
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

JUNE 1975

N

NISFC - Form 454 (Rev October 1967)

g?

!W-t
	

10,61"I'll W"',

(NASA-CF-144Ak',- 94)	 miFns-2 IV.ELEME'NTAlICN	 N76-13953
MANUAL (Computer Scierces Corp.)	 155 p BC
$6.75	 CSCL -05E

Unclas
G3/82 16066

MA -006-002-2H

MR49f C

MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM

MIRADS=2
CEMENTATION
MANUAL

Section 1 - Introduction

1. 1 General 1-1

I'
Section 2 - How to Structure a MIRADS Data Base

2.1 Data Structure Terminology	 2-1
2.2 MIRADS File Structure 2-4

sk'!-^-	 2. 2. 1 Logical File Organization 2-4
2. 2.2 Physical File Organization 2-10
2.2. 3 FILE Indexing Scheme	 . 2-14

Section 3 - How to Create a MIRADS Data Base

3.1 MIRADS General Purpose input /Output Routine	 . . 3-1
3. 2 Using the MIRADS I/O Package to Create a Data j

i. Base	 .	 .	

..	

.	 .	 .	

.

3-2

3. 2. 1 Creation of a Single Level Data Base 	 3-2
S	 3. 2. 2 Creation of a Multi-Level Data Base 3-6

3. 3 Things to Know before Creating a Data 3ase	 3-13
3. 3. 1 Data Types Supported by MIRADS 3-13
3.3. 2 Field Content and Search Criteria	 3-18
3. 3.3

i

Using MIRADS Buffers Efficiently 	 3-19

Section 4 - How to Define a Data Base to MIRADS

4.1 Introduction	 4-1

4.2
.	

Dictionary Input Cards 4-1
4.2.1 Filename Card	 4-2
4. 2. 2 Password Card	 4-5
4.2.3 Record Identifier Card	 4-6
4. 2. 4 Field Definition Card I	 4-9 ;a
4. 2. 5 Table Lookup Card 4-14

Section 5 - How to Implement a Data Base for Use with MIRA DS

"	 5.1 Introduction	 5-1
5.2 Initial Implementation for User's File Set . . 5-Z
5.3 Subsequent Implementation for User's File Set . . . 5-9

ii

r

TABLE OF CONTENTS (Continued)

Section 6 - MIRADS Implementation Programs

6. 1 Introduction 6-1
6. 2 ASGFILS File Assignment Program 6-1
6.3 DICGEN Dictionary Generation Program. 6-4
6.3.1 Creating the Dictionary 6-4
6. 3. 2 Updating the Dictionary 6-6
6. 3. 3 Frequently asked Questions about Generating

a Dictionary	 6-8
6.4 DRLGEN Data Relational List Generation

Program 6-9
6.4. 1 Introduction. 6-9
6. 4. 2 Time Estimating and Efficiency

r
6 -

6.4. 3 Reordering the DRL File and Data Base 6-10
6.5 INDGEN Index Generation Program 6-13
6. 6 SAVGEN Save .Element Generation Program 6-15
6. 6. 1 Creating the Save Elements 6-15
6. 6. 2 Updating the SAVE Element File 6-16
6.7 UNLOAD Program 	 6-18

TL 	 6. 7. 1 Introduction 6-18
6. 7. 2 SECUREing the User's File Set with UNLOAD 6 -20
6.7. 3 _.rollout of the User's File Set Using UNLOAD	 6-22 -	 F
6. 7.4 Frequently asked Questions about Unloading

a Data Base	 6-23
6.8 LOADER Program	 6-24
6.B. 1 Introduction 6 -24
6. 8. 2 Loading the SECURE'd User's File Set 6-25
6. i 8. 3 Rolling-In the User's File Set 6-27

Section 7 - MIR.A.DS Utility Programs/Subroutines

7.1 Introduction 7-1'
7. 1,2 IOPKG Input/Output Subroutine T-1
7.2. 1 OPENS Entry Point 7-2
7. Z. 2 READS Entry Point 7-5
7.;2.3 WRITES Entry Point 7-6
7.!2. 4 CLOSEI and CLOSEM Entry Points	 T-8 a
7.2. 5 IOPKG Error Messages 7-9
7.'3 MREAD Card Reader Subroutine 7-10
7.4 MPRINT Printer Subroutine 7-12
7.5 MPRINA Alternate Printer Subroutine	 7-13

z
r

4
1

TABLE OF CONTENTS (Continued)

Section 7 (Continued)

7.6	 ROLLOUT UNLOAD Program 	 7-15
7.7	 ROLLIN LOAD Program	 7-17 r
7.8	 DUMP Program	 7-19
7.9	 DICTOCARD Program	 7-23

r
.r	 Section 8 - How to Load the MIRADS Library

8.1	 Introduction•
	

. .	 8-1
8.2	 Sample Run Stream	 8-1

y	 Appendix A
Appendix B

3

a

a

i
t
3

3

1

i9

1V

NAWS" WON

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 Logical File Structure	 2-3
2-2 File Layout.	 2-12
3-1 Data Base Creation Program 3-3
3-2 DBGENI Input Data Cards 3-5
3-3 Data Base Generation Program (DBGEN2) 3-7
3-4 DBGEN2 Input Cards	 3-11

°	 3-5 MIRADS Record Buffer 3-22
4-1 File; Name Card	 4-4
4-2 Field Definition Card 1 4-10
4-3 Table Lookup Card.. 4-17
5-1 Initial Data Base Implementation Cycle 5-3
6-1 Dictionary Generation 6-7

{	 6-2 DRL Generation	 6-12
6-3 Index Generation	 6-14
6-4 SAV File Generation	 6-18

r

f
'	 t

l

.1

r

SECTION 1 - INTRODUCTION

1.1 GENERAL

The Marshall Information Retrieval and Display System (MIRADS) is

a Data Base management system designed to provide the user with a

set of generalized file capabilities. These capabilities allow the user

to create a Data Base and define its logical structure to the MIRADS

System. Additionally, the system provides a wide variety of ways to

process the contents of the Data Base and includes capabilities to

search, sort, compute, update, and display the data. The process of

creating, defining, and loading a Data Base is generally called the

rg P	 purpose	 P"loading process. " The ur ose of this manual is to define the steps
E	 7

j	 in the loading process which includes (1) structuring, (2) creating,

(3) defining, (4) and implementing the Data Base for use by MIRADS.

	

	 a
a

The organization of this manual is generally in a front-to-back manner,

taking the user from the first step in loading a Data Base to the last.

However, the execution of several computer programs is required to

successfully complete all steps of the loading process. These pro-

grams and all other programs necessary for implementation reside 	 =:

in the MIRADS System Library.. This library must be established as

a cataloged mass storage file as the first step in MIRADS implementation.

1-1

The procedure for establishing the MIRADS Library is given in

Section 8 of this manual.
	 i

The system is currently operational for the UNIVAC 1108 computer
	

^s

1	

system utilizing the Executive Operating System. All procedures

within this manual relate to the use of MIRADS on the U-1108 computer.

i`

SECTION" 2 - HOW TO STRUCTURE A MIRADS DATA BASE

2. 1 DATA STRUCTURE TERMINOLOGY

Paragraph 2. 1 defines the terms used in this manual to describe the

organization and structure of the MIRADS Data Base. There are four

basic terms that are used to represent various levels for the collection

or assimilation of data. In a scale ranging from lowest to highest,

they are Data Element, Record, File, and File Set.

1. Data Element

The basic unit of named data in a Data Base is a data element

or data field. In addition to a name, a data element has other

characteristics pertinent to its use in a Data Base. For

example, a data element may be named CITY and have values

of New York and Los Angeles.

2. Record

A record is a named collection of data elements of related

information which can be identified as a particular record

type, and is viewed as a contiguous collection of data by

MIRADS. There may be an arbitrary number of occurrences

in the Data Base for each record type that has been defined.

For example, there would be one occurrence of the CITIES

record for each CITY in the Data Base.

2_1

t_

f	 -

I i

Records may vary in frequency, format, and their relationship

to each other. The relationships of records are either sub-

ordinate, peer, or superior with respect to other records.
	 I

In Figure 2-1, the CITIES and COUNTIES records- are sub-

ordinate to the STATES record, but they are peer of each

other. The STATES record is superior to the CITIES and

COUNTIES records, but subordinate to the COUNTRIES

record.

3. File

A file is a named collection of all record occurrences which

have the same.logical organization. Figure 2-1 is an example

of the NATIONS Master file. It consists of data entries for

all countries, states, cities, counties, and districts which

compose this application Data Base.

4. File Set

A file set is a collection of several related files, and is used

in MIRADS to describe the files of data and control informa-

tion necessary to implement a user's particular application.

This data includes a set of five related files named Master

file (MAS), Dictionary file (DIC), Data Relational List file

(DRL), Index file (IND), and Save-Query-Set file (SAV).

Collectively, these five files ara referred to as the MIRADS

Users File Set.

-	
2-2

4

Countries	 — — — -. — —	 _ _ _ Record Type 101

Country
President

States Record Type 201
r

I State
y ^,! Gove rnor, `	 a

Record
Type Cities Counties	 ----- -- Record Type 302
301

Cit County
Population

Districts Record Type 401

' District

NATIONS FILE
Record

a
Type Descriptor Relationship

101 COUNTRIES	 Superior to Record Types 201, 301, 302, and 401

201 STATES Subordinate to Record Type 101; Superior to
_	 -_ ^___ --	 _	 -. _._--	 _ Record Types 301, 302, and 401

301 CITIES Subordinate to Record Types 101 and 201; Peer
to Record Type 302

'	 302_ COUNTIES Subordinate to Recor(l'Types 101 and 201; Peer

F

to Record Type 301; Superior to Record Type 401

401 DISTRICT Subordinate to Record Types 101, 201, and 302

Figure 2-1.	 Logical File Structure

2-3j

_.!

The portion of the File Set that constitutes the user's Data

Base is the Master file (MAS). This file is referred to as 	 .

the user's Data Base throughout this manual, and it is this

file that the user must be concerned with in regard to its

organization, structure and storage.

2. 2 MIRADS FILE STRUCTURE r

This paragraph describes the file structure and organization of the	 .x

physical structure or layout of the data, and its indexing scheme.

Each of these three areas is discussed briefly, followed by a series of

questions and answers which explain in detail those capabilities sup-

ported by MIRADS. Several of the questions and answers refer to
3

the logical file structure shown in Figure 2-1 for a sample Data Base
9

named the NATIONS file. This file organization was purposely chosen

to illustrate pertinent points regarding the structure of any MIRADS

Data Base, and is used throughout this manual for explanatory pur-

poses. It does not necessarily constitute the best logical organization

for this Data Base. This organization is just one of several which

might have been chosen depending on the relationship of the data as

defined by the user.

2.2. 1 Logical File Organization

The logical file organization is the method used to collect and organize

data. Related data elements are collected into groups called records,

and related groups or records are assembled into logical files. Within

2-4

ih	 _

a logical file, records may be ordered according to their relationship

to each other, i. e. , superior, peer, or subordinate record.	 r

`	 The logical file organization of the MIRADS Data Base is defined as a
r

hierarchically structured file (commonly called a tree structure) which

contains a maximum of seven levels of file subordination. The hierarchy

starts with a single record at the base of the structure called the master

record. From the master record or any other record, one or more

records may branch out. However, a given record may have only one

immediately superior record. Records at the same level in the tree

structure are peers of each other. The following questions and answers

provide more insight into the logical organization of the MIRADS Data

Base.

1. How many levels of file subordination can exist for a given

logical file? The following example represents three levels

of subordination:

COUN'T'RIES
STATES

COUNTIES
DISTRICTS

ANSWER: The MIRADS logical file structure will allow

a maximum of seven levels of the file subordination.

The COUNTRIES record type in the above example is

referred to as the Level-1 record, the STATES

2-5

^	 J	 ,

record type as the Level-2 record, etc. Using this

terminology, MIRADS supports Levels 1 through 8,

which is seven levels of file subordination.

2. Does a MIRADS Data Base have to be hierarchically structured?
r

ANSWER: No. The user proceeds with Data Base crea-

tion and definition for the simple Data Base just as is	 r

done for the hierarchically structured Data Base. How-

ever, the process is much easier because no considera-

tion has to be given to file structuring and organization..

The simple Data Base is a special case of the hierarchical

organization where there are no levels of file subordination.

The user merely has to create the Data Base using the

MIRADS IOPKG, define it using the MIRADS Dictionary,	 3

and complete the load process to rnake the data available

for on-line or batch use,

3. How many data elements ran exist for a given logical file?

ANSWER: The maximum number of data elements that

can be included in a logical file is 10, 000.

4. How many data elements can exist for a, given record type?

In the example in Figure 2-1, the CITIES record contains

two data elements: city NAME and city POPULATION.

Z-6

ANSWER: The only restriction is that the total number of

data elements for all record types within a given logical

file cannot exceed 10, 000.

5. How many records can exist for a given logical file?

ANSWER: The total number of records cannot exceed

16, 777, 215 (2 24 - 1) for a given logical file.

6. How many distinct peer record types can occur at the same

level of file subordination? In the example in Figure 2-1,

the CITIES and COUNTIES record types are counted as two

peer record types.

ANSWER: The maximum number of distinct record types

that can occur at any given level of file subordination

is 10.

7. How many records can exist at any given level of file sub-

-	 ordination for a record type such as the CITIES record shown

in Figure 2-1?

ANSWER: The only restriction is that the total number

of records for all record types for all levels of file

l
subordination cannot exceed 16, 777, 215.

8. Hover many distinct Data Bases can exist at any given computer

installation that has implemented the MIRADS Svstem?-

i

ANSWER: There is no maximum number of distinct

MIRADS Data Bases that can exist at any given computer

installation.

9. Can a subordinate record be linked to more than one superior

record at any level such as the DISTRICT record shown in

Figure 2-1?

-^`	 ANSWER: Currently, a subordinate record can be linked

to one, and only one, superior record in the MIRADS logical

file structure. The DISTRICT record could not be linked
i.

to both the CITIES and COUNTIES records. Network

relationships linking subordinate records to two or more

peer records will be considered in the future for the-
3

MIRADS System.

10. Can null data elements and/or null record types be defined

in the logical file structure? In other words, can data

elements containing no data values, or record types con-

taining no instances, be provided for at file generation time?

ANSWER: Data elements which ha —e been defined but

have no value can exist in the logical file structure (such

as NAME filled in but no value for POPULATION in a

CITIES record). Also, a record type may be defined at

any level of file subordination but have no occurrences

2-8

r

e.g., no values for NAME or POPULATION in the

CITIES record.

11. How is the logical organization for a given Data Base chosen?

ANSWER: The logical file organization of the MIRADS

Data Base should match as much as possible the natural	 r
+	 zS

relationship of the data elements and records. For

example, the data elements COUNTRY NAME and

COUNTRY POPULATION could be grouped together to

form a COUNTRIES record while the data elements

state NAME and state GOVERNOR could be grouped

together to form a STATES record, etc. Cities are1

located in geographical regions called states, and

states are located in geographical regions called

countries. States are subordinate to countries but

superior to cities. This is the natural relationship of

the data. Consequently, the logical structure that could

be adopted for this particular example is as follows:

COUNTRIES
STATES

CITIES

12. What consideration should be given to the organization of peer

records in the MIRADS Data Base?'

2 -9

i

ANSWER: MIRADS buffer management precludes retrieval

of information with one Query command from peer records	 v

`

	

	 that are subordinate to the same superior record. In the

example in Figure 2-1, the CITIES and COUNTIES records
r

are peer records illustrating this restriction. Information

k;
retrieval regarding COUNTRIES, STATES, and CITIES;

^-

	

	
or COUNTRIES, STATES and COUNTIES is possible. One

query regarding information in the NATION, STATES,

CITIES, and COUNTIES records is not possible. If

queries of this nature are to be asked, the hierarchical

structure should be changed as follows:

NATION
STATES

COUNTIES
CITIES

Z. 2. 2 Physical File Organization

A physical file is a file of data values reflecting the logical organiza-

tion of the Data Base. In MIRADS, the natural way of storing hier-

archically structured data is used with each group expanded according

to its position in the hierarchy. The following questions and answers

define the method used by MIRADS to store a Data Base.
ry

1. In what order is the MIRADS DataBase physically stored?

Are all values of a data element stored continguously, or is
<a

a

2-10

V	 1

each record occurrence stored according to its subordinate

relationship with other records?

ANSWER: Each record occurrence is stored according

to its subordinate relationship, starting with the master

record. For example, in Figure 2-1 the country

NAME and its PRESIDENT are stored first, followed by

the values of state NAME and GOVERNOR for the

first state, followed by all the values of city NAME

and POPULATION for the first state, followed by the

value of county NAME for the first state, followed

by all the values of district NAME for the first county,

etc. , until all county NAMES and corresponding

district NAMES have been exhausted for the first

s

M

T

r

y
state, followed by the values of state NAME and

3

GOVERNOR for the second state, etc. Figure 2-2
j

depicts the file layout for the logical file structure

shown in Figure 2-1.

2, Are physical links or pointers required in the Data Base

records to indicate levels of file subordination and peer

records to the MIRADS System. programs?

ANSWER: No. A data element of one to three characters in

length must be located within each physical record and is

used for record identification purposes. During the loading

2-11

r

101 Record United States	 Gerald Ford
201 Record Alabama George Wallace

Birmingham 739,274
Mobile 376,690

301 Records Montgomery 201,325 A

'̂Other Cities

302 Records { Autauga County
^.^ District 1

f
District 2

401 Records District 3
One State

1
Other Districts One Country

Baldwin County Nations
District 1 File

District 2

Other Districts

i Other Counties

1

/

1

49 Other States
1

/

Other Countries

-1
-

•

Figure 2-2.	 File Layout

2-12'

K°-'-r.-:-a+-^.^A'+--^--T...-^.-°-.^^,-m..̂ ^-+^',T.a._..a.,urae-•-.a7^+vs:,+-,c-mw^F ,a ^.°:___. _. 	,....:	 ..	 i.

i

1	 process for the Data Base, the record identifier is used

in conjunction with a Dictionary and the physical order

of the MIRADS Data Base records to determine the

hierarchy of the file. If the Data Base has no levels of

file subordination, and if all records within the Data Base

are of the same type, the one-to-three character record

identifier described above does not have to be included

in the Data Base records.

i
	 3. Are variable length records used to create the MIRADS Data

k

	 Base if more than one record type and length exists in the

physical file?

ANSWER: No. If two or more records of different types'

and length exist in a file, the shorter records must be

padded. with spaces to make their length equal to the length

of the longest record. This technique is used in MIRADS

so that direct addressing of the Data Base can be used

`rather than the more inefficient methods of indirect

addressing or table lookup. Future plans will allow the

user to optionally select direct addressing which includes

record padding, or some type of indirect addressing which

will allow variable length records in the Data Base. Either'

2-13

way, it is a trade-off between mass storage utilization

and query response time.

4. What is the maximum record size allowable for a record in

the MIRADS Data Base?

ANSWER: For a Master file with no levels of subordina-

tion, the maximum allowable record size is currently

set at 5, 376 characters or 896 words in length (6 charac-

ters per word). Section 3 should be consulted for maxi-

mum record sizes when utilizing a Data Base with levels

of subordination.

5. Is the MIRADS Data Base written in a blocked or unblocked

mode?

ANSWER: The MIRADS Data Base can be optionally

blocked or unblocked at the user's discretion. However,

it is strongly recommended for efficiency purposes that

the file be blocked as heavily as possible, but not to exceed

1,792 words per block (which is track size for UNIVAC

F2 FASTRAND mass storage).

2. 2.3 FILE Indexing Scheme

Indexing the MIRADS Data Base provides an efficient means to rapidly

retrieve data from the file for immediate use in an on-line environ-

ment. The file organization used is the partially inverted. Data Base

2-14

{

where data is stored in record format form. In addition, certain data

elements or fields may be selected as key fields, for which indices

will be created. A field is selected as a key field if it is expected to

be used rather frequently for retrieval purposes. If experience

shows that a selected field is seldom used for retrieval, its index can

be deleted. Conversely, if another field requires frequent use, an

index can be created for it.

The significant characteristic of an indexed organization is that a table

r

	

	 of indices is maintained which points to the records in the Data Base.

The index table is searched to find the value of the data element being

sought when retrieval is desired. When the value is found, an address

is selected from the table entry which points to the specific location of

that record in the Data Base. The MIRADS System can then find that

_position in the file, read the record into memory, and produce the

information requested. This method provides for immediate response

to on-line queries without resorting to the time-consuming task of

sequentially passing, or searching, every record in the Data Base. The

following questions and answers provide more insight into the indexing

scheme used by MIRADS,

-1. In developing the file organization for a MIRADS Data Base,

what considerations must be given to indexing?

L.

S

2-15

ANSWER: An analysis should be conducted to determine

which data elements would most often be involved in

typical user requests for information retrieval. These

data elements should probably be indexed if they are

involved in the majority of queries requested by the user.

2. In the previous question, it was stated that data elements involved

in the majority of queries should probably be indexed. What

is meant by "probably"?

ANSWER: Indexing a Data Base is an overhead expense
r

of all Data Base management systems, and is the best

technique developed for providing rapid response to

on-line queries. The amount of CPU time required	
a

during the loading process of the Data Base is directly

proportional to the number of indexed data elements

selected. Four indexed fields will require approxi-

mately twice as much CPU time for loading the Data Base

as will two indexed fields. The reason is that every data

value for every indexed field must be extracted from the

Data Base and sorted to produce an inverted list. It is

important to the efficiency of the MIRADS System that as
a

few fields as possible be indexed while still maintaining

adequate response to on-line requests for information.
a

2-16

3. If experience shows that one designated indexed field is rarely

used for retrieval purpose while another non-indexed field

is used frequently, what is involved in deleting the indexed

field and adding another?
t

r

ANSWER: First, the Dictionary which describes the
3

data elements in the Data Base to MIRADS must be cor-

rected to indicate those fields which must be indexed.

Second, the MIRADS Data Base must be reloaded using

the same process as orginially required to load the file.

4. Is the index to the MIRADS Data Base a part of the logical and

physical organization of the Data Base?
i

ANSWER: No. The MIRADS Data Base and Index files
I

are distinct files stored on an external mass storage

device such as a drum or disc. The user should only be

concerned with the organization and structure of the

MIRADS Data Base. The Index file is automatically
a

generated by MIRADS as a byproduct of the loading

process. Its organization and structure are wholly

j

	

	 determined by MIRADS and are of no concern to the

user. The only responsibility that the user has is the

naming or designation of the indexed fields.

'	 2-17

1
s	 ^	 _

5. How are indexed fields specified to MIRADS?

ANSWER: Associated with every MIRADS Data Base is a

Dictionary which describes the data elements or fields in

the file to MIRADS. A field which is to be indexed is

specified in this Dictionary. (See Section 4 for more

information regarding the definition of a MIRADS 	 f

Dictionary.)

b. What is the minimum and maximum number of indexed fields

that can be specified for a MIRADS Data Base?

ANSWER: The minimum number of indexed fields is 0

and the maximum number is currently set at 200.

7. What is the maximum length, in characters, for an indexed

field?

ANSWER: The maximum length for an indexed field is 24

characters. However, if a data element or field exceeds

24 characters in length, it can still be designated as an

indexed field and only the first 24 characters will be

indexed.

1

2-1$

I

...	 ^._....-_,...,__.		 _.._.^--.—,...,..,r..+—r-..r.^.,..._-.......ate=._.......:.-.,.. .,. 	 ..	 _ -...,..

a

7
i

SECTION 3 - HOW TO CREATE A MIRADS DATA BASE

3.1 MIRADS GENERAL PURPOSE INPUT/OUTPUT ROUTINE

The development of a computerized Data Base for a particular user

application inevitably results in the storing of data on some computer

storage medium. This medium could be card images, magnetic tape,

disc, or drum. The programming language used to assemble the

data could be COBOL, FORTRAN, Assembler, PL/l or some other

language. The possibilities for file creation and storage are corn-

pounded by considering the different hardware vendors, varying record

and block sizes, and differing internal codes used such as Fieldata,

ASCII, BCD, EBCDIC, etc.

A generalized Input/Output routine that could read any such file would

require complex user instructions, would. be inefficient with high over-

head, and would be limited in its functions. MIRADS must rapidly and

efficiently perform I/O operations on applications files, keeping over

head to a minimum, and providing direct access capability. Consequently,

MIRADS provides a. common I/O package, named the MIRADS IOPKG,

which can be easily accessed by applications programs written in

Assembler Languages, PL/l, FORTRAN, DOD COBOL, FD COBOL or

ASCII COBOL_. (See Paragraph 7.2 for MIRADS IOPKG, documentation.)

3-1

_	 t

.	 :i

3. 2 USING THE MIRADS I/O PACKAGE TO CREATE A DATA BASE

The MIRADS user is required to write his application Master file onto

mass storage using the MIRADS IOPKG before it can be used by MIRADS.

This file is then referred to within MIRADS as the MIRADS Data Base

or Master file and any file written with the MIRADS IOPKG is designated

as being in MIRADS format.

The development of a pr,-.)gram to write the Master file in MIRADS for-

mat is the only programming that is required for the implementation.

of a Data Base on MIRADS. Most users develop a simple program to

read the file in the language that the file was created and to rewrite it

using IOPKG. Some users have modified application programs to use

the MIRADS IOPKG for all Master file processing to keep from main-

taining two different copies of the same data. Two sample ASCII

COBOL programs are presented in Paragraphs 3. 2. 1 and 3. Z. 2 to

illustrate the procedure for creating a MIRADS Data Base from an

existing file The same general procedures used in these programs

can be applied to programs written in other languages such as

FORTRAN, PL/1, Assembler Language, etc.

i
1	 3. 2. 1 Creation of a Single Level Data Base

The program shown in Figure 3-1 illustrates the procedure for creating

a MIRADS Data Base with no Levels of file subordination from input

3-2

i

s

r

IDENTIFICATION DIVISION.
PROGRAM-ID. DBGENI
REMARKS.	 THIS PROGRAM READS AN EXISTING CARD FILE TO

GENERATE A MIRADS MASTER FILE.
THE MIRADS MASTER FILE WILL BE STRUCTURED

WITH NO LEVELS OF FILE SUBORDINATION AND A SINGLE
RECORD TYPE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-1108.
OBJECT-COMPUTER. UNIVAC-1108.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-FILE ASSIGN TO CARD-READER.
DATA DIVISION._
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED	 j
DATA RECORD IS CARD-RECORD.

01 CARD-RECORD	 PICTURE X(84).
WORKING-STORAGE SECTION,
01 MAS-UNIT	 VALUE "MAS "	 PICTURE X(12).
01 MAS-REC-SIZE ZT kLUE 14	 PPICTURE H9(10).
01 MAS-BLK-SIZE VALUE 128 	 PICTURE H9(10).
01 MAS-REC-NBR VALUE 0 	 PICTURE H9(10).
01 MAS-RECORD.

02 MAS-REC OCCURS 14	 PICTURE X(6).
01 MAS -BUFFER,

02 MAS-BUF OCCURS 1807 	 PICTURE X(6).
PROCEDURE DIVISION.
MASGENI -OPEN-FILES.

OPEN INPUT CARD-FILE.
CALL "OPENS" USING MAS -UNIT	 MAS REC -SIZE

MAS-BLK-SIZE MAS-BUFFER, 	 v

CARD -READ -IOPKG -WRITE -LOOP.
READ CARD-FILE INTO MAS-RECORD AT END GO TO CLOSE-FILES.
ADD 1 TO MAS-REC-NBR.
CALL "WRITES" USING MAS-UNIT MAS-REC-NBR MAS-RECORD,
GO TO CARD -READ -IOPKG -WRITE -LOOP.

CLOSE-FILES.
CLOSE CARD-FILE.q
T" A T T Iff°T /'1C"L" KA'tt TTC TIT!" 1. d	 TTTTTT	

„q

r-'.

cards. This program will read 14-word records from the input cards

shown in Figure 3-2, and write the records onto the mass storage file,

MAS. The output record size, MAS-REC-SIZE, is the same as the

input record since no manipulation of the data is required. The blocking
I

factor, MAS-BLK-SIZE, was obtained by calculating the largest number

of records that can be stored in one MIRADS file buffer, 1, 792 words

(1792/14 = 128). The user program is required to furnish the buffer

area for IOPKG. The buffer size must be large enough to hold one

block of data and must have an additional fifteen words for IOPKG file

control information. The buffer for this program, MAS-BUFFER,

contains 1, 807 words, which was calculated by multiplying the blocking

factor, MAS-BLK-SIZE, by the record size, MAS-REC-SIZE, and

adding 15 words for a File Control Table (14_x 128 + 15 = 1807).

In the Procedure Division, the call to OPENS initializes IOPKG and

establishes the File Control Table for the MIRADS Master file, MAS. a

Input cards are read directly into the output record since it must be

written from this area. The call to WRITES causes the record stored

in MAS-RECORD to be placed in the output buffer, MAS-BUFFER, at

a relative record location, designated by MAS-REC-NBR. This buffer

7

I

i

E`

000001JONES S C201130 225 JONES VALLEY 01012027000M06
000002BURNS W D320809 1442 NORTH BELAIR 01011023500M04

E

000005KING W L381204 3511 W GEORGIA AVE 04034014400M05
w 000009ZORNASKI P U360424 4244 JEAN ROAD 05043015000FOl

l 000011THOMPSON J K450617 504 DOWNING DRIVE 01011009600MOI

r

i

Figure 3 -2.	 DBGENI Input Data Cards

s

will be automatically written to mass storage by IOPKG when the buffer

is filled. The call to CLOSEM is required to properly close the file

by purging the file buffer and writing a, software end-of-file after the

last record written. Programs that have ample core available can
r

realize a reduction of approximately 20 percent in elapsed time by

^w using the IOPKG double buffering capability. (See Paragraph 7. 2 for

detailed documentation of IOPKG.`)

a

This example is representative of the simplest and most common type

_ of application for generation of a MIRADS Master file. There is only

one type of data record, so there is no need to get involved with hier-

archical file structuring of the Master file. All data elements within

the existing file are to be used in the MIRADS Data Base, and all are

inro er format for MIRADS use; consequently , the MIRADS DataP P

Bane record can be written directly as it is read from cards without

any data manipulation.

3. 2.2 Creation of a Multi-Level Data Base

Many applications will fall into the above category, but the Master File

Generato.r program can become as complex as required by the user.

The program shown in Figure 3-3 illustrates the generation of a

MIRADS Master file with a hierarchical structure and minor manipulation
1

3-6

IDENTIFICATION DIVISION.
PROGRAM-ID.	 DBGEN2.
REMARKS.

THIS PROGRAM GENERATES A MIRADS MASTER FILE FROM AN <-
EXISTING, CARD FILE, THE MIRADS MASTER FILE WILL BE
STRUCTURED WITH TWO LEVELS OF FILE SUBORDINATION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-1108.
OBJECT-COMPUTER. UNIVAC-1108.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-FILE ASSIGN TO CARD-READER.
DATA DIVISION.

h

FILE SECTION,
FD CARD-FILE

LABEL RECORDS ARE OMITTED
DATA RECORDS ARE COUNTRY-CARD STATE-OR-COUNTY-CARD.

01	 COUNTRY CARD.
02	 FILLER PICTURE X(4).
02	 CARD-TYPE PICTURE X.

.	 02	 FILLER PICTURE X(3).
'	 02	 COUNTRY-CARD-DATA. 7

03	 COUNTRY-AND-PRESIDENT PICTURE X(48).
03	 POPULATION-COUNTRY PICTURE X(10).
03 AREA-COUNTRY PICTURE X(8).
03	 FILLER PICTURE X(10).

02	 FILLER
01	 STATE-OR-COUNTY-CARD.

02	 FILLER PICTURE X(8).
02 STATE-OR-COUNTY-DATA.

03	 STATE-OR-COUNTY PICTURE X(14).
03	 CAPITAL-OR-SEAT PICTURE X(16).
03	 POPULATION-STATE-COUNTY PICTURE X(8).
03	 AREA -STATE -COUNTY PICTURE X(6).
03	 STATE-RANK-IN-POP PICTURE X(2).
03	 STATE-RANK-IN-AREA PICTURE X(2).
03	 STATE-GOVERNOR PICTURE X(24).

t

Figure 3-3.	 Data Base Generation Program (DBGEN2)

a

3-7

r
i

WORKING-STORAGE SECTION.
01 MAS-UNIT	 VALUE "MAS	 if	 PICTURE X(1
01 MAS-REC-SIZE VALUE 13	 PICTURE H9(
01 MAS-BLK-SIZE VALUE 137	 PICTURE H9(
01 MAS-REC -NBR VALUE 0	 PICTURE H9(
01 MAS-RECORD.

02 MAS-REC-TYPE	 PICTURE 9(3)
02 FILLER	 VALUE SPACES	 PICTURE X(3;
02 MAS-REC-DATA.

03 MAS-DATA OCCURS 12 TIMES	 PICTURE H9(.
01 MAS-BUFFER.

03 MAS-BUF OCCURS 1796 TIMES	 PICTURE H9(;
PROCEDURE DIVISION.
MASGEN-OPEN-FILES.

OPEN INPUT CARD-FILE.
CALL "OPENS" USING MAS-UNIT 	 MAS-REC-SI2

MAS-BLK-SIZE	 MAS-BUFFED
READ-CARD-FILE.

READ CARD-FILE AT END GO TO CLOSE-FILES.
IF CARD-TYPE = "A" MOVE 101 TO MAS-REC-TYPE

PERFORM COUNTRY-ZERO-FILL
MOVE COUNTRY-CARD-DATA TO MAS-REC-DATA
GO TO WRITE -MAS -RECORD.

IF CARD-TYPE = "B" MOVE 201 TO MAS-REC-TYPE
PERFORM STATE-ZERO-FILL THRU COUNTY-FILL
MOVE STATE-OR-COUNTY-DATA TO MAS-REC-DATA
GO TO WRITE -MAS -RECORD.

IF CARD-TYPE "C" MOVE 301 TO MAS-REC-TYPE
PERFORM COUNTY -FILL
MOVE STATE OR COUNTY DATA TO MAS EC DA A
GO TO WRITE - MAS- RECORD,

Figure 3-3. Data Base Generation Program (DBGEN2) (Continued)

3-8

INVALID -INPUT-CARD.
DISPLAY "INVALID REC TYPE " STATE-OR-COUNTY-CARD.
GO TO READ-CARD-FILE.

COUNTRY-ZERO -FILL.
IF POPULATION-COUNTRY IS NOT EQUAL TO SPACES

EXAMINE POPULATION-COUNTRY REPLACING LEADING
SPACES BY ZERO.

IF AREA-COUNTRY IS NOT EQUAL TO SPACES
EXAMINE AREA-COUNTRY REPLACING LEADING
SPACES BY ZERO.

STATE-ZERO-FILL.
IF STATE-RANK-IN-POP IS NOT EQUAL TO SPACES

EXAMINE STATE-RANK-IN-POP REPLACING LEADING
SPACES BY ZERO.

IF STATE-RANK-IN-AREA IS NOT EQUAL TO SPACES
EXAMINE STATE-RANK-IN-AREA REPLACING LEADING
SPACES BY ZERO.

COUNTY-FILL.
IF POPULATION-STATE-COUNTY IS NOT EQUAL TO SPACES

EXAMINE POPULATION-STATE-COUNTY
REPLACING LEADING SPACES BY ZERO.

IF AREA-STATE-COUNTY IS NOT EQUAL TO SPACES
EXAMINE AREA-STATE-COUNTY REPLACING LEADING
SPACES BY ZERO.

W RITE- MAS - RE CO RD
ADD 1 TO MAS-REC-NBR.	 j
CALL "WRITES" USING MAS-UNIT MAS_ REC-NBR MAS-RECORD.
GO TO READ-CARD-FILE.

CLOSE-FILES.
CLOSE CARD-FILE.
CALL "C'LOSEM" USING MAS -UNIT.
STOP RUN.

d

of the data. This program reads the card file of Figure 3-4 and generates

a MIRADS Data Base with two levels of subordination with the following

structure:

COUNTRY
STATE

COUNTY
{

The input card file is in sequence by card columns 1 through 8, with

columns 1-2 identifying all records within a particular COUNTRY,

columns 3-4 identifying all records within a particular STATE, and

columns 6-8 identifying all records within a particular COUNTY. I•n

this example, there is only one COUNTRY, so all records containing

01 in columns 3-4 are within Alabama. The COUNTY records are

the lowest level of file subordination, so each county has a unique

code in columns 6-8. Column 5 contains CARD-TYPE, which is used

to identify the different record types, i. e. , all records containing an

A in column 5 are COUNTRY records, all records containing a B in

column 5 are STATE records, and all records containg a C in column 5

are COUNTY records.

All hierarchically structured files must be in the proper logical se-

quence before being written to the MIRADS Data Base. If the card file

in the example was out of sequence, a sort could be embedded in the

Data Base Generator program to sequence the file before writing the

3-10

}

n

_. _. _-j

01	 UNITED STATES OF AMERICAFORD, GERALD R 	 203235298 36086723
0101E	 ALABAMA MONTGOMERY 3444165 516902129WALLACE, GEORGE C
0101 0001AUTAUGA PRATTVILLE 24460 599
01010002BALDWIN BAYMINETTE 59382 1578
OIOI0003BARBOUR CLAYTON 22543 891
0101CO37JEFFERSON BIRMINGHAM 644991 1115

w	 0101C045MADISON HUNTSVILLE 186540 8G3
0103B	 CALIFORNIA SACRAMENTO 199531341586930103BROWN, EDMUND G JR.
01030001ALAMEDA OAKLAND 1073184 733
0103COISLOS ANGELES LOS ANGELES 7036887 4069
0151B	 WYOMING CHEYENNE 332416 979145009HATHAWAY, STANLEY" K
0151CO23WESTON NEW CASTLE 6307 2407

MIRADS Data Base. MIRADS must be able to identify different types

of records within hierarchical files or within complex files with more

than one type_ of record. This is accomplished by including a one-to-three-

character record identifier as part of each record. This identifier is

used by MIRADS to identify the type of record and level of subordination

of the record. (See Record Identifier Card of the Dictionary in

Paragraph 4.2. 3.)

In the sample program, when an A card type is recognized, the value

101 is moved into columns 1 through 3 of the MIRADS Master record
5

to identify it as a COUNTRY record. The A could be used as well, but

most MIRADS users find it easier to use the 3-digit code which identi-

fies the level of file subordination and type of record within that level.

A value of 201 is moved into the MIRADS Master record to identify

STATE records and a value of 301 is used for COUNTY records,

The population, area, and rank fields are zero-filled to the left by

the program. This is required so that fields used for searching,

printing, computing, and sorting will be uniform in content for each

data type. Similarly, other user Data Base Generator programs may

be required to adjust and align other types of fields to conform to

MIRADS requirements for uniformity of fields. (See Paragraph 3. 3.1

for allowable Data types and field alignments.) The data from all

three record types is moved to the same output record area,

3-12
r:

IP.

f

MAS-RECORD, to be written. The STATE record is the largest, con-

taining 12 words of data plus one additional word to contain Record

Type. IOPKG does not presently support variable length records, so

the smaller COUNTRY and COUNTY records are padded with spaces

to be equal in length (13 words) to the STATE Record. The value of

record size, in words, for the MIRADS Data Base (MAS-REC-SIZE)

must be the size of the largest record, 13 words. The blocking factor,

MAS-BLK-SIZE, calculates to a value of 137 (1792/13 137), and the

buffer for IOPKG, MAS-BUFFER, must be at least 1796 words long

(13 x 137 + 15 = 1796). Procedures for calculating the blocking factor 	
,f
H

and buffer areas are discussed in Paragraph 3. 3. 3.

3.3 THINGS TO KNOW BEFORE CREATING A DATA BASE

Before a user can write a'MIRADS Data Base generation program he

must have specific knowledge about the types of data supported by

MIRADS, buffer management techniques, and limitations imposed by

MIRADS that affect the contents and structure of the MIRADS Master:

file. The remaining portion of Section 3 is devoted to supplying

answers that the analyst might need to know before developing the

program to write his MIRADS Master file.

3. 3. 1 Data Types Supported by MIRADS

MIRADS is written in ASCII COBOL with the exception of some highly

k	 specialized I/O and data manipulation routines. Although ASCII COBOL

is the Compiler, MIRADS executes in Fieldata mode and does not

3-13
4

r

compilers. All signed numeric fields, with the exception of binary

integer and floating point fields, must have the sign present and the

sign takes one character position at the high order position of the field

(+001234). The sign character and leading zeros on Fieldata numeric

fields are essential in forming proper criteria for searching the

Master file.

All fields can be searched for the presence or absence of data. To be

uniform for all types of fields, the presence of any non-blank Fieldata

character will indicate the presence of data within the field. Any field

filled with Fieldata spaces will then be considered to be absent of data.

The binary integer and floating point data fields could conceivably con-

tain valid data values of all Fieldata spaces, but the presence and

absence of fields is a search technique and does not conflict with use

of the field for computing and sorting. Following are the nine data

types currently supported by MIRADS and some of the important field

characteristics.

1. Alphabetic

Fieldata Characters:	 6 bits per character

Maximum Field Length: 48 characters, or 132 characters if

the field is used as a print only field

3-14

Allowable Characters:	 Any letter of the alphabet or a space

Field should be left justified and space-filled to the right.

l	 2.	 Alphanumeric

Fieldata Characters:	 6 bits per character

Maximum Field Length:	 48 characters, or 132 characters if

the field is used as a print only field

Allowable Characters:	 Any character from the computer's

character set

Field should be left-justified and space-filled to the right.
a

3.	 Fieldata Numeric, Unsigned, Assumed Decimal

Fieldata Characters:	 6 bits per character
'I

Maximum Field Length: 18 characters i

Maximum Number of
Decimal Digits: 	 8

Allowable Characters:	 0 through 9
i

Field must be right justified and zero-filled to the left.

4.	 Fieldata Numeric, Signed, Assumed Decimal y

Fieldata Characters:	 6 bits per character 3	 j

'	 Maximum Field Length: 	 18 characters which includes a; 1
=ax

sign character l°
Maximum Number of
Decimal Digits:	 8

3-15

Allowable Characters: 0 through 9 or + or -

Field must be right-justified and zero-filled to the left. The

high order character position must contain a plus or minus

i
sign. Positive fields must have a sign present for proper

searching and sorting within MIRADS.

5. Fieldata Numeric, Unsigned, Decimal Present r

Fieldata Characters: 	 6 bits per character

Maximum Field Length: 18 characters and which includes a decimal
{

Maximum Number of
Decimal Digits: 	 8

Allowable Characters: 0 through 9 or

Field must be right-justified and zero-filled to the left. The

decimal point must be present within the field.
a

6. Fieldata Numeric, Signed, Decimal Present 	 j

Fieldata Characters:	 6 bits per character

Maximum Field Length: 18 digits and which include a sign and a

decimal

Maximum Number of
Decimal Digits:	 8

Allowable Characters: 0 through 9 or	 or + or -

Field must be right-justified and zero-filled to the left. The

high order character position must contain a plus or minus	 r

sign. The decimal point must be present within the field.

3-16

Positive fields must have a sign present for proper searching

and sorting within MIRADS.

7. Binary Integer

FORTRAN:	 Single precision Integer data

COBOL.	 PICTURE S119(10) or H9(10)

Field must be 36 bits (6 character positions)n length.

Field should be word aligned, but word alignment is not

required by MIRADS. The capability of searching and printing

up to 10 significant numeric digits (± 235 -1) exists.

8. Single Precision Floating Point

FORTRAN:	 Single precision Floating Point field

ASCII COBOL:	 USAGE IS COMPUTATION-1

Field must be 36 bits (6 character positions) in length.
1

Field should be word aligned, but word alignment is not)

required by MIRADS. The capability of searching up to nine

significant numeric digits and printing up to eight significant

numeric digits exists.

9. Double Precision Floating Point a
FORTRAN	 Double precision floating point field

ASCII COBOL:	 USAGE IS COMPUTATIONAL-2

Field must be 72 bits (12 character positions) in length.

Field should be word aligned, but word alignment is not

3-17

required by MIRADS. The capability of searching up to 18 signi-

ficant numeric digits and printing up to 8 significant numeric

digits exists.

J
3. 3. 2 Field Content and Search Criteria

The way a field is to be used by MIRADS determines how this field;

should be stored in the MIRADS Data Base. The fields to be used
3

for computation have to be numeric fields. Whether these fields

should be binary, floating point, or numeric Fieldata must be deter-

mined by the user, and will normally be dictated by the type of field

in the application Master file.

Fields containing information such as calendar dates require manipula-

tion within the Data Base generator program. Dates with the format

MM-DD-YY are good for printing, but make searching for a range of

dates very difficult. There are three ways to solve this and similar

problems. The field could be stored in the MIRADS Data Base in the

format YYMMDD for ease of searching. The date in this format does

not look as good on the printed output and may not be acceptable for

some formal reports. A second solution would be to store the date

in both formats as two separate fields. One field could be used for

searching and the other for printing. The third alternative would be

to store the date in MM-DD-YY format and define the date as eight

alphanumeric characters. (See Section 4 for detailed discussion of the

3-18
j

Dictionary.) The year and month can be defined as two-digit fields and

can be used as individual fields in searching the Data Base, while fhe

eight-character field would be used for printing. The third approa,-^h is

the most widely used technique because it permits flexibility without
r

requiring additional storage space in the record.

Consideration must also be given to large alphabetic and alphanumeric

fields. Fields larger than 48 characters in length are normally used

only for printing purposes since the search criteria in the MIRADS

Query command is limited to 48 characters. However, there are

three types of special searches that can be used on fields up to 132

characters in length. The keyword, keyphrase, and character searches

(see Paragraph 4. 2. 4) permit the user to search for up to 48 characters of

specific data within any defined Fieldata field. The maximum allowable

field size is 132 characters. Fields larger than this can be contained

within the MIRADS Master file, but cannot be defined to MIRADS

through the use of the Dictionary.

3.3.3 Using MIRADS Buffers Efficiently

The buffers in the MIRADS System programs which process the user's

Master file are maintained at a reasonably large size to maintain

input/output efficiency, but at the same time not so large as to require

excessive amounts of core in the computer. The Master file buffer is

1, 792 words long, and user Master file blocks larger than this cannot

be handled by MIRADS.

3-19

User records should be blocked as close to 1, 792 words as possible

for efficient processing of the Master file. To calculate the block size

or blocking factor, the record size in words is divided into 1, 792, and

this block size is used in the call to the OPENS entry point of the MIRADS

IOPKG when creating the Master file. The user program that creates

the Master file has to supply a file buffer large enough to Bold one block
9

of data plus an extra 15 words for a File Control Table. To calculate

the minimum buffer area required for the file, the block size or blocking

factor is multiplied by the record size and 15 words are added. The

formulas for calculating the blocking factor and the buffer size are: 	 s

BLOCK SIZE 1792 / RECORD SIZE
BUFFER SIZE = BLOCK SIZE x RECORD SIZE + 15

The user is not required to block to full capacity, but it is done to mini-

mize record access time when processing the user's Master file.

The MIRADS System programs provide a record buffer of 896 words

for processing all the various record types in a user's Master file.
9

The record buffer permits a maximum record size of 896 words;

however, this is only true for a. file with no levels of subordination.

For hierarchical files, the record buffer can be considered as eight
„	 3

concurrent 112-word buffer areas'. Level-1 type records start loading

into the first area, Level-2 types into the second, Level-3 types into

the third, etc. With this type of loading, multi-level Master file

3-20

record sizes are limited to 112 words. This limit can be varied by
c

f
	 using a unique MIRADS structuring technique. The limit on record

f;

size can be increased to 224 words by defining only Levels 1, 3, 5.,

and 7 to MIRADS. (See Paragraphs 4. 2. 1 and 4. 2. 2.) The absence of

Levels 2, 4, 6, and 8 permits data from the odd levels to extend into
I

their buffer areas. Similarly, the limit can be increased to 448 words

_	 by defining only Levels 1 and 5, and increased to 896 words by defining

only Level 1 record types. Figure 3-5 illustrates the relationship of

record size and levels of file subordination. This technique of

loading into a specific buffer area based on the level of file subordi-

nation precludes two or more peer records being loaded at the same

time. Consequently, a single Query command requesting information

a

from two or more peer records is not possible within MIRADS. This

restraint, as well as the restraints on Master file record sizes, should

be taken into consideration by the user when creating a MIRADS Data

Base.

i

sK

5

}	 3-21

v

Lev 1	 Lev 2	 Lev 3 1 Lev 4 Lev 5 Lev 6	 Lev 7 Lev 8

112 Words Areas - 8 Level Maximum

Level 1	 Level 3	 Level 5	 Level 7

224 Word Areas - 4 Level Maximum

Level 1	 Level 5

448 Word Areas - 2 Level Maximum
s

Level 1
y

q1

896 Word Area - 1 Level Maximum

Levels of File	 Maximum Record Length	 Permissible Levels
Subordination	 (In Words)	 of Records

0	 896	 1
1	 448	 1,5
2	 224	 1, 3, 5
3	 224	 _1,3,5,7
4	 112	 1,2,3,4,5
5'	 112	 1, 2, 3,415,6
6	 112	 1, 2, 3, 4, 5, 6, 7
7	 112	 1, 2, 3,_4, 5, 6, 7, 8

Figure- 3-5. MIRADS Record Buffer

a

3-22

r
y

"	 Data definition is the process by which the user describes a particular
r

r	 Data Base to MIRADS. As part of the data definition process, symbolic

names of the data elements in the Data Base are defined along with their

logical structure and physical properties. Information is specified to

define the location, size, type of data, etc. , of a data element, and its

relationship with other data elements in the Data Base.

The user must employ a data definition language called a Dictionary to

define a Data Base. The Dictionary is the cornerstone of the MIRADS

System, providing a centralized definition of data, thereby allowing the

separation of data from the computer programs which process the data.

The Dictionary provides an interface to a set of generalized programs fi

so that these programs can work on several different Data Bases without

regard to their content. This set of generalized programs is the

MIRADS System and the inventory of all the capabilities it provides.

Section 4 describes in detail the data definition language, or Dictionary,

used to describe 'a Data Base to MIRADS.

4.2 DICTIONARY INPUT CARDS

MIRADS provides an update edit program which creates the MIRADS

Dictionary rom card i nput. The p rogram edits the input cards toY	 P	 p g	 p	 a

4-1	
Y

f'^ 	 i

verify that each input parameter has been entered correctly, and produces

an output report or listing summarizing the parameter information. If

errors exist in the input cards, appropriate diagnostic messages are

produced on an error listing describing the cause for the error. Addi-

tional information on the use of the Dictionary generation program is

given in Section 5.	 r

The following paragraphs describe in detail the data cards that must be	
3

input to the Dictionary generation program. A maximum of five input

cards may be used for Dictionary generation. They are the Filename,

Password, _Record Identifier, Field Definition, and Table Lookup cards.

However, the Password and Table Lookup cards are optional, making

only three input cards necessary for Dictionary generation.
a

There are three types of input transactions to the Dictionary. They

are Insert, Delete, and Modify. Each input card must indicate the

type of transaction as well as card type; that is, whether it is a

Filename card or one of the four other cards.

4. Z. 1 Filename Card

The function of the Filename card is to name the MIRADS Data Base

that is being described, and to provide other pertinent information

relating to the definition of the Data Base. This information includes

the approximate number of records in the Data Base, the sizeof the

records in the Data Base, the number ofrecords per block, and the

4-2

number of levels of file subordination contained within the Data

Base.

Each field of the Filename card, as shown in Figure 4-1, is explained

along with a description of the contents of each field. Each MIRADS

Data Base requires only one Filename card.

a

FILENAME CARD

ACT - Card column 1. Action code indicating one of three possible
types of Dictionary input transactions. The action code must be I for
Insert, D for Delete, or M for Modify. The Insert action requires
that all fields of the Filename card be completed as described below.

i The Delete action requires that the ACT, TYPE, and FILENAME fields
be completed. The Modify action requires completion of the ACT,
TYPE, and FILENAME fields as well as the fields to be altered. Only
the values of those fields specified on the Filename card are altered
by the Modify action.

TYPE - Card column 2. Card type indicating the type of Dictionary
input card. A constant value of F must be used to denote Filename
card.

FILENAME - Card columns 3-11. Unique name used to identify the
Data Base described by this Dictionary using one to nine alphanumeric
characters left-justified.

NBR DATABASE RECORDS - Card columns 12-19. Approximate
number of records in the Data Base described by this Dictionary,
and is right-justified. A maximum estimate within 10 percent of the
actual n	 iumber of records expected n the Data Base should be used.
This value is used in establishing parameters which significantly 	 .
affect the efficiency of the MIRADS load programs. If the estimate
is 10 percent less than the actual number of records, the MIRADS
load programs could abort with a sort B5 error.

MAX REC SIZE- Card columns 20-23. Maximum record size design-
ating the number of words in the largest record in the Data Base

s

described by this Dictionary, and is right-justified. Since MIRADS

4-3

_	 ffie

N AME	 FILE NAME CARD	 $MEET	 Of

AC3COUWI	 ► MORE	 DATE

1 ') 11 err

A
T

illE /LAME CAT~'!as6
R 60000$

TGC
SIZE

i A^
KOCK 71E

^iCri1Mry
 u^'- BLANK

F

PASSWORD CARD

1 ^) S lr
BLANK

C
T E

IASSHORD

.	 A

1 !	 .

1

1 ^-	 '	 '	 1	 L-	 y	 .1

-1

RECORD IDENTIFIER CARD

6 t 1) 17 11FC EC

1D
START

L(X
ENO
Lot

REC

SIZE BLANK

L

L

L

L

L

L

l

l

L

FILENAME CARD (Continued)

does not support variable length records per se, records of varying
sizes must be padded or space-filled to produce uniform record sizes.

RECS PER BLOCK - Card columns 24-27. The number of records per
block in the Data Base, and is right justified. The maximum value
allowed is equal to 1, 792 divided by the MAX REC SIZE.	 r

NBR LEVELS - Card columns 28-29. The number of the highest level
of file subordination referenced within the Data Base described by this
Dictionary. The highest level is determined by the Dictionary generation
program and overrides any value specified by the user. Consequently,
this field may be left blank. The value must be in the range 1-8, and
right-justified. See REC TYPE of the Record Identifier card for addi-

1
	 tional information regarding the contents of this field.

SECURITY KEY - Card columns 30-35. Security key is an optional
field used to control access to the data element level for the Data
Base described by this Dictionary. Further information regarding
the use of this field is described under separate cover and can be
provided on a need-to-know basis. Security key should be left blank
if security is not required for the MIRADS Data Base.y

BLANK Card columns 36-80 must be all blank.

4. 2. 2 Password Card

The function of the Password card is to define a Password which may

be used to gain access to a MIRADS Data Base. Fields of the card

include the card type, transaction type, update indicator, and security

information. The Data Base may or may not be updated, depending on

the update indicator of the Password being used. The Password card

is an optional input card which maybe used one or more times, depend-

ing on the number of Passwords desired for a given Data Base.

Each field of the Password card, as shown in Figure 4-1, will be ex-

plained along with a description of the contents of the fields.

4-5	
L

j

PASSWORD CARD

ACT - Card column 1. Action code indicating one of three possible
types of Dictionary input transactions. The action code must be I
for Insert, D for Delete, or M for Modify. The Insert action requires
that all fields of the Password card be completed as described below.
The Delete action requires that the ACT, TYPE, and PASSWORD fields
be completed. The Modify action requires completion of the ACT, TYPE,
and PASSWORD fields as well as the fields to be altered. Only the values
of those fields specified on the Password card are altered by the Modify
action.

r	TYPE - Card column 2. Card type indicating the type of Dictionary
input card. A constant value of I must be used to denote Password
card.

I

PASSWORD - Card columns 3-14. Password is a unique name used at
Query execution time to control access at the file level for the Data
Base described by this Dictionary. It is 1-to-12 alphanumeric char-
acters in length and must be left-justified.

UP IND Card column 15. Update indicator shows whether or not the
MIRADS UPDATE command may be used with this Password while
using the Data Base described by this Dictionary. A value of 'Y' must
be used to indicate that updating is possible, otherwise a value of °N'
or space indicates a non-updatable password.

SECURITY KEYS Card columns 16-65. Security keys is an optional
field used to control access to the data element level for the Data Base
described by this Dictionary. Further information regarding the use of
this field is described under separate cover and can be provided on a
need-to-know basis. Security keys should be left blank if security is
not required for the MIRADS Data Base. Note, the Password card
may be used to control access at the file level for a Data Base without
the use of security keys to control access to a Data Base at the data
element level.

BLANK Card columns 66-80 must be all blank.

4. 2. 3 Record Identifier Card
i

The function of the Record Identifier card is to define the various types
A

of records contained within a MIRADS Data Base. Descriptive

d

4-6

r

information includes an identifier for each record type, the relative

start and end location in a record where this identifier can be found,

and the size of the record which is being described.

Each field of the Record Identifier card, as shown in Figure 4-1, is

explained as well as the contents of the fields. One Record Identifier

card is required for each distinct record type contained within the

Data Base.

RECORD IDENTIFIER CARD

ACT - Card column 1. Action code indicating one of three possible
types of Dictionary input transactions. The action code must be I
for Insert, D for Delete, or M for Modify. The Insert action requires
that all fields of the Record Identifier card be completed as described
below. The Delete action requires that the ACS', TYPE, and REC
TYPE fields be completed. The Modify action requires completion of
the ACT, TYPE, and REC-`TYPE fields as well as the fields to be
altered. Only the values of those fields specified on the Record
Identifier card are altered by the Modify action.

TYPE - Card column 2. Card type indicating the type of Dictionary
input card. A constant value of L must be used to denote Record
Identifier card.

REC TYPE - Card columns 3-5. Record type is used to indicate the
kind of record being described in the Data Base, and is broken into
two parts: The first part, composed of one character, indicates the
level of file subordination for the record and must have a value ranging
from 1-8. The base level of file subordination is designated as 1, the
first level of subordination is designated as 2, etc. The second part,
composed of two characters, is used to distinguish one record format
from another at the given level of file subordination, and must have a

i	 value ranging from 01-10. For example, a Data Base with two levels,
of file subordination contains CITIES and COUNTIES record types at
the third level. The REC TYPE for the CITIES and COUNTIES records
would be 301 and 302, respectively. For a Data Base with no levels

4-7

RECORD IDENTIFIER CARD (Continued)

of file subordination and only one record type, a value of 101 for
REC TYPE is suggested. Example:

I	 REC TYPE	 RECORDS

101	 COUNTRY
201	 STATES
301	 CITIES
302	 COUNTIES

REC ID Card columns 6-8. Record identifier is a one-to-three-
character alphanumeric value physically located in the Data Base
records. This value is used to distinguish one record format from
another and must be left justified. For example, a Data Base con-
taining CITIES and COUNTIES records could have a value of 'A' in
character one of each CITIES record while the COUNTIES records
could have a value of 'B' in character one of each record. The values,
'A' and 'B', could then be used to identify one record format from
another. For a file with no levels of subordination and only one record
type, REC ID should be '///'.

START LOC - Card columns 9-12. Start location indicates the starting
position in the Data Base records where the record identifier (REC ID)
described above may be found. The first character in a record is
designated as start location 1, the second character is 2, etc. This
field may be left blank for a Data Base with no levels of file sub-
ordination and only one record type; otherwise, it must be
right-justified,

END LOC _- Card columns 13-16. End location indicates the ending
position in the Data Base records where the record identifier (REC ID)
is described above may be found. The first character in a record is
designated as end location 1, the second character is 2, etc. This
field may be left blank for a Data Base with no levels of file sub-
ordination and only one record type; otherwise, it must be
right-justified,

REC SIZE - Card columns 17-20. Record size indicates the size in
words of the record type in the Data Base being described by this
Record Identifier card. This field must have the same value as
MAX REC SIZE on the Filename card, and must be right-justified.

4. 2. 4 Field Definition Card 1

The function of the Field Definition Card 1 is to name and define the

data elements or data fields of the Data Base to the MIRADS System.

Typical information provided for each data field includes the start and

end location of the field, the record type to which the field belongs,

the type of search which can be performed on the field, and whether

or not a field can be updated. Each field of Field Definition 1 card,

as shown in Figure 4-2, is explained as well as the contents of the

fields. One Field Definition Card l is required for each data element

of the Data Base being described.

FIELD DEFINITION CARD 1
t_

ACT - Card column 1. Action code indicating one of three possible
types of Dictionary input transactions. The action code must be I for
I•nsert, D for Delete, and M for Modify. The Insert action requires
that all fields of Field Definition Card 1 be completed as described
below. The Delete action requires that the ACT, TYPE, FIELD NBR,
and NBR fields be completed. The Modify action requires completion
of the ACT, TYPE, FIELD NBR, and NBR fields as well as the fields
to be altered. Only the values of those fields specified on the Field
Definition card are altered by the Modify action.

TYPE - Card column 2. Card type indicating the type of Dictionary
input card. A constant value of M must be used to denote Field
Definition card.

FIELD NBR Card columns 3-6. Field number is a unique number
used to identify the data element being described by this Field Definition
card. The value for field number must be right-justified and in the
range from 0001 to 9999, 	 a

NBR - Card column 7. Constant value of 1.

N AM E	 FIELD DEFINITION CARD 1
[ACCOUNT 	 PHONE

i^
FF

r

o

1 2 3	 ,	 617 8 20 56 59 63 67 69 71172173 FS 76 77
D D

U E E G
A
C
T
Y FIELD

N
a FIELD NAME REPORT TITLE

REC
TYPE

START
LOC

END
LOC

NOR

OCC
SRC
TYPE

N
D

P
I DATA
TYPE

C
S
C
S T

TLU
ABLE T

L l
T P NBR R

J

E N I NBR U

I

E
I

I
x 0 NIT

I' "	 -	 -	 ,	 ,

M

-

M

M

I

#A

mm I l l

F—j

I
I	 I	 I	 k I	 I	 I	 I	 I	 A	 I	 I	 I	 I	 I	 a	 A	 I	 I	 1	 1	 1-1 1 A	 I	 i I I I I I	 I

M 11

M
--

M I i	 A	 t	 I	 L	 I	 k I	 I	 A	 I	 1	 1". 1 1	 1 , I ' l I

M

-L-L-1-

1 - 1
I	 I	 i	 A	 I	 I	 I	 I	 It4i	 'i.	 _^l	 A --4^ I I	 I	 I I. - A	 I

M

M I	 I	 I I	 I	 "I	 I	 1^	 I	 I	 I	 I I I --A- AI	 I	 A	 I	 I	 I

M 11
A	 I	 I	 I	 I	 I	 Ij -

M .	 .	 .
- 1

M
M

M

M i
M

M

M
I

M

I	 I	 A	 I I	 A I	 I

(Rev..MaF1975)

Figure 4-2, Field Definition Card 1

FIELD DEFINITION CARD 1 (Continued)

FIELD NAME - Curd columns 8-19. Field name is a unique name
assigned to the data element being described by this Field Definition
card. Characters allowed to form this name are A through Z, 0 through
9, and dash (-). Field name must not be a MIRADS reserved word or
symbol (see MIRADS Reserved Words and Symbols in Table 4-1), and
must be left-justified.

REPORT TITLE - Card columns 20 -55. Report title indicates the title
that will be printed on output reports for the Field Name described
above. Report title is an alphanumeric field, should be left-justified,
and may have up to five intervening spaces.

REC TYPE - Card columns 56-58. Record type on the Field Definition
card must correspond to one of the record types (REC TYPE) pre-
viously defined on the Record Identifier card. It indicates that the
data element being described on this card belongs to, or is a member of,
one of the previously defined record types.

START LOC - Card columns 59-62. Start location indicates the starting
position in the Data Base record where the data element being described
on thiF card may be found. The first character in a record is designated
as start location 1, the second character is 2, etc. This field must be
right-justified.

END LOC — Card columns 63-66. End location indicates the ending
position in the Data Base record where the data element being described
on this card may be found. The first character in a record is designated
as e=nd location 1, the second character is 2, etc. This field must be
right-justified.

NBR OCC - Card columns 67-68. Number of occurrences indicates
how many times that the data element being, described repeats. This
capability is not presently operational in MIRADS and the field should
be left blank.

SRCH TYPE C d 1	 69 70 S ch t e indicates one of four- ar co umns -	 ear	 yp
types of searcheswhich can be used to satisfy MIRADS inquiries about
a data element. The values for this field are:

RG for Regular Search or
CH for Character Search or
KW for Keyword Search or
KP for Keyphrase Search or
Blank defaults to Regular search.

4-ii

.`

Table 4-1. MIRADS Reserved Words and Symbols

Reserved Words
GREATER-EQUAL	 P

A	 GT	 PRESENT
ADD	 GREATER	 PRINT	 I I
ALL	 G	 PAGENR
ASCENDING	 GROUP	 PPOS
BREAK	 I	 Q
BREAK-COUNT	 KEY	 QUERY
BRK	 KP	 RG	

»^

BRK-CNT	 KW	 R
C	 LIM	 RJ
CH	 LIMIT	 RJ T
CHECK	 LESS-EQUAL	 RUN
COMPUTE	 E	 SL
COUNT	 LT	 SORT
D	 LESS	 SUM
DELETE	 L,	 SM
DESCENDING	 LOOKUP	 SP
DEF	 LJ	 SPACE
DEFINE	 LJT	 SPLIT
DISPLAY	 LIST	 SAVE
DO	 NP	 SAV E C
DRUM	 NOT	 STANDARD
EDIT	 NOT-PRESENT	 TLU
EQ	 NE	 UNEQUAL
EQUAL	 NONE	 U
EQUALS	 NEW	 UPDATE
F	 OR
FORMAT
FULL
GE

SYMBOLS

4-1Z

J

FIELD DEFINITION CARD 1 (Continued)

When an inquiry involving the data element described on this card is
made, this field is used to determine the type of search required to
satisfy the inquiry. However, type of search as defined here can be
overridden at inquiry time through the use of the MIRADS QUERY
command.

When determining the type of search to be used, the length of a data 	 t
element (START LOC - END LOC + 1) should not exceed 48 characters
for a Regular search, or 132 characters for a Character, Keyword, or
Keyphrase search. More information about the types of searches may
be found in Paragraph 3. 3. 2 of the MIRADS USER'S MANUAL.

INDEX - Card column 71. Index is used to indicate an indexed field
and provides an efficient means to rapidly retrieve data from the Data
Base. A value of Y indicates an indexed field while leaving it blank
indicates a non-indexed field. See Paragraph 2. 2. 3 for more information
regarding the use of indexed fields.

UP IND - Card column 72. Update indicator shows whether the data
element described on this card can be updated or not. A value of Y
indicates the data element may be updated while leaving it blank
indicates a non-updatable data element,

DATA TYPE - Card columns 73-74. Data type indicates the kind of
data contained in the data element described by this card. The data
types supported by MIRADS are:

00 = Alphabetic
01 = Alphanumericis
02 = Numeric Field Data Unsigned Assumed Decimal
03 = Numeric Field Data Signed Assumed Decimal'
04 = Numeric Field Data Unsigned Decimal Present
05 Numeric Field Data Signed Decimal Present
06 = Not Used
07 = Numeric Binary Integer
08 = FORTRAN Single Precision Floating Point Number
09 FORTRAN Double Precision Floating Point Number

R

Table 4-2 illustrates examples of all types of data supported by MIRADS
and gives input values for the data, the octal representation for the
storage of the data in the Data Base, and the output values as they
might appear on printed reports.

4-13

J	 t

y	 `	 I

FIELD DEFINITIOIJ CARD 1 (Continued)

DECS IN Card column 75. Decimals In indicates the number of
actual or implied decimal positions (from the right) in the data element
described by this card. This value must be 0-8 for DATA TYPES 02-05,
otherwise this field should be left blank. Table 4-2 illustrates several
examples for Decimals In.

DECS OUT - Card column 76. Decimals Out indicates the number of
actual decimal positions (from the right) to be printed by MIRADS for
the data element described by this card. This value must be 0-8 for
DATA TYPES 02-05 or 01-08 for 08-09; otherwise, this field should
be left blank. The value for Decimals Out should never exceed the
value for Decimals in DATA TYPES 02-05. Table 4-2 illustrates
several examples for Decimals Out.

TLU TABLE NBR - Card columns 77-79 - Indicates the table number
in the Table Lookup cards that is to be used for table lookup for the
data element described by this card. This value may range from 1
to 999 and should be right-justified, or left blank if the Table Lookup
feature is not required by a data element.

G TLU Card column 80. Global Table Lookup is not presently
implemented in MIRADS. The value for this field should be blank.

4. 2.5 Table Lookup Card

The Table Lookup card is an optional input card which provides a means

for decoding the value of a data element in the Data Base to a more

meaningful value for reporting purposes. An example is a coded value

of one in a Data Base which is decoded to mean the state ALABAMA

for output reports. The Table Lookup card contains both the Data

Base coded value and the report value.

4-14

Table 4-2. Data Types and Storage

Deci- Deci-
Data Field mals Storage mals
Type Input Width In (DI) Octal Code Out (DO) Output

00 ABCDEF 6 060710111213 ABCDEF

01 ABC123 6 060710616263 ABC123

02 1 000666 6 2 1 606060666666 2 6.66
03 -00000000002 12 0 416060606060 0 -2

606060606062

03 +1234 5 2 4261626364 2 12.34
04 0001.1234567 12 7 606060617561 6 1.123456

626364656667

04 06.366 6 3 606675636666 3 6.366
05 +00000022.22 12 2 426060606060 1 22.2

606262756262

05 -1.001 6 3 416175606061 3 -1.001
07 +4 6 000000000004 4
07 -4 6 1 777777777773 -4
08 .lE-6 6 151655376247 3 .100-06
08- -.01 6 605270243655 6 -.100000-01
09 .4D-3 12 176564333427 8 .40000000-003

261610313122
09 -.0000001 12 602612240153 8 -.10000000-006

124152055724

Data Type	 Description

00	 Alphabetic
01	 Alphanumeric - COBOL x(n) Format
02	 Numeric Field Data Unsigned Assumed Decimal
03	 Numeric Field Data Signed Assumed Decimal
04	 Numeric Field Data Unsigned Decimal Present
05	 Numeric Field Data Signed Decimal Present
06	 Not Used
07	 Numeric Binary Integer
08	 FORTRAN Single Precision Floating Point Number
09	 FORTRAN Double Precision Floating Point Number

4-15

Each field of the Table Lookup card, as shown in Figure 4-3, is as

explained as well as the contents of the fields. One Table Lookup

card is required for each coded value for a data element in a Data

Base.

TABLE LOOKUP CARD

w^.

	

	 ACT —Card column 1. Action code indicating one of three possible
types of Dictionary input transactions. The action code must be I for
Insert, or D for Delete, or M for Modify. The Insert action requires
that all fields of the Table Lookup card be completed as described
below. The Delete action requires that the ACT, TYPE, TLU TABLE

1

	

	 NBR, and TLU DATABASE VALUE fields be completed. The Modify
action requires completion of the ACT, TYPE, TLU TABLE NBR, and
TLU DATABASE VALUE fields as well as the fields to be altered. Only
the values of those fields specified on the Table Lookup card are altered

t
by the Modify action.

TYPE - Card column 2. Card type indicating the type of Dictionary
input card. A constant value of T must be used to denote Table Lookup
card,

TLU TABLE NBR - Card columns 3-5. Indicates the table number for
the data element described by this card and must correspond to the
TLU TABLE NBR given on Field Definition Card 1. This value must
range from 1 to 999, and should be right justified.

TLU DATABASE VALUE Card columns 6-14, TLU Data Base value
indicates the value- contained in the Data Base that corresponds to the
TLU Report Value in card columns 15-62 on this card, and should
be left justified,

TLU REPORT VALUE - Card columns 15 -62. The TLU Report
Value corresponds to the TLU Data Base value in card columns 6-14 on
this card. This value for a data element will be used on reports in
lieu of the coded value when requested on the MIRADS PRINT or
FORMAT commands. The allowable characters are A-Z, 0-9, and
special characters +, -, $, 7, space, and comma. This field should
be left justified,

BLANK Card columns 63-80 should be all blank.

4 -16

Ni ^Fr" . V_	 J 4 (Rev.MaY1475)

F

s:

-11213 6 15 63

A
C
T

IT

P
E

TLU.
ABL
NBR

TLU
DATA. BASE

VALUE
TLU - REPORT - VALUE BLANK

ITI ,
T
T
T
T
T

T
T ,

T

T
T'

T
T
T 1	 i	 r,,	 r,	 ,	 r	 r,	 r	 r	 r,	 J

T i.- La_.a	 r	 i	 t	 r	 r	 r,	 i	 r	 ,	 r	 r	 L	 i,	 r,	 ,	 ,.+_.L._t

T

T

T r

ITI
T r	 , 1

T'
r	 r	

, f r 	 r	 r

T r I	 f	 I	 ,	 ,	 ,

T ,

T r
T r ,	 r	 r	 ,	 ,

T r_.	 e	 r	 r	 r	 r	 I	 , 1	 r

T

T r	 r ,

T

TL
r	 r	 ,

t

	
I -	 1"

SECTION 5 - HOW TO IMPLEMENT A DATA BASE
FOR USE WITH MIRADS

5.1 INTRODUCTION

After a program has been written to create a MIRADS Data Base and a

Dictionary has been written to define the Data Base, the user is ready

to implement a MIRADS application. A User's File Set consisting of

five files is required for executing MIRADS inquiries. Section 5

describes the steps required to generate the User's File Set for the

first time, and the subsequent steps required to generate a User's
5

File Set for each succeeding time thereafter.

x a

The MIR.ADS programs used for the implementation cycle are designed
i

to make the process as easy as possible. Dynamic run stream genera-

tion and file assignments are provided by the programs so that the

	

user does not have to become acquainted with any files required by 	 s

the programs except the User's File Set.

Every possible path in the generation cycle is not discussed because

of the many variations available. The initial implementation cycle and

one subsequent loading of the User's File Set are discussed in detail.

The user who understands these steps should be able to modify the

suggested implementation procedures to best suit his needs.

j

f

5-1

4

5. 2 INITIAL IMPLEMENTATION FOR USER'S FILE SET

The run stream below illustrates the initial procedure for implementing

the User's File Set (DIC, SAV, MAS, DRL, and IND files) required for

executing MIRADS inquiries. This procedure is used the first time the

User's File Set is created. Paragraph 5. 3 describes the procedure to

follow after initial Data Base implementation. The run stream for

implementing the User's File Set is:

STEP 1 @RUN

	

@ASG,	 A	 MIR' ADS.

	

@XQT,	 C	 MIR-ADS. ASGFILS
ENTER QUALIFIER*FILENAME(CYCLE)

(data card naming the Data Base)

	

@XQT	 USERS. DBGEN
(dais. cards for creating the Data Base)

STEP 2 @XQT, LU MIRE ADS. DICGEN
ENTER DICTIONARY CARDS

(data cards for creating the Dictionary)

	

STEP 3 @XQT	 MIRAADS. DRLGEN

	

STEP 4 @XQT	 MIR -ADS. INDGEN

	

STEP 5 @XQT	 MIR"ADS. SAVGEN
ENTER QUERY-SET CARDS

(data cards for creating Save-Queries)

	

STEP 6 @XQT,_S	 MIR'*ADS. UNLOAD
ENTER QUALIFIER IFILENAME(CYCLE)	 ?

(data card naming the Data Base)

	

@FIN	 a

A graphic description of the implementation cycle is shown in Figure

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6

Data
Base Work File
Input Dictionary (INVLIST) Save-Query

Input Cards Input Cards

Data Base	 ! Dictionary Data Relational Index Save-Query User's File Set
i Generator	 i Generator List Generator Generator Generator Unload

' i Program* j Program Program Program Program Program
(DICGEN) (DRLGEN) (INDGEN) (SAVGEN) (UNLOAD)

Master ictionar.y Data Index Save-Auer	 j User's
File File (DIC) Relational File File (SAV)	 1 File Set

(' !	 (MAS) List File (IND) (UFSTAP
! DRL

' MIRADS User's File Set
L ------- —	 ------ --_— ----- -- --- –J

"User written program which creates the Master file using the MIRADS I/O package which is callable from any
COBOL, FORTRAN, or Assembly Language program.

W Figure 5-1.	 Initial Data Base Implementation Cycle

to ensure that it has been loaded onto mass storage and can

be accessed. It is assumed that the MIRADS Library file

has been cataloged and secured using the UNIVAC 1108

SECURE processor as described in Section 7 of this manual.

Next, the program ASGFILS is executed to assign the neces••

sary files to create the User's File Set.

M

i

T

J

A

1. STEP 1

This run stream assigns the MIRADS Library file, MIR*ADS,

to the user's computer run via

@ASG, A MIR *ADS.

a

the system will automatically assign the files which are

needed to perform MIRADS inquiries. The C option on the

@XQT card specifies that cataloged files will be used for the

User's File Set. The program equates the files DIC and

DICNATIONS, SAV and SAVNATIONS, MAS and MASNATIONS,

DRL and DRLNATIONS, and IND and INDNATIONS so that the

user's designated File Set, NATIONS, will be used to store

the information created by the implementation cycle. The

ASGFILS program is documented in Paragraph 6. 2.

The creation of the Data Base is the final part of STEP 1 and

it is accomplishek' ,with a user written program. Even though

this is not a MIRADS function, the system requires that the

Data Base be written using the MIRADS 1/0 package and that

it be written into the file called MAS. Creation of the MIRADS

Data Base is discussed in detail in Section 3 of this manual.

2. STEP 2

At this time, the user is ready to execute the Dictionary 	 a

generation phase of the implementation cycle. The Dictionary

Generator nro g.ram. DICGEN. generates the Dictionary File,

nts of the Data Base. The

DIGGEN

executes the program, and the program responds with the

message

ENTER DICTIONARY CARDS

The Dictionary input cards are entered at this point to gene

the MIRADS Dictionary file, DIC. The L option on the @X1

card specifies that Dictionary listings are to be produced i

sequence first by field number, then by field name. The t

specifies that the passwords are to be printed as part of the

Dictionary listings. The MIRADS Dictionary input cards are

documented in Section 4, and the DICGEN program is docu-

mented in Paragraph 6. 3.

3. STEP 3

Following the creation of the Dictionary, the DRL Generator

program, DRLGEN, is executed to generate a Data Relations

List which describes the hierarchical file structure of the Data

Base to MIRADS and stores the results in the DRL file.
a

@XQT MIR*ADS.`;DRLGEN

DRLGEN not only generates the DRL file, but also builds the

IIJJLIST work file which contains the sorted occurrence of

each index field in the Data Base. This work file is then
s

5-6

^	 ..^...^...:..^..._,._..u.^_.-y,;^....:..^^	 _ _

used as input to the Index Generator program. Documenta-

tion for the DRLGEN program is given in Paragraph 6.4.

4. STEP 4

t	 @XQT MIR" DS. INDGEN

The Index Generator program, INDGEN, generates the Index

file, IND. This file contains the table of indices which enables

rapid response to user inquiries using indexed fields. The

INDGEN program is documented in Paragraph 6. 5.

5. STEP 5

Saved-elements such as Query sets, print formats, complex

compute commands, etc. , can be generated at initial Data

Base implementation time through the use of the Save Genera-

tor program, SAVGEN. The saved elements are stored in

the file, SAV, which contains all saved-elements within

MIRADS. The command

@XQT MIR .'-ADS. SAVGEN

will respond with the message

ENTER QUERY-SET CARDS

The Saved Query-Set cards are entered at this point to place

the saved elements in the User file, SAV. STEP 5 is optional

5-7

jA
i

{

A	 ..

f

F

f

a

and may be omitted if the user does not wish to enter Saved

Query-Sets at this time. The SAVGEN program is docu-

mented in Paragraph 6. 6.

6. STEP 6

At this point in the RUN, a Data Base has been generated

under the file name MAS, a Dictionary under the name DIC,

a Data Relation List under the name DRL, an Index file under

the name IND, and a Saved Query -Set file under the name SAV.

These files should now be placed on a permanent type of

storage medium.

The command

@XQT, S MIR . ADS. UNLOAD

initiates the execution of the UNLOAD program and the pro-

gram responds with the message

ENTER QUALIFIER 'FILENAME(CYCLE)

The user must enter the same filename as entered for the

response to the ASGFILS program in STEP 1. In this case,

the response would be

NATIONS
^n

5-8
f

r

and the User's File Set will be cataloged on mass storage and

Secured to a backup tape that can be loaded using the UNIVAC

1108 SECURE Processor or the MIRADS LOADER program.

See Paragraph 6 3 for documentation for the LOADER program.
i

The files of this particular run stream would be cataloged as

DICNATIONS, SAVNATIONS, MASNATIONS, DRLNATIONS,

and 1NDNATIONS. The S option in the @XQT card indicates

that the User's File Set is to be backed-up using the SECURE

Processor. The UNLOAD program is documented in

Paragraph 6.7.

The user has now completed the initial implementation cycle for

creating the User's File Set, and is ready to use the MIRADS query

processing language for querying the Data Base as documented in the

MIRADS User's Manual.	 <a

5.3 SUBSEQUENT IMPLEMENTATION FOR USER'S FILE SET

Subsequent implementation of a User's File Set as the result of updating

the Data Base is not necessarily handled in the same manner as initial

file implementation. Steps may be omitted if there have not been any

changes made in that particular area. For example:

5-

STEP 1 @RUN
@ASG, A MIR*ADS.
@XQT MIR*ADS. ASGFILS

ENTER QUALIFIER*FILENAME(CYCLE)
NATIONS(+1)
@XQT US*ER. UPDATEDB

STEP 2 @ASG, A DICNATIONS.
@COPY DICNATIONS., DIC.
@FREE DICNATIONS.

STEP 3 @XQT MIR*ADS. DRLGEN
STEP 4 @XQT MIR*ADS. INDGEN
STEP 5 @ASG, A SAVNATIONS.

@COPY, P SAVNATIONS., SAV.
@FREE SAVNATIONS.
@XQT, S MIR*ADS. UNLOAD

ENTER QUALIFIEROWILENAME(CYCLE)
NATIONS(+1)
@FIN

The run stream above is the most common type of subsequent imple-

mentation in which the Data Base changes but the Dictionary remains

the same and the Saved Query-Sets are brought forward without any

new elements being added.

1. STEP 1

This run stream assigns the MIRADS Library file, MIR*ADS,

to the u er' com uter run via1	 s	 s	 p

@ASG, A, MIR=.ADS.

to ensure that it has been loaded. onto mass storage and can

be accessed. It is assumed that the MIRADS Library file

has been cataloged and secured using the UNIVAC 1108

SECURE processor as described in Section 7 of this manual,

5-10

j

i

J_

Next, the program ASGFILS is executed to assign the neces-

sary files to create the User's File Set.

@XQT MIR =*°ADS. ASGFILS

r

The program responds with

ENTER QUALIFIEW-FILENAME(CYCLE)

and the user must enter the filename by which the MIRADS

File Set will be known. (The NATIONS file will be used as

the example throughout this Section.) After the user enters

NATIONS (+1)

3

the system will automatically assign the files which are

needed to perform MIRADS inquiries. The C option on the

@XQT card specifies that cataloged files will be used for the

User's File Set. The program equates the files DIC and

DICNATIONS(+1), SAV and SAVNATIONS(+l), MAS and

MASNATIONS(+1), DRL and DRLNATIONS(+1), and IND and

INDNATIONS(+1) so that the user's designated File Set,

NATIONS(+l), will be used to store the information created

by the implementation cycle. The (+1) cycle is used on the

NATIONS Filename so that the existing NATIONS User's File

Set, which is cataloged, can be accessed while the updated

5-11

files are being created. (See Paragraph 2. 6. 3 of the latest

revision of the UNIVAC 1100 series manual UP-4144 for a

discussion of File Cycles.) The ASGFILS program is docu-

mented in Paragraph 6. 2.

r

The creation of the updated Data Base is the final part of

STEP 1 and it is accomplished with a user-written program.

Ewen though this is not a MIRADS function, the system re-

quires that the Data Base be written using the MIRADS I/O

package and that it be written into the file called MAS.

Creation of the MIRADS Data Base is discussed in detail

in Section 3 of this manual.
3

2. STEP 2

At this time, the user is ready for the Dictionary generation

phase of the implementation cycle. In this example, the Dic-

tionary is copied from the SECURE'd file to the new file DIC.

The example ---^a,sumes that the Dictionary does not require- any

changes. The commands to perform STEP 2 are:

@ASG, A	 DICNATIONS.
@COPY	 DICNATIONS., DIC.
@FREE	 DICNATIONS.

5-12

w

The DICNATIONS file must be FREE'd when it is no longer

needed, in order to avoid file conflict when the new files are

SECURED. Users wishing to update their Dictionary within

this cycle should refer to the DICGEN documentation in
r

Paragraph 6. 3.

3. STEP 3

Following the creation of the Dictionary, the DRL Generator

program, DRLGEN, is executed to generate a Data Relations

List which describes the hierarchical file structure of the Data

Base to MIRADS and stores the results in the DRL file.

@XQT MIR*ADS. DRLGEN

DRLGEN not only generates the DRL file, but also builds the

INVLIST work file which contains the sorted occurrence of

each index field in the Data Base. This work file is then

used as input to the Index Generator program. Documenta-

tion for the DRLGEN program is given in Paragraph 6. 4.

4. STEP 4

@XQT MIR =ADS. INDGEN

The Index Generator program, INDGEN, generates the Index

file, IND. This file contains the table of indices which enables

5-13

A.rT

rapid response to user inquiries using indexed fields. The

INDGEN program is documented in Paragraph 6. 5.

5. STEP 5
f
i	 The saved elements such as query sets, print formats, com-

plex compute commands, etc. , are saved by copying them to

it	 the new SAV file. The example assumes that no new elements
	 r

are to be added to the SAV file during this cycle. The commands

to perform STEP 5 are:

@ASG, A
	

SAVNATIONS.
@COPY, P	 SAVNATIONS., SAV.
@FREE
	

SAVNATIONS.

The P option is used on the COPY command to remove deleted

elements as the elements are copied. The SAVNATIONS file
i

must be FREE'd when it is no longer needed in order to avoid

file conflict when the new files are SECURE'd. Users wishing

to add elements to the SAV file within this cycle should refer

to the SAVGEN program documentation in Paragraph 6. 6.

6. STEP 6

At this point in the RUN a new User's File Set has been gen-

erated. A Data Base has been generated under the file name

MAS, a Dictionary under the name DIG, a Data Relational

List under the name DRL, an Index file under the name IND,

5-14

and a Save-Quart'-Set file under the name SAV. These files

should now be placed on a permanent type of storage medium.

The command
{

@XQT, S MIR" ADS. UNLOAD

initiates the execution of the UNLOAD program and the pro-
d.--

gram responds with the message

ENTER QUA LIFIER-"FILENAME(CYCLE)

The user must enter the same filename as entered for the

response to the ASGFILS program in STEP 1. In this case,

the response would be

NATIONS(+1)

and the User's File Set will be cataloged on mass storage and

secured to a baclzup tape that can be loaded using the UNIVAC

1108 SECURE Processor or the MIRADS LOADER program.

See Paragraph 6. 3 for documentation for the LOADER program.

The files of this particular run stream would be cataloged as	 F

" DICNATIONS, SAVNATIONS, MASNATIONS DRLNATIONS,

and INDNATIONS. The S option in the @XQT card indicates

that the User's File Set is to be backed-up using the SECURE

5-1,5

ti

Processor. ' The UNLOAD program is documented in

Paragraph 6. ?,

The user has now completed the implementation cycle for creating an

updated User's File Set. Users that query the NATIONS Data Base 	 r

after execution of the UNLOAD program will access the updated User's

File Set although the old File Set is still cataloged. The old User's

File Set should be deleted with the following commands after the new

User's File Set has been checked out:

n

@DELETE, C	 DICNATIONS(-1).
@DELETE, C	 SAVNATIONS(-1).
@DELETE, C	 MASNATIONS(-1).
@DELETE, C	 DRLNATIONS(-1).
@DELETE, C	 INDNATIONS(-1).

3

5

f

H

a

5-16

f`J_

—

I
- --m

A

SECTION 6 - MIRADS IMPLEMENTATION PROGRAMS

6.1 INTRODUCTION

The MIRADS implementation programs are used to create a User's

File Set which is necessary for the implementation of a MIRADS Data

Base. The functions performed by the implementation programs in-

elude assigning all files necessary to make a computer run to load a

Data Base; creation of the Dictionary, Data Relational List, Index,

and Save-Query files; and unloading the newly created User's File

Set to tape for backup purposes. The following paragraphs describe

in detail the individual procedures for the execution of the implementa-

tion programs.

6. 2 ASGFILS FILE ASSIGNMENT PROGRAM

The user must make a decision at the beginning of the implementation

cycle whether to use cataloged or temporary files during the creation

of the User's File Seta Cataloged files are used for the File Set when

the Data Base is used frequently enough to reside permanently on mass

storage. Temporary files, on the other hand, are used for those

applications that will reside permanently on tape and will be copied to

mass storage only when they are needed. The program ASGFILS is

used to assign the files of the User's File Set and to establish a rela-

tionship between the short internal filenames which are used for the

physical storage of the User's File Set (for example, @USE IND,

6-1

r

J

W

r

INDNATIONS). The command to initiate execution of the program

is:

@XQT MIR4cADS. ASGFILS

and the program responds with the message

r

ENTER QUALIFIER=9FILENAME(CYCLE)

1. QUALIFIER

This is an optional 1-to-12-character entry that is an extension

to the basic name of the file. If the entry is omitted, the

implied qualifier will be used according to UNIVAC 1108

Executive Operating System default conventions.

2. FILENAME

The FILENAME is a required one -to-nine-character basic Filename

by which the User's File Set will be referenced.

3. CYCLE

This is an optional entry used to differentiate successive up-

dates of the file. It is normally used after the initial im-

plementation cycle to permit users to query an existing

User's File Set while implementing an updated File Set.

6-2_

The valid forms of entries are:

STANDARD
QUAL-I,FILE(+1)
QUAL-FILE

-,FILE(+I)
,=FILE
FILE(+1)
FILE

The STANDARD entry indicates that temporary files are to be used in

the implementation cycle. The MIRADS standard User's File Set of

temporary files will be assigned by the following commands to the

EXECUTIVE:

@ASG, T	 DIC. , FZ//POS/5
@ASG, T	 SAV. , F2//POS/5 f
@ASG, T	 MAS. , F2//POS/500
@ASG, T	 DRL. , FZ / /POS /50
@ASG, T	 IND. , F2//PQS'/50

The other entries assign the User's File Set as cataloged files so that

the implementation programs will write directly into these files. For

purposes of illustration, the qualifier is QUAL and the filename is

FILE in all entries. The (+l) cycle entry is used to assure the

integrity of any files currently cataloged with the same qualifier and

filenames, and to permit other users to access those files while the
k

new User's File Set is being generated. The entry

QUAL.,,FILE(+l)
q

5

1

6-3

will result in the following commands to the EXEC:

@ASG, UPV	 QUAL=I'DICFILE(+l). , F2//POS/5
@ASG, UPV	 QUAL-=SAVFILE(+1), , F2//PO5/5
@ASG, UPV	 QUAL--MASFILE(+1). , F2/ /POS/500
@ASG, UPV	 QUAL*DRLFILE(+1). , F2//POS/50
@ASG, UPV	 QUAL*INDFILE(+I). , F2 / /POS / 50
@USE	 DIC. , QUAL*DICFILE(+1),
@USE	 SAV. , QUAL"SAVFILE(+1).
@USE	 MAS. , QUAL-MASFILE(+1).

_.-	 @USE	 DRL. , QUAL ̂ DRLFILE(+1).
@USE	 IND. , QUAL"INDFILE(+1).

6.3 DICGEN DICTIONARY GENERATION PROGRAM

6. 3. 1 Creating the Dictionary

The Dictionary Generator is as edit/update program that takes the

Dictionary input cards and creates a file, DIC, which deocribes the

Data Base to MIRADS. The Dictioxna,' i, cards are edited for verifica-

tion of format and content upon input, a.td these cards may be used to

generate a new Dictionary or modify an existing Dictionary. The

command to execute the Dictionary Generator is;

@XQT, Options MIR^ADS. DICGEN

Options	 Function

N

	

	 Inhibit the Dictionary listing but print all diagnostic
error messages.

S

	

	 Produce a Dictionary listing in sequence by field
number.

6 -4

f,

Options	 Function

L	 Produce Dictionary listings in sequence by field
number and by field name.

U	 Print a listing of all user password entries. This
option is to be used in conjunction with the L or S
options.

If there are no options specified on the @XQT command, the program

will respond with the message

ENTER NONE, SHORT OR LONG

to solicit the type of Dictionary listing desired.. NONE will inhibit the

Dictionary listing but will print all diagnostic messages (N option),

SHORT will produce a Dictionary listing in field number sequence

(S option), and LONG will produce Dictionary listings in sequence by

field number and by field name (L option).	 ?

When DICGEN establishes the type of listing the user desires, the

program responds with the message

ENTER DICTIONARY CARDS

The user must enter the Dictionary cards at this time. The Dictionary

input cards are described in Section 4,

F

i

6-5

6. 3. 2 Updating the Dictionary

DICGEN is an edit/update program and provides for modifying a

Dictionary once it has been created. New records can be inserted

into an existing Dictionary and/or current records can be modified
i

to produce an updated Dictionary. To prepare for a Dictionary update,

the current Dictionary must be placed in a file called DICOLD. Execu-

tion of DICGEN will read the Dictionary in r , OLD, update it with

insert or modify cards, and write the updated L ctionary to the file,

DIC. See Figure 6-1. Using the NATIONS File Set as a sample

application, the following portion of a run stream illustrates the

commands as they might be used in an implementation cycle)
s
q

@RUN
@AS G, A	 MIR=ADS.
@AS G, A	 DICNATIONS.
@USE	 DICOLD, DICNA-TONS
@XQT	 MIR>'=ADS. ASGF _ T:S
NATIONS (+1)

@XQT, SU	 MIR*A.DS. DICGEN

@FREE	 DICNATIONS.
@XQT	 MIR"ADS. DRLGEN

6-6

1^

Dictionary
Cards

"DICOLD	 DICGEN	 DIC

Dictionary
Cards

= The DICOLD file is only used when an existing Dictionary file is to
be updated.

Figure 6-1. Dictionary Generation

This run stream assumes that the NATIONS File Set is cataloged and 	 a

that the new File Set will be loaded into the +1 or next highest cycle.

The commands i

@ASG, A	 DICNATIONS.
@USE	 DICOLD, DICNATIONS

3

ensure that the Dictionary will be loaded and that it will be accessible

by the DICGEN program when the DICOLD file is referenced. The

command

@FREE	 DICNATIONS,

6-7

r^.

	 _z.	 _1

is placed after execution of DICGEN so there will be no conflict with

the +1 cycle when the new User's File Set is to be saved.

6. 3. 3 Frequently asked Questions about Generating a Dictionary

1. Can a user make changes to an existing Dictionary without

	

repeating the entire implementation cycle for a Data Base? 	 1 4

ANSWER: Yes and No. Corrections can be made to the

Table Lookup cards and the Field Definition cards pro-

vided the data element being described is not an indexed

field or does not redefine an indexed field in any manner.

After the corrections have been made to the Dictionary

cards, the Dictionary generation program, DICGEN,

should be executed. The new Dictionary file, DIC,

created by this program should then be used to replace

the old Dictionary file.

2. Can the Dictionary generation program be run as a stand-

alone program to verify the Dictionary input cards when they

are initially created?

.ANSWER: The DICGEN program can be run as a stand-

alone program to edit and verify the Dictionary input

cards for correctness. When running the program in

this mariner, the execution of the ASGFILS program is

not necessary since the DICGEN program will dynamically

6-$

i

assign a temporary output file named DIC for creating

or storing the new Dictionary file.

6.4 DRLGEN DATA RELATIONAL LIST GENERATION PROGRAM

6. 4. 1 Introduction

The primary function of the Data Relational List (DRL) program is to

create the DRL file of the User's File Set. The DRL file describes

the hierarchical structure of the Data Base to the MIRADS processing

programs. The hierarchical structure is automatically created by the

DRLGEN program using information extracted from the Dictionary and

Data Base files. The DRL file enables MIRADS to query the Data Base

at any level in the hierarchical structure and be capable of operating

on the selected record's owner and member records.

k

The secondary function of DRLGEN is to select and sort all occurrences

of each indexed field in the Data Base, and build the INVLIST work file.

This_fi?3 is the only input to the Index Generator, INDGEN, and execu-

tion of DRLGEN should always be followed by execution of INDGEN.
S

,a
The command to execute DRLGEN is:

@XQT	 MIR= ADS._DRLGEN

6.4. 2 Time Estimating and Efficiency

DRLGEN uses approximately three-fourths of the processing time that

it takes to implement a Data Base. Eighty percent of this time is

6-9

used in sorting the occurrences of each data value for indexed fields,

so the number of indexed fields and the number of physical records in

r'

	

	 the Data Base determine the amount of CPU-time used for implementing

a Data Base. The number of records sorted by the DRLGEN program

is equal to the number of indexed fields multiplied by the number of
r

	

	
physical records in the Data Base. For estimating total CPU-time

required to implement a Data Base, use 1-minute CPU-time for each

25, 000 sort records.

The efficiency of the sort within DRLGEN will affect the CPU-time

slightly and will greatly affect the elapsed time for DRLGEN program

execution. File assignments are made dynamically within the DRLGEN

program in order to keep the run stream simple and easy to implement.

The File Name Card of the Dictionary contains a field stating the total

number of Data Base Records. This value is used for determining

dynamic sort file assignments within DRLGEN and must properly

reflect the maximum size of the Data Base in order to maintain
i

program efficiency.	 j

6. 4. 3 Reo rde ring the D RL File and Data B as e

Users that utilize the MIRADS Update command capability may eventually

want to reorder the Data Base and eliminate overflow records and

pointers in the DRL file that affect query response time in MIRADS.

Both the DRL and Data Base (MA.S) files can be reordered by the

{

6-10

DRLGEN program. The existing DRL file must be copied into a file
x

called DRLOLD and the Data Base must be copied into a file called

MASOLD for DRLGEN to initiate the reordering process. The pro-

1	 gram will then read the DRLOLD file and write a new DRL file in a

reordered sequence. The DRLOLD records are used to access the

i
MASOLD records and write the new MAS file in the reordered sequence.

See Figure 6-2. Since the relative addresses of records in these files

are changed, the execution of the INDGEN program, using the INVLIST

work file as input, must follow to generate a new IND file. Using the

NATIONS File Set as a sample application, the following portion of a

run stream illustrates the commands that might be used in an imple-

mentation cycle:	 s

@RUNT
@ASG, A	 MIR=E ADS.
@ASG, A	 DICNATIONS,
@ASG, A	 SAVNATIONS.
@ASG, A	 MASNATIONS.
@ASG, A	 DRLS\IATIONS.
@USE	 MASOLD, MASNATIONS
@USE	 DRLOLD, DRLNATIONS
@XQT	 MIR"' DS. ASGFILS
NATIONS(+1)
@COPY	 DICNATIONS. , DIC.
@COPY, P	 SAVNATIONS. SAV.
@XQT	 MIR"-ADS. DRLGEN
@FREE	 MAS'NATIONS,
@FREE	 DRLNATIONS.	

?

*	 @FREE	 DICNATIONS.
@FREE	 SAVNATIONS.

4	
@XQT	 MIR"'A DS . INDGEN
@XQT, S	 MIR*ADS. UNLOAD
NATIONS(+I)
@FIN

6-11

c

'-The MA.SOLD and DRLOLD files are only used when the DRL and
Data Base files are being reordered.

Figure 6-2. DRL Generation

This run stream assumes that the NATIONS File Set is cataloged and

that the new File Set will be loaded into the +1 or next highest cycle.

The commands

@ASG, A DICNATIONS.
@ASG, A SAVNATIONS.
@ASG, A MASNATIONS.
@ASG, A DRLNATIONS.

ensure that the current Dictionary (DIC), Save-Query (SAV), Data

Base (MAS), and DRL files are loaded and attached to the run. The

commands

6-12

@USE MASOLD, MASNATIONS
@USE DRLOLD, DRLNATIONS

cause the DRLGEN program to access the existing Data Base and DRL

files when MASOLD and DRLOLD are referenced. The commands

@COPY	 DICNATIONS. , DIC.
@COPY, P SVNATIONS. , SAV.

are placed after execution of ASGFILS in order to copy the existing

Dicationary and Save-Query files into the +1 cycle of the User's File

Set so they will be referenced properly by the DRLGEN and UNLOAD

programs. The commands

@FREE DICNATIONS.
@FREE SAVNATIONS.
@FREE MASNATIONS.
@FREE DRLNATIONS.

t3

are placed after execution of DRLGEN so that there will be no con-

flict with the +1 cycle when the new User File Set is to be saved.

To estimate times for reordering the Data Base and DRL file, use

the guidelines of Paragraph 6. 4. 2.

6.5 INDGEN INDEX GENERATION PROGRAM

The function of the Index Generator program is to create the Index file,

IND, which provides MIRADS with rapid access to Data Base records

containing indexed fields. The only input to INDGEN is the INVLIST

6-13

INV LIST
(Work
File)

INDGEN

Figure 6-3. Index Generation

IND	 1)
i

3

work file which is created by the DRLGEN program. The INVLIST

file contains the sorted values of each Data Base record for each

indexed field described in the Dictionary. The INDGEN program

builds the IND file with an Indexed Sequential File organization. See

Figure 6-3. The IND file then provides direct access to Data Base

records through the Data Relational List, DRL.

The command to execute the Index Generator is

@XQT	 MIR'',=ADS. INDGEN

and it must always be executed following the DRL Generator program

even if there are no indexed fields in a Data Base.

Proper indexing of Data Base fields is the key to rapid 'response and

efficient processing of MIRADS inquiries. Selection of the wrong fields

for indexing, or selection of too few indexed fields can result in
I
I	 excessive sequential searching of the Data Base. Similarly, selec-

tion of too many indexed fields can result in high implementation

costs in the DRLGEN progr .t- and generate a larger Index file, IND,

14	 A

which would require additional search time. The type of inquiries that

will be made on the Data Base will best determine the fields that should

be indexed.

6.6 SAVGEN SAVE ELEMENT GENERATION PROGRAM

6. 6. 1 Creating the Save Elements

The Save-Element Generator program provides a means for the user to

enter query sets or complex MIRADS commands into the Save-Element

file, SAV, prior to creating a permanent backup of the User's File Set.

The SAVGEN program is provided as a convenience for the user and

places the entries into the SAV file as they are received. The com-

mands are not edited or checked for form or content; therefore, there

is no assurance that the query sets will execute as entered into the

SAV file. The command to execute the Save Element Cenerator is

@XQT MIR"ADS. SAVGEN

and the program. responds with the message

ENTER QUERY-SET CARDS

The first entry to the program identifies that this is the start of a

Query-Set and provides a name for the query set to be entered. The

following entries identify a complete query set for the NATIONS

File S et.

i 6-15

SAV. CITIES
QUERY, CITY PRESENT.
SORT, STATE, CITY.
PRINT, STATE GROUP 1, CITY.
@END

Indicates the beginning of a
Query-Set named CITIES

Entries for the Query-Set

Indicates the end of the
Query-Set named CITIES

The entry SAV. identifies a new query set being entered into the SAV

file. Immediately following SAV, is a 1-to-12-character entry used to

name the Query-Set. The MIRADS QUERY, SORT, and PRINT com-

mands will be placed in the SAV file as they are entered and will be
i

known as the CITIES Query Set. The end of one query set entry and

the beginning of another is signified by another SAV, entry or by an

EXEC VIII Control card such as @END.

6. 6.2 Updating the SAVE Element File

The SAVGEN program provides a means for the user to retain prior

Save Elements with each subsequent loading of new User's File Sets.

The SAV file with Save. Elements to be retained must be in the file

SAVOLD prior to execution of SAVGEN. The Save-Elements in

SAVOLD will be copied to the new SAV file, and new Query-Sets can

also be added through the normal entry procedure. Using the
a

NATIONS File Set as 'a sample application, the following portion of

a run stream illustrates the commands that might be used in an

implementation cycle:
.!	 d

6-16

@RUN
@ASG, A	 MIR*ADS.
@ASG, A	 SAVNATIONS.
@USE	 SAVOLD, SAVNATIONS
@XQT	 MIRADS*ASGFILS
NATIONS(+1)

l

@XQT	 MIR*ADS. SAVGEN
SAV. STATES
Q, STATE P.
S, P - RANK D.
P, STATE, S -POP, P - RANK.
@FREE	 SAVNATIONS.

This run stream assumes that the NATIONS .File Set is cataloged and

that the new User's File Set will be loaded into the +1 or next highest

cycle. The commands

@ASG, A SAVNATIONS
@USE	 SAVOLD, SAVNATIONS

ensure that the Save-Element File will be loaded and that it will be

accessed when SAVOLD is referenced. Upon execution of SAVGE.N,

the saved elements of SAVNATIONS (SAVOLD) will be copied to the

new SAV file and a new Query-Set, STATES, will be inserted into the

new SAV file. The command

@FREE SAVNATIONS.

5-17

A`

r^

follows the execution of SAVGEN so there will be no conflict with the

+1 cycle when the new User's File Set is to be saved. See Figure 6-4.

'The SAVOLD file is only required when an existing Save-Element file
is to be updated.

Figure 6-4. SAV File Generation

6.7 UNLOAD PROGRAM'
s

6. 7. 1 Introduction

The UNLOAD program is a utility program that generates a run stream

to create backup copies of the User's File Set. The command to execute

the UNLOAD program is

@XQT, Options MIR- ADS. UNLOAD

Options	 Function

S	 Use the UNIVAC 11.08 SECURE processor to create
a magnetic tape backup for the User's File Set and to 	

j

log the User's File Set into theEXEC VIII Master
File Directory. This option cannot be used when

x,

r	 6-18

i

Options	 Function

temporary files have been used for the Data
Base implementation cycle.

R	 Rollout the User's File Set to a magnetic tape in
UNIVAC 1108 @COPY, G format.

'	 If there are no options specified in the @XQT card, the program will

default to the S option. If both options are specified, the program will

rollout the User's File Set to magnetic tape and then create a SECURE'd

backup User's File Set. As soon as UNLOAD is executed, it responds

with the message

ENTER QUALIFIER"F MENAME (CYCLE)

1. QUALIFIER

This is an optional 1-to-l2-character entry that is an extension

to the basic name of the file. If the entry is omitted, the

implied qualifier will be used accord'Mg to UNIVAC 1108

Executive Operationg System default conventions.

2. FILENAME

FILENAME is a required one-to-nine-character basic Filename by

which the User's File Set is referenced.

3. CYCLE

This is an optional entry to differentiate successive updates

of the file. It is normally used after the initial implementation

6-19

f

r

cycle to permit users to query an existing User's File Set

while implementing an Updated File Set.

The valid forms of entries are:

STANDARD
QUAL',FILE(+l)
QUAL*FILE

=FILE (+1)
-FILE
FILE(+l)
FILE

6.7.2 SECUREing the User's File Set with UNLOAD

If the S option is specified on the UNLOAD execute card, the procedure

for using the SECURE processor is initiated.

After the Filename entry is made, the program will FREE the files

of the User's File Set in order to place the cataloged files into the

UNIVAC 1108 Master File Directory. The User's File Set is then

assigned with exclusive use of the files to prevent other users from

attaching the files while they are being SECURE'd. The Secure Backup

tape is then assigned with the following command:

@ASG, NT OBACKUP, 8 C, SAVE04. MIRADS USERS FILE SET

followed by the SECURE processor directives. After the files have

been SECURE'd, the exclusive use attachment is removed from the

User's File Set but the files are still assigned to the run. The OBACKUP

6-ZO

entry of

QUAL'IFILE(+1)

will result in the execution of the following run stream:

@FREE	 QUAL= DICFILE(+1).
@FREE	 QUAL="'SAVFILE(+1).
@FREE	 QUALM MASFILE(+l).,
@FREE	 QUAL "DRLFILE(+1).
@FREE	 QUAL-^INDFILE(+1).
@ASG, AX	 QUAL *DICFILE.
@ASG, AX	 QUAL "SAVFILE.
@AS(z, AX	 QUAL -MASFILE.
@ASG, AX	 QUAL"'DRLFILE.
@ASG, AX	 QUAL*INDFILE.
@ASG, NT	 OBACKUP, 8C, SAVE04 . MIRADS USERS FILE SET
@SECURE, ILC
SAVE ALL FILES;

QUAL"DICFILEb•
QUAL "SAVFILEb;
QUAL MASFILEb;	 x
QUAL=DRLFILEb;
QUALIIINDFILEb;

TO OBACKUP
@FREE, X	 QUAL*DICFILE.
@FREE, X	 QLTAL"SAVFILE.
@FREE, X	 QUAL- MASFILE.
@FREE, X	 QUAL-*DRLFILE.
@FREE, X	 QUAL INDFILE,
@FREE	 OBACKUP.

If no errors are encountered, the User's File Set is copied to this tape

in SECURE format. Upon completion, SECURE generates an output

summary listing under the following format:

6-21

of

SECURE SUMMARY LISTING:
QUAL*DICFILE	 Saved at 09:15:31 to File 1 Reel 2566
QUAL*SAVFILE	 Saved at 09:17:14 to File 3 Reel 2566
QUAL*MASFILE	 Saved at 09:17:35 to File 4 Reel 2566
QUAL*DRLFILE	 Saved at 09:17:11 to File 2 Reel 2566
QUALTINDFILE	 Saved at 09:17:47 to File 5 Reel 2566
END OF SECURE - TIME 1. 228 SECONDS

6. 7. 3 Rollout of the User's File Set Using UNLOAD

The R option in the UNLOAD execute command generates a ru

that will copy the User's File Set to magnetic tape in UNIVAC

@COPY, G format. This dynamically assigns a backup tape w

following command

@ASG, T UFSTAP, 8C, SAVE04 . MIRADS USERS FILE SE

If temporary files are being used and STANDARD is the Filenz

entry, UNLOAD generates the following run stream to rollout the

User's File Set to the tape.

@COPY, GM	 DIC. , UFSTAP.
@COPY, GM	 SAV. , UFSTAP,	 y
@COPY, GM MAS. , UFSTAP.
@COPY, GM	 DRL. , UFSTAP.
@COPY, GM	 IND. , UFSTAP.

3

If cataloged files are being used, the Filename entry is used to rollout

the User's File Set to tape, then the -files are FREE' d -so they will be

immediately available to other users. The user entry of
rt

Q UAL"F ILE

6-22

n	 will result in the following run stream:

@ASG, T UFSTAP, 8C, SAVE04 . MIRADS USERS FILE SET
@COPY, GM QUAL DICFILE. , UFSTAP.
@COPY, GM QUAL' SAVFILE. , UFSTAP.

t '	 @COPY, GM	 QUAL" ASFILE. , UFSTAP.
@COPY, GM	 QUAI, "DRLFILE. , UFSTAP.
@COPY, GM	 QUAL "'INDFILE. , UFSTAP.
@FREE	 QUAL"-DICFILE.

Y

@FREE	 QUALJSAVFILE.
@FREE	 QUAL"MASFILE.
@FREE	 QUAL DRLFILE.
@FREE	 QUAL"INDFILE.

The R option of UNLOAD also generates the following commands to

{	 provide the user with the reel number of the backup tape

@XQT MIR 1"ADS. TPNO
UFSTAP	 3

and the user will receive a response of the following formatP	 g

UFSTAP = 25661

The tape UFSTAP is neither rewound nor FREE'd at the completion

of UNLOAD execution in order for it to be available to the user for

providing additional backup files.

6.7. 4 Frequently asked Questions about Unloading a Data Base

1. Is UNLOAD a required part of the implementation cycle?

ANSWER: No. It is provided as a convenience to the user.

You may provide backup capability in any manner you desire.

6-23

2. The assign format for tapes UFSTAP and OBACKUP do not

conform to my computer installation conventions for tape

retention. Do I have to modify UNLOAD in order to be able

to us a it?

ANSWER: The user can override any files that are

dynamically assigned within any program of the MIRADS

System. All he has to do is to assign the file prior to

executing the program. For example, the commands

@ASG, T	 MYFILE, 8C, 11407
@USE	 UFSTAP, MYFILE
@XQT, R	 MIR*ADS, UNLOAD

could be used to override the UNLOAD assignment of the

UFSTAP tape and permit the user to provide his own

file name for the tape.

3. Can the UNLOAD program be used external to the implementa-

tion cycle?

ANSWER.: Yes. As a utility program, UNLOAD can be
a

used at anytime to rollout a User's File Set to tape, or to

SECURE a cataloged User's File Set to tape.

6.8 LOADER PROGRAM
x

6. 8. 1 Introduction	 ?:

The LOADER program is a utility program that generates a run stream
i

to load the MIRADS User's File Set from magnetic tape to a mass

6-24

storage device. The program loads files from either the UNIVAC 1108

Rollout or Secure formats. By executing this program as the first

task in a run stream, the user can ensure that the User's File Set is

loaded and available for use by the MIRADS System. The LOADER

program performs all functions necessary to catalog, load, and assign

the User's File Set to the user's run. The command for executing the

LOADER program is

@XQT, Options MIR='.-,ADS. LOADER

Options	 Function

S	 Use the UNIVAC 1108 SECURE processor to load
the User's File Set to mass storage from a magnetic
tape and log the User's File Set into the EXEC VIII
Master File Directory.

R	 Use the UNIVAC 1108 FURPUR @COPY, G format
to rollin or load the User's File Set to mass storage
from a magnetic tape and log the User's File Set
into the EXEC VIII Master File Directory.

If there are no options, or more than one option specified in the @XQT

card, the program will default to the S option.

6. 8. 2 Loading the SECURE'd User's File Set

After the LOADER program has been executed with the S option, it

responds; with the message

ENTER QUALIFIER=FILENAME

6-25

n

_x

•_	 t

I. QUALIFIER

This is a required 1- to-12-character entry that is an extension

to the basic name of the file.

2, FILENAME

This is a required one-to-nine-character basic Filename by which
r

the User's File Set is referenced.

The only valid form of entry is

QUAL''FILE

After the QUALIFIER* FILE NAME has been entered, the program then

determines if the files are already loaded. If they are, then LOADER

program terminates execution normally and no action is taken. If the {

files are not loaded, the program determines if the reel number(s) of

ithe magnetic tape containing the SECURE'd files is present in the

EXEC VIII Master File Directory. If it is not present, the program

responds with

ENTER SECURE TAPE REEL NUMBER(S)

The user must enter a one-to-five-digit reel number for each tape with

multiple reel numbers being separated by slashes (/). After the

reel number(s) has been determined, the LOADER program loads the

User's File Set and the loading process for SECURE'd files is complete.

6-26

J	 '

The following example illustrates the use of the LOADER program for

a SECURE'd User's File Set, and she run stream generated by the

program to load the files

@XQT, S	 MIR" ADS. LOADER
ENTER QUALIFIER-l.FILENAME

QUAL =FILE
ENTER SECURE TAPE REEL NUMBER(S)

12345/67890
@ASG, NT	 IBACKUP, 8C, 123-15/67890
@SECURE, ILC
IBACKUP = 12345/67890	 Run stream generated
LOAD PROJECT QUAL;	 by LOADER from
FROM IBACKUP	 above input.
@END
@FREE	 IBACKUP

The IBACKUP tape(s) is FREE'd as the final step in the load
a

process.

6. 8. 3 Rolling-In the User's File Set
a

After the LOADER program has been executed with the R option, it

responds with the message
I

ENTER QUALIFIER-:'FILENAME(CYCLE)

1. QUALIFIER

This is an optional 1-to-lZ-character entry that is an extension

i to the basic name of the file. If the entry is omitted, the
!a

implied qualifier will be used according to UNIVAC 1108

Executive Operating System default conventions.

6-27

v.

Z. FILENAME

This is a required one-to-nine-character basic Filename by which

the User's File Set is referenced.	
F

3. CYCLE

CYCLE is an optional entry to be used to differentiate succesive

updates of the file. Cycle number will normally be omitted

when using the LOADER program. 	 r

The valid forms of entries are:

STANDARD
QUAL*-FILE(+1)
QUAL^ FILE

=FILE(+1)
*FILE
FILE(+I)
FILE

The user can load the User's File Set into temporary files by responding

with the word STANDARD; otherwise, the File Set will be loaded into

A	 I NA	 YC Ecataloged files. After the QU LIFTER F LE ME(C L) has been

-entered, the program then determines if the files are loaded. If they

are, no action is taken and the program terminates execution normally.

If the files are riot loaded the program responds

ENTER ROLLIN-TAPE REEL NUMBER(S)

The user must enter a one-to-five-digit reel number for each tape with

multiple reel numbers being separated by slashes (/). After the

t
1

i

A

reel number(s) has been determined, the LOADER program loads the

User's File Set and the loading process is complete.
k

The following examples illustrate the use of the LOADER program for

rolling-in the User's File Set, and the run streams generated by the

program to load the files:

EXAMPLE 1 FOR TEMPORARY FILES:

@XQT, R MIR-„ADS. LOADER
ENTER QUALIFIER-:-FILENAME(CYCLE)

STANDARD
ENTER ROLLIN TAPE REEL NUMBER(S)

12345
@ASG, T DIC., F2//POS/5
@ASG, T SAV.,F2//POS/5 .
@ASG, T MAS. , F2//POS/500
@AST, T DRL. , F2//POS/50
@AST, T IND. , F2//POS/50	 Run stream generated
@ASG, T	 UFSTAP, 8C, 12345, 	 by LOADER from above
@COPY, G UFSTAP. , DIC.	 input.
@COPY, G UFSTAP. , SAV.
@COPY, G UFSTAP. , MAS.
@COPY, G UFSTAP, , DRL.
@COPY, G UFSTAP. , IND.

EXAMPLE 2 FOR CATALOGED FILES:

@XQT, R MIR*ADS. LOADER
ENTER QUALIFIE R*FILENAME (CYCLE)

QUAL*FILE
ENTER ROLLIN TAPE REEL NUMBER(S)

12345/67890

@ASG, UPV QUAL*DICFILE., F2//POS/5	 .
@ASG, UPV QUAL 'I'SAVFILE. , F2/ /POS/5 	 .
@ASG, UPV QUAL-'MASFILE. , F2/ /POS / 500 .
@ASG, UPV QUAL=DRLFILE., F2//POS/50
@ASG, UPV QUAL ='INDFILE. , F2/ /POS/50 t
@ASG, T OF TAP, 8C, 12345/67890
@COPY, G UFSTAP., QUAL*DICFILE. Run stream
@COPY, G UFSTAP., QUAL*SAVFILE, - generated by
@COPY, G UFSTAP., QUAL *MASFILE. LOADER from
@COPY, G UFSTAP., QUAL"'DRLFILE. 	 , above input.
@COPY, G UFSTAP., QUAL11INDFILE.
@FREE QUAL 1=DICFILE.
@FREE QUAL1^SAVFILE.
@FREE	 QUA.L-''MASFILE. .
@FREE	 QUAL- DRLFILE. .
@FREE	 QUAL-, INDFILE.
@FREE UFSTAP.)

3

In both examples, the User's File Set Tape (UFSTAP) is FREE'd as

the final step in the load process.

i

I,

i

3

6-30

SECTION 7 - MIRADS UTILITY PROGRAMS/SUBROUTINES

7.1 INTRODUCTION

A set of utility programs/subroutines has been developed to enable

users to perform various file manipulation functions that maybe re-

quired in conjunction with the use of MIRADS. These functions include 	 r

reading and writing of records on mass storage, reading card reader 	 r

files, formatted dumps of mass storage files, etc. The utilities are

contained in the MIRADS Library file named MIR 1'ADS.

The following paragraphs explain the functions of each program/sub-

routine and illustrate the procedures required to use them.

7.2 IOPKG INPUT/OUTPUT SUBROUTINE

The MIRADS IOPKG subroutine is a UNIVAC 1108 mass storage-oriented

I/O package designed to provide efficient processing of data in either

random or sequential order. The package allows the user to select

single or double I/O buffers so that emphasis may be placed on either

program size or speed. The double buffers require more core memory

but allow I/O operations to overlap with internal processing. Random

processing is supported only in the single buffer mode, Both modes

support blocked and unblocked files. The package may be accessed

from UNIVAC 1108 COBOL or FORTRAN as follows:
J

J

7-1

r

h

i

From	 Compiler Verb

DOD COBOL	 ENTER
FD COBOL	 ENTER
ASCII COBOL	 CALL
FORTRAN V	 CALL

IOPKG containseveral entry points, each of hick performs a specifics	 Y P	 v'	 P	 P

function. These functions and the rules for their usage will be explained

in the following paragraphs.

7. 2. 1 OPENS Entry Point

This entry point opens amass storage file for subsequent processing by

`	 establishing a 15-word File-Control-Table (FCT).

DOD AND FD COBOL

ENTER FORTRAN OPENS SUBROUTINE REFERENCING
FILENAME RECSIZE BLKSIZE BUFFER NUMBUFS FILUSE.

ASCII COBOL

CALL 'OPENS' USING FILE RECSIZE BLKSIZE BUFFER NUMBUFS
FILUSE.

FORTRAN V

CALL OPENS (FILENAME RECSIZE BLKSIZE BUFFER NUMBUFS
FILUSE).

1. FILENAME

Two words containing a one-to-twelve fieldata character(s) filename,

left-justified, and space-filled to the right.

7-2

t

IV—- 	 ^	 -.	 -	 .iereu.e.m-smar_ v±rc	 _•...-^+'zv.ba..^'.'^•...x.-u^+aa72aays^a.h...en^a..esi.sc._v^enm. 	 —i:-aeiE .-3a^,_

2. REC5IZE

One word containing a binary number representing the record
k,

size in words. "'	 g

3. BLK5IZE

One word containing a binary number representing the number r

of records per block.
r

4. BUFFER

A read/write file buffer area in the users program for exclusive

use by the IOPKG subroutine..	 Buffer size in words is calculated

as follows:

Unblocked file with single buffer

i

15 words
d

Unblocked file with double buffers
(Recsize x 2) + 15

a3

Blocked file with single buffer
(Recsize x Blksize) + 15

Blocked file with double buffers
((Recsize x Blksize) x 2) + 15

5. NUMBUF5

One word containing either the word 'SINGLE' or the word

'DOUBLE'. 	 Single indicates only one I/O buffer is desired

• for reading/writing data on mass storage. 	 Double indicates

two areas.	 If this parameter is omitted, single is assumed.

7-3

n1_ .	 -z-^vv^^m	 a _ _ccc^.w., ,.^al,^r,erc. .. 	 .emu nsr	 .a.:6

6. FILUSE

One word containing either the word 'INPUTb' or 'OUTPUT'.

This parameter is only required if the NUMBUFS parameter

equals 'DOUBLE', and it indicates whether the file is being

read from or written to (it cannot be both) mass storage,

Input files may be read in any order, but output files must
f

be written sequentially. Examples:

@ASG, T	 MAS. , F2//5000

COBOL	 01 FILENAME PICTURE X(12) VALUE 'MASbbb'.
01 RECSIZE	 PICTURE H9(10) VALUE 28,
01 BLKSIZE	 PICTURE H9(10) VALUE 10.
01 BUFFER	 PICTURE X(6) OCCURS 575 TIMES.
01 NUMBUFS PICTURE X(6) VALUE 'DOUBLE'.
01 FILUSE	 PICTURE X(6) VALUE 'OUTPUT'.

{1

	

	
ENTER FORTRAN OPENS SUBROUTINE
REFERENCING FILENAME RECSIZE BLKSIZE
BUFFER NUMBUFS FILUSE.

FORTRAN DIMENSION IBUF(575), IFILE (2)
IFILE(1) _ ' MASbbb'
IFILE(2) _ 'bbbbbb'
IRECSZ	 28
IBLKSZ ' = 10
IBUFS	 _ 'DOUBLE'
IUSE	 'OUTPUT'
CALL OPENS (IFILE, IRECSZ, IBLKSZ, IBUFX,
IBUF, IUSE)

it
7_4

Y

i

r_.

1q

This entry point reads a specified record from mass storage and trans-

fers the data to the user's program.

DOD AND FD COBOL

ENTER FORTRAN READS SUBROUTINE REFERENCING
FILENAME RECNO LOCATION EOF.

ASCII COBOL

CALL 'READS' USING FILENAME RECNO LOCATION EOF.

FORTRAN V

CALL READS (FILENAME RECNO LOCATION EOF)

1. FILENAME

Two words containing a one-to-twelve .fieldata character(s) filename,

left-justified, and space-filled to the right.

2. RECNO

i
	 One word containing a binary number specifying the number

of the record to be read. IOPKG uses this number to cal-

culate the location of the record on the mass storage device.

3. LOCATION

A record area in the user's program where the data read from

mass storage is to be placed.

4. EOF

One word in the user's program. Set to binary 1 by IOPKG

to indicate an end-of-file record was found while attempting to

7-5

move the RECNO requested to the user. Set to binary 0 if

RECNO requested was not an EOF record. Example:

I

COBOL	 01 FILENAME PICTURE X(12) VALUE 'MASbbb'.
01 RECNO	 PICTURE H9(10) VALUE 0.
01 EOF	 PICTURE H9(10) VALUE 0.
01 REC-HOLD.

02 NAME PICTURE X(06).
02 REST PICTURE X(06) OCCURS 27 TIMES.

ADD 1 TO RECNO.
ENTER FORTRAN READS SUBROUTINE
REFERENCING FILENAME RECNO REC-HOLD EOF.
IF EOF EQUALS 1 GO TO EOF-SITUATION.

FORTRAN DIMENSION ILOC (28), IFILE (2)
IFILE (1) = ' MASbbb'
IFILE (2) = 'bbbbbb'
IRECNO = IRECNO + 1
CALL READS (IFILE, IRECNO, ILOC, IEOF)
IF (IEOF. EQ. 1) GO TO 100

7. 2. 3 WRITES Entry Point	
j

This entry point transfers a data record from the user's program and

writes it to mass storage.

DOD AND FD COBOL

ENTER FORTRAN WRITES SUBROUTINE REFERENCING
FILENAME RECNO LOCATION.

ASCII COBOL
y

CALL 'WRITES' USING FILENAME RECNO LOCATION.

FORTRAN V

CALL WRITES (FILENAME RECNO LOCATION)

7-6

4

3
r

i

1. FILENAME

Two words containing one-to-twelve fieldata charactersg	 O filename

deft-justified, and space-filled to the right.

Z. RECNO

One word containing a binary number specifying the number

	

	 y
r

of the record to be written. IOPKG converts this number

into an address on the mass storage device. Output files

are not required to start writing with record number 1, but

if the NUMBUFS parameter equals 'DOUBLE', each sub-

{	 sequent write command must reference a RECNO that is

greater than the previous write command RECNO by 1. The

user's program is responsible for incrementing RECNO before

each WRITE command.

3. LOCATION

A record area in the user's program where data to be written

to mass storage can be found. Examples:

COBOL	 01 FILENAME PICTURE X(12) VALUE 'MASbbb'.
01 RECNO	 PICTURE I19(10) VALUE 0.
01 REC-HOLD.

02 NAME PICTURE X(06).
02 REST	 PICTURE X(06) OCCURS 27 TIMES.

ADD 1 TO RECNO.
ENTER FORTRAN WRITES SUBROUTINE
REFERENCING FILENAME RECNO REC-HOLD.

L
I; 7-7

FORTRAN	 DIMENSION ILOC (28), IFILE (2)
IFILE (1) = ' MASbbb'
IFILE (2) = 'bbbbbb'
IRECNO = IRECNO + 1
CALL WRITES (IFILE, IRECNO, ILOC)

7. 2. 4 CLOSEI and CLOSEM Entry Points

The CLO'SEI and CLOSEM entry points are used to close a mass storage

file when processing on that file is completed. The CLOSEI entry point

is used to close all input files, and the CLOSEM entry point is used to

close output files. The CLOSEM entry point causes the final block

of records (which may still be in memory) to be written to the mass
li

storage device followed by a record containing a software end-of-file

{ indicator. For this reason, only sequentially written output files should

be closed with the CLOSEM routine; randomly updated input files should

be closed with CLOSEL

DOD AND FD COBOL

ENTER FORTRAN CLOSEI SUBROUTINE REFERENCING
FILENAME.	 CLOSEM

ASCII COBOL

' CALL CLOSEI' 	 FILENAME,
'CLOSEM,

)

FORTRAN V

CLOSEICALL	 (FILENAME)
CLOSEM	 g

7-8

FILENAME

Two words containing a one-to-twelve fieldata character(s) filename,

left-justified, and space-filled to the right. Examples:

COBOL	 01 FILENAME PICTURE X(12) VALUE IMASbbb'.
01 RECNO	 PICTURE H9(10) VALUE 0.
01 REC-HOLD

02 NAME PICTURE X(06).
02 REST PICTURE X(06) OCCURS 27 TIMES

ENTER FORTRAN CLOSEM SUBROUTINE
REFERENCING FILENAME

FORTRAN DIMENSION ILOC (28), IFILE (2)
IFILE (1) = ' MASbbb'
IFILE (2) = ' bbbbbb'
CALL CLOSEM (IFILE).

{	 ^I	 7. 2. 5 IOPKG Error Messages 	 I

3

'

	

	 IOPKG automatically generates error messages and terminates execu-

tion of the users program when fatal error conditions are detected.

The format for diagnostic messages created by IOPKG is as follows:

IOPKG ERROR nn FUNCTION n
FILE _NAME xxxxxxxxxxxx

The error codes returned by IOPKG may be found in the EXEC VIII

Programmers Reference Manual (UP-4144, Revison 3), Appendix C,

Page C-17. Error and function codes returned by IOPKG and not

documented in the Programmers Reference Manual are listed below.

7-9

Pl___ l_^'T

Error
Code

05

51

52

(53

54

55

56
57
58

y 59
60

61

62
. 63

64

65

Meaning

ATTEMPT TO READ FROM AN UNASSIGNED AREA OF MASS
STORAGE.

FILE ALREADY OPEN.
EOF AGRUMENT NOT SPECIFIED.
IOPKG BUFFER IS IN USE.
EXCEEDED MAXIMUM NUMBER OF OPENED FILES (20).
FILE NOT OPENED.
RECORD SIZE LESS THAN OR EQUAL TO 0.
BLOCK SIZE LESS THAN OR EQUAL TO 0.
DOUBLE BUFFER USAGE NOT INPUT OR OUTPUT.
READ COMMAND ISSUED TO OUTPUT FILE.
NOT USED.
RECORD NUMBER LESS THAN OR EQUAL TO 0.
ATTEMPT TO READ BEYOND EOF.
NEW OUTPUT RECNO NOT EQUAL OLD OUTPUT RECNO

PL US 1.
NUMBER OF BUFFERS NOT EQUAL SINGLE OR DOUBLE.
INHIBIT READ INVALID WITH SINGLE BUFFER.

r

Function Code	 Meaning	 s

0	 ERROR ON CALL TO OPENS ENTRY POINT
1	 ERROR ON CALL TO READS ENTRY POINT
2	 ERROR ON CALL TO WRITES ENTRY POINT
3	 ERROR ON CALL TO CLOSEM ENTRY POINT
4	 ERROR ON CALL TO CLOSEI ENTRY POINT

7.3 MREAD CARD READER SUBROUTINE

MREAD is a UNIVAC 1108 Assembler Language subroutine which may

be used for reading card reader files. Each call to the MREAD sub-

routine causes one card to be read from the card reader and transferred

to a buffer in the user's program. The calling sequence for MREAD is

as follows:

7-10

i

DOD AND FD COBOL

ENTER FORTRAN MREAD SUBROUTINE REFERENCING
BUFFER EOF.

ASCII COBOL

CALL 'MREAD' USING BUFFER EOF.

FORTRAN V r

CALL MREAD (BUFFER, EOF).

1. BUFFER

The core area or buffer in the user's program where data read

'	 from the card reader is to be placed. This buffer must be 84

characters or 14 words in length.

2. EOF

One word containing a binary number used as an end-of-

file switch. This switch will contain a value of zero when an

EOF condition is reached; otherwise, it will contain the value

for the number of words read and moved into BUFFER.

Examples:

COBOL	 01 EOF	 PICTURE H9(10) VALUE 0,
01 REC-HOLD.

02 REST PICTURE X(06) OCCURES 14 TIMES.

ENTER FORTRAN MREAD SUBROUTINE
REFERENCING REC-HOLD EOF. IF EOF
EQUALS 0 GO TO EOF,-SITUATION.

FORTRAN DIMENSION ILOC (14)
CALL MREAD (ILOC, IEOF)
IF (IEOF . EQ. 0) TO 100

7-11

_	 1

7.4 MPRINT PRINTER SUBROUTINE

MPRINT is a UNIVAC 1108 Assembler Language subroutine which may	 -r

be used for writing output reports to a printer. Each call to the MPRINT

subroutine causes one record to be transferred from the user's buffer

and written to the printer. The calling sequence for MPRINT is as

follows:

DOD AND FD COBOL

ENTER FORTRAN MPRINT SUBROUTINE REFERENCING BUFFER
NUMBWDS CARRIAGE.

ASCII COBOL

CALL 'MPRINT' USING BUFFER NUMBWDS CARRIAGE.

FORTRAN V

CALL MPRINT (BUFFER, NUMBWDS, CARRIAGE),

1. BUFFER

The core area or buffer in the user's programs from which

a record or data is to be written.

2. NUMBWDS

One word containing a binary number representing the number

of words that are to be printed in the print line (normally

22 words per line).

3. CARRIAGE

One word containing a binary number used to control the

carriage for the printer.

7-12

0 = No Spacing
1 = Single Space
2 = Double Space

63 = Page Eject

I

	 N = N Space

Example s:

COBOL

	

	 01 NUMBWDS PICTURE H9(10) VALUE 22.
01 CARRIAGE PICTURE H9(10) VALUE 1.
O1 PRINT-LINE PICTURE X(132).

ENTER FORTRAN MPRINT SUBROUTINE
REFERENCING PRINT-LINE NUMBWDS CARRIAGE.

FORTRAN DIMENSION IPRINT (22)
ICARR = I
INUMB = 22
CALL MPRINT (IPRINT, INUMB, ICARR)

7.5 MPRINA ALTERNATE PRINTER SUBROUTINE

MPRINA is a UNIVAC 1108 Assembler Language subroutine which may

be used for writing output reports to an alternate print .file. Each call

to the MPRINA subroutine causes one record to be transferred from

the user's buffer and written to the alternate print file. The alternate

print file must be closed by the user after all records have been written.
x

This may be done by dynamically sending a LBRKPT filename image

to the Executive Operating System from within the executing program

(via some type of subroutine using the Executive Request CSF$), or

by the use of the @BRKPT Executive Control card after completion

of program execution. The calling sequence for MPRINA is as follows:

7-] 3

n

r

DOD AND FD COBOL

ENTER FORTRAN MPRINA SUBROUTINE REFERENCING
FILENAME BUFFER NUMBWDS CARRIAGE.

ASCII COBOL
E

CALL 'MPRINA' USING FILENAME BUFFER NUMBWDS CARRIAGE.
r

FORTRAN V

^-	 CALL MPRINA (FILENAME, BUFFER. NUMBWDS, CARRIAGE).

1. FILENAME

k	 Two words containing a one -to-nine fieldata character(s) filename,
x

left-justified, and space-filled to the right.

2. BUFFER

The core area or buffer in the user's programs from which

a record or data is to be written.

3. NUMBWDS

One word containing a binary number representing the number

of words that are to be printed in the print line (normally 22

words per line).

4, CARRIAGE

One word containing a binary nun.ber used to control the

carriage for the printer.

0 = No Spacing
1 = -Single Space
2 = Double Space

63 = Page Eject
N = N Space

7-14	
a

I

Examples:

COBOL	 01 BRK-FILE	 PICTURE X(18) VALUE
'@BRKPT PRINT$

01 FILENAME	 PICTURE X(12) VALUE
'ALTPRINT'.

01 NUMBWDS	 PICTURE H9(10) VALUE 22.
l	 01 CARRIAGE	 PICTURE H9(10) VALUE 1. r

01 PRINT-LINE	 PICTURE X(132).

ENTER FORTRAN MPRINA SUBROUTINE
.-	 REFERENCING FILENAME PRINT-LINE NUMBWDS

CARRIAGE.

ENTER FORTRAN CSFASG SUBROUTINE
REFERENCING BRK-FILE.

FORTRAN	 DIMENSION ILOC(22), IUNIT(2), IBRK(3)
DATA IUNIT /'ALTPRINT
IB RK /' @B RKP T PRINT $. 	 I/
ICARR	 =	 1
INWDS	 _	 22
CALL MPRINA (IUNIT, ILOC, INWDS, ICARR) p,

i

CALL CSFASG (IBRK)

7.6 ROLLOUT UNLOAD 'PROGRAM
a

The ROLLOUT program is used to create a magnetic tape backup of

the MIRADS User's File Set from mass storage.	 The magnetic tape

must be assigned as UFSTAP. 	 The files are written to tape in

UNIVAC 1108 ROLLOUT format in the following order: 	 (DIC, SAV,

MAS, DRL, and IND).

a

7-15

5
4

4

The commands for copying the MIRADS User's File Set from mass

storage to tape are:
)

@ASG, T UFSTAP. 8C SAVEnn . MIRADS User's File Set Tape
@XQT MIR"'ADS. ROLLOUT

When the program responds with the message

ENTER QUALIFIER-,--FILENAME(CYCLE)

à
i

The user may enter either the word

STANDARD

or

A 1-to-12 character qualifier (optional) followed by a one-to-nine character

filename (required) followed by a cycle number (optional). If present,

the qualifier must be separated from the filename by an asterisk, and

the cycle number must be enclosed in parenthesis.

If the word STANDARD is entered, the following actions are taken by

the program:

1. The DIC, SAV, MAS, DRL, and IND files are copied from

mass storage to the UFSTAP tape in UNIVAC 1108 ROLLOUT

format through the use of the U-1108 FURPUR COPY, GM-

comr^iand.

Z. An End-of-File mark is written on the tape after each file.

7-16

The user may now free the UFSTAP output tape. The loading process

for temporary files is complete.

If the user enters a QUALIFIER = FILENAME (CYCLE), the following

actions are taken bythe program:

1. The DICfilename, SAVfilename, MASfilename, DRLfilename,

and INDfilename files (with appropriate qualifier and cycle

number) are copied from mass storage to the UFSTAP in

UNIVAC 1108 ROLLOUT format through the use of the U-1108

FURPUR COPY, GM command.

2. An End-of-File mark is written on the tape after each file.

The user may now free the USFSTAP output tape. The loading process

for cataloged files is complete.

7.7 ROLLIN LOAD PROGRAM

The ROLLIN program is used to load the MIRADS User's File set 	 u

from magnetic tape to a mass storage device. The magnetic tape

must be assigned as UFSTAP. The files must be in UNIVAC 1108	 z

ROLLOUT format and in the following order,(DIC, SAV, MAS, DRL,

and IND). The files will be in the prescribed format and order when
i

they have been created by the MIRADS ROLLOUT program which is

documented in Paragraph 7. b. The commands for copying the MIRADS 	
x

User's File Set from tape to mass storage are:
3

7-17

d
r

I

;t

@ASG, T UFSTAP. , 8C, REEL NUMBER . MIRADS User's File Set Tape
@XQT MIR" ADS. ROLLIN

When the program responds with the message

ENTER QUALIFIER ' FILENAME(CYCLE)

The user may enter either the word

STANDARD

or

A 1-to-12 character. qualifier (optional) followed by a one-to-nine character

filename (required) followed by a cycle number (optional). If present,

the qualifier must be separated from the filename by an asterisk, and

the cycle number must be enclosed in parenthesis.

,r

If the word STANDARD is entered, the following actions are taken by

the program:

1. The DIC, SAV, MAS, DRL, and IND files are assigned as

temporary files on mass storage.

Z. The input files are copied or rolled-in from tape into the

temporary files on mass storage through the use of the U-1108

FU PUR COPY, G command.

The user may now free the UFSTAP input tape. The loading process

for temporary files is complete.

-18

If the user enters a QUALIFIER*FILENAME (CYCLE), the following

actions are taken by the program:

1. The DICfilename, SAVfilename, MASfilename, DRLfilename,

and INDfilename files are cataloged and assigned with the

appropriate qualifier and cycle number on mass storage.
	 i

i
2. The input files are copied or rolled-in from tape into the	 r

>

	

	
cataloged files on mass storage through the use of the U-1108

FURPUR COPY, G command..

3. The cataloged files are then FREE'd from the run to ensure

their being entered into the UNIVAC 1.108 Executive's Master

File Dictionary.

The user may now free the UFSTAP input tape. The loading process

for cataloged files is complete.

7. S. DUMP PROGRAM

The DUMP program, is a generalized dump program used to dump

mass storage data files created by the MIRADS IOPKG. The size of

the print line is 128 positions. The following command must be

entered to execute the program:

@XQT MIR*ADS. DUMP

Upon execution, the program requests the user to enter the parameters.

ENTER (FILENAME, RECSIZE, BLKSILE, RECNUMB,
FORMAT, NUMBRIi CS)

7-19

L	 ,

1. FILENAME

Name of the file to be dumped.
y

J

2. RECSIZE
	

g

Number of words in each record.

3. BLKSIZE	
x r '^

Number of records in each block.

4. RECNUMB

Record number of the first record to be dumped relative to

the start of the file. The first record is record number 1.

5. FORMAT

This is the alphabetic character specifying the dump format.
r

A - Alphabetic Dump
i
	

O - O ctal Dump
OA	 Alphabetic and Octal Dump
AO - Alphabetic and Octal Dump
I - Convert each Word from Binary to its

Decimal Equivalent

6. NUMBRECS

The number of records to be dumped.

The parameters RECSIZE and BLKSIZE may be varied by the user for

his benefit; however, caution must be used because the program may

not be able to detect the software end-of-file if they are not the same

as used for file creation. This feature enables a user to selectively
y

4

7-20

t1	
^

dump small sections of a large file without the necessity of dumping

the entire file.

After dumping the requested number of records, the program will again

i	 request input from the user.

ENTER (STOP OR NF OR RECNUMB, FORMAT, NUMBRECS)

1. STOP

This will terminate the dump program.

2. NF

Requests a dump on anew file and will cause the program to
,j

recycle to the beginning for new parameters.

3. RECNUMB, FORMAT, and NUMBRECS)

Y These parameters are to be input if more of the initial file

is to be dumped,j

When a. software end-of-file is encountered, execution of the program

is automatically terminated.

If the program is being executed in batch mode, cards containing the

parameters must follow the @XQT card in the correct order for

1	 execution.

7-21

The following is an example of a batch RUN executing AMDUMP:

@RUN

@ASG, T	 FILEA., F2/8/TRK/64
@ASG, T	 FILEB., F2/l/POS/l

@XQT	 MIR ,ADS. DUMP
FILEA 28 8 1 A 2
173, I, 1
NF
FILEB, 128, 4, 8, O, 5
STOP

@FIN

G}

The first and second records of FILEA will be dumped in an alphabetic

format as the result of the first parameter command to the DUMP

program. The second command will dump record number 173 of

FILEA converting each word from binary to its decimal equivalent.

The third command will direct the dumping of FILEB, Beginning with

record number 8 of FILEB, five records will be dumped in an octal

format. Each record contains 128 words. The last command will

terminate the dump program.

An on-line execution of the dump program will be identical to the batch	 Y

RUN. Each input command is processed as it is entered and. the

7-22

r	 Y

y^ ^ ^^, .^^.^.,-^.^_ ^b4	 .^.^.-x	 ^.^,^sa•^:-^..^,a^.^ ,._^.^ ,,,^.^. -^,, emu,_ r.g.^^,^.,^sY^ ^.^ -=^.^ ^^ ^^.^^^,.^,^;s^-^,.^^,^,., 	 .w^

messages calling for entry of data will print after the execution of the

previous entry.

7.9 DICTOCARD PROGRAM

P

The Dictionary-to-Card program is used to convert the MIRADS Dic-

tionary file (DIC) back to card image format. The cards may then be

easily modified by using the UNIVAC 1108 Text Editor program. The

card images are written in a temporary UNIVAC 1108 program file

named CRDFILE with elementname named cards. The file, CRDFILE,

is assigned automatically by the program. The commands for converting

the DIC file to card format are:

r

@ASG, A	 DICfilename
@USE	 DIC, DICfilename
@XQT	 MIR-t<ADS. DICTOCARD
@FREE	 DIC

The cards may then be updated using the UNIVAC 1108 Text Editor

program as follows:
I

@ED, U	 CRDFILE. CARDS

Text Editor commands

1
EXIT

After the cards have been modified using the Text Editor, the
F

' 	 updated file maybe used as card image input to the MIRADS

7-23

i

Dictionary generation program (DICGEN) through the use of the

following UNIVAC 1108 control card:

@ADD	 CRDFILE, CARDS

r

is
	 A

f	 3

i

V

i

1

i

7-24

SECTION 8 - HOW TO LOAD THE MIRADS LIBRARY

8.1 INTRODUCTION

The MIRADS Systems Release Package contains a seven track magnetic

tape (800BPI Odd Parity) with the following seven files written in

UNIVAC 1108 ROLLOUT format (@COPY, GM):

1. MIRADS Library

Z. All MIRADS Symbolic, Relocatable, and Absolute Elements

3. DICNATIONS

4. SAVNATIONS

5. MASNATIONS	 NATIONS User's File Set

6. DRLNATIONS	 j

7. INDNATIONS

r	An end-of-file mark is written after each file on the tape.

8. 2 SAMPLE RUN STREAM
a

The sample run stream below may be used to load the MIRADS Library:
3

@RUN
@ASG, T	 LIB TAP, 8C, REEL NUMBER
@ASG, UPRV	 MIR-4ADS(+1). F2 / 1 / POS / 5
@COPY, G	 LIBTAP. , MIR'-ADSk+1).
@FREE	 MIR-t<ADS (+l) .

The UPRV options in the above ASG command have the following

effects:

8-1

r,

U Catalog this file when a FREE command is issued or the RUN
terminates, whether there has been an error in the run
stream or not.

P This is a public file and may be accessed by computer runs
using different Project-ID's in the run card.

R Catalog this file as a read-only file.
r

V Keep this file mass storage resident; do not roll it out to tape.

r`
The qualifier and filename, MIR' CADS, must be used for cataloging

the MIRADS Library because they are referenced in this way throughout

the entire MIRADS System.

n

If the user wishes to run a sample query using the NATIONS User's File

Set, the following additional commands are required:

@MOVE	 LIBTAP.. , I
@USE	 UFS TAP, LIB TAP
@XQT, R	 MIR*ADS. LOADER
NATIONS
@FREE	 LIBTAP,
@XQT	 MIR>i'ADS. MIRADS
NATIONS
QUERY, CITY PRESENT.
SORT, STATE ASCENDING, CITY ASCENDING.
PRINT, COUNTRY GROUP 1, STATE GROUP 2, CITY.
RUN
ENTER A BLANK LINE	 j

STOP
@FIN

Users may avoid the problem of having to recatalog the MIRADS Library

periodically by using the 1108 SECURE processor feature as defined in

8-2

r

7

f

Chapter 19 of UNIVAC 1100 Series Operating System Programmer's

Reference Manual (UP-4144 Revision 3). The SECURE processor

protects the physical security of cataloged files which reside on

mass storage by providing tape backups. If the MIRADS Library

becomes unloaded for any reason, the features of SECURE can be

used to reload the file.

3

s

1

APPENDIX A - SAMPLE MIRADS APPLICATIONS

A. 1 A DATA BASE WITH ALL DATA TYPES

The MIRADS Library contains all the elements required to build a

five-record Data Base containing fields of all the data types. The ele-

ment BUILDTEST can be added to any user run stream to generate a

Dictionary listing, build a temporary User's File Set, and process two

queries. The queries provide the user with visibility of the contents

of most of the fields of the Data Base. Building the Data Base and

processing the queries requires less than five minutes elapsed time

and approximately two seconds of CPU time. The run stream of

Figure A-1 is processed to build the Dictionary of Figure A-2 with

the command.

@ADD MIR*ADS. BUILDTEST

M IR sA DS .B UI LD TE ST
1 BXGT MI R• AD S.TESTGEN
2 al ADD KLR e AD S. TE ST DA TA
3 aXGToSU MIRsADS- DICGEN
• 8 AD D MI R s AD S. TE ST DI C
5 8 XQ T	 MI Rs AD S. DR LG EN
6 9 XG T	 ISI Rs AD S. IN DG EN
7 aaXGT	 VI R e AD S. MIRADS
8 STANDARD
9 GUCRY #FDA PRESENT.

10 SCRToFDSD DESCENDING.
11 PRINT 9F CArFDANoFDN9FOSoFDSD s8s8PrFPC,PPFPSP.
12 S AV E. SA VC — G UC RY 1
13 RUN
14
15 O of DA	 P
16 PaFDG,.3tPPOS 80 FDTLUrFDTLU LOOKUP.
17 S AV E. SAVE — QUERY 2
18 R UN

19

20	 LIST

Figure A-1. Listing of Element BUILDTEST

A-1

e

r

1,.

ti

06 02-75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM IMIRADSI DICTIONARY FILE t.ISTING PAGE	 1

FILE NAME= TEST RECORD SIZE i M OS i =	 28	 BLOCK SIZE =	 64	 L EV EL S = 1 FILE SECURITY =

DI CT IO NA RY RECORD TYPE RECORD IDENTIFIER 	 ST ART LOCATION END LOCATION RECORD SIZE I WO S

101 /7	 GOOD 0001 0026

FI EL D	 FIELD DI CT LOCATION	 FIE LD I	 UP	 REPORT FIELD TITLE TITLE DEC DATA SR CH TABLE LC OK UP
NAME NO LVL START END SIZE N DATE CHARS I O'TYPE TYPE	 NO WIDTH	 GLOBAL

CODE D N IMAX1

B Gail] 101 0001 0006 Gas Y	 Y	 B IN AR Y 06 0 0 07 RG
B N 0020 101 0 00 7 0012 006 Y	 Y	 N EG —B IN AR Y 10 0 0 07 RG
BP 0030 101 0013 0018 006 Y	 Y	 POS —BINARY 10 0 0 07 ItG
FDA 0040 101 0012 0024	 '006 Y	 Y	 F0—ALPHA 08 0 0 00 RG
FDAN 0050 101 0025 0030 006 Y	 FD— AN 05 0 0 Ol R
F CN 0060 101 0 031 0039 009 Y	 Y	 F D— NU ME RI C 10 0 0 02 RG

"•	 F DS 0070 101 0040 0D48 009 Y	 Y	 F D— SI GN ED 09 1 1 03 RG
FDSD 0000 101 0049 0060 012 Y	 Y	 FD— SIGNED —DECIMAL 17 2 2 05 RG
F DT LU 0090 101 0133 0138 006 Y	 Y	 L 00 KU P— FI EL C 12 0 0 Ol RG	 001 10
F DU D 0100 101 0061 00 72 012 Y	 Y	 F D- UN SI GN ED —D EC IM AL 19 3 3 04 RG
FD60 0110 101 0073 0132 060 60—CHARACTER— NARRATIVE 22 0 0 01 KP•

4	 F PD P 0120 101 0139 0150 012 Y	 Y	 D OUBL E— PR EC IS IO N 16 0 4 09 RG
N	 F PS P 0130 101 0151 0156 006 Y	 Y	 S IN GL E— PR EC IS 20 N 16 0 3 08 RG

KF 0140 101 0073 0078 006 Y	 KEY 03 0 0 01 RG l
{

ki.

06 02 75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM IMIRADSI DICTIONARY FILE LISTING PAGE	 2	 1
i

FILE NAME = TEST RE CO RD SIZE I W DS I =	 28	 BOCK SIZE =	 64	 LEVELS =	 1 FILE SECURITY =
3

TABLE NO DATA BASE V AL UE REPORT TITLE
t

001 • NO ENT RY •
001 000001 PRO GR AM ME R {
001 000002 ANALYST
001 000003 SCIENTIST
001 000005

s
+	 s

i

Figure A-2. Test Dictionary Created by Element BUILDTEST
j

3

3

A. 2 A SINGLE LEVEL DATA BASE

Figures A-3 through A-5 illustrates the data cards, generation program

and coded Dictionary of a simple single level application. Figure A-6

illustrates the Dictionary listing produced by the Dictionary Generator

Program (DICGEN).

0 00 00 1J ON ES S C20113 225 JONES VALLEY 01012'? 27 00 OM 06
000002BURNS W D3 20 80 14 42 NORTH SELAIR 01 01 10 23 50 0MO4
0 00 00 5K IN G W L381204 3511 W GEORGIA A VE 04 03 40 14 40 OM 05

O 09 00 9Z OR NA SK I P U360424 64244 JEAN ROAD 05,14 30 15 00 OF 01
0 00 01 IT HO MP SO N J K4 50 51 50 4 DOWNING DRIVE 01 01 10 09 6C'OM J1

5

Figure A-3. Single Level Application Data Cards

..a^...:.4.,a,^..mu.^w....,_^.. 	 ..._...:..^,^.,.......^..i_w,.s«::..:,a,.u.^...i.^ 	 ..^.....	 1..:„_.a,sr+&..^re^w,a,....s,.,..e:..^.^_.,,_.,.H. ...al...,.^::.. _...._

3

t

a

IDENTIFICATION DIVISION.
PR OG RAM- ID .' OB GE NI .
RE MA RKS.	 THIS PROGRAM READS AN EXISTING CARD FILE TO

GENERATE A M IR AD S MASTER FILE. THE MI RA DS MASTER FILE
WILL BE STRUCTURED WITH NO L EV EL S OF FILE SUBORDINATION
AND A SI NG LE RECORD TYPE*

ENVIRONMENT CI VISI ON .
CONFIGURATION SE CT IO N.
SOURCE-COMPUTER. U NI VAC-1108 .
OBJECT-COMPUTER. U NI VAC-1108 .
INPUT-OUTPUT SECTION
FILE-CONTROL.

SELECT CARD-FILE ASSIGN TO CARD-READER.
DATA DIVISION.
FILE SECTION.

•	 FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA R E^ OR D IS CARD-RECORD.

01	 CARD -R EC CR D PICTURE X(84).
{	 WORKING-STORAGE SECTION.

01	 MAS-UN IT	 V AL UE	 • M AS •	 PICTURE	 X112).
01	 MAS- RE C= SI ZE V AL UE 	 14 PICTURE H9(101.
01	 MAS- BLK-SIZE VALUE	 128 PICTURE H9(10).
01	 MAS-RE CD-NBR	 VALUE	 0 PICTURE H9(10).
01	 MAS- RE CO RD .

j	 02 M AS -R EC	 0 CC UR S 14 PI CT UR E X (G) .
t 01	 MAS-BU FF ER .

02 MAS -BUF	 OCCURS 1807 PICTURE X(6).f	
PROCEDURE DIVISION*
MA SG EN1- OP EN --F IL ES .

OPEN INPUT CARD-FILE.
CALL 'OPENS' USING	 MAS -UNIT MAS -REC-SIZE

MAS -B LK -S IZ E	 MAS-BUFFER.
CARD-READ-IO PK G-WRITE-LOOP.

READ CARD-FILE INTO MAS-RECORD AT END GO TO CLOSE-FILES.
ADD 1 TO M AS-REC-NBR.

1	 CALL ' WR IT ES'	 USING MA S- UN IT MAS -REC -N SR MAS-RECORD.
GO TO CA RD =READ- IO PK G- WR IT E- LO OP .

CL OS E-FI LE S.
CLOSE CARD-FILE.
CALL ' CL CS EM' US IN G MAS-UNIT.

N	 STOP RUN

Figure A-4.	 Single Level Data Base Generation Program

A -5

W,

^Y

24	 23 as
2 >t
T A^	 NB R t`I'	 BLANK
'

E
FILE MAI E	 pATA MASI	 MSC FZ%	 LEVEL

T AEGOt	 136t CLOCK

PASSWORD CARD

1 2 3 $ 15^.^^
-

BLANKTA
y PASSWORDC ^

E

r 1	 1,	 t I	 1	 t,	 ^_.F.^J
_.-

TTt
s E

1

z

z

n `'dRECORD IDENTIFIER CARD

1 2 3 6 f 13 17 21

BLANKA Y REC AEC START END REC

T E
TY►E 10 LOC LOC 312E`

l l
L 1

L

L v
L

L

L

L

LY vtnV:. . - 'x- tvn.:: _ ..s ^--f......r-+...z. ^aaaw:an,.....+a"a^•3^- —	 _ars..^,.cw•.	 -d..c^-xl s..

btSFC - Form 43:-? (Rev, iltav 7975) Figure A-5. Single Level Data Base Dictionary Cards

1 2 3	 6 7 8 20	 _ ._ 56_ ^9' 63 67 69 71172 73 •7 77

A
C
T

T
Y
P
E

FIELD
NBR

N
B
R

FIELD NAME REPORTTITLE
REC
TYPE

START
LOG

END
LOC

NBR
OCC

SRCH
TYPE

1

N
D
EX

P
IN

D

DATA
TYPE S

D
E

C
N

D
E

C
S
D
U
T.

TLU
TABLE

NGR

G

T
L
U

qp

1 RTE. ZF	 El 3L^ 1 { , _ f 	. , . . 1 d	 1 1	 ^. bA

1 1. ,u,.	 ,	 6k.d	 ,	 t	 Imb	 7 d.	 J
gg

^,

^̂
`^^,_ y 1 12

M ^' f.	 ^	 ^,v,	 ut	 ^.'̂	 ,	 , ,	 , o 1

s o
M , T i 69 N 9? 2 2-
M 1

^Li
r

a?.sue,	 n^ d. ^, s	 1^	 l	 a,

V

M 1 ,	 a', z
M 9

M , p

M 1

M 1 o4 I

M t yt_

M 7

M 1 .a +It

M t	
, T	

r r-^

M 1

M

M i

fit
.,

,
^

'^SSF'C- F4r:nA:?^ IReli,%f3v?97t^Y
Figure A-5. Single Level Data Base Dictionary Cards (Continued)

1 2 3 16 15 63

A
C
T

y
p
E

TLU

TABLE
NBR

TLU

DATA BASE
VALUE

TLU — REPORT — VALUE BLANK

TI im I	 I	 1	 3	 1 Q1
T j ATSVILIE,
T j

IL
TT
l T Sm ILLE

T 'r

Tidy'	
r	 r	 i	 1	 r	 i	 r	 1	 i	 1	 1	 i

I T AL
I T P
I T EE
I T

T IS	 E	 T	 0—
T Q

'

T

T
1^1

T

T

T'
1	 ,	 1

T
T

r	 I	 r I	 ^

T

T

T
If	 I	 r I	 I	 I

T r	 i

T
T

T r I I	 r

T
T

T
i

T i	 t
I 	a

T'
r	 r	 i

E

a

1

MS Fr-F(,rm 432 (Rev. May 11475)

`	 Figure A-5. Single Lev-e1 Data Base Dictionary Cards (Continued)

wk

k

06 02 75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM	 LMIRADSI	 DICTIONARY FILE LISTING PAGE	 I

FILE NAME PERSONNEL RECORD SIZE (W DS) =	 14	 BLOCK SIZE =	 128 LEVELS .=	 1 FILE SECURITY = 1

INI TI AT OR P AS SW OR D	 UPDATE INDICATOR
t

ACCTG-AR	 ,	 V
A NL YS T— VM	 Y
C LE RK -8 J 	 N
P ER SO NN EL — PL	 N

06 02 75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM (MIRADS) DICTIONARY FILE LISTING PAGE	 1

FILE NAME = PERSONNEL RE CO RD SIZE (W DS 1 =	 14	 BLOCK SIZE = 128	 LEVELS = 1 FILE SECURITY =	 j

DI CT IO NA RY RECORD TYPE RECORD I DE NT IF IE R	 START LOCATION END LOCATION RECORD SIZE	 1 WO S 1

101 ///	 0000 0000 0014

FIELD FTELD DICT' LOCATION	 FIELD I	 UP	 REPORT FIELD TITLE TITLE DEC DATA SRCH TABLE LOOKUP
NAME- no LVL START END SIZE N DATE CHARS I 0 TYPE TYPE NO	 WIDTH	 GLOBAL

CODE D N (MAXI

E MP 0010 101 0 001 0006 006 Y	 E MP LO YE E: NUMBER 15 0 0 02 RG
NAME 0020 101 0007 0030 024 Y	 Y	 EMPLOYEE NAME 13 0 0 01 CH
DOB 0030 101 0031 00 36 00 6 Y	 DATE OF BIRTH (YR MO DA) 22 0 0 02 -RG
Y RD OB 0040 101 0031' 0032 002 Y	 YEAR OF BIRTH 13 0 0 02 RG
H DO OB 0050 101 0033 00 34 002 Y	 MONTH O F BIRTH 14 0 0 02 RG
D AD 08 0060 101 0035 0036 007 Y	 DAY OF BIRTH 12 0 0 02 RG
S SR 0370 101 0 03 7 0047 011 Y	 SOCIAL SE CU RI TY NUMBER 22 0 0 01 RG
S TR EE T 0080 101 0048 00 65 018 Y	 S TR EE T ADDRESS 14 0 0 01 RG
CITY 0090 101 0066 00 67 002 Y	 C11 Y 04 0 D 02 RG 001	 10
STATE 0100 101 0068 00 69 002 Y	 S TA TE 05 0 0 02 RG 002	 11
JOB' 0110 101 0070 0071 002 Y	 Y	 JOB TITLE 09 0 0 02 R¢ 003	 23
PAY' 0120 101 0072 0076 Cos SAL AR Y 06 0 0 02 RG
S EX 0130 101 0077 00 77 001 Y	 S EX 03 0 0 DO RG
D EP 0140 101 0078 00 79 002 Y	 D EP EN DE NT S 10 0 0 02 RG

Figure A-6. Single Level Data Base Dictionary Listing

• w

................ .

06 02 75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM (MIRADSI OICtIONARY FIP E LISTING	 PAGE

FILE NAME = PERSONkEL	 RECORD SIZE (WOS) =	 14	 BLOCK SIZE =	 128	 LEVELS =	 1	 FILE SECURITT

TABLE NO	 DATA SASE V AL UE REPORT TI TL E

Dal Cl BIRMINGHAM
DO1 02 kDB IL E'
001 03 NUN TS VI LL E
001 04 N AS HV IL LE
001 05 ATL AN TA
001 06 JACKS ON
002 OI ALA BA MA
002 02 MIS SI SS IP PI
002 03 TEN NE SS EE
002 04 CEO RG IA

~0	 003- 10 CUSTOMER REPRESENTATIVE 	 -
003 20 BOARD CHAIRY.AN
003 30 SERVICE ENGINEER
003 40 SALESMAN

 i {

Figure A-6. Single Level Data Base Dictionary Listing (Continued)

F

y

i

r	 ,

A. 3 A MULTI-LEVEL DATA BASE

Figures A-7 through A-9 illustrate the data cards, generation program

and coded Dictionary of a multi-level NATIONS application. Figure

A-10 illustrates the Dictionary listing produced by the Dictionary

Generator Program (DICGEN). This NATIONS application is the User's

File Set included on the system Release Tape of all MIRADS System

Releases.

1a

a
i

t

a

{

s

O 1	 A	 UNITED STATES OF AM ER IC AF OR D. G ER AL D R. 20 32 35 29 8 36 086723
01018	 ALA BA MA M CN' TG OM ER Y 34 4416 5 5169 0212 9W AL LA CE .GEORGE C
0101C 091A UT AU GA P RA TT VI LL E 24 46 0 599

' 0101C 00 2B AL OW IN MAY M IN ET TE 59 36 2 1578
0101C 00 3B AR 80 UR C LA YT ON 22 54 3 891
0101C 03 7J EF FERS ON 8 IR MI NG HA M 6 44 991 1115
0101C 04 5M AD IS ON H LN TS VI LL E 186540 803
0103B	 C AL IF OR NIA S AC RA ME NT 0 199 53 13 4158 69 3010 3B RO WN r EDMUND G J R
0103C 00 lA LA ME DA 0 AK LAND 10 7318 4 733 n `^'i 0103C 01 9L OS ANC EL ES LOS ANGELES 70 36 88 7 4 06 9
01518	 W YO MING C HE YE NN E 3 32 416 97 9145 00 9H AT HA WA Y. STANLEY K

s: 0 15 1C 02 3W ES T O N N EW CASTLE 6 30 7 2 40 7 b

Figure A-7.	 Multi-Level Application Data Cards

1

l

i

L'tt ="tli iLli,I	 G

PAGE Y5 POOR

1100 ASCII COBOL SO UR CE LISTING

1	 IOEN.TIFI CA TT CN O IV IS ION.
2	 PR OG RAM-1D .	 D SG EN 2.
3 '	 RE MA RKS.
4	 THIS PROGRAM GENERATES A M IR AD S MASTER FILE FROM AN
S	 EXISTING CARD FILE.	 THE M,IR ADS MASTER FILE ' NI LL BE
6	 STRUCTURED WITH TWO LE VE LS OF FILE SUBORDINATION.
7 '	 ENVIRONMENT DIVISION.
S	 CONFIGURATION SECTION.
9	 SOUR CE -C CM PU TE R. U NI VAC-1108.

10	 OBJE CT-C CM PU TE R. U NI VAC-1108.
Il	 INPUT-OUTPUT SECTION.
12	 FILE-CONTROL.
13	 SELECT CARD-FILE ASSIGN TO CARD- READER.
14	 DATA	 DIVISION.

15	 FILE SECTION.
16	 FD CARD-FILE
17	 LABEL RECORDS ARE OMITTED
18	 DATA RECCRDS ARE COUNTRY -CARD STATE-OR-COUNTY-CARD.
19	 Ol	 COUNTRY- CARD.	 7

70	 02	 FILLER	 PICTURE X(41.	 1
21	 02	 CARD -T YP E	 PI CT UR E X.
22	 02	 F1LLER	 PICTURE X(31.
23	 02	 CO UN TR Y- CARD-DATA.
24	 03	 COUNTRY--AND-PR ES ID ENT	 PICTURE X(481.
25	 03	 PO PU LA TI ON-C OU NT RY	 PICTURE X(101.
26	 03	 AR EA-C OU NTRY	 PICTURE X(81.
27	 03	 CONTINENT	 PICTURE 9(1).
28	 02	 FI LL ER	 PI CT UR E X(91.
29	 01	 STATE- OR -COUNTY- CARD.
30	 02	 FI LL ER	 PICTURE X(81.
31	 02	 ST AT E- OR-C OU NT Y- DA TA .
32	 03	 STATE- OR -COUNTY	 PICTURE X1141.
33	 03	 CAPITAL- OR-SEAT	 PICTURE X(16).
34	 03	 PO PULA TI ON-S TA TE -C OU NT Y 	 PICTURE X (B) .
35	 03	 AR EA-S TA TE-C OU NT Y	 PICTURE X161.
36	 03	 ST ATE-RANK-IN-POP	 PICTURE X(21.
37	 03	 ST AT E- RA NK-I N- AR EA	 PICTURE X121.
38	 03	 STATE-GOVERNOR	 PICTURE X(24).
39	 WORKING- STORAGE SECTION.

0	 S- UN TT	 A UE	 •	 AS	 •40	 A.	 MA	 V	 L	 M	 PICTURE	 X1121.
41	 Ol	 MAS- REC-S17E VALUE	 13	 PICTURE H91101.
42	 01	 MAS- BLK- SIZE VALUE	 137	 PI C7URE H9(101.
43	 Ol	 MAS^- RE C- A(i R 	 VALUE 0	 PICTURE H9(101.
44	 01	 VA S- RE CO K-) .
45	 02	 MA S- RE C- TY PE	 PICTURE ̀9(3).
46	 02	 FILLER	 VALUE SPACES	 PICTURE	 X13'1.
47	 02	 MA S- RE C-DA TA .
K8	 03	 PAS-DATA OCCURS 12 TIMES	 PICTURE H9(101.
49	 01	 MAS- BUFFER .
50	 03 M AS -B OF	 OCCURS 1796 TIMES	 PICTURE H9 110)
51	 PR OC ED UR E _ GI VI SI ON
52	 MASG EN-C PE K- FT LE S.
53	 CPEN INPUT CARD-FILE.

Y

54	 CALL	 "GN f N S'	 USING	 MA S- ON 17	 M AS -P EC -S IZ E

Figure A-8.	 Multi-Level Data Base Generation Program

A-13

i

i

55 MA S- BL K- SI 2E	 MAS -B OF FE R .
56 READ-CARD-FILE: ,
ST READ CARD-FILE AT ENO GO TO CLOSE-F;LES.
58 IF CARD-TYPE = • A •	 MOVE 101 TO MAS-REC-TYPE
59 PE PF CR M COUNTRY-ZERO-FILL
60 MOVE COUNTRY-CARD-DATA T 0 MAS-REC- DA TA
61 GO TO WRITE-MAS- RECORD.
62 IF CARD-TYPE = *8 1	MOVE 201 TO MAS-REC-TYPE'
63 PE K CR M STATE- 7E R0 -FILL TH RU COUNTY-FILL
64 MOVE STATE-0 R-CO UN TY -O AT A TO HAS-REC-D AT A
65 GO TO WRITE-MAS-RECORD.
66 IF CARD- TYPE = 'C'	 MOVE 301 TO MAS-REC-TYPE
67 PE RF CR M COUNTY-FILL
68 MOVE STATE-0 R-CO UN TY-'0 AT A TO MAS-R EC-OAT A
G9 GO TO 'JRITE-MAS-RECORD.
70 INVALID-IN PU T- CARD.
71 DISPLAY	 "INVALID REC TYPE `	 STATE-DR-COUNTY-CARD.
72 GO TO READ-CARD-FILE.
73 COUN TRY- ZE R0 -F IL L.
74 IF P OP UL AT IC IV- CO UN TR Y IS NOT EQUAL T 0 SPACES
75 EXAMINE POPULATION-COUNTRY REPLACING LEADING SPACES BY ZERO.
76 IF AREA-COUNTRY IS NOT E QU AL TO SPACES
77 E XA MI NE AREA-COUNTRY RE PL AC IN G LEADING SPACES BY ZERO.
78 ST AT E-ZE RD-F IL L.
79 IF STATE-RANK-IN-POP IS NOT EQUAL TO SPACES
80 EXAMINE STATE-RANK-IN-PCP REPLACING LEA DING SPACES BY 2 ER 0.
81 IF S TA TE -R AN K- IN -AREA IS NOT E QU AL TO SPACES	 ?,
82 EXAMINE STATE -RANK-IN -AREA REPLACING LEADING SPACES BY ZERO.
83 COUN TY-F IL L-

!	 84 IF POPULATION-STATE-COUNTY IS NOT EQUAL TO SF4-CES
85 EXAMINE POPULATTON- ST AT E- CO UN TY
B6 REPLACING LEADING SPACES BY ZERO.
87 IF AREA- ST ATE-CC UN TY IS NOT EQUAL TO SPACES
88 EXAMINE AREA-STATE-COUNTY REPLACING LEADING SPACES BY ZERO.
89 WRIT E- HA S- RE CO RO
90 ADD 1	 TO HAS-REC-NBR

;AS-UNIT91 CALL	 . UR I1 ES'	 USING 	 MAS-REC-N BR MAS-RECORD.
1	 92 GO TO READ-CARD-FILE.

93 CLOS E-FI LE S-
94 CLOSE CARD-FILE.
95 CALL ' CL CS EM' USING MAS-UN IT .
96 STOP RUN .

i

Figure A-8. Multi-Level Data Base Generation Program (Continued)

A-I4

Ficy ure A-9. Multi-Level Data Base Dictionary Cards

A
Ic
T E

FILE kAAW DATA BASE
macomog

MAX
!tom
SIZE

hem
P.M
CLOCK

NSR
LEVEL

ISC%WKW
X"

BLANK

F I	 toll- q.1 	 Bit	 I	 jAj#11	 &Ij	 a	 ..goal.

PASSWORD CARD
1 2 3 1516

-
A
C
T

T
y
P PAWOVORD BLANK

X
:1 L	 -	 -	 -	 I 	 I	 -	 .	 .	 .	 I	 I	 I	 .	 I	 I	 A

2
Z

I 	 A

RECORD IDENTIFIER CARD*
1 2 3 6 13 17 21

A

C
REC'
TYPE

REC

11)
STARTSTART
LOC

OT2

END

I

LOC
REC
SIZE BLANK

T. L

1=12ol -1 9, 131 1	 a	 A

I3=
L

I	 A	 I	 I

L

L

L

L

L
6 j

U'l

xA^,^t	 p^	 ^_	 PI	 FIELD DEFINITION CARD 1
ACCOUNT 	 PHONE

DA ET	 OF

DATE

1 Z 3	 6 7 6 <<^0 56 _r 59 63 67 69 71172173 7 77

AT
C
T

Y
P
E

FIELD
NBR

N
B
R

FIELD NAME REPORT TITLE REC
TYPE

START
LOC

END
LOC

NOR
OCC

SRCH
TYPE

N
D
E
X

P
I
N
D

DATA
TYPE

D

C
S

N

D

C
S
O
U

TLU
TABLE

NBR

T
L
U

' t	 t .4.^4	 t	 t	 ,	 l^	 I	 i	 t	 t	 L..	 1	 L O ..;l..l

m, - N R
/e`^,,

	 Ril

M1 , 0.
M 1 T O

•3 t' F13

M 91 m IN 2
M LQ1 1
M 0 1 0
M ,

M 1
M 1
M T
M 1

M 1'

M 1 t^

I

M1 1
M 1
M 1
M 1 ^t	 t	 LaL ,,,	 i	 t	 i	 t
M 1

MSFC - Fvmi 4 3 l-4 CFer. %Say 19 7)
Figure A-9. Multi-Level Data Base Dictionary Cards (Continued) 	 R

y

r

t `	 NaME^"	 }^^	 4— —T	
TABLE LOOKUP CARD

	
SHEET	 OF

ACCOUNT	 PHONE
	

GATE

1 2 3' 6 15 63

A
C

y
F
E

TLU
TABLE

tJBR

tW
DATA BASE

VALUE

TLU - REPORT - VALUE BLANK

T
I Tj

T SRTItI IEL	 ,^I,C t^.
T I

T (.

,i

"

T . 1 V
I T T	 1,.I	 1 I

T
T r

T

T

T
I 1

T

T. 1. 1 	 1.	 ^.^!	 [_	 11.	 1	 i	 I	 rl	 1,	 I	 i	 L;	 11,!	 I	 y	 I	 ,	 t	 r	 I	 r	 I	 I.r
1

T

T I	 r

T
T

1	 1	 I	 ,	 11 1	 I	 1

T
T

I ,

T
I ,	 i	 ,	 1	 I	 1 ^	 I

T
r '	 '	 1 I	 I	 t

T

T

T

T 1

T

T

T
'	 '	 ''	 I	 1 ,	 1	 1	 t	 ,	 1

M I, FU-t .rrlds2(Rcv. May ly,:,f	
^'%t^L1YC' ^-^. N1ultiple-Level Data Base Dictionary Cards (Continued)

06 02 is	 MARSHALL ?NFORMATION RETRIEVAL AND DISPLAY SYSTEM (MIRAOSI DICTIONARY FILE LISTING 	 PAGE	 1

FILE NAME = NATIONS	 RECORD SIZE (WOS) =	 13	 BLOCK SIZE =	 137	 LEVELS =	 3	 FILE SECURITY -

• *WAR NING	 NO PASSWORD CARDS HAVE BEEN ENTERED FOR THIS DICTIONARY

06 (32 75 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM (MIRADS1 DICTIONARY FILE FISTING PAGE
`i

FILE NAME = NATIONS RECORD SIZE (WDS) =	 13	 °LOCK SIZE =	 3.37
i EEVELS = 3 FILE SECURITY =

DI CT IO NA RY RECORD TYPE RECORD I DE NT IF IE R	 START LOCATION END LOCATION RECORD SIZE	 (IDS!

101 101 0 001 0003 0013
201 201	 , 0001 0003 0013
301 301 0 001 0003 0013

FIELD FIELD DICT LOCATION FIELD I	 UP REPORT FIELD TITLE TITLE DEC DATA SRCH TABLE LOOKUP	
f

NAME NO LVL	 START ENO SIZE N DATE CHARS I 0 TYPE TYPE NO	 WIDTH	 GLOBAL
CODE 0 N (MAX)

COUNTRY 0110 101	 0007 0030 024 Y COUNTRY 07 0 0 00 CH
PRES 0120 101	 0031 0054 024 PRESIDENT 09 D 0 01 CH
N-POP 0130 101	 0055 00 64 010 Y	 Y POPULATION OF COUNTRY 21 0 0 02 RG

^-	 N-,A PF A 0140 101	 0065 0072 008 Y AREA OF COUNTRY IS 0 0 02 RG
00	 CON 0150 101	 0073 0073 001 C ON TI NE NT 09 0 0 02 RG 001	 13

S TA TF, 0210 201	 0007 0020 014 Y S TA TE 05 0 0 01 CH
CAP 02 20 201	 0021 00 36 016 CAP IT AL i. 07 0 0 DO CH
S-P Orp 0230 201	 0037 00 44 00 8 Y	 Y POP UL AT ION OF STATE 19 0 0 02 RG
S -A RE A 0240 201	 004 5 0050 006 AREA OF STATE 13 0 0 02 RG.
PRANK 02.50 201	 0 051 0052 002 Y RANK IN POP '• 11 0 0 02 RG
A RA NK 0260 201	 005 3 0054 002 RANK IN AREA R 12 0 D 02 RG
C CV 0270 201	 0055 00 78 024 Y G OV ER NOR 08 0 0 01 R G
C CUNT Y 03-10 301	 0007 0020 014 Y COUNT Y 06 q 0 00 CH
SEAT' 03 20 301	 0021 00 36 016 C OU NT Y SE AT 11 0 0 00 CH
C-POP 0330 301	 0037 0044 008 Y P OP UL AT IO N OF CITY r^{.. 18 0 0 02 RG
C-AREA 0340 301	 004S 0059 006 Y AREA OF CITY' 12 0 0 02 RG
A CA RD 9101 101	 0001 0003 003 A CARD 06 0 0 02 RG
a CA 2D 9201 201	 0001 00 03 003 R CARD 06 0 0 02 RG
C CA R0 9301 301	 0001 00 03 003 C' CARD 06 0 0 02 RG

i

y°

d, 06 02 75	 MARSHALL INFORMATION RETRIEVAL AND DISPLAY SYSTEM IrIIRAOSI DICTIONARY FILE LISTING	 PAGE	 2

FILE NAME	 NATIONS	 RE CO RD SIZE (MOST	 13	 BLOCK SIZE =	 137	 L EV EL S =	 3	 f' IL E SE CU RT IV =

TABLE NO	 DATABASE VALUE	 REPORT TITLE

001	 1	 ASIA

k	
001	 2	 AFRICA
001	 3	 NORTH A FE RI CA

'	 001	 4	 SOUTH A ME RICA
.	 001	 5	 —ANT AR CT IC A

001	 6	 EUROPE
001	 7	 AUS TR AL IA

k

I

i

3

Figure A-10. Multi-Level Data Base Dictionary Listing (Continued)

i

i

APPENDIX B - DICTIONARY CODING F

5

j
3
9

3
3i

t

N

1 213 12 20 24 28 30 36

A
C
7

Y
P
E

FILE NAME DATA BASE
RECORDS

REC
SIZE

PER
BLOCK'

NBR
LEVEL

SECURITY
KEY

BLANK

F

PASSWORD CARD
1 2 3 1516

C
T

T

P
E

PASSWORD
i BLANK

Z

I
Z f	c	 I	 f	 I	 I	 I	 t	 t	 I	 I,

I
Z

I

,

I ,

_ ,	 ,I	 ,

I ,	 I	 1

RECORD IDENTIFIER CARD

1_ 213 16 9 13 17 21

A
T

V
E

REC
TYPE

REC
ID

STA'AT
LOC

END
LOC

REC
SIZE BLANK

L
L

L
L

L
L
L'

L

L
`

L
L

41SFLi-Forn,a,i2^41(Rev,"lily 1 4 75)

MAM£	 FIELD DEFINITION CARD 1
ACCOUNT	 PHONE

W

i

w

f

f^

56 59 63 67 66 71 72173 77
1

A
C
T

Z

T
Y

E

3	 B

FIELD'
NOR

7

Ng
A

d

FIELD NAME

20

REPORT TITLE
REC
TYPE

START
LOC

ENO
LOC C

SAC
TYPE

IN
D
X

UP
I
ND

DATA
TYPE

D
CS

N
IT

O
CS
O
U

TlU
ABLE
NBR

G
T
(Lj

T
1
1
1
1
1
i

.

M 1

11A 1

M 1

M 1

1

M 1

M i

M

L	 I

1

M 1

M

1

IM 1

1

LM-1 1 _i

M 1

M 1

M" 1

M 1 '

M 1 II
DN i

M 1

M 1
i

M 1

M 1

MSF'C-Faz^r. d Z-4 [Rev Mav 19761

A ^..,^

b
I

*F

NAME	 TABLE LOOKUP CARD	 SHEET	 of

ACCOUNT	 PHONE	 DATE

^ 3 3 6 15 63

A
C
T

Y
P
E

TLU
TABL
NOR

TLU
DATA BASE
VALUE

TLU — REPORT — VALUE_ BLANK

T

T

T

T r

T

T

T I I

T

r

T
' 1

T
1 1

T

T j_j I

r

T

T
1,	 1 1	 I	 r	 I	 l	 l	 i

T
T
T

T 1	 I ,
T

T

T
t 1

T I I	
1 r	 11	 1	 1	 I I	 1	 i

T 1 1	 I	 I 1	 f	 i

T
1

T
^	 1	 i	 1	 ,	 1(1	 1

T

I

i	 I	 f	 11 1	 I	 I	 1	 I	 1

T I	 t	 I	 I	 I	 I	 t	 I	 I	 I I	
I	

I	

1

T 1

T

T
I	 pE Tj 1	 1	 t	 1

hisF ' .. I t ,.,rl 412 t Rev 	 Z r

y

i

