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ABSTRACT

STICAP (Stiff Circuit Rnalysis Program) is a FORTRAM IV, Version
2.3, computer program written for the CDC-6400-6600 computer series
and SCOPE 3.0 operating system. It provides the circuit analyst a
tool for automatically computing the transient responses and fre-
quency responses of large linear time invariant network;,.both stiff
and non-stiff. The circuit description and user's program input
language is engineer-oriented, making simple the task of using¢ the
program,

Three volumes of documentation are available for the STICAP
program; a theory manual, a user's manual,'and a systen's programmers
manual. Volume I describes the engineering theories underlying
STICAP and gives further references to the literaéure. Volunre II,
the user's manual explains user interaction with the program and
gives results of typical circuit design applications. Volume III
depicts the program'structure from a system's prograrmers viewpoint

and contains flow charts and other software documentation.
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CiMPTER I

INTRODUCT 0!

Most computer aided network analysis progra:as are designed

to relieve the user of the followring burdens:

(a) Circuit translation - the (btaining of the differential
and algebraic equations governing tihe netirork, starting
from an casily specificd desériptioh of the circuit in
the terminology of the netvorlk designer, and

(b) Numerical integration - the obtaining of a numerically
accurate solution of the initial value problem for this
set of circuit+ equations.

The prosent state of the art allows a reasonably effective solu-
:ion of tﬁe former problem. However, most first generation circuit
. 21ySis programs are somewiiat restricted in écopé, as regards the
latter, in the instance of stiff networks whicih are characterized
by widely separated time constants. 1In suc!. circumstances the
numerical integration teciniques implemented in the first versions
of programs like SCEPTRE and LDCAP reguire such prohibitively
snall time steps that they become impractical as aids to analysis.
The primary raison d'etre for STICAP is e motivation to
combine tne capabilities of circuit translation using the state
variable topological arproach with efficient numerical integra-
tion tecnniques for transient analysis, using algoritams which
pos3cess doti stiff and non-stiff capabilities. The STICAP progran
is restricted to the analysis of linear time invariant networls.
It represents a meréing, with some'modifications to cach, of
Pottle's circuit analysis program CORIAP with Gear's program

ALGOPITE 407 -~ DIFSUB, for the autcnatic integration of ordinary



differential equations.

The program package is hest viewed as cousisting cf three
separate components, or rnodes of operation, each having some
advantages and disadvantages over the others in different circum-
stances. In éach mode thc common method of circuit transiation
is that originally employed in program CORHAP; a topological
approach the result of which is a set of first order linecar diffe-
rential ecqguations governing the time evolution of the circuit statec
variables. The CORNAP mode makes selectable the program CORNAP
wvith all previous capabilities, but optional selection of certain
Gata printing features. Thes2 capabilities include calculation of
transfer functions, zeroes of tramsmission, frequency and time
response of the circuit.

The fourth order numerical integration algorithn implemented
in CORNAP for time domain analysis is absclutely stable; hence it
may be used for either stiff or non-stiff networks. Hovever, the
stersize is fixed thrcocugirut the duration of coiputation, a
feature which can be uncconomical in scme instances. Further,
other than inmpulse or step functions, the only tyme of circuit
input is sampled data.

The Gear and latrix modes may be used to compute time domain
cransient, impulse, or step responses only, with the option of
calling CORIIAP subroutines to obtain transfer functions and zeroes
of transmission. The Gear mode allows the selection of either an
Adam's integration method, suitable for non-stiff equations, or

else the methods of Gear, suitable for stiff equations. This mode
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can be used for analysic of tie gerneral linear time invariant net-
work, with forcing functions specified using the full power of the
FORTRAN language, or by means of sampled data. In both cases
automatic order sclection technigues and variations in the step
size are employed as the integration nrocedes, 1o achiceve a desired
level of accuracy with the minimum nunber of integration steps.

The maximal order truncation error selectable by changing from onec
algorithm to another via the automatic order selection process is
an eighth order Adam's method or a sixth order stiff algorithm.

The matrix method was developad by personnel of 0Old Dominion
University, Norfolk, Virginia. In the matrix mode a spectral decom-
pocsition of the system matrix in terms of its eigen-valueé is
ermployed, to obtain a closed form solution which avoids a numerical
integration. The resulting method is computationally rapid and
may be used for either stiff or non-stiff networks; hovever, it is
applicabie only in the case of no repecated cigenvalues of tae
system matrix, and for systemé whose forcing functions are linecar
combinaticns of sinusoicdal, cosinusoids, impulse, or step functions.

The literature concarning the theoretical aspects ofvthe
combined program package is rather extensive; the raners considered
most helpful are indicated in tae hibliographies. 1In the present
document the theory first prescnted by Pottle, Gear, e;.al., is to
soric extent paraphrased and/or surmarized; in some instances clari-

fving examples are given.



CHAPTER II .
CIRCUIT THEORY

The underlying netirork theory and matihenatical algoriﬁhms des--
cribed Hy C. Pottle [10] [1l1l] and incorvorated in the design of
progran CORNAP»will nov be reiterated, cssentially as in Pottle's
descrirtion. The programs used by CORNAP to translate the circuit
description to a set of first order differential equations in the
state varianles of the circuit aze commonly used by ali progran

modes .

2.1 CIRCUIT TRANSLATION: FROM ULUETI'ORRK DESCRIPTION TO STATE EQUATIOWS

The algorithm for obtaining tiic state equations of a general
active linear network implemented in CORJAP is a modification of
that proposced by Dervisoglu [2] and has been Gescrided in detail
elswacre [1], [3], [4]. In this implermentation it is assumed that
the state cquations sought have a subset of the cavacitor voltaces
and inductor currents as state variables. The problen is, of
course, to proceed from an easily given description of ihe network ’
to a set of first order coupled differantial equations -thich con-
tain only state variakles anc¢ independent source inputs. All
other branci: voltages and currents ars removed along the vay. &
summary of the metiiod follows.

1) Form the fundamenial loop matrix.with respect to a nornal

trec; that is, a tree vhich contains all voltage sources as

tree branches, all current sources as links, and as m&ny

capacitive tree brancies 2nd inductive links as possille.

Thic matrix expresses a relation giving all tree-branch

currents in terms cf link currents and, using its negative
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transpose, giving all link voltages in terms of tree-branch
voltages.
2) Form and solve a set of algebraic egquations relating
a) resistive tree-branch voltages to their currents (and
hence to link currents),
b) resistive link currents to their voltageé (and hence to
tree-branch voltages),
c) controlled sources to their controlling quéntities
(and hence to link currents and tree-branch voltages).
3) Form a set of initial state equations obtained by replacing
inductor voltages by expressions involving derivativgs of
inductor currents and replacing capacitive currents by expres-
: Sions involving derivatives of capacitor voltages.
4) By row reduction techniques obtain the final state equa-

tions with dependent state variables removed.

The Fundamental Loop Matrix

Although a human may find a normal tree by inspection, for a
computer this tree is most easily found from the incidence matrix.
This matrix is easily constructed from the given topological input
data, each row expressing the Current Law with respect to a region
surrounding one node. A systematic, computer-oriented method for
obtaining a normal tree and its associated fundamental loop matrix
from the incidence matrix is as fpllows:

1) Arrange the columns (branches) of the incidence matrix ¢

in the order

voltage sources



cap§citors

resistors

inductors

current sources
Note that since source conversion and transportation are not
particularly adapted to computefization; the approach taken
here requires that cach branch consist of only one element;
voltage and current sources are branches and are ncﬁ required
to be members of "generalized branches" with passive elements.
2) Apply the standard Gauss-Jordan row reduction tachnique to
the rows of C with the modification that if, at the ith step,
all entries in the itQ column below and including the ith rov
arc zero, one simply goes on to the first column where a ‘one'’
can be brought into the ith row. twhen processing is complete,

the g matrix is in "row echelon form".

3) Rearrange the columns (branches) of C to produce a matrix

gk

The first columns with the sinéle one in them refer to tree

of the form

branches and thc rest refer to links.

Tree branch voltages and link currents will henceforth appear
in upper case and tree-branch currents and link voltages in lover
case. With the appearance of the fundamental loop matrix g we have

obtained the relations

i=FI andvs=-FV (1)

— -

relating all lower casc quantitics to upper case quantities. The
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extended Gauss~Jordan algorithm appears at other places in the
sequel and is basic to the whole technique. It is in:roduced here
without discussion of roundoff errors and such, since at no step
can numbers other than +1, -1, or 0 appear. The restriction on

the generality of network which can be handled appeariqg here is .
that controlled voltage sources must not appear in looés.w’ﬁh other
voltage sources, and controlled current sources must not form cut-
sets with other current sources. Obviously there are legitimate
networks excluded by this restriction, but they are rather more

hypothetical than physical.

Removal of Resistors and Controlled Sources

Topological considerations now permit the replacement of any
lower case quantity by a linear combination of upper case quanti-
ties. But since each resistor voltage (current) is related to its
vurrent (voltage), and each controlled source to its cohtrol. a

set of algebraic equations may be constructed in the form

(— 7 -idj - contreclled voltage sources
Vo | = tree branch resistors
i Ip | = link resistors
I - controlled current sources
[ 7] [E 7] - independent voltage sources
V_. |- tree branch capacitors
M =-C
-2 !L - tree branch inductors (2)
EC - link capacitors
I |- link inductor
i, 1i ductors
J |- independent current sources
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rigure 1 illustrates a case where the first controlled voltage
source is controlled by the first trec branch capacitor, and the
first link resistor depends (through -QT) on (possibly all) the
tree branch voltages. Only the shaded areas on a givan row represent

possibly non-zero areas.

tree

tree
branches 1links branches 1inks
: ,——CA.-—\ / A - I\ .
e i - ples oo e ' R e ¥ nadil B
| ! ]
V [}
‘]‘; -" ————— ?1 _-m.'_.__-_ v
| ¢y
l | | i
! [
| 1 | |

Fig. 1 Formation of Algehraic Eq-ations

Once this set of equations has been formed, it is solved
using the reduction to row echelon froa. mentioned above. This
might élso be accomplished using the LU algorithm (5], which is
both accurate and ecfficient. Although in the passive case the
matrix My is pesitivetdefinite, in the general active case singu-
larity is a possibility, indicating the fact that one of the quan~-
tities being solved for is arbitrary. Such cases are not likely
for physical eircuits.

Preliminary State §guations

The constraint equations for energy storage elements (including

mitual coupling) are now introduced:




poen S —— - — - IE— — _.1
G %t |, [B_lal |%
- (3)
C2 Yo b 9 L2 Ir, Yy
and ouel b aoud — - L— -t e o on -d

The procedure here is to remove i and vy, using P and -FT, while
removing dependence on resistive and cohttolled source quantities
vsing the solution of the algebraic equations (2). I, and Vi may
then be removed in favor of state variable derivatives «iing the
matrices Cy and L;. The ﬁ.x;xal resalts appear in the Jorm

I
!
]
1

Jd

Ve Ve |
v v E
s ||: |- A Sl o+ B
| i ir, J (4)
I % R Jl=ml L JdL
or Sk=Ix+Bu

It should be clear that branch quantities defined as outputs can be
handled in an identical manner during these reductions, yielding a

preliminary input-output-state equation
Y=Rx+Cx+Du (s)

Final State Equations

The preliminary state equations would be in final form if S
were an identity matrix. Since this fact is generally not so, the
prccedure sontinues Ly reducing the pactitioned matrix [gf A :g]
to row echelon form. Several possibilitics now arise. LY

a) 8 bacomes an identity matrix. In this case S is of full rank
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and the final state equations are oistained.

b)

o

and A contain at least one zero row. In this casc the equation

of the last row

P .
‘u= 0
b u=0 {(6)

- implies a dependernce among the indepandent sources. No solu-
tion exists for such a network.

¢) S but nbt § contains at least one zero row. In this case the

last row expresses the equation

T .
o=a, x+ ghT u (7

implying a dependence among the state variables. One may be
chosen for elimihation and the relation above used to reumcve
a column from the A and g matrices. Differentiating'the
expressicn gives |

0=aTx+b

2, b," u | (8)

vwhich is used to remove the corresponding element from X and
hence a columnn from R and s. Derivatives of input signals may
thus arise during state variable elimination. 1hen these rela-
tions have been exhausted, a smaller matrix [é: A :%] is

again reducec to row echelon form and the procéss ;epeated until
an identity matrix is obtained for S, or all state variables
disappear. ‘ |

Ih theory this reduction techniqﬁe is a completely general cne

in that the algoritlm starts with the maximum possible number of
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state Qariable candidates and can rerove as many as required. In
practice, numerical difficultices can arise, but are entirely con-
centrated in the row reduction of matrices to row echelon formf

The procedure requires an algorithm fcr deciding the rank of a
matrix in the presence of round-off noise. This problem is a funda~
mental one in numerical analysis which has yet to be solved to the
satisfaction of all. All network analysis techniques have this
reqﬁirement built in in some form, since in any case the order of
co@plexity of the nctwork must be determined. The algorithm under
discussion here presents the problem in precisely the form which is

being studied - as a rank determination problen.

2.2 FROM STATE EQUATIONS TO CRITICAL f‘REQUENCIES

The designer of a network analysis scheme is at tﬁis point
faced with the problem of deciding for juét what purposes the pro-
gram will be used. Time and fraequency response data secm to be the
most often requested; there are, however, users who for one reason
or another require the critical frequencies of the network. For
this reason, and because it turns out that it can be done accurately
without great expenditure of effort, the programAproceeds to find
the natural modes of the network together with the zeros of trans-
mission between all possiblr inputs and outputs.

One way of locating the natural modes of the network is to
apply an eigenvalue-finding algorithm directly to the A matrix.
Numerical analysts seem to be in rare unanimity that Francis' QR
algorithm is the best available [6] , [7] and this algorithm is

employed by CORNAP. The rcmaining problem is then to determine the
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zeros. In order to use the QR algorithm for this purpose also, the
problem of how to construct a matrix whose eigenvalues are the zeros
of transmission of a network must be solved. The answer in this
¢»se lies in considering the "invegse system", a concept which has

been explored in depth by Brockett [8] .

The Inverse Svstem

Consider a network with onc input and one output connected in

the feedback of an operational amplifier of gain k > 0 as shown in

Fig. 2.

£>

l H(s) ——

v u

Fig. 2 Wetwork in Feedback Loop of Operational Amplifier

If the system function of the original network is H(s), the system

function H(s) of the modified network ("inverse system") will be
H(s) = — kK ___ (9)

In the limit as k + », H(s) has the zeros of H(s) as its poles, and
the poles of H(s) as its zeros. If the A matrix of the inverse sys-
tem can be found without excessive effort a solution to our problem
will have been obtained, since its eigenvalues will be the zeros of

H(s) we are seeking. Fortunately, the machinery for obtaining this
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matrix is already available.

State Equations of the Inverse Systen

As can be seen from Fig. 2, from the original preliminary state

and output-state equations of a single-input, single-output system

Sx=Ax+bv (10)
T .
y=r x+¢ x+du : (11)

we may by substitution obtain the preliminary state equations of

the inverse system. Since

:

u=k( -y o © 12)

T .
KB - kr x - ke'x - kdu

or

k T T

A o
U= T g (u-2x-cx (13)

>eu'

we obtain by substitution for u in (10)

k .
[S“m@i]&*E 1+Id—:l E"“k‘&]“‘l“

Before considering how to proceed to the limit k + «, suppose first

. | .
that the matrix S! A Eg has by row operations been reduced so

]
that b is a column veétor with only one non-zero entry, the last
(by). The preliminary state equations for the inverse system are
now no different than for the original, with the exception of the

last row which becomes

X b X b X b
T _______T.= - T N
n * T3 rai)2= & " T s) 255 Y.
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Two cases may now be recognized:
Cases 1 (d # 0): In passing to the limit k + =, the new last

row of the state matrices become

r b, ¢
S: S + — 7
2 Sn a -
b _
. T_nJT
b
b: —E
- a

Case 2 (d = 0): Dividing the last row by k and passing to the

limit, we obtain the last row

1 3 b T
§' n£
T
A: -b,c (17)

i
o

Having found preliminary state equations for the Inverse system, we
may proceed tc use the mechanism already at hand #- - producing the
final state eguations with the correct number of state variables.
The QR algorithm then finds the zeros of transmission of this parti-
cular input-output pair. The process must of ccurse be repeated

for each input-output pair.

The Gain Constant

In addition to the poles and zeros of transfer functions which
have been requested, some sort of gain constant set is required.

These gain constants are most easily found simultanecously by
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evaluating

§(s)=gE§-§,'1§+p | (18)

at a single value of s. This value of s has beén chosen as real
(to avoid complex matrix inversion) and positive (to avoid network.
poles). A search is also made to insure that the valué of s chosen.
is not too near a zcro of transmission of one of the compohents of

g(s).

Remarks

In the usual case of proper systems with at most the same
number of zeros as poles, the above operations may be performed on.
the final state eqﬁations ($=£) with some saving in processing time.
An improper system with more zeros than poles would in this case
require a way for the A-matrix to grow in size - no such algorithn
is included.

The sequence of events in finding the zeros of a nolynomial
filter (there are, of course, none) is that a zero row appears at
the bottom of S at each reduction to row echelon form until at last
'no state variables are left.

Only the observable, controllable natural modes of a network
turn up as poles of the transfer function H(s). Since the present
method finds all the natural modes of éhe network, we must be
certain that the uncontrollable or onobservable modes are also
natural modes of the inverse system, and thercfore appear as zeros
of H(s) to accompany the poles which should not be present. That

tnese modes are not altered in going to the inversc system may be
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seen by considering that the inverse system is obtained by operating
on the input and output of the original system. Since these modes
are either uncontrollable or unobservable, they cannot be altered

by operations on both iaput and output.

2.3 FREQUENCY AND TRANSIENT RESPONSE CALCULATIOIS

Once the decision has been made to obtain critical frequencies,
conventional technicues such as direct evaluation of the transfer
function at desired frequencies, and partial fraction expansion
followed by evaluation in the time domain, are immediately available
and are £airly general. No more general or accurate approach exists,
in fact, for finding the frequency responsec, gnd therefore this
simple approach is the one used in thé overall program. A some-
wvhat more general technique was incorporated for computing the
time response, which is explained in detail elsewhcre [9]. The
method consists of breaking the system function into a cascade of
second order systems as sihown in Fig. 3. The state equations of

each subsysten are solved exactly, vhile the

u(t) —>> H;(s) |[——>> Hj(s) — - - —>1 Hyl(s) —> y(t)

Fig. 3 Transfer Function as a Cascade of Subsystems

convolution integral between each subsystem is approximated by a
fourth-order integration procgdure. Sampled input signals are
ecasily processed, and the method is completely insensitive to

multiple or clustered poles.



2.4 CORNAP REFERENCES

{1] C. Pottle, "Comprehensive active network analysis by digi-
tal computer -- A state-space approach," Proc. Third Allerton Conf.
on Circuit and System Theory (University of Illinois, Urbana,
November 1965), pp.659-668.

{2] A. Dervisoglu, "State models of active RLC netwoxks,"”
Report R-237, Coordinated Science Laboratories, University of Illi-
nois, December 1964.

[3] C. Pottle, “"State-space techniques for general active net-
work analysis,” Chapter 3 of System Analysis by Digital Computer,
F. F. Kuo and J. F. Kaiser, Eds. Hew Yorlk: lliley, 1965, pp.59-98.

{4] D. A. Calahan, Computer-aided Network Design. New York:
McGraw-Hill, 1968, Caapter 2.

(5] J. H. Wilkinson, The Albebraic Eigenvalue Problem. Oxford
Clarendon Press, 1965, Chapter 4.

[6] Ibid, Chapter 8.

{7} B. N. Parlett, "The LU and QR algorithms,"” Chapter 5 of
HMathermatical Methods for Digital Computers, Vol. 2, A. Ralston and
H. S. Wilf, £ds. New York: Wiley, 1967, pp.116-130.

[8] R. W. Brockett, "Poles, zeros, and feedback: State space
interpretation,” IEEE Trans. Automatic Control, Vol. AC-10, pp.l129-
134, April 1965.

[9] C. Pottle, "Rapid computer time response calculation for
systems with arbitrary input signals,"” Proc. Fifth Allerton Conf.
on Circuit and System Theory (University of Illinois, Urbana,
October 1967), pp.523-533.

[10] C. Pottle, "A “"Textbook" Computerized State Space Network
Analysis Algorithm," University Report, System Thecory Group, Electri-
cal Engineering Research Laboratory, Cornell University, Ithaca,

New York, September, 1968.

{11] C. Pottle, "Program CORNAP-FORTRAN Computer Routine,”
Systemn Theorv Group, School of Electrical Engineering, Cornell Uni-
versity, Ithaca, New Yor!:, 1968. :




" CHAPTER III
STIFFLY STABLE WIUI'ILRICAL INTEGRATION

3.1 INTRODUCTION
The output from the CORNAP circuit translation routines con-
sists of the differential and algehraic equations of the circuit;

namely, a state eouation

&= MX+ BjU+ By (3.1)

and an output eaﬁationl

Yy = C3X + DU . (3.2)

Here

x is the s x 1 state vector of the circuit;

u is a T x 1 time varyinc vector whose components are the
independent sources of the circuit:
Yy is a v x 1 vector whose components are the outnuts reguested

by the user; and A, By, C3, D3, E; are constant matrices of
dimensions consistent with the above equations (3.1 - 3.2).
If Ey is nonzero, the change of variables
X = 5 + Elﬁ

transforms the above equations to a form free of source derivatives-

l1¢ is clear that the state and output equations gor the general
circuit could involve higher derivatives of the inputs; 1i.e.

& _ oK+ BT + T g + F QEE +
at 1 1% 7 f1at 1ge2 7 0

| - - du é%u

However, only equations of the form of (3.1 - 3.2) can be processed
by STICAP, since no provisions ave made to allow user input of

derivatives of the independent sources.




do - - ‘
gt = Mg + Bu (3.3) -
¥ = Cg + Du , (3.4)
Here
A= Al C = Cl

and q is the transformed state vector.

The problem of ohtaining time domain circuit response is now
reduced to finding a solution of eans. (3.3 ~ 3.4). In the Gear
mode this is accomplished by numerically intecrating the initial
value problem

d o _ .
3& = AG + BU, qltg) = qy- - (3.6)

Stiffly stable numerical iantegration techniques nay be applied, if
the system is stiff; otherwise, an Adan's integration algorithm may

he selected. In this chapter the necessity of using stiff methods

is indicated, together with a survey of the related theory.

3.2 ACCURACY AND STARILITY OF MNUNERICAL INTEGRATION
Consider the scala: initial value problen

E - ez, 2ty = z, (3.7)
consisting of one first order ordirnary differential equation, for
wvhich a solution is desired on the domain t > tor satisfying ini-
tially z(to) = zg. In the absence of a clused form solution one
settles for some form of a numerically approximate solution

{yleg): £5 2 tgr 3 = 1,2,...},

with the set of time points tj dense enough to yield information
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sufficient for the purposes at hanc¢. The tj often are chosen uni-
formly spaced, with t .1 = t, + 21, vhere h is callel the step size.
The equations ermloved to generate this approxinate solution may e

called a nunerical integration algorithrm. A customary notation for

the approximating solution values is y(ty,) = y,, t, = tg + nh,
Suppose the solution of (3.7) is e:pressed as
tp+h
Zpey = 2, t+ ftn £lu,z(ty,zy,u) 1du, (3.€)
anc let the integral in (3.5) be approxirated Ly the trapezoicdal
rule

a+h n
fa g(x)dx’,!"a‘;[g(a) + g(a+h)]. (3.9)

Then we obtain the recursive numerical intecration algorithm
h
Ynel = ¥n * 20, + £, ], (3.10)

where f - = £(tn,y,) , and Yn is a numerical approximation to z,.
Given values yp, f, the next solution point, recursively ob-
tained, is implicitly snecified by (3.10). In contrast, the Euler

algorithn

Yne1 = ¥n + hf, (3.11)

explicitly specifies the next solution point. These algorithms pro-
vide respectively very simple eram~les of tynical memders fron tae

classes of iuplicit and explicit linear multistep methods. Funda-

mental differences in character of these tuo algoritims till nov

he indicated. The phenorena Ciscussed are also characteristic of




more complicated linear multistep methods . 2

The accuracy of a anumerical integration algorithm is customarily
measured in terms of its performance when applied to initial value
problems (3.7) having as exact solutions the polynomials {1,¢,¢2,...,
t2}. If, vhen applied to problems whose soiutions are members of
the test set {1,t,t2,...,tP}, and in the absence of roundoff error
(i.e., on an infinite precision machine),. the numerizal and the
exact solutions 2re identical, but where error appears in the numer-
ical solution when the exact solution ié tp+l, the algorithm is said
to be of order P. Due to the linearity, if the order is p, the
linear multistep algorithm, whether implicit or explicit}vyields an
exact solution to the initial value ptoblenm Qhose time solution is
an arbitrary polynomial of degree p or less, in the absence of com-
putational errors in the initial conditions -

The.order p of the algorithm dictates the magnituue of the
stepsize h needed to produce a given degree of accuracy, when the
algorithm is applied to a problem vhose solution is not a polynomial
of maximal degree p. This relation may be mcre explicitly stated

by means of the one step truncation error, the error made in comput-

ing yp41 when exact solution values of all required previous values

Yn-j¢ £ -5 (j =0,1,...,k-1; for a k step algorithm) are known. For

2The general linear multistep method of k steps is of the form

k

§-0 [“k-jyn-j - th-jfn_.jl =0, akfor
with the aj,B; real constants. The method is implicit if By¥0;
otherwise, it is explicit. For implicit methods with nonlinear
fo=f(tn,¥Yn), some type of predictor corrector iteration must be
used to solve for y,, given values of {yn-1,Yn- ""'Yn-§5fn-1'fn—2'
eeosfn_x}. The linear one step methods typif?ea by (3.10) anc (3.11)
are considered a subclass of the general family.

A
o . ) .
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an algorithm whose order is p the one step truncation error is of
the form [1l]

T = CphP s (P 4 o (Pt (3.12)
whare Cp+1 is a constant and 0(hP*2) indicates a function which
approaches zero as h approaches gero in the same manner as does
hp+2. Thus, the acduraqy of the algorithm, as well as its sconomy
in terms of stepsize magnitude for a given degree of precision,
increases directly with the 1nte§e: p.

" It is clear that the erplicit Euler method (3.11) is of order
p =1, and it is readily verified thac the trapezoidal method (3.10)
is of order p= 2. |
We now examine another chazactéristic phenomer.a cf these algo-

rithms; namely, their numerical stability, or as the statistician

might say, robustness under variations in the step size. We shall
consider as test system the initial value problem

g% = Az, z(to) = 2 | (3.13)

vhere A is allowed to be a real or complex numbe;.3
~ Here the exact ¢ :;lution is
zZ = zoex(t-to): (3.14)
the desired sequence to be produced by numerical integration is the
set of complex numbers

n
However, the Euler algorithm produces the sequence

Yn = (1+h.x)n zoo

’

3curiosity concerning the permissiveness of complex values of A
will be dispelled in the next section.
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and the trapezoidal rule the sequence

- 1+ h/2 )
Ta = ERAD® 5

In the limit as n + » and h + 0 wit'h the product nh = th~to
held constant, both sequences converge o0 the true solution (3.14).‘
However, for h fixed, as n + » the Zuler 3equence diverges, regard-
less of the size of h, whenever |1 + hA| > 1, while the trapezoidal
saquence diverges if and only if P2(hA) > 0. This phenomena is
referred to as numerical instability; when it occurs the accuracy
of the computation rapidly degenerates.

For the general linear multistep method, ithe Jdegree of the
difference equation usually exceeds th#t of the Qifferential equa-
tion it is intended to approximate. Thus, certain parasitic -ci.-
tions are present, in Addition to the desired solution. then ex-
cited'by roundoff or other computational error, these parasitic
solutions tend to spoil the computation, in proportiun to the degree
that their rate of growth exceeds that of the desir:d solution.

A stability requirerant which prevents the spoiling of the com-
putation by excitation of parasitic solutions will now be definer:

A linear multistep method is absolutely stable if the numerical

solution approaches zero for h fixed, as n avwproaches infinity, when
applied to all initial value problems (3.13) whosa eigenvalue )\ has
negative real part; Re(hi) < 0. Should this phenomena occur only
vhen hA is restricted to some proper subset D of the left half pl=ne,
the algorithm is said to be D-strongly stable, or absolutely stable

on a restricted domain.

4The numerical solution converges pointwise to the exact solution,

approaches zero. An aliorithm characterized by this property
Ld_to be a_convergent al ﬂorzg§9$jll - o -

1
o
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‘The hA plane regions of s:ahility and instability of each al-
gorithm (3.10) and (3.11) are indicated in Figure 1l. -

'y A hA-plane | ¥ ha-plane
STABLE Unstable : Unstable
REGION Region Region

STABLE ; B

S % . > x
) REGION ‘
1,2, .21
Fig. 1{a) Trapezoidal bt RIS 2
Rule
Fig. 1(b) Fuler Hethod
Figure 1

The trapezoidal rule is absolutely stuble, whereas the region of
stability for the Euler method is the iﬁterior of the circle centered
at (- %. 0) with radius R = %u The Euler method is strongly stablé
on the interior of the cizcle. For this method the stability re- .

quirements may Ye expressed in terms of stepsize by the ralations
2
h < T Re(hA) < 0.

Hence the stepsize I is very restricted by the modulus of the cigen-
value A of the system being integrated.

' We now make a fundamental observation, exemplified by the pre-
ceding examples. Namely, for all convergant explicit linear mulii-
step methods, the hi plane stabiiity région is bounded and has the
origin as either an interior point or a boundary pcirt. This obser-
ﬁation also holds true for some implicit algorithms, the exception
being the stiffly stable algorithms of Gear [2], [3]; and some

instances of algorithms of other types, such as the absolutelv stable

Rosenbrock rule reported by Calahan (4]. Hence, for many commonly
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used techniques (Runge-Kutta, Adam's-Bashforth, etc.), there is a

restriction on the stepsize, to avoid instability, usually of the

form

O<h<-—£——,‘
[ Amax!

. A a positive constant,
where Ap.. is the largest eigenvalue of the Jacobian matrix of the‘-
system. In the case of stiff circuits this restriction is particu-
larly hard to abide, since the step size is determined by the systemn
component with minimum time constant, which in the iarge contributes
least to the solution.

For the general stiff algorithm the stability region is un-

bounded in the left half plane and possesses a corridor of stable

approach to the origin (see Fig. 2).

b4 A hAi-plane
STABLE 6
y:
REGION — Unstable
or -
*=D STABLE bon't Care
AND
Region > x
Accurate
Regiun

Figure 2. Stiff Stability Requirements

In the part of the hi plane to left of the line x = D, coxrasponding
to occurrence of system eigenvalues related to the high frequency
‘components, the stiff algorithm is required to be stable. In the

region bounded by the lines x = D, x = 0 and y = +6, the algorithm

must be both stable and accurate; the rest of the plane is a "Don't
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Care" region and can be stable or unstable. Hence stiff stability
requires an algorithm which is numerically stable in the region of
hA corresponding to rapidly decaying system components of diminish-
ing significance, and whici: is both accurate and stable in the re-
gion corresponding to reasonably large step sizes and less slowly .
decaying system components. :

Thus, for physically stable systems, the stability of the stiff
algorithm is unaffected by the presence of left half plane eigen-
values of large modulus; for eigenvalues of other types, stability
can be achieved by adjustments in step size (see Fig. 3 for further
clarification of this statement). The off shoot of such nethods is
that the character of the computation is no longer so utterly re-
stricted by the largest eigenmode; when high freqﬁency effects are
of diminished importance, the integration can proceed hsing a time
step determined only by the néeds of accuracy. Economical computa-
tion times may be achieved bv suitably varying the stepsize h and
the order p (by changing fro~ one stiff algorithm to another) as
the integration proceeds, so as to maximize the step size while
simultaneously maintaining stability and a desired level of accuracy
specified by the user ([9].

The tradeoffs which can be made between the competing factors
of stability and accuracy, for the stiff algorithms programmed in
Algorithm 407, are indicated hy Figure 3. Typical h\ plane stabil-
ity regions are indicated, for Gear's algorithms of orders p=2,3,4,
5,6. 1In these figures the regions of stability and instability are

symmetric with respect to the axis of the reals; only the left half

plane portions are of any siy .ficance, assuming physically stable




- 27 -

Ye
hA plane

R

Stable Side

\' -
k=6 - k=5

Figure 3. Sections of stable recions.
Curves symmetric with resnect
to the x-axis.




Figure 4. STABILITY Region
p=k=265
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networks. All regions of instability for the lower order methods
are contained within the region of instability of the order p = 6
algorithm (see Figure 4). These plots also appear in references
(31, (71.

3.3 THE NUMERICAL TREATHENT OF A VECTOR SYSTEM

A study of the previous section presumably arouses curiosity
concerning the permissiveness of complex A in the test equations
(3.13). The dispellation of this curiosity is readily achieved when
one considers the application of an algorithm for solution of a
scalar equation to a vector system of simultaneous equations. We
nowz provide an example, again using the trapezoidal rule.

Suppose the numerical integration of equation (3.4)

da - - - -
were to be accomplished by the vector trapezoidal rule, a parallel

applicat{on of equation (3.10); namely,

- - h - - -
Ynsel = Yn + 5(Ened + Ty 79 = Qo (3.15)
In this instance the s x 1 vVectors f, are defined by -
£, = Aq, + Bu,. (3.16)

This further reduces (3.15) to the forn
h - h, . — hB,~ -
(1 - EA)Yn+l = (I + Ea)yn + 5‘[“n+1 + u,l, (3.17)

vhere I ig the identity matrix, s x s.
Consider for purposes of illustration the case in which the
eigenvalues Aj,Ap,...,Ag Of A are distinct. Then there exists a

nonsingular matrix Q for which



D =01 ag = diag(r;,Ap,...,2g)
is a diagonal matrix, vhose diagonal elements are the eigenvalues
of A. Then under the transformation
Yn = 0%,
the algorithm (3.17) becomes

(@ - 20Ty = (1 + I, + Do leig,,, + 5. (3.18)

Thus the transformation uncouples the algorithm, so that there now

arises a system of s simultaneous equations, i = 1,2,...,s,

h
(1 - 3Py = @+ Paprey iy, (3.19)
where :
9n = § ajjluj,ne + uy ql.

Here
’ A; is an eigenvalue ofAA,

Pj ,n is the ith component of 7,

Uj,n is the jth independent source, evaluated at time n,

the a;4 are the elements of 0”18, and

the surmation on j is over all independent sources.

Now if (3.19) is to be stable for all bounded independent
source inputs, it must in particular be stable when these sources
are switched off; i.e., the natural modes of the algorithm must be
stable. However, setting g, = 0 in (3.19), it emerges that a
necessity and sufficient condition for stability is that for each
i=1,2,3,...,5 Re(hlj) be negative. 'But this is the same criterion
as was established for the scalar case. !Moreover, the result is
equally valid for occurrence of repeated eigenvalues, as canAreadily

be established.



3.4 THE STIFF ALGORITHMS OF GEAR

The general form of the vector implicit linear multistep algor-

ithm for solution of equation (3.6),

§% = AT + BU, dltg) = Tpr (3.20)

is given by the relation

Here ayBy # 0, the functions Eﬁ+j satisfy>

fneg = A¥nej + Bugey, 3 = 0,1,2,....k
and y, is the numerical approximation of qp.
The algorithm is of order p if the relations Cg=Cy=...=Cp=0,
Cp+1 # 0, are satisfied, vhere [1] '

Cop =g +ay + . . . + oy

. | (3.22)

1 1 - -
Cq = grioat2¥ayt. . ko) - Eopypi8+29 1apk. . 4k 1gy ).

Once having restricted the a's and B's to produce an algorithm
of order p, it emerges that the B values are uniquely specified in
terms of the o values by eqns. (3.22). Conversely, the additional
specification that p = k allows a unique specification of the a

values in terms of the B values. 1In either case, for a fixed order

5In this section the theory of linear multistep algorithms, special-
ized to the case of a linear dynamical system, is given. The gen-

eral theory, as indicated in the literature tabulated in the bibli-
ography, applies equally well to the nonlinear case.
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P, the arbitrary parameters may then be chosen to obtain satisfactory
stability properties. Criteria upon which such a value judgment may
be based will now be indicated.

The numerical stability of the algorithm, as defined in the
previous sections, is governed by the following theorem [2] [5]:

A

Stability Theorem

The numerical solution of (3.21) is stable if and only if tha
stépsize h is restricted so that the roots cf the polynomial equa-
tions
k .
I  lap_q - hlin-gpk-J =0, (3.23)
j=0
(with 234, i=1,2,...,8, the eigenvalues of the matrix A) are within
the unit circle in the complex plane, or else on the unit circle énd
not repeated.

In view of the foregoing discussion, it appears that in order
to design the optimal k-ster algorithm one should maximize simul-
taneously the integer p (for accuracy) and the region of the complex
h) plane which yields a stable root configuration for each of eqns.
(3.23). However, a theorem of Dahlquist [1] concerned with con-
vergence restricts the maximal p, for k fixed, to either k + 1 or
k + 2, depending upon whether k is cdd or even. Fixing p at its
maximal value, one next seeks the parapeter choice yielding the
broadest range of stability. 2Assuming a physically stable differen-
tial equation, absolute stability of the difference equation is the
natural criterion, for broad general application. Unfortunately,
again a result of Dahlguist [5] limits k to the value k = 2, p < 2,

for absolute stahility. However, the low order involved here implies
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an algorithm of limited usefulness. Thus the motivation for dis-
covery of the stiff methods ariscs; methods not quite absolutely
stable, but strongly stable on a restricted domain of the left half
plane, with the characteristic corridor of stable approach %o the
origin (Fig. 2).

For stiff algorithms, a result of Vidland [6] imposes the re-
striction p < k, for k > 1; p= 2, for k = 1. Specific stiff algu: -
ithms with p = k, k = 1 (1) 8 have heen discovered oy Gear [3]1, [7}:
the general question is still the subject of research.

The algorithms discovered by Gear, with » = k; k¥ = 1,2,3,4,5,6

are implemented in ALGORITHIi 407. These algorithms are of tae form
Yn+l = Ok-1 ¥n + @p_p Yp-1 +e.ot ao§g+1;k + hByf 41, (3.24)

and require, in the programmed formulation [7], the fewest function
evaluations and saving of least information from step to step of all
stiff algorithms in the class p = k. The values of the a's and B's
are given in Table I. A sample plot of the stability region, for

k = 6, is given in Fig. (4). The stability regions for each algor-
ithnm appear in Fiqg. (3) (the stability plots are symmetric with
respect to ti 2 real axis).

Table I. Coefficients of Stiff Algorithms

k ( By a1 ar a3 a4 ., 05 ag
2 |2/3 4/3 | -1/3 0 0 0 0
3 |6/11 18/11 -9/11 2/11 e 0 0
4 |12/25 | 48/25 | -36/25 |16/25 -3/25 0 0
5 |60/137 | 306/137 | -300/137 |200/137| -75/137 | 12/137] 0
6 |60/147 | 360/147 | -450/147 | 400/147 | -225/147 | 72/147|-10/147
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.These algorithms are ohtained as follows: Equations (3.23)
define a stability mapping (8]

k
-ukp + ees +a0

BkPX + ... + B

H

(3.25)

of the complex rcot plane (the p plane) onto the H = hA plane. 2as:
h approaches infinity the roots of (3.23) approach the\poles of H; |
as h approaches zero the roots of (3.23) approach the zeroes of I.
Since the roots of a polynomial vary continuously with its coeffi-
cients, the choice of the poles of H to be strictly within the unit
circle assures that each hA point in some neighborhood nf infinity
will be stable. By continuity, this stability region can be extended
so that at least each point exterior to the image of the unit circle
|p] = 1 is a stable point. (lioreover, when i is Qne-to—one on the
unit circle with poles inside this image locus separates the stable
and unstable regions [8] of the hA plane.) The unique stability
mapping obtained by choosing all noles of il at the origin and deter-
mining the zeroes by the reg:irement that tihe order of the corre-
sponding algorithm be p = k yields stiffly stable algorithms, for

x=1,2,3,4,5,6, characterized by the stability regions of Figure 4.

3.5 PROGRAITED FORINULATION

In the preceding sections we have.presented the general theory
underlying the linear multistep integration techniques exploited by
Gear, and indicated the basic algorithms implermented in ALGORITHM
407. The mathematical formulation of these stiff methods and the

Adam's-Bashforth methods for non-stiff eguations actually programmed
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will not be discussed here.® The interested reader may refer to
references (9], [10] for a detailed discussion of the mathematical
formulation employed, the errxor controls used, and criterion for
varying the stepsize and order of the methods.

As indicated in the preceding discussion, the stiff systen
theory applies equally well to nonlinear systems, and ALGORITHM 407
is programmed for such. Hence it might be argued that the predictov-
corrector techniques used for solving egquation (3.21}) iteratively‘
for Yp4x in terms of precedinc values could perhaps be inefficient
when applied to a linear system. Howaver this conjecture is not
justified; in the linear case the Newton iteration involved converges
with only one iteration [9]. Hence the process reduces to‘a matrix
inversion at each step, which cannot be avoided, regardless of the
linearity, if a linear multistep method is assumed. Furthermore,
in its programmed version the mathematical formulation automatically
provides‘the information nceded for determining the necessity of a
change in stepsize or order of the method, an essential feature of
any numerical integration technique which is to be effective over

a broad range of network analysis problems.

617e remark that the formulation erployed is chosen for the facility
with which it lends itself to stepsize and order changing.
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CHAPTER IV '
THE ATRIX iIETHOD
4.1 INTRODUCTION
As indicated in Chapter 3, thc differential and algehraic equa-
tions of a network processable by STICAP may be described in the
form

(Q

dax
a " Ax + Bu, x(ty) = x, (4.1)

Y-CX“D\I,

where x is the state vector (or transformed statec vector); y is the
vector of outputs; u is the vector of independent sources; A, B, C,
D are constant matrices.
The solution of the state equation is
t

x = [exp(A(t-tg)) x9 + [ exp(A(t - 1) v(T1) dr, (4.2)
to

where

v(t) = Bu(t).
One way to avoid the problems wvhich arise in numerical integration
of stiff circuits is to integrate (4.2) exactly for certain wave-
forins such as sinusoids and block pulses, which constitute many of
the excitations encountered in electronic circuits.

This explicit integration can be carried out if the transition
matrix exp(A(t - T) can be expressed a3 a linear combination of the
eigenmodes of the system. The eigenvalues of the A matrix are
obtained hy tihe QR transformation, the best method available. The
particular expansion in terns of the eigenrmodes essential for the

STICAP matrix algorithm was studied by Kirchner [1]). 1In the present
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algorithm the expansion is limited to the case of non-degenerate
modes; the general case is mocre complex, but still solvable.

4,2 RBIGENIODE EXPANSION OF exp(At)
Consider the case for which the e. jenvaluss of A sre distinct.
For this casc the transition matrix is expressible as

n n S -
exp (At) = C..A ~ exp(r;t) (4.3)
i-l by C13 y |

The coefficients cij form a matrix which turns out to be the inverse

of the vVandermonde matrix

1 1 -
ook
c = ICij] = . . . . L . ) (404)
on_l 'n"l . . . .n-l
ull Az o K] ’ Xn- .

The Vandermonde inverse can be computed efficiently through the

method developed by Kaufman (2],

n-j n-j-k
kEo kM
Cij = o | (4.5)
kel
k#l

where the aj values arc the coefficients of the characteristic

equafion
P(A) = agh® + a;An=1 + . | . 42 )+ a, - (4.6)

with a, = 1l



The ayp coefficients can be formed from the combination of the

traces of Ak, k=1, . « o4 n

ay = - l)g T (4.7)
k m=l k-mm
Tm=uﬂ=g o - (4.8)
2=1

The total number of operations involved in forming the C matrix is
about 4.5 N2 operations, which is considerably faster éhan Gauss

. elimination, for large N. It s very cumbersome to store the transi-
tion matrix as expressed by Equation (4.3). Since the matrix is
always multiplied into a vector such as exp(A(t-t))?} thenvit would

be convenient to consider the vectors

exp(A(t-T))¥ = pyexp(i; (t-1)) + . . .+ Enexp(l#(t-r)) (4.3)
vhere

;= (CjuI + Ciph + . . .+ A" Y

= (C5171 + Cy¥p + « .« + Cyp¥y) | - (4.10)

with the Yp4p vector dfined by
Yl = v
ey = A Y1 ' (4.11)

This can be easily set up as a recursive process, if use is made to
take advantage of the sparseness of the A matrix so that the program-

ming is more cfficient.



The integral in Equation (4.2) can now be expressec as

¢t n t
| exp(a(t-t)) v (t) At =L [ p. exp(A,(t-1)) dr (4.12)
to jm=l to 3

For a finite number of excitation sources 55 can be written as

k=M
P:i = L X,.s5.(1) (4.13)
PJ k=1 Kk

‘where ?k is a coastant column vector, .ana Eguation (4.12). becomes
- t
Ty { exp{Aj(t-T)) s, (1) dt (4.14)

Notice the integrals in Eguation (4.14) are now scalar quantities and
these are nothing more than convolution integrals. Since the inte-
gral

t t to
Jfdr=ffart - [far (4.15)
to O 0

it is sufficient to examine the integral

t _ : :
£ exp(A5(t-1)) s (1) ar (4.16)
to :

from which Equation (4.15) can be computed.The Laplace transtorm of

the above integral is

1 n(p) a b(p)

p-ry S(P) = p-iy d(p) ~ p-ry T alp)

(4.17)

The first term in the above equation is the natural mode in the cir-
cuit while the remainder term is the response due to tihe forecing

function. If A4 and the poles of the driving function are situated
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widelv apart, .en the ill-conditioned case comes up. In the
present algor. .., an exact explicit integration is performed for
Equation 4.16), for certain excitation waveforms, thereby eliminating
the difficulty. When there are complex eigenvalues, then the

following integral pair is considered

t t
{f exp(li}t—r})rs(T) at + | exp(A;(t-r))r*s(t) dt} {(4.13
o o

where r is an element in the column vector of Equation (4.14).
‘Equation (4.18) is valid if the origiral state eguations consist
of real quantities only. For a full discussion of the algorithm
mathematics concerning the exact integration of (4.14) for the

functions STICAP allowahle as excitations see [3), [4], [5].
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