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surface of lo and conclude that multiple reflection from crystal facets is

the most likely cause for the observed phase variations of the geometric

albedo.
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1. Introduction.

Io has a notably high albedo for visible and near infrared radiation.

Between 0.5 and 3 um the geometric albedo of the leading side o. :he satellite

is observed to range from 0.7 to 1.1 (Johnson and McCord, 1970; Johnson, 1971;

Johnson and Filcher, 1974) in contrast to the value 0.67 for a lambert sphere

with conservative scattering.

Brown et al. (1975) have pointed out that, for such a high albedo, the

sodium D-lines might be observed.in absorption, if Region A* alone could be

observed.

This effect is important as regards the search for other atomic resonance

lines in the atmosphere of Io, and in the first part of this paper we present

a quantitative theory. It is apparent from this work that observations of the

sodium D-lines in region A could yield information about the photometric

properties of the surface of Io as well as the density of sodium atoms in

its atmosphere.

In the second part of this paper we give a speculative but quantitative

theory for the observed photometric properties of Io l a surface. The high

geometric albedo implies a scattering function with a stronger backward

scattering component than for a lambert surface. This backward scattered

{	 component is seen in the phase variation of the albedo at 0.55 pm, which

decreases by about 30% from 0* to 12 * phase angle (Morrison et al., 1974).

In the first part of the paper we treat this component as a narrow bundle of

constant intensity, centered on the incident team.

*Region A includes the visible dial; and the atmosphere gravitationally bound

to the satellite. Sodium D-lines in emission have been observed in regions more

distant from the satellite. No spectra from Region A alone are available at the

present time.
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Enhanced backward scatter is understood for dark surfaces such as lunar

material (Hapke, 1963). As pointed out by Oetking (1966) these theories,

which involve shadowing effects, cannot be applied to high albedo surfaces,

such as lo. Oetking showed that numerous white materials (e.g., MgO) have

enhanced backscattering; others, on the contrary, have enhanced scattering at

the specular angle (Barkas, 1939). As far as we are able to judge, Ohman

(1955) first pointed to the possiblity of cube corners or "cat's eyes" asso-

ciated with surface crystalline material. He was concerned with the observed

negative polarization at small phase angles exhibited by many planetary sur-

faces, but the same idea can obviously explain enhanced backscattering. Al-

though the exact nature of the reflecting surfaces is unspecified in our

model, we believe it to be the only tenable theory for a locally homogeneous

surface.

2. Line formation in an atmosphere above a backward scattering surface.

The two models which we shall compare are shown in Figure 1 (a) and (b).

For a lambert surface the scattered intensity is the same in every direction.

For the backscattering surface, return radiation is restricted to a narrow

solid angle (do ). A real surface, with some backscattering properties, can

be approximately represented by a superposition of the two tyres of surface.

The solution for such a surface can be obtained by superposing our two solutions.

The atmosphere in both models scatters isotropically, a close approximation

to atomic resonant scattering. We consider only the zero phase intensity

I} ( µop µ Q ^ , (our notation follows Chandrasekhar, 1960.)

The intensity of radiation of a resonance line formed in a planetary atmos-

phere is given by the solution of the radiative transfer equation. With

standard notation, assuming, plane parallel geometry, we have

i



JA (2)

vt Satt.µa	 J. S A1 ( T till

dz	 _^

where

zta} = To ex p
To - optical thickness at line center

AXD - Doppler line width

The incident solar beam provides an upper boundary condition:

(1)

where It and µo are cosines of zenith angles and 0 and ^o are azirauthal

angles; the subscript zero refers to the sun. For a lower boundary con-

sisting of a lambert surface at Zt , the reflected radiation is isotropic and

the boundary condition can be expressed:

27r
+

	 =f

do, 
Jo	 v

where 'r denotes surface reflectivity.

For a backscattering surface, the lower boundary condition is:

To Make the model more realistic the direct solar beam is dispersed, after

scattering by the surface, into a narrow cone of solid angle J&).

The equation of radiative transfer for the two cases can be solved using

the highly accurate approxinate techni que discussed in Appendix I. ror TO W <C1

the solutions assume the following simple expressions for the emers:ent
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intensity	 A(IA*,,*,,) at a point on the surface, and for the geometric albado,

f (k) for a spherical satellite.

Lambert surface:

I

+	
+

4
(5)

(6)

Backscattering surface:

+	
2 'u-14 IF 'h (7)

P	 L	 /*

where

T
P O	 7-

For T j %> I	 the influence of the surface is unimportant.	 The solutions in this

case can be given in terms of Chandrasekhar's It-function

+
( /AV,	 FA (9)

(10)

We can understand some features of the formation of an emission or

absorption	 line from an examination of (6) and (8).	 Let us first discuss (6).

Well away from a line center we observe scattered radiation, which we refer

to as the continuum.	 In our models this corresponds to t, 	 0 and the geometric

albedo is

M4A #4M	 =	 Y.
3
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Close to a line center (wavelength	 the effect of a thin scattering;

layer Tj ()) results in the formation of a weak emission line. For a nearly

white lambert surface, r	 and the contribution Of the scattering layer
to the geometric albedo is

Ad f s f (A) -- 'T (o n'o'r n 4  ni w	 t^

A bright lambert surface and a layer of isotropic atomic scatterers are almost

equally efficient (or inefficient) in scattering photons in the backward

direction, and the atmosphere is very difficult to detect.

The continuum geometric albedo for a backscattering surface is

r
f ton t; n u t4m _ Pc	

r
dW

and, for a given value, the surface reflectively 'r can vary from 0 to 1.0,

depending upon the angular spread of ,he reflected sunlight, 4W . our so-

lution is only valid, however, for 40 small. -'i can be large, even for a

dark material ( T-4 0 ) , if JO is small. Close to line center ( fi x. V ) the

scattering layer '^'^(^,^ contributes to the formation of an absorption line if

2

a condition that will be satisfied for all r if the continuum albedo ^#

exceeds 0.5. The observations suggest d w < o.1s and-p —_ 1 ; therefore

1+ P ; 'f t A) f e .* - 3 - S t, (,')

In this case atmospheric scattering has a much greater effect on the

emergent radiation than for a lambert surface. If tf^- observed continuum

geometric albedo should be caused half by lambert scattering and half by

backscattering the absorption would be nearly thirty times as effective as
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In the limit of backscattering alone the situation is similar to that of

a parallel beam of light traversing a tube containing resonant scatterers. The

parallel beam loses intensity. Other directions will gain'intensity but this

is not measured if only the parallel beam is observed. There is no limb

darkening for the backscattering; model and the mean air mass is two: two

traverses of the atmosphere then lead to the factor 4 on the right hand side

of (8). To further illustrate the differences between lambert and backscatterr-

ii i* surfaces we show in Figure 2 (a), (b), and (c) a comparison of geometric

albedo for the two cases as a function of T, . To bring out the contrast we

have chosen the continuum albedo at Tg:C to be 0.67 in all cases. This is

accomplished by setting Y` s 1 for the lambert surface and ?.- 0.67 for the

backscattering surface. In the case of a backscattering surface we have an

additional parameter T' ^ r04(o
• prcportional to the spread of the reflen.tead

beam. We show results for the cases T = 0, 0.5. For the observed values

4 W - 0. 15, 'D x 7.0 we have 'r a 0.05. Asymptotically as Z, --^ oa , -P

approaches the value 0.69, shown in (10). A thick atmosphere will therefore

show line reversal. This behavior could, under sutiahle circumstances, make it

possible to interpret an observed high resolution profile in terms of values

f or both Tj and Y` .

3. A theory for a backscattering surface.

We present an elementary= statistical theory for multiple scattering from

a surface consisting of microscopic reflecting facets. This is the only way



we have been able to identify in which a homogeneous* surface can give rise to

zero-phase geometric albedos in excess of unity.

We have also considered the following possibilities: an amorphous micro-

structure; multiple refraction at facets; single reflection at facets.

Amorphous microstructure implies isotropic scattering. The geometric

albedo for a sphere covered with an optically thick layer of conservative

isotropic scatterers is -P - 0.69 (Equation 10). The question of optical

interference between particles (shadowing, effect) is a complicated one and has

been invoked to explain a strong phase dependence of albedo (ltapke t1963). The

effect .
	

is to decrease the albedo below 0.69 for non-zero phase angles

rather than to increase it at zero phase.

Multiple refraction at facets can be reduced to the problem of multiple

scattering with a phase function corresponding to the average refracted in-

tensity for all orientations of the facets. This phaze function will have only

forward components, however, and a thick layer of forward scattering particles

has a loner zero-phase geometric albedo than a layer of isotropic scatterers.

Finally, in Appendix 2, we offer a sinple theory of scattering from a sur-

face by single reflection from mirror facets. The mirror facets all have the

same zenith angle but all nzi.muth an gles are allowed, consistent with the

assumption of macroscopic horo ^eneity. The maximum geometric albedo is found

when all the mirrors point vertically. Then we have the well-known r.isult for

the albedo of a polished sphere, 'p - 0.25.

*One of us had the pleasure of discussing with Profeasor Thomas Gold the possi-

bility of producing the observed geometric albedo by means of surface structures,

e.g., mountains, vertical holes, etc. We remain unconvinced that a quantitative

theory along these lines is possible but reserve judgement until one is presented.



We therefore consider multiple reflections not only as a plausible

mechanism, but, as far as we can judge, the only one capable of giving zero-

phase geometric albedos in excess of unity. If the directionsof reflecting

surfaces are uncorrelated the'albedo is no • larger•than for shale ref lee-

tions.	 Our model therefore implie correlated facets or, in other words,

crystals. Fanale, Johnson.and Matsan.(1974) have.postulated the existence

of evaporites on the surface of Io for unrelated reasons.

tie do not assert that all scattering takes place by reflection at facets.

The most likely source of reflecticras is total internal reflection in dielectric

crystals. Only a limited range of orientations of the crystal with respect

to the incident beam gives rise to "cat's eyes." other orientations, Mich

do not lead to total reflection, will exhibit scattering more similar to that

from multiple refractions. Moreover, it is hardly likely that the surface of

lo is uniformly covered with any single material; indeed, the reflectivity

maps of Dollfus and Murray (1974) show that it is not. t'e therefore picture

a mixture of "cat's eyes" and approximations to lambert surfaces; it is the

theory of the former which we wish to present.

For completeness we should draw attention to the proposal by Oetking

(1966) that enhanced backscattering may be a diffraction effect. The lo phase

effect shows neither the rings nor the strong polarization observed in the

IM (van de Hulst, 1957, p. 250) 9 and we have, therefore, not considered

diffraction further in this paper. Our findings are, however, only applicable

to reflecting facets much larger than the wavelength of light.

Reflections from facets as an explanation of observed scattering properties

has been considered by Derry (1923), Barkas (1839), and "iddleton and

Hungall (1952). Prone of the , = authors considered nultiple reflections. The

importance • of multiple reflections was, to our knowledge, first pointed out
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The facets are oriented with respect to the surface with a statistical

distribution M, (gm) , where jm is the cosine of the angle between the normals

to the surfac- • d the facet. (See Appendix 3 for mathematical details.) The

distribution d & not depend on the azimuthal angle of the facet and we exclude

fa..!- is which are oriented "Downwards," L. c. , 14w 4 . Thus for a ray T(ftj + +j) to

be a ttered into the direction ^^{^^^ in a single reflection the probability

is proportional to MM6C j!) where

1AM	
a CZ ^t_µ;^û _ t1- ;'j {1•j^^^ cost¢;. J^ s	 {ll}

is the cosine of the normal of the facet which reflects 7-%rY,j})into f(,P&J). For

pcondary bcattering we introduce a correlation function between the first facet

and the second facet,N,&(#r) where )(v is the cosine of the angle between the first

facet and the second facet. For a ray ,#x)to be scattered into the direction(1411,04

the provability is proportion. to

'Zi M.. { Nr ( i,j, K) )

where the sun is over all possible intermediate rays+(ttA) and

X A t	 k

with

A

We represent each function M I (P4,) and k(P-M) by a gaussian function.

14, ( ,A. )	 M.	

'	 (12)

where M, and Mx are constants to be determined by normalization conditions.
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The amergent angles are denoted by E and f!tl a letter refers to the angle

between the planes containing the incident and the emerrent rays. Each

scattering diagram is normalized by

f

Z^	
1 y 	 d	 = !

O at
	 q. ^( 'U * . 7 0 i X J f i)	 t131

In Figure 3 we show calculations of the scattering diagrams for a

correlated mirror surface for three angles o f incidence and for 0r - 10,

qZ - 0.1. This implies that individual facets are distributed at random

to the surface normal but that a correlation exists between pairs such that

a related mirrr , * is probably to be found within 
± 

0.1 radians.

Not unexpectedly, the scattering diagrams reveal a hackscatterinp, peak with

a width of about 30'--40' superposed on a more uniforn diffuse reflection.

These results can be used to calculate the geometric albedo and its

variation with solar phase,o( . Ile assume that the reflected intensity, 'I,

has the simple forts

k-^

where l3 and k are the Minnaert constants (see, for example, %leverlr a, 1974).

Note that 6 and ^ * are not taken to be functions of of since this functional

dependence is already accounted for by the scatterin- function for a surface

element, ffiq*' ff ; X . 4; ) .	 +	 is a mwasure of limb-darkening;

AZ o and *sl correspond to cases of zero a.id larabert lire-dart-eninp respectively.

B sets the absolute reflectivity of a spherical surface, i.e., the bond

albedo, A. For our present investigation we choose A . 1 and have calculated

two cases i„o and *&I. The resulting geometric albedo and 1t q variation are

calculated by the method outlined by lior:l- (1954). The ge etric albsdus for

the two cages are 1 . 49 and 2.00 respectively. The pharte variation . tl-^ is
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shown in Figure 4, and the result indicates that the phase variation of lo is

better described by our model than by a lambert surface. We have meager

evidence to distinguish between the cases 4 z o and 1 since spatial resolution

of the surface of to would be needed for the task. However, from the

•1
	

isophotes of 10 taken by Dollfus and 2furray (1974) we must conclude that lo

does not exhibit limb-darkening, except perhaps towards the polar caps. Thus

we would be inclined to favor the choice of IL- o.

The parameter rZ is critical for determining the widt ., of the backscattered

peak. The width varies in proportion to 6-, while the height of the peak and

*^- zero phase geometric albedo vary appzuxir.:ately in inverse proportion. Thus

^•:metric albedos in excess of 2.n are possible, depending u pon the nature

of the surface.

In actuality we anticipate a mixture of haclscatterine acid lambert surfaces

on lo, each with a reflectivity less than onc:. 	 !'ntil irore is known about the

surface, it is difficult to unravel Vic numlf r r of rnrameter ^ involved. Tlor

nurposo of the present calculntion is to c'eronstrnte the rrope rtic g of

nultiplc reflections fro" facets, ar-O to -.hcnr thr{t this it r nleusirle

r.}odel for t+ir o`,sr od rhoto-ntnri c pronerti ,-s of To.
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Figure Captions

Figure 1. Geometry for radiat ive transfer.

In (a) the surface reflects incident radiation according to lambert's law.

Case (b) is for a backscattering surface.

Figure 2, Geometric albedo in the neighborhood of a line center.

For the lambert surface the reflectivity is chosen to be 1. 0 so that the

continuum geometric albedo is 2/3.	 For the backscattering surface the

continuum albedo	 dw	 is chosen to be 2/3.	 We St,i w two represen-

tative casts ( r, dw) r'	 (0.5, 2.4); (0,0), 	 d;	 is the optical thickness
of the s pattering layer at line center A =	 (a) T, - 3.0; (b) -C l 	 1.0;

(c) T I = 0.1.

Figure 3. Scattering diagrams for a surface consisting, of correlated mirror

, facets.

The angles	 and	 E	 are respectively the zenith angles of the incident

and emergent rays.	 is the azimuthal angle between the plane containing

the incident ray and the plane containing, the emergent ra y and the surface
F

t
normal.	 (a), (b) and (c) illustrate the results for twee angles of

incidence: A - 6.7% 33% and 59% 	The parameters	 X and r.. equal 10 and
0.1 respectively;	 is normalized such that	

f
c(W E f (me ,ot ; A;,

Figure 4. Phase variation of the geometric albedo.

The scattering diagram shown in Figure 3 	 is used for Aso and A-1 , aii

explained in the text.	 The geometric albedos for the two cases are 1.49

and 2.00 respectively, for conservative scattering. 	 The result shows the

behavior of the measured phase variation from 0 ° to 12 ° (Morrison et al., 1974).

Figure Al. Single reflection by a,s2here covered with mirror facets.

(a) Reflecting cones in the torus 	 8 * S tl

(b) Reflection by a surface element of a cone.

Figure A2. Schematic diagrams for multiple sca .tj±.rinr, by mirror facets_._

(a) vector representation of incident and emergent rays, and mirror facets.

(b) Dispersion of incident ray due to variation in 179i^.
w

(c) Multiple scattering by mirror facets to 11th order.



Appendix 1: Calculation of emergent intensity and geometric albedo.

We solve the equation of radiative transfer (1) for lambert and baekscat

tering surfaces. The incident solar beam enters a scattering layer of optical

thick,ness Zj at zenith angle-tms go and an azimuthal angle 	 (Figure 1.)-.

For simplicity ve will not carry along the index ,1 in (1). Define the sours

function
2A	 ^

Z(r) = A ^ ^ ^ j dµ IC r, 	 (Al)a

tZlMJI can be expressed formally in terms of T(r) 	 (Chandrasekhar,

1960, P. 12) as

#	 ^ ^	 - t ze'r1 f,K

I tr, M, ^1 = I [tr, M, ^)

j C 	 ^1 - I ( v, ,u, p^1	
+

At the upper boundary =A we have

t'	 -c5- Vilkds	
T(S)
	 (A2)

t d.s -tr ^fM	 ()
--- ^	 Tcs1
At

I ra. M. ¢J = TI F d'( fa- Ao) cat.¢- ¢o ff	

(A4)

At the lower boundary rzZl we have, for a lambert surface,

Z^ ,^ r d^c ` µ' I (z+, t{,t)	 (A5)
I	 ^^	 7r J o

and for a baekscattering surface,

Substituting (A2)-(A3) into (Al) and making use of (A4)-(A6) we obtain .an

incegral equation for the source function

J^(z,^ °1 = ^4 ; zf^o^`F^{z,-zJ,^e F + vis ^iEl(tr- s1)fr 	
(4w) i(s

'.` )
v

(A6)



Using (A2) we can compute the emergent intensity 
l ttl1,°#-) 

in the direction

For the outer solar system we are always close to zero solar phase angle and

the Most interesting quantity is ltl AC
,
 A") 

aiven by

ti

^,LtK^,k^; 1^ = '`^'° 
^LC^,^o 

+	
4r -TAP 	 tAll)
^t°

+ 7	
zr,	 (Al2)f	 ^/	 tt' —

^6s ( µ°il `• ^I F = d E	 °+dr 	 '.^. T e 

	

fo 1" •	

Jett,

The geometric albedo of Yo can be calculated from the equation

2Tf	 + dIuo p0

TrF



Appendix 7: Geometric albedo for a sphere covered with mirror fftets:

single scattering

The only restriction comes from the assumption of local homogeneity.

This requires that the mirror distribution be symmetrical with respect to

the local vertical. Take one local vertical at a time. To maintain symmetry,

the mirrors must be formed into a cone of revolution. We shall assume that

the mirrors are inclined at an angle 	 with respect to the local horizon.

If all the cones within the torus p d 4*p	 reflect backwards, the area

of the reflecting surface, as shown in figure Al-a is

1l 7' Cos 8 5;n 6 t^

The reflected light is spread +S 6) 	 Consider the fraction of each Icone

reflecting (see figure Al--b). If all the light within the slice 2 car is

back reflected, the fraction is	 he angular deviation is	 S,a .

Thus the total reflecting, area is

^rr z cbs6 S;.,6 Fe

and the total angular deviation is

+ ( Jf b t d/ Sipe 6)

The corresponding solid angle of dispersion is

G fa% =	 7T	 4 C^ S;,t J

From the definition of geometric albedo ,Ye have

rb s b s ,'» B ^'b

I( &+'^s;K0)-



2.

It would appear that we can choose Sb and f	 independently. But if we

impose the condition that illumination is to he uniform inside the bundles we

have

e fm B _ S ID

so	 ^. j os s

In the limit LO _ 0 , we have the well--l.nown result r = T	 , the geometric

albedo for a polished sphere.

f



Appendix 3: Calculation of multi le scatterip-m,hy-correlaLeA-m_iXXor,s

Let us describe a mirror orientation by a unit vector N 
perpendicular to

its surface. Let the incident and emergent rays be denoted by the unit

vectors 14 and 41 
respectively (Figure A2-a). Then the mirror which reflects

71

ej into a.j is characterized by a vector
N	 N

a' + k,

If we express Q i and ^j in terms of angle variables j//^,,) and	 in

polar coordinates we can express /^ l ;)	 the cosine of M.-  with respect

to the vertical in the form of F% .(11)

For a ray that is scattered twice we have two mirrors iM.k and M;	 The
~- j	 V V

cosine of the angle between these two vectors is

-AJ IC

where

,^ } (t-- ft„)	 coy [ ,„ - 'A J

Suppose we keep the incident ray fixed and vary the vector M- within a solid
,V

angle d Wm (see Figure A2-b) . It can be shoc-m that

d w	 4 t e S VC►n d tj,,,

_L.

Let the incident solar beam be ^(^^^,^. In the first scattering there

is a probability that the ray will be scattered int.) the upper hemisphere

t
as 

.^{x^^^• 
This ray will be allowed to escape from the system ns an emergent
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ray. The part that is scattered into the lower hemisphere 4+,1r) will be

scattered a second time. The process will repeat, as shown in Fijure A2—c, and

the final emergent beach c ,# }is the sun of all the 4 ( #, T"

In each order of scattering we have

'	 ^f^j#^^ ^itt j .:	 d^,	 4J"+l`(lt ^,^}^ J ^^tf 1 ^"iJ7i^ ^ 1l`^IITl^

^l

K (p,,,)is normalized to

jo	 _,

The conservative nature of scattering follows from
2n	 o

^^	 I

f̂
 d ^, f d^;t,	 ^"'#^/ ;fig 1 =	 d ^; 

l	 t1^`%, '

For correlated mirror facets we introduce a correlation function.Ms(A.). Let

d 4); _ d q j dl;
	

(

(At	
= f d(J	 t' M, > ; z i !u r `/J! My^f^a f = i ^'	 /K'' +^ ^"'lillr1 ^.)

110where #— denotes a beam in the lower hemisphere. Normalization is assured by

f
dwz. 1l /4L ^L /	 t1da,	 / l i J

Again, the system is conservative. Similarly we can compute a higher order

scattering

	

alGi)"	 o W, M I l J'^'z . ^z 1	 J*x

M
C^ #j	 : ^` 7L 1 f,r l J^

cJ^	 r 	 ,t
	 )PI
	 F^ 1	 ' }} I 	 ^._ C^	 r^^f3^ LYL l^i^	 (!ua`;Mc^a^/^i1^M=-,^^, /id ,̀j9 ► 1'W ,/

To carry out the calculations numerically we reduce the radiation, field to



3.

a set of discrete beau. A frequently occurring, integral is of the form

f	
f	 ^{, Sf

We choose 24 gaussian points for 41 and equally spaced points for 	 The

above integration can be approximated by a sum

t k-to

BE  where we have performed a gaussian quadrature in t, and a simpson

quadrature in , . The coefficients tip , J refer to the gaussian and simpson

weights respectively.
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