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A GENERAL ALGORITHM USING FINITE ELEMENT METHOD FOR

AERODYNXXIC CONFIGURATIONS AT LOW SPEEDS

By

R. Balasubramanian1

SUMMARY

A finite element algorithm for nL.-erical simulation of two-

dimensional, incompressible, viscous rlows has been developed. The

Navier-Stokes equations are suitably modelled to facilitate direct

solution for the essential flow parameters. A leap-frog time

differencing and Galerkin minimization of these model equations

yields the finite element algorithm. The finite elements are

triangular with bicubic shape functions approximating the solution
space. The finite element matrices are unsymmetrically banded to

facilitate savings in storage. An unsymmetric L-L' decomposition is

performed on the finite element matrices to obtain the solution for

the boundary value problem.

INTRODUCTION

Under grant NSG-1094, a computer program for numerical solution

of two-dimensional, incompressible, viscous flows has been developed.

The program is operational and has been used to simulate the "driven

cavity" problem. The numerical results for the "driven cavity" are

compared with known finite difference solutions. The purpose of
this report is to provide documentation of the preliminary numerical

results as well as to present the software programs generated under

grant NSG-1094.

The Analytical Fluid Mechanics Section, FMB, HSAD, LaRC has been

in the process of evaluating the efficiency of finite element

1 Research Associate, Old Dominion University, Norfolk, Virginia
23508.



techniques for fluid problems. An algorithm for high speed flows

was previously under development (ref. 1) when the author proposed

low speed simulation studies in 1974. The results of the present

investigation indicate that further research should be completed

in order to obtain objective comparisons. The research effort of

the ..athor was, however, redirected to enable him to participate in

research work on "compliant walls". It is hoped that further

extensions of the present work will be undertaken at a later date.

THE FINITE ELEMENT METHOD

The finite eleme.it method has been used with a great deal of

success as a simulz +.ion technique for problems in structural

mechanics. There are excellent books (ref;. 2, 3) which detail

the general capabilities of the method and its applications.

However, there have been only a few known successful applications of

this technique to fluid flow problems. Even in those cases that are

reported in the literature no rigorous comparison has been made
between the finite element and finite difference solutions for the

same test problem of accuracy, efficiency, cost, or storage. It is

felt that such a comparison should be made; hence, the test problem of

driven cavity has been undertaken where extensive finite difference

solutions are available (ref. 4).

Traditionally, the problems in fluid dynamics have been studied

by using the "high speed variables" (primitive variables: u, v,, p)

for supersonic flows and by using the "low-speed variables"

(streamfunction-vorticity: T, 4) for subsonic flows. In recent

years, where mixed flows have had to be analyzed it has become

imperative to develop numerical techniques where flow variables can

be used at all speeds. In the literature are found the MAC, SMAC,

ICE methods and Chorin's artificial compressibility method (refs: 5,

6, 7, and 8), primarily for such applications. The Fluid Mechanics

Branch was also motivated to develop a primitive variables algorithm

from such a consideration.

2
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One of the major problems associated with incompressible flows

is the solution of the continuity equation (hence the concept of

stream-functions and stream tubes). When primitive variables are

used, the continuity equation has to be satisfied through some

iteration procedure. A natural parameter for iteration is the

pressure. In this report two different schemes of itei- .tion, which

will be referred to in subsequent sections of this report as Models

I and II, have been used. Some of the more important features of

the present algorithm may be summarized as follows:

• Triangular finite elements with bicubic shape functions (T-10

element) (ref. 9). Order of accuracy O(h 4 ) in space.

e Leap-frog differencing for marching to steady state (Crank-

Nicholson scheme). Order of accuracy O(t 2 ) in time.

• Guyan reduction to eliminate "unnecessary" degrees of freedom.

• A special Poisson solver for elliptic problems which conserves

the basic conservation laws, thereby improving overall accuracy of

the finite elements.

Fluid Dynamic Equations

The governing equations for two-dimensional, incompressible,

viscous flow in a rectangular coordinate system are as follows:

ru
+ V - 0 (la)ax a Y

au	 au
at + uax +may

au 
=

1 a—	 1	 a 2u
—p ax . C + ^Qa-x

32—U
+ aye	 (1b)

aV + uaV +
at	 ax

V v =
ay

—1 . ^ + V ra2V +
p	 ay	 `ate

a 2 ^1	 (lc)a7'

where, u is the velocity in the x-direction, v is the velocity

in the y-direction, and p is the pressure.

Non-dimensionalize the flow equations using the diffusion

scales, i.e.,

3



T = Ut (2a)

= L •	 •n = L (2b)

u = U (;.C)

v = 0 (2d)

P = ?UT (2e)

The non-dimensional Reynolds number is defined as

Re = UL
	 (3)

Equations (la, b, c) in non-dimensional form are

at+ate=0	 (4a)

au + uau + vau = _ate + 1 (a2u + 32u	 (4b)
WT	 an	 a	 Re lam a' n7}

av —av—av _a1 + _1132V  + a2v	 (4c)
aT + uaC +van = an Re a^ any .

Iteration Schemes

The system of equations (4a) to (40 is not amenable to

direct solution because of the nature of the incompressibility con-

dition of equation (4a). Described below are two different models

for the equations (4a, b, c).

Model I

2 + Kp(^ + an / = 0	 (5a)

au + au + eau	 _aE=	 + 1 a2u + a2u	 (5b)
aT 

u 
a^	 an	 a^ Re ^a	 r,^

4
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av	 1V uaV + vaV = _ ate + 1 a 2v + a2v
aT	 a^	 an	 an Re ka^ a^^

where K is an artificially chosen time parameter. Equations (5a,

b, c) describe a purely hyperbolic system when the viscous terms are

absent and can, hence, be viewed as hyperbolic for fairly large

Reynolds number flows (see Appendix A). The incompressibility

condition as modelled by Equation ( 5a) is a restatement, at steady

state,(i.e., t	 22 1 0)	 that the work done by ;:he pressure

forces is equal to zero. Model I was tested on the driven cavity

problem. It was observed that the artificial time constan'- "K" can

be chosen to accelerate or decelerate the march to steady state.

A careful choice of "K" is essential.to successfully implement

this algorithm. At high Reynolds numbers oscillations were seen,

as a direct result of ill-chosen values for "K".

Model II

au*	 au*
aT	 + u ^^	 +v an

au* __ a
—f

1

+ Re(^
a 2 u*

+
a 2u*

an (6a)

av* + uav* +a 	 ^ vav* =an
— ap

an
+	 1 (a2v*Re — + a2v*`any (6b)

a4 + a 2 = a^ + 
an*

(6c)

U = u* - ap (6d)

V = v* - (6e)

The model equations (6) follow from the SMAC methodology (ref. 5).

The Navier-Stokes equations are solved (6a, b) to obtain an auxiliary

field (u*, v*); the pressure gradients appearing in equation (6a, b)

are pseudo-pressure gradients. The pseudo-pressure is obtained by

solving a Poisson equation (6c). The actual velocity fields are

obtained by applying corrections (6d, e). The model is valid

whenever velocity-splitting is justifiable. Assuming that this is

so, we notice equations (6d, e)

(5c)

5



u = u* - Vp

and hence,

V • u = V • u* - V • V • p	 (7a)

By forcing

V • u = 0	 (7b)

one obtains (60 i.e.,

V • Vp = V • u*	 (70

This model was also tested on the driven cavity problem. A special

Poisson solver, using a variational formulation (Weak-Galerkin method)

with undetermined Lagrangian multipliers, was developed to solve the

Poisson Equation (6c) when it was found that conventional finite

element method of satisfying the boundary conditions for this problem

violated the basic conservation laws on the boundary. For details,

see reference (10).

Finite Element Algorithm

Triangular elements with bicubic basis functions ^i

(J = 1, 2, . . . 10) associated with triangles are chosen in this

work (Appendix B). The basis functions have support only on the

triangulation. A leap-frog differencing scheme is used on the model

equations to yield an implicit procedure. Equation system (5a, b, c)

after differencing can be written as follows:

U* - un-1 + un (u*,x + un-l'x) + vn (u*,y + un-1 ,Y) + pn.x
2T	 2-	 2

- 1 (u*,x + un-l ,x),x - 2R(u*.y + un-1.Y),Y

= L 1 (u*)	 (8a)

6
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V* - vn-1 + un (v*,x + vn-1,x) + vn (v*.y + vn-1 .Y) + Pn,Y2T	 2-	 T-

1.(v*,x + vn-l^ x).x - R(v*,Y + vn-1.Y)OY

= L2 (V*)	 (8b)

	

* _ n-1	 nP	
2t	

+ k -(u*,x + un-lax + v* .Y + vn-l/y• = L3(P*)

(8c)

where u*, v*, u* are the current variables, L 1 , L;, , L3 are the
"residuals", the superscripts (n) and (n - 1) refer to previous time

periods and commas (,) indicate partial differentials.

It should be noted that the current variables u*, v*, p* can
A n n

be expressed in terms of the nodal variables uj , vj , pj

(j = 1, 2,	 10) as,

U* = 7 ^ juj = { o ) T {u)	 (9a)

V* = E ¢ v j = {o)T

	

j	 {v)	 (9b)j 
P* = E ^ j pj = W {p)	 (90

7

The finite element algorithm is obtained by minimization of the

residuals in equation (8) by the weights Oj (j = 1, 2, . . . 10)

(Galerkin .«e}hod), thus yielding 30 equations in 30 unknowns

(u, v, p). Expansions such as 9a, b, c are used to describe the

fields at "n" and "(n - 1)", i.e.,

pn = W {P)

(10)
n-1pn-1 = {o) T {P} n-1 etc.

E:

7



fi	 i	 I	 i	 I

After manipulations, the set of algebraic equations

are obtained, where [A 1] , [A2] are square matrices (10	 10) ,

called the element stiffness matrices, {b l }, {b2 }, {b 3 } .ire "load

vectors" (10 X 1). Details of the derivation of the stiffness

matrix and load vector are given in Appendix C.

Note that

Al iij = [ ff ^ i^ jdO + KT ff k{<^k ^ xuk> + "k^ yvk> } IiIjdn]

(12a)

A2i,J 
= [ff ^,^ jdo + T ff E ^"kuk n> o i,xo j + .Okvkn> 0i,x0j)dQ

0 ' '	

S2	 k

+ g 33 fO i,xO j,x + 0i,Y0j,Yl dsl
n

+	 3R	 (0 oi,ydx - 0 oi,xdY)	 (12b)

r

(11)

bl • = ff <O ip. n> O.dQ - KT ff E <^
k,x uk >J	

Q
	 i	 J	 a k 

+ <Ok,yvk> 1 <O ipn> 0 jdi2 (12c)

b2 j = ff <O iuin-l= jdS2 - T ff 
k 

(<Okuk n> <o i , xuin-1>
n	 S2

+ <Okvkn> <O ilyuin- 1>} 0jdP.

- T ff  { 
	 o
,x1

+ <^. u. n-1 >	 } dSl
R 

a	
,xJ,Y x	 J,Y

- 

R r 
(<ti,yuln-1> 0Jdx 	 < o i,xuln- l > 0 dy)

r

8



+ 2Tf <^ ipin> O j'xdn - 2T f	 pin> dy	 (12d)

0	
of <^ivin-l> ^ jdn - T f f k {<Ok ukn> <0i'xvin-1>

+ <Okvkn> <0i'y vin-1>1 ¢jdn

T.

R ff <xvin-1> ^,'x + <^i^y^in-1> 0j.Y dR

Rfj<Oi,yvin-1> ^^dx - <0
1'x

v
1
n-1 >  ^dy^

+ 2T ff{<O ipin> , j'ydn + 2T f <0ipin> ^jdx}	 (12e)

It should be noted that the element stiffness matrices for u, v

have identical form, thus saving one assembly. The various integra-

tions are done with quadrature schemes. The 16 point scheme of

Hammer, Marlow and Stroud (11) accurate to total degree five, is

used for area integrals. A third order Gaussian quadrature is used

for line integrals. To perform integrations the finite element

triangulation is transformed to a standard triangle whose coordinates

are (0, 0; +1, -1; +1, +1) through linear mapping T. Before any

global assemb?.y the stiffness matrices are transformed to the global

values through. the relation

CKg] = CT ]T CK J [T]
	

(13)

Guyan Reduction

The internal degree of freedom is often cumbersome t ,3 carry,

incurring penalty in storage by way of increased bandwidth and

increased ntinber of equations. A Guyan reduction (9) is carried

out to eliminate the internal degrees of freedom to obtain compact

(9 X 9) element stiffness matrices.

Program Documentation

To obtain the solution of a boundary value problem, the

following informations needs to be input to the finite element

9



program:

1. The topology of the finite element space i.e., number of

elements, nodes, details of connectivity, flag: for boundary inte-
grals indicating the orientation of the boundary etc.,

2. The initial and boundary conditions, and

3. Quadrature weights.

A mesh generator was developed to create information on finite

element topology, thereby reducing the cumbersome job of hand-

inputting. Figure la, b shows the finite element discretisation
obtained by using the mesh generator. Presently, th y: mesh generator

can be used only for discretisation of regular geor,: ,_es; however,
extensions to irregular domains can be achieved by blight modifica-

tions in the code. The discretisation obtained is uniform. The

mesh generator requires a minimum number of data cards and creates

a massive amount of data for the main program. Figure 1 was obtained

by specifying a = 1, b = 1, d = 1/5, and for Figure 2 set a = 1,

b = 1., d = 1/9 where a and b are the dimensions of the

rectangular domain and d is the mesh width.

For functional efficiency the finite element package developed

was partitioi.ed into two separate program segments. In Part I a new

geometry and a new discretisation_ are processed and the output of

this program consisting of quadrature values of spline function,

matrix structure of the finite element matrices, flags for boundary

integrals, etc. is saved. In Part II, for the given topology and

boundary and initial conditions, finite elemeni solutions are

generated at each time level. All matrix operations are performed

in Part II. The components that go into this program are 1) stiffness

matrix assembler (to assemble element contributions into a global

assembly), 2) an L-U decomposition routine (where a matrix is

decomposed into upper and lower triangular components), 3) a matrix

routine which converts a given matrix in local coordinate systems

into a global matrix.

While developing the algorithm an attempt was made to exploit

the known sparf'i structure of the finite element matrices, thereby

enhancing savings in storage.

l

10



Numerical Results for the Test Problem

The test problem considered is a driven cavity. The upper

wall, Figure 3, moves with uniform velocity u = 1 for t > 0.

Finite element solutions were obtained using Models I and iI (see

"Iteration Schemes," pages 4 and 5). At the Reynolds numbers that

were considered (R = 1, 10) both models behaved very well. Tables

1 to 6 show the converged finite element fields (9 x 9 mesh) and

the converged finite difference (17 x 17 mesh) solutions, :or

Re = 1.0 (Model II solutions). The finite difference solutions

were computed using an ADI algorithm developed by Morris (ref. 12)

Figure 4 shows the velocity profiles through the vortex center.

Finite element approximations should show uniform ccnvergence

with decreasing mesh size.* To study the effect of dscretization of

solution, two finite element meshes (5 x 5, fig. 1, and 9 x 9, fig. 2;

were run. The 5 x 5 mes:i could not capture all the details of the

flow as was expected although the correct trend for flot,r variables

was observable. (The vorticity value at the. top moving wall at

the point midway between the corners was 3.9 at Re = 1.0, rather

low and at the point away from the singularity 9.8; again a low

value.) The 9 x 9 mesh compared favorably to a 17 x 17 finite

difference grid as can be seen from Tables 1 to 6; and was superior

to 9 x 9 finite difference solutions. This was anticipated since

theoretical considerations show the finite element solutions to

have an OW) accuracy compared to the second order accurate ADI

method. However, the finite element solutions could not reproduce

the fourth order accuracy. This was due to the fact that when using

the finite element algorithm on the driven cavity, the boundary

conditions at the singular points A and B (fig. 2) had to be modelled

In finite difference methods the nature of differencing leaves the

singular points alone.) With special singular function expansions,

these singularities can be correctly modelled in finite element

methods. The next logical step in the .,umerical sk.iulation will be

* The Tocher-10 model gives piecewise continuous first derivatives
in the interelement boundaries and hence exemplifies a non-
conforming element. For these elements uniform convergence as
mesh sizes goes to zero is not always guaranteed.

11



to use the singular function expansions. Even the results that have
been obtained through an ad-hoc modelling of the singular points

(Tables 1-6) indicate that the finite elements can capture singulari-
ties far better than finite difference techniques. For instance,

comparison of the vorticities on the vertical walls (Tables 5 and 6)

indicate the correct behavior near the singularity in the finite

element solution that the finite difference solutions are unable to

predict. This point is emphasized with the following logic: If

one were to go along the moving wall towards the singularity the

vorticity at the singularity would be +- ; along the vertical wall,

though, the vorticity has to be negative to exhibit the driven

nature of the flow. The corner points at 4:he bottom should have

zero vorticity from c3nsideration of continuity of derivatives in
either direction. The point on the wall closest to the singular

point A (see fig. 3) does not therefore have the largest negative

value of vorticity. (Since the vorticity field has to go to zero

at the bottom point, has a negative maximum on the wall, and must

reach +- at the singular point, the only way this behavior can be

exhibited by a continuous field is to have a negative maximum

vorticity farther down). So far, to the author's knowledge no

finite difference solution has indicated this behavior around the

singular point.

CONCLUSIONS

A finite element algorithm for low speeds has been developed.

The algorithm, applied to driven cavity problem, produced numerical

results which were in good comparison with finite-difference results.

Further research in this area is required in order to obtain con-

clusive results regarding t,ie efficiency of the current algorithm

as compared to other current solution techniques such as finite

difference procedures.

12
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Figure 1. 5 x 5 finite element mesh
obtained from the mesh genera-
tor.
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Figure 2. 9 X 9 finite element mesh
obtained from the mesh genera-
tor.
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i = v = 0

A

U = v = 0

4	 .1	 ,

u = v = 0
1

Figure 3. Schematic of the driven cavity
problem.
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A:'PENDIY A

The differential equation system modelling the incompressible

flow is

u,t + uu,x + uu,y - -p p,x + v(92u)

v,t + Vv,x + vv,y = -p p,y + v (G 2 v)	 (Al)

p,t + p (u, X) + p (V, Y) = 0

The artificial time constant K is implicit in the time derivative

Pt . We shall take the simr'lified form letting the viscous terms
be absent for analysis. Rewriting (Al) in matrix form

/u	 u 0 17 u	 v 00^ u

v + 0 u 0 v + 0 v 1 v = 0	 (A2)

^p t 
LP 

0 G p x	 0 p 0 p y

The character of equation (A2) can be studied from the property of

the associated matrices letting

	

u 0 1	 v 0 0

A= 0	 u	 0	 and	 B= 0	 v	 1	 (A.3)

	

p 0 0	 10 p 0

it is well known that the equation system (A2) is purely hyperbolic

if the matrix

aA+bB

where a and b are arbitrary numbers has real distinct eigenvalues

i.e., if the matrix

24
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has 6istinct eigenvalues.

The eigenvalues of (A4) are

A i = au + by

X2 = au—bv + Z (au + bv) + 4 (a -• b )p 	 (A5)

3 = au 
2 

by _ 2 (aU+ hv^4 (a + b ) p

For p > 0 we find that for any arbitrary a, b eigenvalues are

real and distinct. Another consequence of equation system (A2) is

that there need not be any boundary conditions in p: i.e., the

pressure is continuously dependent on u and v. This is rather

fortuitous because the pressure equation that needs to be solved

is a Poisson type equation which exhib`ts a great deal of dependent

on the boundary conditions.

The presence of the artificial time multiplier K does not

alter the conclusion made above. However the convergence rate of

the solutions is affected drastically by the value of K.
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APPENDIX B

BASIS FUNCTIONS FOR T-10 ELEMENTS

i

(B1)

Figure B1.

A typical finite element is shown in Figure B1. The nodes

II, III, IV have coordinates 
(xI' yI ); (`II' yIi), (x III , yIII)

and XI 
+ xII + xIII	 yI + yII + yIII

3	 ,	 3	 respectively with a

reference x-y axis.

The transformation,

x = x + xII + xIII - 
2xI	 + xIII xII

I	 2	 2	 n

Y = y	
yI I + yIII	 2y I 	 yIII yII n

I +	 2	 +	 2

leaves the triangle with ^ - n origin at node I and ccj !— inates

in the transformed plane of II, III and IV as (1, -1); (1, +1);

(2/3, 0) respectively.

The basis functions 
0 1 , 0 11 , 0III can now be determined by

requiring that

26



0 I OW 	 0III'n = 1 at node I

¢ I = III = V III - 0	 at II, III and IV
(B2)

0 at Ii and III

0 111	 O III' E = 0 at I

or using a total of 30 algebraic equations (The basis functions

0111 are attached to node I such that

$ I = 1 = O II , ^ = OIII'n at I.) Thus convection on the line

0 1 = (1-0 11+^- 4 - 4 n 2J

0 1I =	 k - 2	 2
2

0 111 = n ( 1 - E2)

By rotating the cyclic order in figure B1 the "standard" triangles

are produced with origins at II and III to obtain 0 I to 0 IX . The

expression for 0X is as follows :

0X = 4? (1 - ^) (t 2 - n2)

27
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APPENDIX C

DERIVATION OF STIFFNESS MATRIX AND LOAD VECTOR

Elsewhere, equation (12) summarized the results of Galerkin

minimization of the residuals (equation (8), pages 6 and 7). We
develop these results in the present sections.

Equation (8a), page 6, is reproduced below;

L 1 (u*) = 1 + TunDX + TvnDy - R (Dxx + Dyy ) u*

1 - TunDX - TvnDy + R(DXX + Dyy) un-1

+ DXpn (2T)
	

(Cl)

Figure C1 shows a typical triangulation of a domain S2; the boundary

t of Q is singly connected.

Figure Cl.

Consider a triangulation PQR of 0 (shown hatched in above figure).
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i I	 ^

1

The shape functions ^j have support only on this triangulation.
r

We write

U* _ 
^T

(u)

V*	 T{v)
	

(C2)

P* _ fT{p}

where u, v, p are the nodal variables. The Galerkin technique

applied to equation (Cl) yields

ff L 1 ^JdS2 = 0	 J = 1, 2, . . . 10	 (C3)

a total of 10 equations.

The known fields at time steps (n) and (n - 1) can be expanded

in the form similar to equation (Cl) yields

u  = Tu

n = k^kukn
(C4)

vn-1 = T,,n-1 = EO v n-1
k k k

We also note that

D 
x
u = D x ^ u	

J,xuJ
(C5)

Applying the integral condition equation (C3) to equation (Cl)	 the

following relation is obtained:

ff [1 + T	 <^kukn > Dx + <^kvkn> Dy	 - R(Dxx
+ DyylJu*OjdS'c

S2

= f f ^1 - T <0k 1 1kn> D ST <0 kvkn> Dy + R (Dxx + DYY)Jun
-lojdQ

- 2T ff Dxpll jdS2 (C6)
S2

j	 .	 .	 .	 10
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1

The right hand side of equation system (C6) consists of known

functions and hence gives rise to the load vector. The left hand

side of (C6) is an algebraic expression in the nodal variables u.

The equation system (C6) can be summarized as

EAijui = bj ,	 j = 1, 2 . . . 10	 (C7)

where

rij = ff [OiOj + T <Okukn> 0i,x0 j + <Okvkh> 0i,Yo7

Q

R Ga ^i,x) 0 j + (ay 0i,Y)Oj] dSt	 (C8)

Due to the nature of the finite element that we chose, (piecewise

continuous first derivatives across interelement boundaries) we

apply Green's theorem to modify the last two terms in right hand

side of equation (C8), which is stated below,

f f VA- dil = f Ends	 (0)
a	 r

Thus, equation (C8) modifies to

Ai i - ff ^i^jdf2 + T .rfk {"kuk n> ^ i,xO j + <Okvkn> ^
i , y jl dQ

+ R ff {oi , x^ j , x + li .Yoj FYI 
do

R	 iOi,xdy - 0 j 0 i,ydxI	 (C10)

The weak form of Galerkin minimization procedure enables us to

order the element connectivity such that the boundary in::egrals

cancel out for all interior nodes. Only for boundary nodes need the

boundary integrations be carried out. Similar relation as (C10) can

be found for b..

s
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