General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NGL ZR-007—228

Photometric properites of the surface of Io
and their influence on line formation in the atmosphere

by

Yuk L. Yung and Pichard M. Goady

Center for Earth and Planetary Physics,
Harvard University.

(NASA-CR-145859) PEOICMETEIC PROPERTIES OF
THE SURFACE CF Io AKD THEIR INFLUEKCE CW
LINE FCEMATICN IN THE ATMOSPHERE (Harvard
Univ.) 34 p HC $4,CO CSCL 03E

G3/91

N76-14002

Unclas
03924




Abstract

We give a quantitative theory of line formation in an atmosphere
above a surface with backscattering properties. Sufficiently high spatial
and spectral resolution spectra of resonance lines in Io region A can yield
data on the surface scattering properties as well as the number density of
scattering molecules.

We discuss macroscopicallv homogeneous models of scattering from the
surface of Io and conclude that multiple reflection f&om crystal facets is
the most likely cause for the observed phase variations of the geometric

albedo.



1., Introduction.

Io has a notably high albedo for visible and near infrared radiationm.
Between 0.5 and 3 im the geometric albedo of the leading side of :he satellite
is observed to range from 0.7 to 1.1 (Johnson and McCord, 1970; Johnson, 1971;
Johnson and Pilcher, 1974) 1in contrast to the value 0,67 for a lambert sphere
with conservative scattering.

Brown et al. (1975) havé pointed out that, for such a high albedo, the
sodium D-lines might be observed in absorption, if Region A* alone could be
observed.

This effect is important as regards the search for other atomic resonance
lines in the atmosphere of Io, and in the first part of this paper we present
a quantitative theory. It is apparent from this work that observations of the
sodium D-lines in region A could yield information about the photometric
properties of the surface of Io as well as the density of sodium atoms in
its atmosphere. |

In the second part of this paper we give a speculative but quantitative
theory for the observed photometric properties of Io's surface. The high
geometric albedo implies a scattering function with a stronger backward
scattering component than for a lambert surface. This backward scattered
component is seen in the phase variation of the albedo at 0.55 um, which
decreases by about 30% from 0° to 12° phase angle (Morrison et al., 1974).

In the first part of the paper we treat this component as a narrow bundle of

constant intensity, centered on the incident D eam.

*Region A includes the visible disk and the atmosphere gravitationally bound
to the satellite., Sodium D-lines in emission have been observed in regions more
distant from the satellite. No spectra from Region A alone are available at the

present time,



Enhanced backward scatter is understood for dark surfaces such as lunar
material (Hapke, 1963). As pointed out by Oetking (1966) these theories,
which involve shadowing effects, cannot be applied to high albedo surfaces,
such as Io. Oetking showed that numerous white materials (e.g., Mg0) have
enhanced ﬁackscattering; others, on the contrary, have enhanced scattering at
the specular angle (Barkas, i939). As far as we are able to judge, Uhman
(1955) first pointed to the possiblity of cube corners or "cat's eyes" asso-
ciated with surface crystalline material. He was concerned with the ohserved
negative polarization at small phase angles exhibited by many planetary sur-
faces, but the same idea can obviously explain enhanced backscattering. Al-
though the exact nature of the reflecting surfaces is unspecified in our
model, we believe it to be the only tenable theory for a locally homogeneous

surface.

2. Line formation in an atmosphere above a hackward scattering surface.
The two models which we shall compare are shown in Figure 1 (a) and (b).
For a lambert surface the scattered intensity is the same in every direction.
For the backscattering surface, return radiation is restricted to a narrow
solid angle (dw). A real surface, with some backscattering properties, can
be approximately represented by a superposition of the two types of surface.
The solution for such a surface can be obtained by superposing our two solutions.
The atmosphere in both models scatters isotropically, a close approximation
to atomic resonant scattering. We consider only the zero phase intensity
1f('4,'“0). (Our notation follows Chandrasekhar, 1960,)
The intensity of radiation of a resonance line formed in a planetary atmos-
phere is given by the solution of the radiative transfer equation. With

standard notation, assuming plane parallel geometry, we have
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dIMt.p) = 1‘\ (T‘#) - i- J 4'“' I,\ (T, A’)
AT J, . (1)

vhere

Ty To exp (- 5a) )

To = optical thickness at line center

A)Mp = Doppler line width

The incident solar beam provides an upper boundary condition:

I;(D;H-:¢) = TF, Stp-po) $¢P-Fo) )

where p and pp are cosines of zenith angles and ¢ and ¢, are azinuthal
angles; the subscript zero refers to the sun. For a lower boundary con-
sisting of a lambert surface at T, , the reflected radiation is isotropic and

the boundary condition can be expressed:
2nr ! -
-+ Lo / / ’, ’
Iy(t,pg) = ;‘,—"f "'¢'f‘*/* p' Lo, w'8)
[ o

vhere ¥ denotes surface reflectivityv,

For a backscattering surface, the lower boundary condition is:
+ - (t
IA‘tl,ﬂ)¢) = T IA " /’LI ¢) (6)

To make the model more realistic the direct solar beam is dispersed, after
scattering by the surface, into a narrow cone of solid angle dw,

The equation of radiative transfer for the twvo cases can be solved using
the highly accurate approximate technique discussed in Appendix I. Tor T,(r) «|

t he solutions assume the following simple expressions for the emerfent

A

I
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+
intensity I a{pe, pu) at a point on the surface, and for the geometric albedo,

PO for a spherical satellite.

Lambert surface:

Ty (e, )/ rho + Bl ez

Albes BeIfFy = The po (5)
a

p(r)y = 7T + woy (§+3Cm4%)) ®)

Backscattering surface:

‘ A&
It(#'.«ﬂ-)/h = Po - E;T(?') ( 2 Mo = #U-H’} ) )

PIN = Po= T(0( 4P % (0)) (8)
whefe
Tr
Po = 5

For T,>» | the influence of the surface is unimportant. The solutions in this

case can be given in terms of Chandrasekhar's He~function

-t :
i}.(ﬁo,f‘o) /F,\ = ’é Hl(ﬂo) 9
| 2
PN = -4,- ( du, Mo Hipe) =00 69 (10)
Jo .

We can understand some features of the formation of an emission or
absorption line from an examination of (6) and (8). Let us first discuss (6).
Vell away from a line center we observe scattered radiation, which we refer

to as the continuum. In our models this corresponds to U, = 0 and the geometric

albedo is

[
Pc::ﬂ'.'nuum = 37



Close to a line center (wavelength 1: 1o), the effect of a thin scattering
layer T,(») results in the formation of a weak emission line, For a nearly
white lambert surface, 7" =< | , and the contribution of the a'cattering layer

to the geometric albedo is

Ap = PN - Peontinuum = g' 'C,(;\)

A bright lambert surface and a layer of isotropic atomic scatterers are almost
equally efficient (or inefficient) in scattering photons in the backward
direction, and the atmosphere is very difficult to detect.

The continuum geometric albedo for a backscattering surface is

r
’Pwn'finatum = Pe = gTd"

and, for a given value, the surface reflectively ¥~ . ¢an vary from O to 1.0,
depending upon the angular spread of the reflected sunlight, dw . our so+
lution is only valid, however, for dw small. 9, can be large, even for a
dark material (T2¢), if & is small. Close to line center (1= ) ths

scattering layer T, (») contributes to the formation of an absorption line if
2
4 'Po - '?‘; ( I+ Y.) 70

a condition that will be satisfied for all ¥ if the continuum albedo 4,

exceeds 0,5, The observations supgest dw£0:5 and p | ; therefore

Ap = #N=Po 22 - 35T, ()

In this case atmospheric scattering has a much greater effect on the
emergent radiation than for a lambert surface. If t!. observed continuum
geometric albedo should be caused half by lambert scattering and half by

backscattering the absorption would be nearly thirty times as effective as



the emission.

In the limit of backscattering alone the situation is similar to that of
a parallel beam of light traversing a tube containing resonant' Qcatterers. The
parallel beam loses intensity. Other directions will gain intensity but this
is not measured if only the parallel beam is observed. There is no limb
darkening for the backscattering model and the mean air mass is two: two
traverses of the atmosphere then lead to the factor 4 on the right hand side
of (8). To further illustrate the differences between lambert and hackscatter-
$i2 surfaces we show in Figure 2 (a), (b), and (c) a comparison of geometric
albedo for the two cases as a function of T; . To bring out the contrast we
have chosen the continuum albedo at T ;=zc¢ to be 0.67 in all cases. This is
accoﬁplished by setting Y* = 1 for the lambert surface and f,= 0.67 for the
backscattering surface. In the case of a backscattering surface we have an
additional parameter 7T = 22%?9, preportional to the spread of the refle~ted
beam. We show results for the cases T~ = 0, 0.5, For the observed values
dW = 0,15, 'F::: 1.0 we have T 0.05. Asymptotically as Ti->eée , P
approaches the value 0.69, shown in (10). A thick atmosphere will therefore
show line reversal. This behavior could, under suﬁiable circumstances, make it
possihle to interpret an obserQed high reéolution profile in terms of values

for both T, and ¥,

3. A theory for a backscattering surface.
We present an elementary statistical theory for multiple scattering from

a surface corsisting of microscopic reflecting facets. This is the only way




we have been able to identify in which a homogeneous® surface can give rise to
zero-phase geometric albedos in excess of unity,

We have also conscidered the following possibilities: an amorphous micro~
structure; multiple refraction at facets; single reflection at facets.

Amorphous microstructare implies isotropic scattering. The geometric
albedo for a sphere covered with an optically thick layer of conservative T
isotropic scatterers is 19 = 0.69 (Fquation 10)., The question of optical
interference between particles {shadoving effect) is a complicated one and has
been invoked to explain a strong phase dependence of albedo (Hapke,1963). The
effect -’ is to decrease the albedo below 0.69 for non-zero phase angles
rather than to Iincrease it at zero phase.

Multiple refraction at facets con be reduced to the problem of multiple
scattering with a phase function corresponding to the average refracted in-
tensity for all orientations of the facets. This phase function will have only
forward components, however, and a thick layer of forward scattering particles
has a lover zero-phase geometric albedo than a layer of isotropic scatterers.

Finally, in Appendix 2, we offer a simple theory of scattering from a sur-
face by single reflection from mirror facets. The mirror facets all have the
same zenith angle but all azimﬁth anpgles are allowed, consistent with the
assumption of macroscopic homozeneity. The maximum geometric albedo is found
when all the mirrors point vertically., Then we have the well-known rosult for

the albedo of a polished sphere, ¥ = 0.25.

*One of us had the pleasure of discussing with Professor Thomas Gold the possi-
bility of producing the ohserved geometric albedo by means of surface structures,
e.8., mountains, vertical holes, ete. Ve remain unconvinced that a quantitative

theory along these lines is possible hut reserve judgement until one is presented.



He therefore consider multiple reflections not only as a plausible
mechanism, but, as far as we can judge, the only one capable of giving zero-
phase geometric albedos in excess of unity. If the directionsof reflecting
surfaces are uncorrelated the albedo is no'larper than for single reflec-
tions. Our model therefore implie correlated facets or, in other words,
crystals. Fanale, Johnson.aﬁd Matson. (1974) have .postulated the existence
of evaporites on the surface of Io for unrelated reasons.

We do not assert that all scattering takes place by reflection at facets.
The most likely source of reflectious is total intermal reflection in dielectric
crystals., Only a limited range of orientations of the crystal with respect
to the incident beam gives rise fo "eat's eyes." Other orientations, which
do not lead to total reflection, will exhibit scattering more similar to that
from multiple refractions. Moreover, it is hardly likely that the surface of
Io is unifomly covered with any single material; indeed, the reflectivity
maps of Dollfus and Murray (1974) show that it is not. We therefore picture
a mixture of "cat's eyes' and approximations to lambert surfaces; it is the
theory of the former which we wish to present.

For completeness we should draw attention to the proposal by Oetking
(1966) that enhanced backscattering may be a diffraction effect. The Io phase
effect shows neither the rings nor the strong polarization observed in the
glory (van de Hulst, 1957, p. 250), and we have, therefore, not considered
diffraction further in this paper. Our findings are, however, only applicable
to reflecting facets much larger than the wavelength of light.

Reflections from facets as an explanation of observed scattering properties
has been considered by Rerry (1923), Barkas (1939), and Middleton and .
Mungall (1952). lone of the  : authors considered nultiple reflections. The

importance - of multiple reflections was, to our knovledge, first pointed out



by Ohman (1955) but he did not present a quantitative theory.

The facets are orjented with respect to the surface with a statistical
distribution M, (Hkm) , vhere Am 18 the cosine of the angle between the normals
to the surfac- - 4 the facet. (See Appendix 3 for rathematical details.) The
distribution ¢ o not depend on the azimuthal angle of the facet and we exclude
fa -ts which are oriented "Downwards," i.e., Mm¢0. Thus for a ray {(Kj,éj) to
be » ttered into the direction (m' §') in a single reflection the probability

is proportional to M.(}lm(i.j))where

i =
(2 (s - C-ptE ()t coscdiag)]0 (1)
is the cosine of the normal of the facet which refleccs-ﬂﬁy,éj)intoflﬁ,,},). For

Fm(i,j):

acondary scattering we introduce a correlation function between the first facet

and the second facet,“,_‘[lr) where v is the cosine of the angle between the first

facet and the second facet. For a rayf(}u,h):o be scattered into the direction(ﬁi,,g‘;)

the probability is proportions to

Z; Ma Chrtijm)
where the sum is over all possible intcrmediate rays{(;tj,*j) and

Mr (i, gy x) Aok = A - Mk
r .Ojl:‘.‘ s U
& (rijaje)z

with
4 4
Amn = 1= pmptn = (lopm )2 048)  cos (G- )

We represent each function H'(Pm) and Hz_(}(.) by a gaussian function.

Milsm) » Mooexp (= | '-“"J )
Malur) = M &rp (= (F)Y)

vhere H' and MZ. are constants to be determined by normalization conditions.

(12)
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The emergent angles are denoted by € and ¢ ; the latter refergs to the angle
between the planes containing the incident and the emersent rays. ELach

scattering diagram is normalized by

an |
, i, $,) =
.fe e -L tpe §Cpe.be s Sis i) (13)

In Figure 3 we show calculations of the scattering diagrams for a
correlated mirror surface for three anpgles of incidence and for U, =10,
0; = 0.1, This implies that individual facets are distributed at random
to the surface normal but that a correlation exists between pairs such that
a related mirye: is probably to be found within b 0.1 radians,

Not unexpectedly, the scattering diagrams reveal a backscatterinn peak with

a width of about 30°-40° superposed on a more uniform diffuse reflection.

These results can be used to calculate the peometric albedo and its

variation with solar phase,o . Ve assume that the reflected intensity, T,

has the simple form
k ket
Ihe. 96 ; pidil= B pe £ (Kebe ; ALF0)  quy

vhere [ and k are the Minnaert constants (sce, for example, Veverka, 1974).
Note that B and £ are not taken to be functions of o since this functional
dependence is already accounted for by the scattering functioa for a surface
element, {(ﬂ,,é,) '8 ,;f;) . 'h ~ is a measure of limb-darkening;

r!‘=o and fs| correspond to cases of zero aad lambert limb-darkening respectively.
B sets the absolute reflectivity of a spherical surface, i.e., the bond

albedo, A. For our present investigation we choose A = 1 and have calculated
tvo cases é.o and R21. The resulting geometric albeco and f{ts variation are

calculated by the method outlined by Hor:l (1950). The ge!?gctric albedos for

)

the two cases are 1.49 and 2,00 respectively., The phase variation § = _;;-“-)- is
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shown in Figure 4, and the result indicates that the phase variation of 1o is
ﬁe:ter described by our model than by a lambert surface, We hgve meager
evidence to distinguish between the cases ‘:c’and 1 since spatiel resolution
of the surface of Io would be needed for the task, However, from the

isophotes of Io taken by Dollfus and MNurray (1974) we must conclude that Io

does not exhibit limb-darkening, except perhaps towards the polar caps. Thus
we would be inclined to favor the choice of 4 = 0.

The paramcter 0, is critical for determinine the widtl, of the backscattered
peak., The width varies in proportion to ’; while the height of the peak and
th zero phase geometric albedo vary approximately in inverse proportion. Thus
coumetric albedos in excess of 2.0 are possible, depending upon the nature
of the surface.

In actuality we anticipate a mixture of backscatterine and lambert surfaces
on Io, each with a reflectivity less than opc. 'ntil more is known about the
surface, it is difficult to unravel the number of parameters involved, The
nurpose oi the present calculation is to derenstrate the properties of
nuitiple reflections fron facets, ard to show that this ie a plausitle

model for the ohsr .2d rhotomatric properties of To,
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Figure Captions

Figure 1. Geometry for radiative transfer,

In (a) the surface reflects incident radiation according to lambert's law.
Case (b) is for a backscattering surface.

Figure 2, Geometric albedo in the neiphborhood of a line center,

For the lambert surface the reflectivity is chosen to be 1.0 sc that the
continuum geometric albedo is 2/3. For the backscattering surface the
continuum albedo P, = ﬁ%ﬁ is chosen to be 2/3, We §,s# two represen=-
tative cascs (7 dw) = (0.5, 2.4); (0,0). T, is the optical thickness

of the s:attering layer at line center A=ir (a) T, = 3.0; (b) T, = 1,0;
(C) I, = 0,1.

Figure 3. Scattering diagrams for a surface consisting of correlated mirror

facets.,

The angles { and € are respectively the zenith angles of the incident
and emergent rays. ¢ is the azimuthal angle between the plane containing
the incident ray and the plane containing the emergent ray and the surface
normal. (a), (b) and (c¢) illustrate the results for three angles of

incidence: A = 6.7%, 33°, and 59°, The parameters 0; and 7; equal 1C and
0.1 respectively; ;C is normalized such that fdwe f(ﬁe,fe ;k;,;‘;) =

Figure 4. Phase variation of the peometric albedo.
The scattering diagram shown in Bigure 3 is used for'ﬂso and'ﬁ:i , ad

explained in the text. The geometric albedos for the two cases are 1.49

and 2.00 respectively, for conservative scattering. The result shows the

behavior of the measured phase variation from 0° to 12° (Morrison et al., 1974).

Figure Al. Single reflection by a, sphere covered with mirror facets. -
(a) Reflecting cones in the torus 6 + 56

(b) Reflection by a surface element of a cone.

Figure A2. Schematic diaprams for multiple scattering by mirror facets,

(a) Vector representation of incident and emerpent rays, and mirror facets.
(b) Dispersion of incident ray due to variation in M.;.
(c) Multiple scattering by mirror facets to lNth order.




Appendix 1. Calculation of emergent 1nta\sity and geometric albedo,

We solve the equation of radiative transfer (1) for lambert and backseat—
tering surfaces. The incident solar bean enters a scattering layer of optie&l
th;ckmess T, at zenith angle-fc»s" ho and an azix;uthal angle f, (Figure 1.).
For simplicity we will not carry along the index A in (1). Defifze the source

function
T = & 5‘ f"‘"‘ Icmp) (A1)

I (1, pu.¢) can be expressed formally in terms of J(T) (Chandrasekhar,
1960, p. 12) as

(0t /m 1:,45 —(5-T)/M .
I T, p ¢/ s I(Tflﬂ, ¢ e + '[t Y € Js) (A2)

-(T-S/as
e / TJts) (A3)

2

- ; - ‘e- M .
It m¢)= I (e, mMé) f,

At the upper boundary 7= we have

iy = = - [ Y,'p
Lo, po¢) = TF GLp-Ho) 00¢-¢0) "

At the lower boundary [t7, we have, for a lambert surface, -
“' aﬂd'f’d ‘I (T, A )
. M ¢
To gy « 7 [, 9L 4 J 48D s
and for a backscattering surface,
I+(r“ M ¢) = » I (‘Cl/ ""¢/ (A6)

Substituting (A2)-(A3) into (Al) and making use of (A4)-(A6) we obtain an

integral equation for the source function

1

—%o A7
Toltpeds (4+imrEata-n))e o+ [ds (2600517 Baig € gccf-s/)J(s,m)

14




for a lambert surface and -

J‘; (t ﬂ) i{ e .{ . g(?l:*t)/ﬂc) Jg,(&;(lr-s:} +Y‘E,( 2T - 1'—5}) ;T(_s‘ﬂ?
s{ Tle

for a backscattering surface, where the function F,(x) denotes the exponential
integral as defined by Chandrasekhar (196Q, p. 373). The integral equations
(A7) and (A8) can be solved iteratively on a computer. lowever, using a |
combination of variational and iterative techniques developed by Sze (1975),

we can readily obtain approximate analytic solutions for the source functions

j,e (‘L’,Y/;A.) and  Jps (t,/ld,)

Usi (A2) we can compute the emergent intensit + in the direction
ng p 8 Y I e Vs
For the outer solar system we are always close to zero solar phase angle and

the most interesting quantity is _I'*( Me, Mo) ziven by
T

-+ ~2Tfpo T/
- T 4T -. 4 T
T tmepsfe = THe € +j; L& 2v E(5-1)) TG
- 7 o = 2Tfo “ ~Tfe = 2G-T)ke  (A12)
Tk = i +fo“dﬁ£-(e +7e J T ey

The geometric albedo of Io can be calculated from the equation

z2n f dpe o I (r“' Me)

P s TF




Appendix 2: GCeometric albedo for a sphere covered with mirror facets:

gingle scattering

The only restriction comes from the assumption of local homogeneity.
This requires that the mirror distribution be symeérical with respect to i,
th; local v_erticlal. Také one local vertical at a time. To maintain symmetry .
the mirrors must be formed into a cone of revolution. We shall assume tha:u;
the mirrors are inclined at an angle € with respect to the local horizon.
If all the cones within the toxrus ¢ # &0 reflect backwards, the area

of the reflecting surface, as shown in fipure Al-a is

4 'r" o5 & Siné 86

The reflected light is spread 446 . Consider the fraction of each cone
reflecting (see figure Al-b). 1If all the light within the slice 25515 is
back reflected, the fraction is J;{- . ' "he angular deviation is {;! Sin & .

Thus the total reflectix{g, area is

G4rr¥cese fine 5€ CF

and the total angular deviation is
4 (66 + 0f Sine)
The corresponding solid angle of dispersion is

dw = 47 ( J& + 5?55;,19)"

From the definition of geometric albedo ve have

4 cos6 56 (6 FF
4(co+cfsing )"




It would appear that we can choose §& and 'z ¢ independently. But if we
impose the condition that illumination is to be uniform inside the bundles we
have

59«‘ sine = &80

s0 |

T = F los &

In the limit £ =0 , we have the well-known result Pg -4; s the geometric

albedo for a polished sphere.



Appendix 3: Calculation of multiple scattering b

Let us describe a mirror orientation by a unit vector L perpendicular to
its surface. Let the incident and emergent rays be denoted by the unit
vectors f.l and &/ respectively (Figure A2-a), Then the mirror which reflects

'53 into 5,’ is characterized by a vector

. 3;.-3./
N *

] - Py
J (’z(/"’so-&)]z
If we express fvo' and 4; in terms of angle variables (/"a',¢,‘) and (M, 6) in

polar coordinates we can express /"m(b_j) , the cosine of ’@U with respect

to the vertical in the form of Eq . (1)

M, et
mt gl T SYTL )7*
[ R Cmpit; = (=) (1 p)" o5 (- 8)) ]

For a ray that is scattered tvwice we have two mirrors M. and m‘J « The

-~ ¢}

cosine of the angle between these two vecters is

;lot.k il ;{'U b 7\.)

g\ ( Qij ;‘Jk

' K
Heliy5,8) = M« Mg = -
&
where
% T
- 2.,¢ t
1’”’7 = I~ Mm M, - (I"/um) ( l"}(n) ‘°-‘(¢m* ?(P))
Suppose we keep the incident ray fixed aﬁd vary the vector Ih;J- within a solid

anglec! Wn (see Figure A2-b). It can be shown that

GfUJ; = 4-tes6,, dwm
T
“(d(1-ai8)) dwn

11

Let the incident solar beam he f-(ﬁa/(f,). In the first scattering there
is a probability that the ray will be scattered into the upper hemisphere

*
as -’F(;u)%,). This ray will be allowsd to escape from the system as an emergent




2

ray. The part that is scattered into the lower hemisphere '{ (I‘I,ﬁ) will be
scattered a second time. The process will repeat, as shown jn Fijure A2-¢, and

+
the final emergent beam -f*(yd Jis the sum of all che‘g(ﬂz,é;).

+ e ® ot
Fliwd) = 2, T (8L 4i)

!

In each order of scattering -we have

2T [ ' -
Limia, ‘f:ﬁ)-'-'f “"f?f M, CFan, $in § Bindi) f (Kis4)
¢ o
PLquis normalized to

<M {
fd¢fﬂj dﬁ"*l Ml(}t“”/ ¢:'Tl; M;' ¢l'} = l
° ]
The conservative nature of scattering follows from

27 [
27 { -
[ [ dpier i, ) =] d’é"-,f dpi FHig:)

- o

For correlated mirror facets we introduce a correlation functioaniqug,Let

‘((d; = d}(,‘ df’
f{ﬂbéb) = de;M.(ﬂa,j,_ S M) M,_(/(a-;é_._ J ﬂa-é ,'ﬂ: ﬂga) :‘:{ﬂ:j 4')

vhere /ﬁ? denotes a beam in the lower hemisphere. MNormalization is assured by

[, M, o ity s ety ) Milsshy i) =]

Again, the system is conservative. Similarly we can compute a higher order

scattering

VC”“J 9‘5) "f"{wz'ﬁ("‘sa‘?ﬁ; Ay ‘/;)j"lwl Milig G, 1 M3 FlH 4
"1[1“‘3%; J Hy ¢z. J ﬂ-:9‘1}

=j dwa Mt ds s Koda Kt Ity e I G 3, 5 1id) A 4)

To carry out the calculations numerically we reduce the radiation field to




a set of discrete beams. A frequently occurring intepral is of the form

porata bashe. 1 |
Sitked) = [ 44 [ dn' W ing; w) Stuig

‘ &2 /
We choose 20 gaussian points for ﬂ' sndhequally spaced points for f « The

above integration can be approximated by a sum

$7
'Sl(AluéL) < é Zk

£=1 Z=lv

e

apbe W(ke;4j) S (ne, $¢)
vhere we have performed a gaussian quadrature in ,u-' and a simpson
quadrature in 4' . The coefficients 4; , b: refer to the gaussian and simpson

J

weights respectively.
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