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by W. Rostafinski

National Aeronautics and Space Administration
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ABSTRACT

The analysis of waves in bends in acoustical ducting of rec-
00

tangular cross section is extended to the study of motion near
00

W	 discontinuities. This includes determination of the characteris-

tics of the tangential and radial components of the non-propagating

modes. It is established that attenuation of the non-propagating

modes strongly depends on frequency and that, in general, the

sharper the bend, the less attenuation may be expected. Evalu-

ation of a bend's impedance and of impedance-generated reflections

is also presented in detail.

INTRODUCTION

Rectilinear acoustic systems consisting of sections of straight,

hard-walled ducts of different diameters, or containing aperatures

and similar constrictions, are characterized by propagation param-

eters independent of frequency which can be described by relatively

simple relations. Unfortunately, formulations derived for straight

lines are inadequate for acoustic systems containing curved sections.

The basic reason for this is that curved ducts constitute a dispersive

medium; in other words, wave velocity in bends is a function of the
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frequency. While in a straight duct only non-rigid walls create a

dispersive medium for the progressing wave ir, its basic plane wave

4

	 mode, in curved duct sections the zeroth mode will depend on fre-

quency even with rigid walls and must be treated accordingly. The

reason for this lies in the inability of curved ducts to carry plane

waves. A plane wave at the inlet of the bend will become non-plane

in the bend; for that matter, it begins to change to non-plane already

in the straight duct feeding the bend. Consequently, in the bend, be-

sides the progressing tangential component of particle velocity there

will be more or less pronounces radial oscillations. The well-known

illustration of the nature of plane waves advancing in tubes involves

imagining an axial partition inside the tube. Insertion of such a par-

tition in a straight duct will not modify the parameters of a plane wave.

In a bent section, however, a partition concentric with the curved side

walls will completely modify the original distribution of velocities and

pressures. It will also affect the level of radial oscillations. The

reason for this is that a partition fornis two concentric bends less

sharp than the original bend and creates essentially new boundary

conditions.

In previous investigations of the characteristics ny waves moving in

curved bends (l, 2) it was demonstrated that propagation in cylindrical

bends, away from any discontinuity, is characterized by a lack of back-

wards reflections resulting from curvature of the walls. Only onwards

reflections are present. This very basic result of analytical work was

recently verified experimcatally by Cummings. (3) On the other hand, in
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duct systems containing bends, the propagating waves will be accompa-

nied by non-propagating modes originating at discontinuities. In Ref. 1

the evanescent waves appearing at junctions between a straight duct

and a cylindrical bend were studied in great detail (using an exact

solution of the wave equation), but analysis was limited to long waves

and very low frequencies. In a subsequent study (Ref. 2) , higher fre-

quencies and higher modes were considered, but in the steady state only;

non-propagating evanescent waves requiring the use of imaginary-

order Bessel functions were left out. The problem, however, is that

the description of the motion of waves in duct systems cannot be com-

plete without some understanding of the nature and extent of the non-

propagating modes, which, as will be shown, may propagate quite

far along the curved duct before dying out. It will also be shown that

the non-propagating modes significantly modify the acoustic field at

the bend's inlet. Thus far. the basic morle in hard-walled ducting has

been investigated quite extensively (Ref. 2). The results yield a good

understanding of motion in typical industrial ductinl T . The higher

modes have been given some attention but in view of the predominant

role of the lowest mode and of its exclusivity in a relatively wide

range of low frequencies, the higher modes seem to be of lesser

importance in engineering. In most cases the higher modes, if at

all excited, will belong to the evanescent, non-propagating category.

Consequently, in Ref. 4 energy flow in curved ducts was analyzed in

the basic mode only. The conclusion of this work was that an important

attenuation of sound should be expected in sharp bends.
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This paper will give the results of an analysis of the changes

that occur as waves move in curved cylindrical ducting. The physi-

cal system considered uses cylindrical coordinates (r, A) and con-

sists of a two dimensional circular bend with inner- and outer-wall

radii R1 and R2 respectively. The walls are assumed perfectly

rigid. The bend is connected to a straight duct forming a discontinu-

ity at the junction. For study of the non-propagating modes a vibrat-

ing piston will be substituted for the straight duct. The important

subject of a bend's acoustic impedance and impedance-generated

reflections will be developed in some detail. Except for the solution

of the characteristic equation for finding roots, the entire analysis

is an exact solution of the wave equation.

The Non-Propagating Modes

In the study of the long waves that is for kR 1 << 1, (Ref. 1),

using a simplified series expression of the characteristic equation of

wave motion in bends

Jv (akR 1 ) J I v (kR 1 ) - J_ v (akRl )J' (kRl ) = 0	 (1)
m	 m	 m	 in

where akR 1 = kR2, it was possible to determine the single real root

vo yielding the propagating mode, as well as the infinite set of pure

imaginary roots

vm = m7Ti/ln a	 m= 1, 2, 3, . . .	 (2)

corresponding to the non-propagating, evanescent modes.

The evaluation of the motion of waves of higher frequencies

(Ref. 2) was based on closed form solutions of the Bessel equation

corresponding; to orders ism = (m 4 1/2), m = 1, 2. 3, . . .
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This type of approach, however, does not allow for determination

of the imaginary roots. Instead use must be made of special expres-

sions for Bessell functions of imaginary order v m = iµ m. Such

series, first published in 1844 by Boole (5) , were given in a more

convenient form, and tabulated, by Buckens (6) in 1963. Because of

the little-known form of these series, they will be given here for

convenience.

Bessel functions of a purely imaginary order and of real argument

are solutions of the equation

x297" +x97' +(x2+µ2)r7=0

The fundamental pair of solutions is defined by

Fµ = Aµ (x) cos (p In x) - Bµ (x) sin (µ In x)

G µ = Aµ (x) sin (µ In x) + B µ (x) cos (µ In x)

where

A (x) = T, a2n(ix)2n
µ	 n=0

B (x) = Y b2n(ix) 2n
µ	 n=0

and a and b are given by recurrence formulae

na (2n-2) + Pb2n-2
a2n -

4n(4 2 + n2)

b2n = 
nb (2n-2) - 4a (2n-2)

4n(µ 2 + n2)

with ao = 1 and bo = 0.
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The most general solution of the wave equation in cylindrical coordinates

(using kr = x) is

cpm (kr) exp i(wt - vmO)
m

where, with Bessel functions of pure imaginary order but of real

argument

W M(kr) = A mG A (kr) + BmF/I(kr)

Differentiating co m(kr) with respect to the argument along with a

rigid wall boundary condition, gives

Gµ(akR l ) ' Fµ(kRl ) - Gµ(kR 1 ) • F(akR 1 ) = 0	 (3)

This characteristic equation of notion of the non-propagating

modes parallels equation 1. For very low frequencies, this character-

istic equation yields the roots given by Eq. 2, derived in Ref. 1. For

higher values of kR l , however, the roots do not fit into such a simple

relation. These roots have been evaluated on a digital computer by

programming Eq. 3. The program iteratively locates and converges

to the roots (eigenvalues) of Eq. 3. The convergence criterion is

accuracy to the eighth decimal place.

The program is not long nor complicated. Because of its sim-

plicity it can be written readily for any specific application. Here, for

illustrative purposes only, two curved ducts characterized by a = R2/

R 1 = 2 and 4 have been analyzed and the results are given in Figs. 1

and 2. For the duct with a =- 2, the roots can be approximated by

Eq. 2 for kR l < 1. With higher frequencies the first root becomes very

small, vanishing at kR 1 = r. The next root (m - 2) vanishes at kR l = 2r.
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For a = 4 the root pattern is very similar but the small root zone is

shifted to lower frequencies and all roots are smaller than in the case

i of a = 2. Approximate values of the roots for ducts with a = 4 can

be calculated by Eq. 2 provided that kR I < 0. 5.

As a consequence of the appearance of small roots µ m in the

solution of the wave equation for non-propagating modes, the term

exp(- µR` will remain unattenuated until 0 grows to large values such

as 7T or greater. In other words there exist frequency ranges in

which the non propagating waves will be pronounced even well down-

stream from discontinuities and the steady state distribution may not

be reached in typical industrial bends of 450 or 900 . In such bends,

the distribution of particle velocities and of pressure cannot be pre-

dicted unless the evanescent waves are taken into consideration.

Because with increasing "a" the general level of roots decreases,

the sharper a bend the more the non-propagating modes will be sus-

tained in their existence. Furtherin, re, since the evanescent waves

may propagate far into the bend, any wall treatment designed to eliminate

or reduce noise must be carefully designed to be effective: All depends

on the degree of attenuation on non-propagating modes. At frequencies

at which the non-propagating modes tend to propagate far Into the bend,

the higher propagating modes will appear if excited.

To illustrate the point, propagation parameters have been cal-

culated for a bend with radii a - 2 and for waves with frequencies

corresponding to waves characterized by Bessel functions of order

(m + 1/2) for m ranging from 0 to 6. The propagating modes of



these waves m

restate here the values of the parameters of these waves for the

lowest propagating mode:
t

vm i 0.5	 1.5	 2.5	 3.5	 4.5 I	 5.5	 6.5,
4

kR 1 !0.3396 1.0115 1.6633 12.2869 i 2. 8817 3.4523 4.0065

Tne calculated non- propagating, tangential and radial, vibrational

velocities at two tangential positions: at 0 = 7r/64, that is, very

close to the surface of the piston generating waves at the bend's inlet,

(and therefore in the region of discontinuity), and at B = 7T/4; are

shown on Figs. 3 and 4. The vibrational velocities are nondimension-

alized using vol the vibrational velocity of the piston. For clarity

in Fig. 3 the tangential waves are shown in three plots. In the range

of low frequencies, for kR 1	1. 6633, the distribution of velocities

near the piston is nearly that of a potential vortex but the attenuation is

fast and by 7/4 the vibrations become insignificant, reduced by two

orders of magnitude. The case of kR 1 = 2. 2869 is a particular case

of very small vibratioas throughout the bend, of unusual distribution

and of very satisfactory attenuation. At frequencies corresponding

to kR 1 > r,, the attenuation is again very fast. The evanescent,

radial vibrational velocities are shown in two plots - Fig. 4. For fre-

quency parameters kR 1 < 2, 2869 the radial oscillations are relatively

small and attenuate fast, reaching; negligibly small amplitudes by r/4.

At higher frequencies (except for kR l = 2. 8817) the radial component

is even less pronounced, and it attenuates very fast. It will also be

noticed that the radial evanescent waves may be either positive or neg-

ative, depending; on the frequency range,
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Figure 5 gives the tangential vibrational velocities v  for three

angular positions: at 77/64, close to the piston, at 7T/8, and at

0 = a . Data for v0 = « were taken from Ref. 2. The values of

v0 at 7x/64 and 7r/8 were calculated by adding to (or subtracting

from) (v 8) « values of the (vo)evanescent similar to those given on

Fig. 3. FxcPpt for the case of frequency parameter kR = 2. 8817, v^

acquires its final distribution relatively fast in duct cross sections.

At 77/64 t,' a distribution is quite pronounced near the two curved

walls of the bend, but in the central part of the bend ' s cross section

vo = 1, as it should be. However, at kR 1 == 3. 4523, where the first

root of the characteristic equation has already vanished, the distri-

bution of v0 for all 0 seems to be very close to the final distri-

bution at 0 = -.

Acoustic pressure variations in the bend's cross sections are

shown on Fig. 6. The data are nondimensionalized using p  the

acoustic pressure at piston corresponding to vibrational velocity vo.

The first two graphs, pertaining to very low frequencies, indicate a

very uniform pressure distribution near the piston's face. At all

other frequencies the variation of pressure with the radius is pro-

nounced. For kR 1 = 3.4523 attenuation of the ,ion-propagating

modes takes place at r) <' r./64.

The variation of pressure in the bends, as shown, cannot be

calculated using information on tangential velocity distribution

except for very low frequencies corresponding to kR 1 - 1, be-
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cause the solution of the wave equation in evanescent modes is a

series solution. Each term of the series pertains to its m'th root
{	 and has its own integration constant. Only when the first term of

the expansion yields a satisfactory solution, as i:i the case of the very

low frequencies, is such direct recalculation permitted. The calcu-

lated distribut 1 of pressure in bends matches well, in its general

geometry, the experimental data of Cummings3.

The Bend's Acoustic Impedance and Transmission

The specific acoustic impedance of duct bends

z = pc(kR1/vm)(r,/R1)

has been derived in Ref.	 This quantity, integrated and averaged

over the duct's cross section (of unit depth) gives

zc = pc(kR 1 12vm)(a + 1) = pc'

where the index c indicates that the expression refers to the cross

section's area, and where c' is the phase velocity of the progressive

wave at the bend's centerline, as derived in Ref. 1. The dimension-

less impedance for a duct of unit depth is defined by

z  = (kR 1 /2vm)(a i 1) - c'ic	 (4)

The zn have been calculated for the lowest propagating mode and

for several duct parameters a - R 2 /R 1 and for a range of f ►-e-

quencies, and the results have been plotted on Fig. 7. Values of z 

for a relatively narrow duct (a = 1. 5) are very close to unity, indicat-

ing that the specific acoustic impedance of a duct of low aspect ratio

is nearly the same as the specific acoustic impedance of a straight

tube (zc = pc) and consequently is independent of frequency. All
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other characteristics on Fig. 7 become progressively steeper with

increasing parameter a, that is, with increasing sharpness of bends.

t	 However, there is always one particular t ,alue of the frequency ra-

ramater kR 1 at which zc = p,: in spite of the fact that the waves at

these frequencies are far from being plane. In connec±ion with this,

it will be noted in Ref. 2 that at some frequency, distribution of

tangential vibrational velocity shows a minimum of distortion at a

frequency approximately corresponding to z c = pc. The consequence

of zc being generally different from pc will show itself in the sound-

transmitting ability of bent's.

Assume waves advancing in two directions of 0, the incident and

the reflected wave trains. Expressions describing these waves, the

acoustic pressure and the tangential velocity, are:

p = -p ao12t = +pikc(Aie- vA - Are vo )F(kr)eiwt

v C, = 1/r P(^/(' O = +i vi Aie- vB + Are VO )F(kr)/reiWt

where F(kr) stands for the function of radial dependence of motion

under consideration. A similar set of equations can be written for

propagation of the transmitted wave in a straight duct connected to

the bend. In this second set of equations v+a must be replaced by

kY and the expression for the axial velocity by 3x = cb/(I x. The

condition of continuity of pressure and velocity at the junction between

the bent (incident and reflected waves) and the straight (the trans-

mitted wave) ducts at 0 = x = 0, (both assumed extending to infinity

to simplify somewhat the model) is
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pprop +	 pnonprop

	

j	 —	 = W	 (5)

^	 v^	 + ^ vP 	j vx x=0

	

prop j	
nonprop 0=0

where p and v include the incident and the reflected waves. Nova,

evaluating the numerator and the denominator of the left hand side of

Eq. 5, written in the form

pprop (i + 
t 
3 j 

IA)prnr + p2/pprop + . . . . )

it is verified th.-A the variable terms in the parentheses decrease with

frequency and become very small at low frequencies. Consequently

	

Eq. 5 gives, for	
(-P–)
 pc,

j	 vx

(kr/v)(A i - Ar )/(Ai + Ar ) = 1

which, integrated and a veraged over the cross section of the bend,

yields

(kR1 /2 v)(a + 1) (Ai - Ar ) /(A. --A r)^- 1

or

zn ( Ai - Ar )/(Ai + Ar) = 1

Now, the ratio of the amplitude of the reflected wave to the amplitude

of the incident wave, that is, amplitude reflection coefficient r, is

r = Ar/Ai - (zn - 1)/(z n + 1)
	

(6)

and the sound refla-7tion coefficient a r -- r2 , while the sound transmis-

i

sion coefficient will be n't - 1 - n'r -

In the case of two bends (numbers 1 and 2) of different curvatures,



r

II

i

13

but of the same cross section, and connected in series:

r=	 -	 1
1

	 (lzn 2zn//(lzn+2z

The standard form of the standing wave radio SWR = (1 + r)/(1 - r)

as derived for straight ducts and pipes applies here without change.

Physically, the situation is analogous to the acoustic phenomena at the

boundary of two media. Equations 4 and 6 allow us to calculate reflec-

tions at the boundary between a "dense medium" (bend) and a "less

dense medium" (straight duct), or vice versa, depending on frequency.

These reflections depend, of course, on the sharpness of the bend

(parameter a). For the great majority of bends met in industrial

applications, they will be quite low. Reflections appear because the

impedance of curved ducts is different from the impedance of straight

'Lines of the same cross section. For analytical purposes a straight

duct-bend system can be replaced, as far as transmissivity of waves

is concerned, by a single straight line, provided that the velocity of

sound c' in the new straight duct is equal to c' = c ' z  (as if con-

taiaing some medium other than air). For very low frequencies and

bends of arbitrary sharpness, the phase velocity will be calculated by

methods of Ref. 1. For higher frequencies it will be convenient to

use Fig. 7. Experimental information rn the transmissivity of bends

may be found in Cummings' work. He gives data on the transmission

coefficient of bends of a = 1. 59 and a = 10.2. The first bend tested

in the frequency parameter range of 1.06 < kR 1 < 5. 3 had the trans-

mission coefficient at = 1 throughout the frequency range, which

checks ver- well against the analytical result (a t -- 1. 0 - 4 x 10-6 ). The
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second bend, tested in the frequency parameter range 0.068 < kR l <

0. 34, had a transmissivity slightly less than 1, 0.975 on the average.

This again checks well with the approximate theoretical r^sult (0! t  =
0.994) for kR l = 0.068 with z  = 1. 17. Furthermore. in the case

of the second bend, at kRl = 0.2 Cummings obtained at = 1. This

could be anticipated becauae at this frequency parameter c = c' and

z  = 1. The selectively bumpy experimental curve may be explained

by the high probability of frequency controlled evanescent waves in

the zone cf measurements and by a lack of uniformity in the trans-

mission characteristic.

The natural oscillations in ducts containing cylindrical bends may

be best studied on systems open at one end and closed on the other.

As a starting point, we may write that the input point impedance of a

straight duct with a closed end (with the far end impedance infinite)

and with negligible attenuation becomes a pure reactance

X = -jpc cot (kl)

Now, the well known equations given in some texts, for instance

Ref. 7, for natural frequencies for a system of two straight ducts of

lengths 1 1 and 12 , of identical cross section, and connected in

series, are:

tan (kl l ) = cot W2)
	

for a closed far end

tan (kll ) = -tan (kl2 )
	

for an open far end

which will be satisfied if

open duct(-(2n+1)7T/2
k(1 1 +12)

Ltrn closed duc
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Now, if we replace duct number 2 by a bend, the equations for a

closed end system will be tan (kl) = cot (0) and 8 + kl = (2n + 1)7r/2

where H, in radians, refers to the angular position of the closed end
4

of duct number 2. For very low frequencies, v = kR 1 = kRm and s/Rm

where R  is the radius of the bend's centerline and s is the length of

the bend along this center line. Consequently 0 = ks which reduces

the expression for the bend to an expression for a straight line. For

higher frequencies, the matter is not so simple. A more general ex-

pression must be used which for a closed-end system is

tan (kl l ) = Xctg(ykl 1 )where y = 1 1 /12 and X is some ratio of the

acoustic specific impedances z  of the two elements in series in a

ducting system. Expression tan(kl l ) • tan (ykl l ) = X, for y = 1,

yields tan (kl l ) _ ^X; in general, however, a set of points must be found

to satisfy this equation. We shall remember that for a narrow duct, up

to and including a = 1. 5, X 1 and the solution is straightforward.

CONCLUDING REMARKS

Propagating and non-propagating modes of waves in the acoustic

frequency range have been examined using a model, a system consist-

ing of straight and carved duct sections. A method has been presented

for determination of the non-propagating, evanescent modes generated

at junctions, and of reflections due to impedance mismatch at junctions.

It was indicated that each particular case of ducting must be examined

separately. Only general formulations can be given for all shapes of

ducting. Numerical values depend on the specific application and can-

not be predicted without close analysis.
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