSI(IK)+
 
139 SSI('I.K)=SSI(I,K)+SFE(N,I.K)
 

140 	IF (NSI(I.K)) 142,142.136
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142 NSI(I.K)=1
 

136 AVSI(I,K)=SSI(I',K)/NSI(I,K)
 
SUMSI (IK}=SUMSI(I,K)+AVSIEI,K)*ULA
 

138 CONTINUE
 

C CALCULATES TRANSMITTANCE IN EACH INTERVAL AT ALL ALTITUDES CONSIDERING
 

C D'IRECT AND WING CONTRIBUTION
 

00 .143 K=IKR
 

FRUC=FRC(K)
 
TRG(KiL)=I.
 

DO 143 J=i'KR
 
JA=IABS(J-K)
 

IF (JA-JB) 152,152,153
 

153 TRD=1.
 

GO TO 143
 

152 FRBI=FRB(J)
 
•ZI=FRUC-FRBI-DELA
 

EPSI=ZI/DELA
 
TRD=I-


DO 144 I=1,5
 
NSJ=NSI (,J)
 

XI=SUMSI (19J)
 
RES=O.
 

IF (J-K) 145,146,145
 

146 DO t47 W=1,26
 

Y=EXP(-RHO*RHO*XI/(X1(W)*XI(W)+RHO*RHO))
 

147 RES=PES+Y*T1(W)
 

Go TO 144
 
149 DO 148 W=I,21
 

Y=EXP(-RHO*RHO*XI/(EPSI-X2(W'))**2)
 
148 RES=RES+Y*T2(W)
 

RES=RES/6.
 

144 TRD=TRD*RES**NSJ
 

143 TRG(K.L)=TRG(K,L)*TRD
 
150 CONTINUE
 

C DEFINES TRANSMITTANCES AT THE TOP OF THE ATMOSPHERE AS UNITY
 

00 149 K=1.KR
 

149 	TRG(KiLB)=I
 

RETURN
 
END
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