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ABSTRACT

r

STICAP (Stiff Circuit Analysis Program) is a FORTRAN] IV, Version

2.3, computer program written for the CDC-6400-6600 computer series

and SCOPE 3.0 operating system. It provides.the circuit analyst a

tool for automatically computing the transient responses and fre-

quency responses of large linear time invariant networks,.both stiff

and non-stiff. The circuit description and user's program input

language is engineer-oriented, making simple the task of using the

program.

Three volumes of docume=ntation are available for the STICAP

program; a theory manual, a user's manual, and a system's programmers

manual. Volume I describes the engineering theories underlying

STICAP and gives further references to the literature. Volume II,

the user's manual explains user interaction with the program and

gives results of typical circuit design applications. Volume III

depicts the program structure from a system's programmers viewpoint

and contains fl(xi charts and other software documentation.
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CHAPTER I

INTRODJCTIO:?	 1 .

Most computer aided network analysis programs are designed

to relieve the user of the following burden:.:

(a) Circuit translation -- the L btainina of the differential

and algebraic equations Governing the networ::, starting

R	 from an easily specified description of the circuit in

the terminology of the network, designer, and

(b)Numerical integration - the obtaining of a numerically

accurate solution of Cie initial value problem for this

set of circui t- equations.

The present state of the art allows a reasonaaly effective solu-

-ion of the former -proj'Aen. However, most first generation circuit

.. -.Lysis ^.)rograras are some-shat restricted in scone, as regards the

latter, in the instance of stiff networks whic:i are characterized

by widely separated time constants. In suc. circur..stancas the

numerical . integration tec:iniques immlemented in the first versions

of programs like SCEPTRE and CCAP require such prohibitively

shall time steps that they become ir^ractical as aids to analysis

The primary raison dletre for STICAP is the motivation to

combine the capaLilities of circuit translation using the state

variable topological a pproach with efficient numerical integra-

tion techniques for transient analysis, using algorithzws which

possess boti stiff and non-stiff capabilities. The STICAP program
r

is restricted

It represents

Pottle's circ

^sLC,OP.IiI1 407

to the analysis of linear tine invariant networ%s.

a marging, with some modifications to each, of

uit analysis program COMIAP with Gear's program

- DIFSUB, for the automatic integration of ordinary

P
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differential equations.

The program package is hest viowod as co.isisting of three

separate components, or modes of operation, each having some

advantages and disadvantages over the others in different circum-

stances. In each rode the corEion method of circuit translation

is that originally emrloyed in progran CORI-AP; a topological

approach the result of which is a set of first order linear diffe••.

rential equations governing the time evolution of the circuit stare

variables. The CORITAP mode makes selectable the program CORIMP

with all previous capabilities, but optional selection of certain

data printing features. '!'hose capabilities include calculation of

transfer functions, zeroes of tramssussion, frequency and time

response of the circuit.

The fourth order numerical integration algorithr.. implemented

in COFtMP for time domain analysis is absolutely stable; hence it

may be used for either stiff or non-stiff networks. hog►ever, the '
i

stersize is fixed thretin.sc tit t2ho duration of co:.,putation, a

feature rr'zic.a can be uneconomical in score instances. rurther,

other than impulse or step functions, the only type of circuit

input is sampled data.

Vie Gcar and :atrix modes may be used to co.mnute time domain

t	 4ransient, impulse, or step responses only, with Cie option of

call=ng CORITAP subroutine, to obtain transfer functions and zeroes

of transmission.  The Gear mode allaus the selection of either an

rAdam's integration method, suitz.:le for non-stiff equations, or

also the imethods of Goar, suitable for stiff equations. This mode

r
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can be used for analysis of the general linear time invariant net-

work, wi til forcing functions specified using the full power of the

FORTRAN language, or by neans of sampled data. In both cases

automatic order selection tecini.;ues and variations in the step

size are employed as the integration procedes, .o achieve a desired

level of accuracy with the : ,minimum nunfoer of integration steps.

The maximal order truncation error selectable by changing from one

algorithm to anoVaer via the automatic order selection process is

an eighth order Adam's method or a sixth order stiff algorithm.

The matrix r.^ethod was developed by personnel of Old Dominion

University, Norfol^:, Virginia. In the matrix mode a spectral decom-

position of the syste*n matrix in terms of its eigen-values is

employed, to obtain a closed fors solution *.fhich avoids a numerical

integration. The resulting method is computationally rapid and

may be used for either stiff or non-stiff networks; however, it is

applicable only in the case of no repeated cigenvalues of the

system matrix, and for syst=3 whose forcing functions are linear

conbinaticns of sinuzoidal, cosinusoids, impulse, or step functions.

Tile literature conc,rning the theoretical aspects of the

eomuined program package is rather extensive; the ravers considered
F•

most helpful are indicated in the ;Abliographies. In the present
r

document the theory first presented by Pottle, Gear, et.al ., is to

R	 sonc extent paraphrased anC/or suranarized; in some instances clari-

fying examplas are c ivon.
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'c CIRCUIT THLORY

The underlying nat:-or:: theory and mat1ierziatical algorit:nitts des..

cribed :3y C. Pottle [ 101 [11] and incorporated in the design of

program COMIJ-PiP will now be reiterated, essentially as in Pottle's

description. The programs used by'COMIAP to translate the circuit

description to a set of first order differential equations in the

state variables of the circuit ate commonly used by all program

modes.

2.1 CIRCUIT TRANSLATION: FROI N1 MTHORK DESCRIPTIOA TO STATES LQUATIMS

The algorithm for obtaining the state equations of a general

active linear network inr.lemented in COMAP is a modification of

that proposed by Dervi;ocjlu [2] and 'has been descri:.)ed in detail

elswher^: [1], [3), [4]. In this implcruentation it is assurled that

the state equations soug.it have a subset of t?ie capacitor voltages

and inductor currents as state variables. The pro:;len is, of

course, to proceed from an easily riven description of thhe networ:c

to a set of first order coupled differential equations TKhich con-

tain only state variables ant independent source inputs. All

other brand_ voltages and currents are removed along the gray.

summary of the met:iod folloas.

1) Form the furdarlental loop :matrix with res pect to a normal

tree; that is, a tree which contains all voltage sources as

tree branches, all current sources as lin:;s, and as many

capacitive tree branc:ies and inductive links as possible.

This matrix expresse3 a relation giving all tree--branch

currents in term^., of link currents and, using its negative

a
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transpose, giving all link voltages in terms of tree-branch

voltages.

2) Form and solve a set of algebraic equations relating

•	 a) resistive tree-branch voltages to their currants (and

hence to link currents),

b) resistive link currents to their voltages (and hence to

tree-branch voltages),

c) controlled sources to their controlling quantities

y	 (and hence to link currents and tree-branch voltages).

3) Form a set of initial state equations obtained by replacing

inductor voltages by expressions involving derivatives of

inductor currents and replacing capacitive currents by expres-

sions involving derivatives of capacitor voltages.

4) By row reduction techniques obtain the final state equa-

tions with dependent state variables removed.

The Fundamental Loop Matrix

Although a human may find a normal tree by inspection, for a
computer this tree is most easily found from the incidence matrix.

This matrix is easily constructed from the given topological input

data, each row expressing the Current Law with respect to a region

surrounding one node. A systematic, computer-oriented method for
4.

obtaining a normal tree and its associated fundamental loop matrix

from the incidence matrix is as follows:

1) Arrange the columns (branches) of the incidence matrix

in the order

voltage sources

1
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capacitors
resistors
inductors
current sources

Note that since source conversion and transportation are not

particularly adapted to computerization, the approach taken

here requires that each branch consist of only orn element;

voltage and current sources are branches and are ilc-t required

to be members of "generalized branches" with passive elements.

2) Apply the standard Gauss-Jordan rove reduction technique to

the rows of C with the modification that if, at the i th step,

yall entries in the ith column below and including the i th row

are zero, one simply goes on to the first column cohere a 'one'

can be brought into the i th row. When processing is complete,

the C matrix is in "roar echelon form".

3) Rearrange the columns (branches) of C to produce a matrix

of the form -

Y ( -F

The first columns with the single one in them refer to tree

branches and the rest refer to links.

Tree branch voltages and link currents will henceforth appear

in upper case and tree-branch currents and link voltages in lower

case. With the appearance of the fundamental loop matrix F we have

obtained the relations

i - FI andv - -FTV
	 (1)

ti

relating all lower case quantities to upper case quantities. The

t
E
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extended Gauss-Jordan algorithm appears at other places in the

sequel and is basic to the whole technique. It is introduced here

without discussion of roundoff errors and such, since at no stop

can numbers other than +1, -1, or 0 appear. The restriction on

the generality of network, which can be handled appearing here is

that controlled voltage sources must not appear in loops .v ' '-h other

voltage sources, and controlled current sources must not form cut-

sets with other current sources. Obviously there are legitimate

networks excluded by this restriction, but they are rather more

hypothetical than physical.

Removal of Resistors and Controlled Sources

Topological considerations now permit the replacement of any

lower case quantity by a linear combination of upper case quanti-

ties. But since each resistor voltage (current) is related to its

ourrent (voltage), and each controlled source to its control, a

set of algebraic equations may be constructed in the form

-Via - controlled voltage sources

V  - tree branch resistors
M_

- link resistors

I
d
 - controlled current sources

E - independent voltage sources

V
- tree branch capacitors

M'2
V 

- tree branch inductors	 (2)

IC
- link capacitors

,I^ - link inductors

J - independent current sources

c
c
c
t
t
t
f
E
t
t
t
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t Figure 1 illustrates a

source is controlled by the

first link resistor depends

tree branch voltages. Only

possibly non-zero areas.

case where the first controlled voltage

first tree branch capacitor, and the

(through	 on (possibly all) the

the shaded areas on a given row represent

Fig. 1 Formation of Algebraic Eq•-ations

Once this set of equations has been formed, it is solved

using the reduction to row echelon fcru, mentioned above. This

might also be accomplished using the LU algorithm (5] ,, which is

both accurate and efficient. Although in the passive case the

Matrix h is positive definite, in the general active case singu-

larity is a possibility, indicating the fact that one of the quan-

tities being solved for is arbitrary. Such cases are not likely

for physical circuits.

Preliminary State ESvations-

The constraint equations for energy storage elements (including

nutual coupling) are now introduced:

r,

f
V

id.

e

E
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dw
... (3)

92 V!c 11c 12 IL XL

The procedure here in to remove i,c and y using B and .FT, while

removing dependence on resistive and controlled source quantities

using the solution of the algebraic equations ( 2).	 Irc and Vi may

then be removed in favor of state variable derivatives the

matrices C2 and Li . The final res .ilts appear in the c	 ry

Vc	 ^c

is	 -VC E

s	 =	 A	 +	 B
LL	 (4)

IL	 IZ

or	 S x =r x + B u

It should be clear that branch quantitie3s.dofined as outputs can be

handled in an identical manner during these reductions, yielding a

preliminary input-output-state equation

+=Rx+Cx+Du	 (Sj

Final State Equations

The preliminary state equations would be in final form if S

were an identity matrix. Since this fact is generally not so, the

procedure continues by reducing the partitioned matrix CS; A^ B1

to row echelon form. Several possibilities now arise.

a) S becomes an identity matrix. In this caso S is of full rank

f
f
t
r

c
t

0
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and the final stato equations are obtained.

b) S and A contain at least one zero row. In this case: the equationN	 N

of the last row

b T u'=0	 (6)

implies a dependence among the independent sources. No solu-

tion exists for such a network.

e) S but not A contains at least one zero row. In this case the
M	 M

last row expresses the equation

Asa_nTx+bnTn
	 (7)

A mplying a dependence among the state variables. One may be

chosen for elimination and the relation above used to ren;ove

a column from the A and C matrice3. Differentiating the
ti	 y

expression gives

0anTxIL +bnTu
	

(8)

which is used to renove the corresponding element from x and

hence a column from R and S. Derivatives of input signals may
^	 M

thus arise during state variable elimination. trhen these rela-

tions have been exhausted, a smaller matrix Es 11 A iB is

again reducce to row echelon form and the process repeated until

an identity matrix is obtained for S, or all state variables

disappear.

In theory this reduction technique is a completely general one

in that the algorithm starts with the maximum possible number of
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state variable candidates and can remove as many as required. In

practice, numerical difficulties can ar;.se, but are entirely con-

centrated in the row reduction of matrices to row echelon form.

The procedure requires an algorithm for deciding the rank of a

matrix in the presence of round-off noise. This problem is a funda-

mental one in numerical analysis which has yet to be solved to the

satisfaction of all. All network analysis techniques have this

requirement built in in some form, since in any case the order of
complexity of the network must be determined. The algorithm under

discussion here presents the problem in precisely the form which is

being studied - as a rank determination problem.

2.2 FR011 STATE EQUATIONS TO CRITICAL FREQUENCIES

The designer of a network analysis scheme is at this point

faced with the problem of deciding for just what purposes the pro-

gram will be used. Time and frequency response data seem to be the

most often requested; there are, however, .users who for one reason

or another require the critical frequencies of the network. For

this reason, and because it turns out that it can be done accurately

without great expenditure of effort, the program proceeds to find

the natural modes of the network together with the zeros of trans-

mission between all possibl y inputs and outputs.

One way of locating the natural modes of the network is to

apply an eigenvalue-finding algorithm directly to the A matrix.

Numerical analysts seen to be in rare unanimity that Francis' OR

algorithm is the best available [61 , [7] and this algorithm is

employed by CORNAP. The remaining problem is then to determine the
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zeros. In order to use the QR algorithm for this purpose also, the

problem of how to construct a matrix whose eigenvalues are the zeros

of transmission of a network must be solved. The answer in this

case lies in considering the "inverse system", a concept which has

been explored in depth by Brockett [8) .

The Inverse Svstem

C-)nsider a network with. one,input and one output connected in

the feedback of an operational amplifier of gain k > 0 as shown in
t

Fig. 2.

Fig. 2 Metwork in Fee&back Loop of Operational Amplifier

If the system function of the original network is H(s), the system

function H(s) of the modified network ("inverse system") will be

H (s) =	 k
	

(9)
1 + kH(s)

i In the limit as k -+ -, H(s) has the zeros of H(s) as its poles, and

the poles of JH(s) as its zeros. If the A matrix of the inverse sys-

tem can be found without excessive effort a solution to our problem

will have been obtained, since its eigenvalues will be the zeros of

H(s) we are seeking. Fortunately, the machinery for obtaining this



State Equations of the Inverse S ,tem

As can be seen from Fig. 2, from the original preliminary state

and output-state equations of a single-input, single-output system

S x= A x+ b u

=rT x +cTy	 x + d u

we may by substitution obtain the preliminary state equations of

the inverse system. Since

u=k(t^-y)	 (12)

=ku -krT x- kcTx - kdu

ku = 1 +kd (u - rTx - _C _X)(13)

we obtain by substitution for u in (10)

+ 1 +kkd brT x	 A- 1 +klcd b e	
+[	 b u (14)

Before considering how to proceed to the limit k -► W , suppose first

that the matrix S 1 A ^ b has by roes operations been reduced so

that b is a coltamn vector with only one non-zero entry, the last

(bn). The preliminary state equations for the inverse system are

now no different than for the original, with the exception of the

last row which becomes

k b	 k b	 k b

(T + 1 +nkd rT ) x	 (anT - 1 +nkd cT) x + 1 +nlcd u . (15)

(10)

(11)

or
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Two cases may now be recognized:

Cases 1 (d # 0): In passing to the limit k -► m ,. the new last

row of the state matrices become

b
S:	 snT + an rT

b
A:	 an  - an CT	 (16 )
M

b
b: nT

Case 2 (d - 0): Dividing the last row by k and passing to the

limit, we obtain the last rot;

T
S:	 bnr
M

A:	 -bncT
	

(17)

b:	 bn

Having found preliminary sta*o equations for the inverse system, we

may proceed to use the mechanism already at hand F producing the

final state equations with the correct number of sate variables.

The OR algorithm then finds the zeros of transrussion of this parti-

cular input-output pair. The process must of course be repeated

for each input-output pair.

The Gain Constant

In addition to the poles and zeros of transfer functions which

have been requested, some sort of gain constant set is required.

These gain constants are most easily found simultaneously by-



- 15 -r
L

evaluating

y	 N

-1
y	 M	 y	 r

IS
at a single value of s.	 This value of s has.becn chosen as real

! (to avoid complex matrix inversion) and positive (to avoid network

poles).	 A search is also made to insure that the value of s chosen

is not too near a zero of transmission of one of the components of

H(s) .
Y

Remarks

In the usual case of proper systems with at most the same

number of zeros as poles, the above operations may be performed on

the final state equations (S=I) with some saving in processing time.

An improper system with more zeros than poles would in this case

require a way for the A-matrix to grow in size - no such algorithri

is included.

The sequence of evens in finding the zeros of a polynomial

filter (there are, of course, none) is that a zero row appears at

the bottom of S at each reduction to row echelon form until at last

no state variables are left.

Only the observable, controllable natural modes of a network

turn up as poles of the transfer function H(s).  Since the present

method finds all the natural modes of the network, we must be

certain that the uncontrollable or onobservable modes are also

natural modes of the inverse system, and therefore appear as zeros
C
L	 of H(s) to accompany the poles which should not be present. That

L
these modes are not altered in going to the inverse system may be



seen by considering that the inverse system is obtained by olerating

on the input and output of the original system. Since these modes

are either uncontrollable or unobservable, t riey cannot be altered

by operations on both input and output.

2.3 FREQUENCY JUM TRANSIENT RESPONSE CALCULATIONS

Once the decision has been made to obtain critical frequencies,

conventional techniques such as direct evaluation of the transfer

function at desired frequencies, and partial fraction expansion

follocied by evaluation in the time domain, are immediately available

and are fairly general. No more general or accurate approach exists,

in fact, for finding the frequency response, and therefore this

simple approach is the one used in the overall program. A some-

what more general technique was incorporated for co,.pating the

time response, trnich is explained in detail elsewhere (9]. The

method consists of breaking the system function into a cascade of

second order systems as shotm in Fig. 3. The state equations of

each subsystem are solved exactly, chile the

[ 	
u(t)	 H1(s)	 H2(s)	 - -	 1r7 (s)	 y(t)

IFig. 3 Transfer Function as a Cascade of Subsystnnrs

convolution integral between each subsystem is approximated by a

fourth --order integration procedure. Sampled input signals are

easily processed, and the method is completely insensitive to

multiple or clustered roles.
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CHAPTER III

STIFFLY STABLE atUIMUCAL INTEGRATION

3.1 INTRODUCTION

The output from the COItNAP circuit translation routines con-

sists of the differential and ai ebraic equationsquations of the circuit;

namely, a state equation

E
at- ^ A1x + B1u + El t	 (3.1)

E

and an output equationl

y Clx + Dlu	 (3.2)

Here

x is the s x 1 state vector of the circuit;

u is a T x 1 time varying, vector ,chose components are the

independent sources of the circuit;

y is a v x 1 vector tihose components are the outputs requested

by the user; and Al , 31 , Cl , Dl , El are constant matrices of

dimensions consistent with the above equations (3.1 - 3.2).

If El is nonzero, the change of variables

x s q+Elu

transforms the above equations to a fora free of source derivatives-

lIt is clear that the state and out put equations for the general
circuit could involve higher derivatives of the inputs; i.e.

dx	 du
Aix + Blu + Eldt + rldt2 + .t

r-	 2u
Y C 1 x + D 1 u + GiT + :I1dt2 +

	 .

However, only equations of the form of (3.1 - 3.2) can be processed
by STICAP, since no provisions az:e made to allow user input of
derivatives of the independent sources.
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dF 
g ?ul+Bu	 (3.3)

y s di Du	 (3.4)

t	 Here

3 ^ 	 A=Al	
C= Cl

E=A1Ei +Bi 	 D ClEi+Di,	 (3.5)

{	 and q is the transformed state vector.

The problem of obtaining tine domain circuit response is no*.1,

reduced to finding a solution of ears. (3.3 -• 3.4). In the Gear

mode this ;.s accomplished by numerically integrating the initial

value problem

1	 ka + Ru, q (tfl )	 a_0 -	 (3.6)

Stiffly stable numerical integration techniques nay he applied, if

the system is stiff; otherwise, an Adam's integration algorithm may

be selected. In this chapter the necessity of using stiff methods

is indicated, together with a survey of the related theory.
t.

3.2 ACCURACY hND STABILITY OF NUMMICAL IMEGRMI011

Consider the scalar initial value problem

dt = f 
(t, 

Z) , Z (t^)	 z^	 (3.7)

consisting of one first order ordinary differential equation, for

which a solution is desired on the domain t > to , satisfying ini-

i

	 tially z(tQ) = Z^. In the absence of a closed form solution one

settles for some form of a numerically approxinate solution

E
	

(y (t 	 tj > to , j = 1,2,...}.

with the set of time points t j dense enough to yield information

t..
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sufficient for the purposes at hand. The t j often are chosen uni-

formly spaced, with to+l = to + a, where h is calleC the step sizo.

The equations ermloved to generate this approximate solution may 'ze

called a numerical integration algorithm. A customary notation fur

the approxinating solution values is y(tn) a yn , to = t0 + nh.

Suppose the solution of (3.7) is e..nressed as

to+?i
zn+l a zn + It	 f[u,z (to .z0,u)ldu"

n

anc'. let the integral in (3. 0 ) '^e a_proxir. ated by the trapezoidali
(3. C)

rule
a+h

to g(x)cLY N 2
1g(a) + g(a+h)).

Then we obtain the recursive numerical inte gration algorithm

hyn+l = yn + 2 [ fn + fn+11 .

(3.9)

(3.10)

where fn f (tn , yn ) , and vn is a numerical apnro.:ination to z n .

Given values yn , fn the ne::-t solution point, recursively ob-

tainer?, is innlicitly snecified ':)v (3.10) . In contrast, the Euler

algorithms

yn+1 a yn + hfn
	 (3.11)

esmlicitly specifies the next solution point. T'lese algorithms pro-

vide respectively very si;:lnle enam?les of typical nerOers from the

classes of implicit and explicit linear multisten methods. Funda-

mental differences in character of these two algorithms will now

f

	

be indieatee. The phenomena c:iscussed are also characteristic of
1

i



21

more complicated linear multistep methoda.2

The accuraa,-,_s► of a numerical integration algorithm is customarily

measured in terms of its performance when applied to initial value

problems (3.7) having as exact solutions the polynomials (l,t,t2,...,

tf). if, when applied to problems whose solutions are members of

the test set {l,t,t2,...,tp), and in the absence of roundoff error

(i.e., on an infinite precision machine), the numerical and the

exact solutions are identical, but where error appears in the numer-

ical solution when the exact solution is t p+l , the algorithm is said

to be of order P. Due to the linearity, if the order is P, the

linear multistep algorithm, whether implicit of explicit, yields an

exact solution to the initial value problems whose time solution is

an arbitrary polynomial of degree p or less, in the absence of com-

putational errors in the initial conditions-

The-order p of the algorithm dictates the magnituue of the

stepsize h needed to produce a given degree of accuracy, when the

algorithm is applied to a problem whose solution is not a polynomial

of maximal degree p. This relation may be more explicitly stated

by means of the one step truncation error, the error made in comput-

ing yn+l when exact solution values of all required previous values

yn_j , fn-j (j a 0,1,...,k-1; for a k step algorithm) are known. For

2The general linear multistep method of k steps is of the form
k
E	 tak _ jyn_j - hlk-jfn-j) ' Of 0001

with the ai 3 Oi real constants. T`-.e method is implicit if SOO;
otherwise, it is explicit. For implicit methods with nonlinear

t	 fn=f(tn,yn), some type of predictor corrector iteration must be
1	 used to solve for yn, given values of (Yn-11Y -22•••• ►yn-kk%fn-^•fn-2t

...,fn_k ). The linear one step methods typif^ed by (3.1Q) an y (3.11)
are considered a subclass of the general family.
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i	 ••

an algorithm whose order is p the one step truncation error is of

	

i	 the form Ill

T = CP+lh lX (P+l) + 0 (hp+2 ) ,	 (3.12)

where CP+l is a oonstant and 0 (hp+a) indicates a function which

	

(I	 approaches zero as h approaches zero in the same manner as does

h +2 . Thus, the accuracy of the algorithm, as well as its dcor:vw

in terms of stepsize magnitude for a given degree of precision,

increases directly with the integer p.

It is clear that the al' licit Euler method (3.11) is of order

p = 1, and it is readily verified thae the trapezoidal method (3.10)

is of order p = 2.

We now examine another characteristic phenomena cf these algo-

rithms; namely, their numerical stability, or as the statistician

might say, robustness under variations in the step size. We shall

consider as test system the initial value problem

dt = az, z(t0 ) = z0	(3.13)
where a is allovel to be a real or cow number.3

Here the exact: i :lution is

Z = ZDeMt-to) .	 (3.14),

the desired sequence to be produced by numerical integration is the

set of complex numbers

Z  = zoo Xh , (tn=t0+nh).

However, the Euler algorithm produces the sequence

yn = (1+hA) n zo,
i

3Curiosity concerning the permissiveness of complex values of A
will be dispelled in the next section.
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and the trapezoidal rule the sequence

YA 
(1 + h42 a)n 

z0•

In the limit as n -► • and h ♦ O wit:i the product nh = to-t0

held constant, both sequences converge '.:o the true solution (3.14).4

However, for h fixed, as n - ► =the puler sequence diverges, regard-

less of the size of he whenever 11 + hXj > I t while the trapezoidal

sequence diverges if and only if P-! (hX) > 0. This phenomena is

refer=ed to as numerical instability; when it occurs the accuracy
^.^1. YY Y1 4rw^

of the computation rapidly degenerates.

For *.he general linear multistep method, the degree of the

difference equation usually exceeds that of the differential eque-

t ion it is intended to approximate. Thus, certain 1araasitic

tions are present, in addition to the desired solution. When ex-

cited by roundoff or other computational error, the.3e parasitic

solutions tend to spoil the computation, in proportion to the degree

I	 that their rate of growth exceeds that of the desired solution.

t	 A stability requiretr4mt which prevents the spoiling of the com-

putation by excitation of parasitic solutions will now be define%t

i A linear multistep method is absolutely stable if the numerical

solution approaches zero for h fixed, as n approaches infinity, whew

applied to all initial value problems (3.13) whose eigenvalue l has

negati^*e real part; Re (hX) < 0. Should this phenomena occur only

when hA is restricted to some proper subset D of the left half p'_"e,

t
the algorithm is said to be D-strongly_stable, or absolutely stable

on a restricted domain.

4The numerical solution converges pointwise to the exact solution,
as 4approaches zero. An algorithm characterized by this property

--	 _ in	 convergent algorithm (1).



• The hA plane regions of ev.ahility and instability of each al-

gorithm (3.10) and (3.11) are indicated in Figure 1.
y hA-plane	 y hA-plane

9TAELE
_ 

Unstable	 Unstable
REGIMI	 Region	 Region

STABLE

x	 x
REGION

Fig. a	 y.	
(x+ V 

2+y3 h25 t' ) Trapezoidal
Rule

Fig. i (b) Ruler Method
Figure 1

The trapezoidal rule is absolutely stable, whereas the region of

stability for the Euler method is the interior of the circle centered

at(- h, 0) with radius R = ^. The Luler method is strongly stable

an the interior of the circle. For this method the stability re -

quirements may be expressed in terms of stepsize by the relations

2

Hence the stepsize h is very restricted by the modulus of the eigen-

value A of the system being integrated.

'	 We ncnr make a fundamental observation, exemplified by the pre-

ceding examples. Namely, for all convergent explicit linear multi-

step methods, the hA plane stability region is bounded and has the

origin as either an interior point or a boundary pcir..t. This obser-

vation also holds true for some implicit algorithms, the exception

being the stiffly stable algorithms of Gear [21, 131; and some

instances of algorWun of other types, such as the absolutely stable

Rosenbrock rule reported by Calahan 141. Hence, for many commonly
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used, techniques ( Runge -Kutta, Adam's-Bashforth, etc.) , there is a

restriction on the stepsize, to avoid instability, u;;ually of the

form

0<h< ^^^
)-max

A a-positive constant,

where Amax is the largest eigenvalue of the Jacobian matrix of the

system. In the case of stiff circuits this restriction is particu-

larly hard to abide, since the step size is determined by the system

component with minimum time constant, which in the large contributes

least to the solution.

For the general stiff algorithm the stability region is un-

bounded in the left half plane and possesses a corridor of stable

approach to the origin (see Fig. 211.

y hA-plane
STABLE
REGION	 y=e

Unstable
or

x=D	
STAND	

Don't Care

Region
x

Accurate
Region

Fignre 2. Stiff Stability Requirements

In the part of the hX ply:ze to left of the line x a D, corresponding

to occurrence of system eigenvalues related to the high frcquency

components, the stiff algorithm is required to be stable. In the

region bounded by the lines x = D. x = 0 and y = +e, the algorithm

must be both stable and accurate; the rest of the plane is a-"Don't
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Care" region and can be stable or unstable. Hence stiff stability

requires an algorithm which is numerically stable in the region of

hA corresponding to rapidly decaying system components of diminish-

ing significance, and whi& is both accurate and stable in the re-

gion corresponding to reasonably large step sixes and less slowly

decaying system components.

Thus, for physically stable systems, the stability of the stiff

algorithm is unaffected by the presence of left half plane eigen-

values of large modulus; for eigenvalues of other types, stability

can be achieved by adjustments in step size (see Fig. 3 for further

clarification of this statement). The off shoot of such nethods is

that the character of the computation is no longer so utterly re-

stricted by the largest eigenmode; when high frequency effects are

of diminished importance, the integration can proceed using a time

step determined only by the needs of accuracy. Economical computa-

tion times may be achieved by suitably varying the stepsize h and

the. order p (by changing fro~ one stiff algorithm to another) as

the integration proceeds, so as to maximize the step size while

simultaneously maintaining stability and a desired level of accuracy

specified by the user (9].

The tradeoffs which can be made between the competing factors

o stability and accuracy, for the stiff algorithms programmed in

Algorithm 407, are indicated by Figure 3. Typical ha plane stabil-

ity regions are indicated, for Gear's algorithms of orders p=2,3,4,

5,0. In these figures the regions of stability and instability are

symmetric with respect to the axis of the reals; only the left half

plane portions are of any si,, _f'-canoe, assuming physically stable
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Y•
ha plane

-^-- ^-- --r— --T

-1

Stable Side	 _2
ks2

Unstable ka3
Side	 -4 

:	 -5

k-4
k-6	 k-5

Figure 3. Sections of stable regions.
Curves symmetric Faith respect
to the x-axis.
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networks. All regions of instability for the lower order methods

are contained within the region of instability of the order p = 6

algorithm (see Figure 4). These plots also appear in references

.(3), [7l

1	
3.3 THE NMERICAL TREATI-MNIT OF A VECTOR SYSTEM

A sr dy of the previous section presumably arouses curiosity

concerning the permissiveness of complex A in the test equations

(3.13). The dispellation of this curiosity is readily achieved when

one considers the application of an algorithm for solution of a

scalar equation to a vector system of simultaneous equations. Ile

note provide an example, again using the trapezoidal rule.

Suppose the numerical integration of equation (3.4)

dt - Aq	 , q+ Bu(t0 ) = ;10,P
were to be accomplished by the vector trapezoidal rule, a parallel

application of equation (3.10); namely,

h
yn+l = yn + 2 (fn+l + 'En) • 70 - q0 •	 (3.15)

In this instance the s x 1 vectors Yn are defined by

Yn = Aqn + Bun.	 (3.16)

This further reducesi(3.15) toe formtl

(I - hA) y	 - (I a- P) yn + hB t un+l + un) ,	 (3.17)
2 n+1	 2	 2

where I is the identity matrix, s x s.

Consider for purposes of illustration the case in which the

eigenvalues A l ,A 21 ...,Xs of A are distinct. Then there exists a

nonsingular matrix: Q for which

t
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D = 0- 1  AQ - diag(A1,X2,...,as)

is a diagonal matrix, whose diagonal elements are the eigenvalues

of A. Then under the transformation

yn QZn

the algorithm (3.17) becomes

(I -) Zn+l (I + f) Zn + z -1B [un+l + un l •	 (3.18)

Thus the transformation uncouples the algorithm, so that there =-i

arises a system of s simultaneous e quations, i = 1,2,...,s,

f	 (1 - hli)Pi,n+1
	 (1 + Zli)Pi,n'^n.	 (3.19) .

Iwhere

gn = E aij [uj ,n+ , + u7 ,n ! .7
Here

Xi is an eigenvalue of A,

Pi on is the ith component of Zn,

uj,n is the jth independent source, evaluated at time n,

the aij are the elements of Q-1B, and

the summation on j is over all independent sources.

Now if (3.19) is to be stable for all bounded independent

source inputs, it must in particular be stable when these sources

are switched off; i.e., the natural modes of the algorithm must be

stable. However, setting gn - 0 in (3.19), it emerges that a

necessity and sufficient condition for stability is that for each

i = 1,2,3,...,5, Pe(hai) be negative. -But this is the same criterion

as was established for the scalar case. Moreover, the result is

equally valid for occurrence of repeated eigenvalues, as can readily

be established.
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3.4 THE STIFF ALGORITIIIIS OF GEAR

The general form of the vector implicit linear multistep algor-

ithm for solution of equation (3.6),

Aq + Bu, q (t0)	 qO ,	 (3.20)

is given by the relation

akyn+k + ak-lyn+k-1 4- 	 r.0yn = h(Skfn+k +...+ROfn].	 (3.21)

Here aksk # 0, the functions fn+j satisfy5

fn+j = gYn+j + Bun+j. 7 a 0,1,2,...,k

and yn is the numerical approximation of qn.

The algorithm is of order p if the relations CO=C1=...=Cp=O,

Cp+l # 0, are satisfied, where [1]

COsa0+al+	 +ak

Cl = a1 +2a2 +	 +l:ak - (00+01+ ... + Bk)

(3.22)

Cq = gI(al+2ga2+...+kgak] - q-	 ,IRl+2q-1^2+...+kq-lsk].

Once having restricted the a's and S's to produce an algorithm

of order p, it emerges that the S values are uniquely specified in

terms of the a values by eqns. (3.22).. Conversely, the additional

specification that p = k allows a unique specification of the a

values in terms of the 5 values. In either case, for a fixed order

5In this section the theory of linear multistep algorithms, special-
ized to the case of a linear dynamical system, is given. The gen-
eral theory, as indicated in the literature tabulated in the bibli-
ography, applies equally well to the nonlinear case.
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p, the arbitrary parameters may then be chosen to obtain satisfactory

stability properties. Criteria upon which such a value judgment may

be based will* now be indicated.

The numerical stability of the algorithm, as defined in the

previous sections, is governed ?by the following theorem [2) [5]

Stability Theorem

The numerical solution of (3.21) is stable if and only if tia

stepsize h is restricted so that the roots of the polynomial equa-

tions
k
E	 (ay 	 hli^k-ĥ Ak`7	0,	 (3.23)
j=0

(with Xi, i = 1,2,...,s, the eigenvalues of the matrix A) are within

the unit circle in the complex plane, or else on-the unit circle and

not repeated.

In view of the foregoing discussion, it appears that in order

to design the opt.,mal k-ster_ algorithm one should maxiriize simul-

taneously the integer p (for accuracy) and the region of the complex

hx plane which yields a stable root configuration for each of eans.

(3.23) . Holaever, a theorem of .Dahlguist [1] concerned with con-

vergence restricts the maximal n, for k fixed, to either k + 1 or

k + 2, depending upon whether k is cdd or even. Fixing p at its

maximal value, one next seeks the parameter choice yieldin g, the

broadest range of stability. F.ssuming a physically stable differen-

tial equation, absolute stability of the difference e quation is the

natural criterion, for broad general application. Unfortunately,

again a result of Dahlauist [5] limits k to the value k = 2, p < 2,

for absolute staYA lity. However, the loaf order involved here implies

i^	 '
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an algorithm of limited usefulness. Thus the motivation for dis-

covery of the stiff methods arises; methods not quite absolutely

stable, but strongly stable on a restricted domain of the left half

plane, with the characteristic corridor of stable approach -Lo the

origin (Fig. 2).

For stiff algorithms, a result of Uidland (6) imposes the re-

striction p < k, for k > 1; p = 2, for l: = 1. Specific stiff alg:::-

ithms With p = k, k = 1 (1) 8 have been discovered ay Gear [3), [73;

the general question is still the subject of research.

The algorithms discovered by Gear, with n = k; k = 1,2,3,4,5,6

are implemented in ALGORITHM :07. These algorithms are of tie fora

yn+l = ak-1 yn + ak-2 yn-1 +...+ a0yn+l-k + hskn+1•	 (3.24)

and require, in the prograrmied formulation [7], the fewest function

evaluations and saving of least inforr.ation from step to step of all

stiff algorithms in the class p = k. The values of the a's and S's

are given in Table I. A sample plot of the stability region, for

k = 6, is given in Fig. (4). The stability regions for each algor-

ithn appear in Fig. (3) (the stability plots are symmetric with

respect to t: a real axis) .

Table I. Coefficients of Stiff Algorithms

.. Po	 ul	 ;	 u2 %Aj %44	 `"5 %A6

2 2/3 4/3	 ' -1/3 0 0 0 0

3 6/11 18/11 -9/11 2/11 0 0 0

4 12/25 48/25

300;137

-36/25 16/25 -3/25 0 0

5 60/137 -300/137 200/137 -75/137 12/137 0

6 60/147 360/147 -450/147 1 400/147 -225/147 72/147 -10/147
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.These algorithms are obtained as folla ,,s: Equations (3.23)

define a stability mapping (8]

Iiakpk+... +a0
Skpk + ... + SO	

(3.25)

of the complex root plane (the p plane) onto the H - hA plane. As-

h approaches infinity the roots of (3.23) approach the poles of H;

as h approaches zero the roots of (3.23) approach the zeroes of H.

Since the roots of a polynomial vary continuously with its coeffi-

cients, the choice of the poles of H to be strictly within the unit

circle assures that each ha point in some neighborhood of infinity

will be stable. By continuity, this stability region can be extended

so that at least each point exterior to the image of the unit circle

1p1 = 1 is a stable point. (Moreover, when H is one-to-one on the

unit circle v ith poles inside this image locus separates the stable

and unstable regions [8) of the hX plane.) The unique stability

mapping obtained by choosing all poles of II at the origin and deter-

mining the zeroes by the req' :irement that the order of the corre-

sponding algorithm be p = k yields stiffly stable algorithms, for

k = 1,2,3,4,5,G, characterized by the stability regions of Figure 4.

3.5 PROGRAM-1ED FOMiULATION

In the preceding sections we have presented the general theory

underlying the linear multistep integration techniques exploited by

Gear, and indicated the basic algorithms implemented in ALGORITICH

407. The mathematical formulation of these stiff methods and the

"	

Adam's-Bashforth methods for non-stiff equations ^ictually programmed

4
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will not be discussed here . 6 The interested reader may refer to

references 191, (101 for a detailed discussion of the mathematical

formulation employed, the error controls used, and criterion for

varying the ate size and order of the methods.^Y 9	 P	 e metl od .

As indicated in the preceding discussion, the stiff system

theory applies equally well to nonlinear systems, and ALGORITWI 407

is programmed for such. Hence it might be argued that the predictrjx--

corrector techniques used for solving equation (3.21) iteratively

for _
	

in terms of receding values could perhaps be inefficientYn+k	 P	 ^	 P

when applied to a linear system. however this conjecture is not

justified= in the linear case the Newton iteration involved converges

with only one iteration [9]. Hence the process reduces to a matrix

inversion at each step, which cannot be avoided, regardless of the

linearity, if a linear multistep method is assumed. Furthermore,

in its progra=ed version the mathematical formulation automatically

provides the inforzaation needed for determining  the necessity of a

4.	 change in stepsize or order of the method, an essential feature of

any numerical integration technique which is to be effective over

a broad range of network analysis problems.

617e remark that the formulation employed is chosen for the facility
with which it lends itself to stepsiza and order changing.
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•CHAPTEn IV

THE 1•iATRIX MMOD

4.1 INTRODUCTION

As indicated in Chapter 3, the differential and algebraic equa-

tions of a network processable by STICAP may be described in the

form

dx
dt " Ax + Bu t 	x(to) = xo

Y M cx - Du,

where x is the state vector (or transformed state vector); y is the

vector of outputs; u is the vector of independent sources; A, B, C,^

D are constant matrices.

The solution of the state equation is

t
X = iexp(A(t-tp) xp + I exp(A(t - T) v 	 dt,	 (4.2)

to

where

v 	 = Bu (t) .

One way to avoid the problems which arise in numerical integration

of stiff circuits is to integrate (4.2) exactly for certain wave-

forms such as sinusoids and block pulses, which constitute many of

the excitations encountered in electronic circuits.

This explicit integration can be carried out if the transition

matrix exp(A(t - T) can be expressed as a linear combination of the

eigen- odes of the system. The eigenvalues of the A matrix are

obtained by Cie QR transformation, the best nethod available. The

particular expansion in terum of the eigenr ►odes essential for the

STICAP matrix ulcorithm was studied by Kirchner (1). In the present

(4.1)
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algorithm the expansion is limited to the case of non-deg©neratte

modes: the general case is more complex, but still solvable

4.2 BIGEtn100E EXPANSION OF exp (At)

Consider the case for which the Q:'jenvalues of A Pre distinct.

For this case the transition matrix is expressible as

U n
WQ 

(At) _ I-1 I-1 Ci jA-' - exp (Ait)	 (4.3)

The coefficients Cij form a matrix which turns out to be the inverse

of the Vandermonde matrix

a1

C - (Cij ] _

1

Tire Vanuermonde inverse can

method developed by Kaufman

1
12	In

(4.4)

In-1	 an-
t	 n	 ,

be computed efficiently through the

(2] ,

-i a In-j-k
Cij	 k 1	

(4.5)

I (Ai -lk)
k-1
k#1

where the ak values are the coefficients of the characteristic

equation

P(X) = aoan + al an-1 +	 + an-ll + an	(4.6)

wi Ch ao = 1
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The ak coefficients can be formed from the combination of the

traces of Ak , k = 1,	 ., n

k
ak = r k E al:-m m	

(4.7 )

M=l

n
T. = tr	 (4.8)Am = E	 (7^^ )

i=1

The total number of operations involved in forming the C matrix is
ti

about 4.5 N2 operations, which is considerably faster than Gauss

elimination, for large N. It I s very cumbersome to store the transi-

tion matrix as expressed by Equation (4.3). Since the matrix is

always multiplied into a vector such as exp(A(t-T))v, then it would

be convenient to consider the vectors

exp(A(t-T))v = ^lexp ( 7l l (t-t)) + .	 .+ ^exp ( 71 n (t-T)) (4.4)

where

E,: = (Ci ll + Cj2A + . . . + C,nAn-1)v

= (CjIYl T Cj272 + . . . + Cj nYn )	 (4.10)

with the Ym+l vector defined by

Yl = v

YM+l = A Ym-1	 (4.11)

This can be easily set up as a recursive process, if use is made to

take advantage of the sparseness of the A matrix so that the program-

ming is more efficient.

6



I.=M

p.	 L rksk(T)
3 k=1

(4.13)
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The integral in Equation (4 .21 car..._

t	 n t
Io exp(A(t-T) ) v (T) dT - 

jul to p
^	 exp ( a^ (t-T) ) dT	 (4.12)

For a finite :lumber of excitation sources pJ can be written as

r
'E

where rk is a constant column vector,.and Equation (4.12)• becomes

n	 M	 t
: E 	 E	 rk I	 exp(aj(t-T))sk (T) dT (4.14)
j=1 k=1	 to

Notice the integrals in Equation (4.19) are now scalar quantities and

these ara nothing more than convolution integrals. Since the inte-

gral

t	 t	 to
If dT = f f dT - f f dT (4.15)
to	 0	 0

it is sufficient to examine the integral

tif exp(a j (t-T))sk(T) dT (4.16)
to

from which Equation (4.15) can be computed-The Laplace transform of

the above integral is

P_X. S(P) = P-^ bd(p)d(P)	 P-X,	
+	 (4.17)

The first term in the above equation is the natural mode in the cir-

cuit while the remainder term is the response due to Vie forcing

i^ function.	 If aj and the poles of the driving function are situated
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widely, apart, en the ill-conditioned case comes up. In the

present algor. .., an exact explicit integration is performed for

Equation (4.16), for certain excitation waveforms, thereby eliminating

the difficulty. When there are comple;: eigenvalues, then the

following integral pair is considered

t

U exp(Ai(t-T))rs(T) dT + f exp(Ai(t-T))r *s(T) dT}	 (4.18!

0	 0

where r is an element in the column vector of Equation (4.14).

Equation (4.18) is valid if the original state equations consist

of real quantities only. For a full discussion of the algori-hn

mathematics concerning the exact integration of (4.14) for the

functions STICAP allowable as excitations see [3}, [4), [5).

^._. _	 J
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