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 FOREWORD

This report summarizes the results of planetary advanced.

. studies and planning support performed by Science Applications, Inc.
(SAI) under Contract No. NASW-2613 for the Planetary Programs
Division, Code SL, of NASA Headquarters during the twelve month
period 1 February 1974 through 31 January 1975. A total effort of 7760 |
man-hours (47. 9 man-months) Wés expended on six specific study tasks
and one general support task. The total contract value was $207, 748,
with 93% of the work performed by the staff of the SAI Chicago office.
Inquiries regarding further information on the results reported here may
be direcfed to the project leader, Mr. John Niehoff, at 312/253-5500.
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1. INTRODUCTION

Science Applications, Inc. (SAI) participatels in a program of
advanced concepts studies and planning analysis for the Planetary
Programs Office, Code SL, of NASA Headquarters. SAI's charter is to
provide unbiased preliminary analyses and evaluations for Code SL
planning activities.. Specifically, the objective of this support is to ensure
that NASA has an adequate range of viable future planetary mission options
in order to pursue the objectives of solar system exploration within the
changing constraints of our space program. The nature of the work
involved is quite varied, ranging from short quick response items to
pre-Phase A level mission studies. During the past contract year a total

‘of ten SAI staff members contributed to this effort.

The purpose of this report is to summarize the significa.ht results
generated under this advanced studies contract during the tweive month
period, 1 February 1974 through 31 January 1975. Progress reports of
the task efforts have been given at scheduled quarterly reviews, and in
Code SL's Quarterly Newsletter. Task reports have been prepared and
presentatioﬁs given toa wide audience at NASA Headquarters, NASA
Centers, and at technical méetings on the significant study results.

This report, therefoi'e., "is necessarily brief, with the intention 6f direct-
ing previously uninformed interestéd readers to detailed documentation, |
and to serve as a future feference to previously completed advanced

studies.

The ‘next section of the report presents the individual tasks performed
during the contract period and briefly describes each task presenting the
key results and conclusions that were generated.. The last section of the
report is a bibliography of the reports and publications that have resulted
- from the task analyses. SAI is presently beginning another twelve month
period of advanced studies for the Pianetary Program Division with a
schedule of eight study tasks, several of which are continuing research on

~ the work reported here,



2.  TASK SUMMARIES

An initial schedule of six study tasks was planned for thé twelve
month contract period, 1 February 1974 through 31 January 1975. Two
additional tasks were added during the contract period bringing the full
schedule to eight tasks. These tasks, listed by contract task number,

are as follows:

1) Cost Estimation Research,

2) Planetary Missions Performance Handbook - Vol. I,
Outer Planets,

3) Shuttle Impact Planning, ,
4) Jupiter Orbiter Lifetime Analysis,
5) - Titan Mission Concepts Study, |
6) Advanced Planning Activity,

) Error/Control Analysis of Penetrator Deployment at the
Moon and Mercury, .

8) Expenditure Management of the Symposmm on Quter
Planet Exploration.

Task 6, Advanced Planning Activity, is a general support task
designed to provide a budgeted level of effort for fechniéal assistance on
short term planning problems which frequently confront the Planetary
Programs Division. The remaining first seven tasks are planned efforts
with specific objectives of analysis. Task T, Error/Control Analysis of
Penetrator Deployment at the Moon and Mercury, was added in the eigth
month of the contract period to replace continued effort on Task 3,
Shuttle Impact Planning, which was prematurely terminated to await
results of the Shuttle Interim Upper Stage (IUS) contractor definition
studies. Task 8, Expenditure Management of the Symposium on Quter
Planet Exploration was added in the tenth month to facilitate the formula-

tion of this symposium on outer planet mission planning strategy. No



technical manpower was involved in performing this service. Hence, no

further discussion regarding this task is provided.

A total of 7760 man-hours of effort (47.‘9 man-months) was expended
in completing this schedule of tasks. A brief descripfion and presentation
of key results for each of the first seven tasks is presented in the sub-
sections which follow. The level of effort devoted to each of the tasks is
given with the task title at the beginning of each subsection. Specific
reports generated as part of the study tasks are noted, with a complete

list of publications given in Section 3 of the report.

2.1. Cost Estimation Research (1940 man-hours)

This task is continuing research in the development of a
planetary mission cost estimating model. The purpoee of the model is to
| provide reasonably accurate rapid estimates of future planetary missions
~ for planning activities of the Planetary Programs Division. - Historically,
cost estimates of future missions have been in error (underestimafed), in
extremev cases, by more than 100% with 50% errors not uncommon.
Also, the errors in the estimates were often related to the complexity of
the mission, with soft landers being most poorly estimated. The need
for an objective systematic approach for generafing reasonably accurate
~initial estimates of advanced mission concepts which would be sufficiently
reliable for schedulihg future projects to budgeting guidelines was the

genisis of the Cost Estimation Research Task.

The cost model being developed under this task has a stated
accuracy goal of + 25% error on the estimate. - The model is applicable
to a wide range of planetary mission types including flybys, o'fbiters,
atmospheric entry probes and soft landers. The model input'require—
ments have been restricted to pre-Phase A level definitions because the

generated project estimates are for future mission concepts. A complete
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. list of all possible model input parameters is presented in Table 1. The
presént cost model structure is functionally summarized in Figure 1.
Several of the characterizing features of this cost model are apparent in

" Figure 1v. First, the basic cost unit of estimation used by the model is
man-hours. For severely limited hardware production projects, such as
planetary missions, manpower, in units of direct labor hours, is the key
-element of cost. The low volume production charaéteristic and the NASA
cost reporting system were found to stabilize direct labor cost at 29.6%
of total project cost for a wide range of mission concepts analyzed with

a very small standard devié.tion of 1.3%. Estimating manpower, rather
than dollars has the following benefits: 1) simplifyiﬁg the actual estima-
~ tion procedure, since fewer cost elements are involved; 2) removing the
effects of inflation from the estimating procedure; and 3) providing added

visibility to the cost reduction effects of learning and inheritance.

The second characteristic of the model is thét basic
_estimation is done at the subsystem hardware level with subsequent
estimates of Support functions and non-labor costs being built upon these
values. Although the cost data base upon which the labor estimating
relationships (LERs) were and afe being developed provide resolution
down to component hardware ievels, the LERs themselves begin at the
subsystem level so that input requirements do not exceed the information
content of pre-Phase A mission studies. The actual input, described in
Table 1, is composed largely of subsystem masses and key mission 4

event times for much the same reason.

The third key characteristic of the model is its ability to
allow for the cost benefits of dirlec’t inheritance from recent projects_
utilizing similar or identical subsystems. At present the inheritance
modelling is applicable to ad hoc opportunities of hardware and design
inheritance but the procedure is sufficiently general to permit the

inclusion of cost benefits from standardized hardware at some future date.
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Table 1

COST MODEL INPUT PARAMETERS

Date of First Launch (Month & Calendar Yr. e.g., 11/1975)
Fiscal Wage Date (Fiscal Yr. e.g., 1975.9)

Number of Flight Articles '

Weight of Power Subsystem Excludi.ng RTG's (lbs.)

Number of RTG Units per Spacecraft

RTG Fuel Loading (Thermal Watts)

Total Weight of Structure Subsystem (lbs.)

| Weight of Mechanisms and Landing Gear (lbs.)

Weight of Thermal Control, Pyro. and Cabling (1bs.) -

Propulsion System Dry Weight Excluding Throttable
Liquid Vernier for Landers (lbs.)

Liquid Vernier Dry Weight (1bs.) |
Aerodeceleration Subsystem Weight (lbs.) ,
Total Weight of Guidance/Control Subsystem (Ibs.)
Weight of Radar in G/C Subsystem (lbs.)

Weight of Radio Frequency Comm. Subsystem (1bs.)
Weight of Data Handling Subsystem (lbs.)

- Weight of Antennas (lbs.)

Total Weight of Science Experiments (1bs. )

Weight of Lander Surface Experiments in Q1 Having
Significant Sampling/Processing Operations (lbs. )

Pixels per Line of TV (or Equivalent Visual Imaging)

Total Mission Duration From First Launch to End of Last
Minus Time When No Spacecraft is in Flight (mo)

Total Encounter Time of the Prime Mission (mo)
Total Number of Encounter Phase Start Ups

Total Number of Science Teams During Encounter Phase

6
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FIGURE 1. PLANETARY COST MODEL SCHEMATIC
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The cost model has been more completely summarized in
the last Annual Reportl. The remainder of this summary is devoted to
changes and additions to the model which have been accomplished during
the past twelve month period. These modifications have been incorporated
into a detailed data-sanitized report of the cost model which has just been

completed and is included in the bibliography in Section 3.

The cost model analysis during the past year was concen-
trated on four areas of modelling refinement and on testing through
applications. The areas of modification included: 1) updates and
additions to the data base; 2) expansion and improvement of the LER's; .
3) refinement of the inheritance cost benefit procedures; and 4) refine-
ment of the cost spread analog to reflect the improved characteristics of
support category LER"S. Each of these improvements are briefly

discussed in the following paragraphs.

As part of the continuing cost est1mat10n research at SAI
the planetary cost model data base is constantly being updated and
expanded. The data base status at the beginning and end of the study -
p'eriod,. depicted in Table 2, summarizes these changes. The impact of
these updated projects in the data base on labor as a percent of total cost
is summarized by hardware and non-hardware categories in Table 3.
These data reflect a co_ntmued stability in the category labor cost
fractions. The largest adjustment in labor as a percent of category cost
occurs for the communications subsystem (a hardware category) with a

change in the average of only 1.4%.

1. "Annual Report-Advanced Planetary Analysis", ScieAnce Applications,
Inc. Report No. SAI-120-Al1, January 1974.
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_ Initial cost model applications indicated the need for some
revisions in the Labor Estimating Relationships (LER's) to better model
launch and post-launch project costs and to expand the modeling
capability to include atmospheric entry probes. Accordingly, the
propulsion and power category LER's have been revised for atmospheric
probe estimatés. These changes, shown in Table 4, are considered. |
preliminafy and will probably be further revised as more probe data are
accumulated. The new science LER, also presented in Table 4, has
slightly smaller coefficients and now only reflects the cost of the
instruments. The cost of science teams is now included in 2 new data
analysis LER, presented in Table 5. The original LER for ground
equipment and Iaﬁnch/ﬂight opérations has been separated into two
LER's, one for ground equipment, and the second for launch/flight
operations better reflecting the operations cost of longer missions. Both
of these new LER's are also presented in Table 5. Factoring the new
LER's into the cost model, and reapplying the rﬁodel to the original eight
projects in the data base led to the error summary presented in Table 6.
The errors, summarized at the bottom of the table, are Slightly 1argef
than earlier results and are-due, not to the LER revisions, but the
escalating costs of the Viking Lander Program which are now included in
the data base. The large estimate errors in both the soft lander
programs in the data base, i.e. Surveyor and Viking Lander, are one of
the subjects of analysis of the Cost Estimation Research Task during the

current contract period.

The characteristics of the inheritance cost benefit procedure of the
model are outlined in Table 7. Note that four levels of inheritance are
considered. An application of the procedure is presented in Table 8
using the Mariner Venus Mercury Project which relied heavily on

inheritance to maximize the spacecraft capability within the design-to-cost

11



Table 4

REVISED LABOR ESTIMATING RELATIONSHIPS

e PROPULSION LER

| s |
NR% = 21. 6(P1)1/2+34. 1(P2)1,/2+14. 4(P3)} , non-probe
NR, = 2L 6(p1) /2434. 1(p2)/2411.3(p3)1/2, prove
b _ - '
Rp = 0.148(N1) (NRy), both

where, P1 propulsion system dry> weight (1bm)

P2 = vernier dry weight (lbm)
P3 = aerodeceleration subsystem weight (lbm) -
‘N1 = number of flight articles

e POWER LER -

NR = 0.643(W1) + 152, non-probe

EP
NREP = 0.643(W1) + 50, probe
REP = 0. 1_5(N1) (NREP) N
where, W1 = non-RTG power weight (Ibm)
N1 = number of flight articles .

e SCIENCE INSTRUMENT LER

1l

NR

SE 1.5(Q1)+11.5(Q2)+0. 105(Q3)+220

RSE = 0.237(N1) (NRSE)
where, Q1 = total science experiment weight (lbm)
Q2 = significant lander science weight (Ibm)
Q3 = imaging resolution (pixels/line)
N1 = number of flight articles

a. NRX = Non-Recurring direct labor hours of category X
Ry = Recurring direct labor hours of category X

12



Table 5

"NEW LABOR ESTIMATING RELATIONSHIPS

e GROUND EQUIPMENT LER

DLHZ . = 0.033(DLHy-DLH)'"'/ (1-0.',7e'D3/ 2)
where, ' DLHSs = total subsystem direct labor hours
DLHST = structure direct labor hours
D3 = launch date minus 1971 (zero before .1971) |

e LAUNCH/FLIGHT OPERATIONS LER

DLH; po

= 90(N1) + 3 (K1) + 25 (K2) (K3) (K4)
where, K1 = mission duration (months)
K2 = total encounter time (months)
K3 = number of encounter start-ups
K4 = total number of science teams
N1 = number of flight articles

e DATA ANALYSIS LER

DLH,, = [15'0 g; iO(Kz)(K3)(K4)__‘ (1-0.82e'D4/f3)
where, K2, K3, K4 are defined above
' D4 = launch date minus 1966.2 (zero before 1966.2)

a. DLHX = total direct labor hours of support category X

13



Table 6

COST MODEL SUMMARY ERROR ANALYSIS

Actual , Estimated %

_Project (M) _ (M) Error
Mariner 64 78.6 - | 4.7 | - 5.0

- Mariner 69 126.3 110.6 -12.4
Mariner 71 - 122.4 134.3 9.1
Pioneer F/G* ~ 83.8 95.9. 14.4
Viking Orbiter o 244.3 232.0 - 5.0

Lunar Orbiter 139.2 155.17 11.8 -
Viking Lander® 520. 3 392. 4 -24.6
Surveyor S 420.4 299.2 -28.8

All Projects - Mean Error = - 5.0%

o Mean Absolute Error =  14.0%

Without Surveyor | Mean Error =  2.3%

& Viking Lander Mean Absolute Error = 9.7%

- a. RTG's included

14



Table T
MODEL INHERITANCE CHARACTERISTICS

Class One: Off-the-Shelf.
The subsystem is taken off of the shelf in working condition or -
ordered while the normal production line is operating as an

additional unit.

o Inheritance = 100% of non-recurring cost (NRC)

o Cost = recurring cost (RC)

Clé.ss Two: Exact Repeat of Subsystem. _ '
The exact repeat of previous subsystem but to be used in .slightly
different spacecraft or after line has closed down. Only design

work is needed.

o Inheritance = 80% of NRC
o Cost =20% of NRC + 100% of RC

Class Three: Minor Modifications of Subsystem. |

A previous design is required but it requires minor modificatiéns;
Thus, the spacecraft will still incur all the design vcost and most .
of the test and development cost in ensuring compatibility of the |
old de'sign and the new minor mods with the new use of the |

subsystem.

o Inheritance = 25% NRC
o Cost .= "175% of NRC + 100% of RC

Class Four: Major Modifications of Subsystem.

A previous design is required but major modificatiéns have to be
made to the design. This gets very close to a new subsystem
since evén new subsystems rely on previous'desig‘n and experience.

Some savings in development is possible.

" o Inheritance = 5% NRC. ,
o Cost = 95% of NRC + 100% RC

15



Table 8

INHERITANCE EFFECT ON MVM "713 ESTIMATE

e Inheritance Percentages '

- Structure
Propulsion
Guidance & Control
Communications *

Power

©C O O O O.0

Science Instruments

° ‘Results

o Actual Cost

o Estimate Without Inheritance

o Estimate With Inheritance

|

16

96. 8 $M
144.6
93.5

" 20

10
25



constraint of $100M under which this mission was perforfned. It can be
seen from these data that the assigned inheritance percentages, which
are model inputs, need not be particularly accurate to obtain reasonable

estimates of total cost and savings.

The final area of analysis performed in this task was
refinement in the cost spread analogs which distribute the cost estimate
across the years of project performance. The new analogs improve the
. post-launch run-out cost schedule with the aid of the new data analysis
LER. The characteristics of the analogs for both nominal and com-

pressed schedules are summarlzed in Table 9.

The present cost model has been applled to the planetary
mission model covering missions scheduled through the 1980's. It has
also already been used several times in advanced planning activities.
This initial experience of applications has been ehcduraging. ~The cost
estimation research is currently being continued to expand the data base
and add capability to estimate more ambitious projects such as sample
return missions. A task report on the updated cost model entitled
'.'Manpower/Cost Estimétion Model for Automated Planetary Projects"
has just been'completed and, as mentioned above, is included in the
bibliography of Section 3. ' |

2.2. Planetary Missions Performance Handbook - Vol. 1,
Outer Planets (1450 man-hours)

_ The purpose of the Planetary Missions Performance (PMP)
Handbook series is to provide planetary program planners with basic
performance data essential in the preliminary steps of mission selection
and planning. Two types of NASA handbooks have been generated in the
past for planétary mission analysis work: 1) raw trajectory data ‘

handbooks such as the NASA SP-35 series, and 2) propulsion system

17



Table 9

COST SPREAD

Nominal Spread

0 5-year schedule _
o launch - 3 years to launch + 2 years

o launch & flights ops and data analysis excluded

Compressed Spread

0 4-year schedule .
o launch -'2-1/2 years to launch + 1-1/2 years
"0 launch & flight ops and data analysis excluded

L/F Operations

o launch cost - year launch
0 cruise cost - amortized

o encounter cost - encounter year(s)

Data Analysis

o cost initized 1 month prior to first encounter

o spread to 2 years after encounter(s)

18



performance data handbooks such as the NASA Launch Vehicle
Estimating -Factors Document. The PMP Handbook represents a'
marriage of these two basic'types of data into a form more directly
applicable to mission performance evaluation and planning. The basic
format of the PMP Handbook data is net payload versus trip time.
Additional data are included to investigate performanée sensitivity to
such parameters as launch window, swingby distance, orbit size, and -
~navigation impulse budget. Since the basic performance data are
sensitive to changes in assumed propulsion capabilities, the Handbook
has been organized and assembled in a manner permitting revisions and -
additions which insure its continued application to mission planning

problems.

Volume I of the Handbook deals with payiload performance
of flyby, swingby and orbiter missions to the outer plénets. .The scope
of missions and launch opportunities covered is defined in Table- 10.

Note that no data are indicated for S/U/N swingbys in 1984, Jupiter
flybys and orbiters in 1982, and Saturn flybys and orbiters in. 1984. The
launch opportunity spacing for these missions is approximately 13 months
so that occé.sibnally a calendar year will not contaih a launch opportunity.
For Uranus flyby and orbiter missions, data are indicated in only three
years: 1980, 1985,and 1990. In this case,' launch opportunities do exist
in intermediate years but are not presented. The yearly performance
changes for Uranus mission opportunities are so small (due to the
planet's slow motion around the Sun) that launch year performance
dependence can be adequately presented with data from every fifth

opportunity. .

The propulsion systems used to define payload performance

results fall into three classes: 1) launch vehicles, 2) interplanetary

19
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solar-electric low-thrust systems, and 3) orbit retro propulsion stages.
The specific periods of application of the various options within each
propulsion class for which payload data is presented in the Miss.ion A
 Sections of the Handbook are defined in Table 11. Two base launch
vehicles are used in the Handbook. The expendable Titan IIIE during fhe '
period 19'76-8'5 and the reusable Space Shuttle during the period 1981-90.
There are a number of existing and concéptual chemical upper stages and
kick stages which can be used in combination with either of these base

- vehicles. The upper (and kick) stages chosen for the Handbook data are
presented in Table 12. Also given in the table are: the base stage(s) to
which each upper stage can be mated, the period of épplication, and

basic propulsion parameters of each stage.

Solar-electric propulsion (SEP) low-thrust systems are the
se<cond class of propuision included in Handbookmiss'ion performance
data. SEP system selections are representative of stage or propulsion
module concepts rather than spacecraft-integrated systems because:

1) a modular concept can be more uniformly applied across the scope of
Handbook missions facilitating comparisions with all-ballistic per-
formance data, and 2) standardized systems are much more consiétent‘
with the present direction in NASA development programs towards lower
cost. Two specific SEP system design concepts are indicated in
Table 11: 1) a 20 kw concept for application beginning in 1980, and 2) a
"growth' concept rated at 40 kw available in 1985. Key design and .
performance characteristics of these SEP system'options are presented
in Table 13. The SEP (20) option parameters reflect present estimates
of a current tecynology design. The SEP (40) option parameters
presume some degree of technology advance before development.v SEP-
based payload performance data is presented in the Handbook Mission

Sections in the same form of net payload versus trip time as used for

21
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Table 13 -

SEP OPTIONS FOR PMP HANDBOOK, VOLUME I

PROPULSION PARAMETERS ' | SEP (20)  SEP (40)
Input Power @ 1AU, P, (kw) - 20 40
Power Profile | p/pl p/Pd
Thruster Specific Impulse (sec) . 3000 3000
Propulsion Efficiency (%) ‘ 64 64
Propulsion System Specif'ic Mass, akg/kw) 30 _ 20
Propellant Tankage Fraction (%) 3.5 - 3.5
Support Subsystem Mass (kg) - 420 . 420
Auxiliary Power (watts) | . 500 1000
Propulsion Time Constraint (days) - '350b 350b »
Thrust Direction - - | .~ _-Optimized-

a. Input power dependence on solar radial distance, R, is given by the
following relationships: A :

2 3 4

1.4382R™% -0.2235R™° -0.2147R”" if R > 0.68 AU

P/P = |
1.3952 ' ’ "if R< 0.68 AU

0

where P = input power at R AU,
P0 = input power at 1 AU.

b. Reduced to 300 days for J/U/N Swingbys
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all—ballisfic propulsion systems. Net payload is defined as the injected
mass minus the low-thrust propulsion system mass, propellant and

tankage, support subsystems, and the chemical retro system (orbiters
only). Injected mass degradation due to an extended launch window and

high DLA penalties is accounted for in the net payload results.

Retro stages are the third class of propulsion used in the
Handbook payload performance computations. Specifically, they are
~used for orbiter missions, all of which are presumed to require a chemical
retro stage for impulsive orbit capture. Orbiter performance data
preéented in the Handbook are restricted to single stage applications.
Multi-stage retro systems are considered unnecessary for the planet
approach payload and capture impulse ranges encompassled by the scope
of orbiter missions in this volume of the Handbook. Two retro options
are considered: 1) a flight-proven bi-propellant earth-storable system
with an Isp of 283 sec, and 2) a new, present techﬁology, bi-propellant
space-storable system with an Isp of 375 sec. Both options are rubber
stages, i.e. the propellant tanks are sized to the specific cond.itions of
planef approach mass and excess speed of each fixed flight time transfer.
The relevant parameters for each option are presented in Table 14. The
earth-storable stage characteristics are representative of present
planetary retro systems such as those uséd for Mariner Mars 1971
mission and the 1975 Mars Viking mission. The space-storable stage
characteristics are indicative of demonstrated technology designs, using
FLOX/MMH propellant, which have not yet been developed and flight
tested. '

'Payload performance results and basic transfer
characteristics are organized by mission sections in the Handbook.
There are eight Mission Sections, one for each mission presented in

Table 10. Each section is tabbed and has its own pagination for
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Table 14

RETRO STAGE OPTIONS FOR PMP HANDBOOK, VOLUME I

Retro Parameters - Earth Storable Space Storable

Period of Application - 1976-90 1980-90
Retro Engine Mass, M, ' _ 57 , : 66
Tankage Structure Factor, f 0.15 0.16
Propellant Isp (sec) , 283 . A - 375
Exhaust Velocity, c 2.5 3.677
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referencing convenience. Within these sections a consistent pattern of
organizaf.ion is followed. It begins with an introdtictory subsection which
briefly describes the mission, lists the launch opportunities, presents a
summary of payload performance sensitivity to launch opportunity, and
defines the propulsion options considered for each opportunity. The
remainder of the section contains payload performance data organized by

launch opportunity.

The specific format and amount of performance data _
presented varies with the type of mission considered. For flyby missions
just one graph is presented for each launch opportunity. It presents the
trade-off of net swingby payload versus trip time to the target planet. -
For swingby missions three graphs are presented for each launch
opportunity: 1) net swingby payload curves versus trip time to the
second planet, 2) trip time to the first and third pla.néts versus trip
time to the second, and 3) swingby miss distances versus trip time to the

second planet.

For orbiter missions two types of data are presented for each ‘
launch opportunity: 1) graphical performancé results of net orbited pay-
load versus trip time for a specific orbit and retro propulsion system,
and 2) tabular perform.ance data for each selected combination of pro-
‘pulsion showing the trade-offs between orbit period, trip time, and orbit
periapse radius. An eﬁcample of the tabular data is presented as Table 15.
The example chosen is the 1985 Saturn Orbiter mission using the Shuttle/
Centaur D1-S/MJS-PM with space-storable retro propulsion. Launch ‘
window and excess AV allowance are also specified at the top of the table.
‘Two mass results are presented in the body of the table: 1) net useful

' (orbited) payload in the upper half, and 2) respective retro stage masses
in the lower half of the'table. Data is presented for three orbit periods

(first column). * For each period five transfer times are given (second
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and third columns). For each transfer time, seven mass results are |
presented (columns 4-10), one for each of seven orbit periapse radii.

A final section entitled Adjustment Factors is included in the Handbook
for computing net payloads for different launch windows, and in the case

of orbiters, for different excess AV allowances.

Work on Volume I of the PMP Handbook Wés initiated in thé
contract period 1 February 1973 to 31 January 1974 and finished during
the contract period just completed. The Handbook is contained in a
| three-ring binder cover in order to facilitate future additions. It is
included as one of the'distribﬁted contract reports in the bibliography of
Section 3. A new task has just been started on Vol. II of the PMP
Handbook Series devoted to the inner planets. The first edition of Vol. I -
will contain performance data for Venus and Mars missic_)ns during the

period 1980-90, including Mars Surface Sample Return missions.

2.3.  Shuttle Impact Planning (500 man-hours)

The purpose of this task was to provide technical assistance
and evaluation support to the Planetary Programs Division in monitoring
the evolving Space Transportation Systérh (Space Shuttle and upper stages).
for its impact on planetary mission planning. Specific areas of concern
in interfacing planetary spacecraft with the STS include weight, volume,
environment, communications, retro propulsion constraints, launch
opportunity dependence, launch windows, and cost benefits. As part of
this task SAI was assigned a membership role on the Lunar and ‘
Planetary Paylod/Shuttle Working Group (LPP/SWG) which was formed
to address issues and problem areas in interfacing automated explora-

tion payloads with the STS. .

Three subtasks were performed in this task before it was

prematurely térm'mated to await results of Interim Upper Stage
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Contractor Definition Studies which were initiated by NASA in conjunction
with the DOD. T'hes-e subtasks were: 1) development of planetary

injection performance requirements (injected payload and C3) for plénetary
missions planned in the period 1981-85, 2) evaluation of candidate _
Interim Upper Stages (IUS) for performance capability and cost, and

3) analysié of extended Shuttle Orbiter performance to improve the

escape payload capability of smaller IUS candidates.

For the first subtask eleven missions were analyzed,

three of Whlch included alternatlve solar electric as well as ballistic .
interplanetary flight profiles. These missions, along with the injected
payload performance requirements are presented in Table 16. In com-
paring these requirement's with typical launch vehicle escape performance
curves 1t was found that four missions, the 1985 Venus Buoyant Statlon
the 1981 Marmer Jupiter Orbiter, the 1985 Mariner Saturn Orbiter, and

- the 1981 Pioneer Saturn/Uranus Probe were the "driver' missions for

IUS selection in this interim period.

The second subtask involved comparing preliminary
performance estimates of several proposed IUS candidates with these
performance requireménts and evaluating their capability and cost in
launching these missions. Several ‘important conclusions resulted from
this analysis; 1) IUS reusability was a significant cost reduction feature
of candidate stage characteristics, 2) smaller IUS candidates, while -
costing less, led to more substitutions of the more expensivé expendable
Titan IIIE /Centaur /TE364-4 vehicle on "driver" missidns, and 3) a
larger IUS candidate could lead to loWer cost, heavier payload designs
and also relieve NASA of the obligation of an early introduction date for

the reusable Space Tug if funding problems occur.
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The third subtask was an exploratory analysis, conducted
with Rockwell International, to examine the possibility of using the _
Shuttle Orbiter to place a smaller IUS into a higher energy parking orbit
before beginning the escape maneuver. Results from this effort indicated
that larger upper stages launched from convé'ntional Shuttle parking orbits,
" i.e. 160 nm altitude circular, are preferred for planetary missions. As
an example, the IUS Transtage was combined with the MJS-PM kick stage
to inject the Mariner Jupiter Orbitér payload to escape. Using the con-~
ventional Shuttle delivery mode to parking orbit this propulsion combina-
tion achieves a C3 of only 62 km /secz, far less than the 80 km /sec2
required for the ballistic mission (see Table 16). Disregarding a number
of important Shuttle Orbiter operational constraints, e.g. reentry heating;'
the best the Orbiter can do is to raise the C3 capability to 74 km? /sec” ,
still not sufficient to -perform the Jupiter Orbiter mission. 'This Shuttle -
technique, termed super-orbit injection, was concluded to be of little

assistance to high energy escape missions.

_ As mentioned above, this task was prematurely concluded
to await improved IUS performance results. 'Consequently, no report -

was prepared for the task. Instead, another task (Tésk 7 described

| . below) was undertaken to analyze the difficulty of deploying surface

penetrators at solar system bodies without atmospheres. This sfudy
was particularly relevant to Code SL's advanced planning needs since
the penetrator concept had only recently emerged as a potentially useful
planetary surface exploré.tion tool. .The results of this substitute task.

are discussed in Section 2.7 below.

2.4. Jupiter Orbiter Lifetime Analysis (650 man-hours)

The four Galilean satellites of Jupiter present a long-term
collision hazard to an uncontrolled orbiting spacecraft that repeatedly

enters the spatial region occupied by the satellites. An assessment of
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this risk and its implication for Jupiter mission plannirig becomes
important if quarantine constraints, curréntly under review, are
imposed on an unsterilized spacecraft. The purpose of this task was to
evaluate the likelihood of collision with the Galilean satellites over a
wide range of initial orbit conditions with the effect of orbit inclination
being 6f key ihterest. The scope of the analysis was restricted to orbital
dynamic considerations alone, i.e. the question of biological contamina-
tion given the event of collision was not addressed. A quarantine or
orbiter lifetime of 50 years was assumed. This time period began at
spacecraft '"'shutdown' following completion of the science mission

objectives.

A numerical approach was adopted wherein each initial .
orbit was propagated for 50 years, and satellite closest encounter
distances were recorded on every revolution. . The cdmputer program
developed for this purpose strikes a necessary compromise between
orbit cdmputation accuracy and speed. It includes approximations of
the three major perturbation effects on the long-term motion of the’
orbiter: (1) Jupiter oblateness, (2) solar gravity, and (3) satelllte
gravity. Program execution time is about 1 rhihute to complete 600
orbit revolutions typical of a 50-year lifetime. The loss of definitive
accuracy in favor‘of rapid simulation was compensated for by adopting
a broad statistical viewpoint fegarding the question of collision
 probability or likelihood. This required the generation of a fairly
large number of data samples, a method we refer to as "orbit flooding"'.
It should be noted, however,} that this was not a Monte Carlo simulation,
which even with the approximate numerical approach ﬁsed would require

a prohibitive amount of computer‘time.

Numerical data has been generated for 32 basic orbits

‘comprised of 2 perijove distances (5 and 11 Jupiter radii), 2 orbit
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periods (21.3 and 60 days), and 8 inclinations betWeen 0° and 90°. The
initial epoch for each orbit was sampled over a T-day interval defined by
the characteristic phase resonance (syzygy) of the three inner Galilean
satellites, Io, Europa and Ga.nymede. A sample s'ize of 15 epochs, .
spaced uniformly 0.5 day apart, was used. All time Samples were
tacitly assumed to be equally likely. In total then, the Jupiter orbiter
space was filled with 480 initial orbits each propagated for 50 years.
Slgmflcant perturbation of the orbital elements during this t1me resulted

in further permeation of the sampling space.

An overall summary of results is given by the collision
record for all satellites presented in Table 17. Of the 480 orbits, the
total number of first collision occurences is 81 or 17%. This is of
. course biased by the equatorial orbit cases; if these are excluded then
the first collisions number 34 of 420 orbits, or 8%. The equatorial
orbits, representing a worst case upper bound, are physically un-
reasonable in that_ the Galilean satellites are not exactly in Jupiter's
equatorial pIane nor would a spacecraft be placed exéctly in this plane.
The uniqueness of I = 0 is seen by the total number of collisions when
orbit continuation is allowed. For example, taking the 5R_, 21. 3d orbit,
there are an average of 5 subsequent satellite impacts following the first
collision. This does not happen when I # 0. ~Raising the orbit inclinatioﬁ
reduces the risk of collision, yet collisions were recorded even at 60°
and 90° inclination. The orbit class having a perijove of SRJ and period
of 21.3 days is most susceptible to collision because all satellite orbits
are crossed with greater frequency. Io is the dominant body in this case
accounting for 50% of the collision occurrences over all eight inclination

samples.
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Fig. 2 summarizes the likelihood 6f close encounters and
collisions taken as an average over all four orbit classes. Graphed as
a function of inclination on linear scale, it clearly.i'ndicates the rapid
decrease between 0° and 10° followed by a leveling off trend. The
analytical prediction curve is based on Wetherill's asteroid collision
theory applied to the present problem without modification. The com-
parison serves as corroborating evidence of the basic validity of the
numerical data. Discussion of the analytical formula and further.
comparative results is given in the text. Another 'mearis of validation is
to examine the ratio of close.encounters_ to collisions. If, for example, |
this ratio is fractionally small then one would have greater confidence
that the event of collision is statistically significant. This was found to

~be the case.

A general cbnclusion of this study follows from the
-summary data shoWn and other more specific results given in the task
réporta: for the types of crossing orbits investigated, the spacecraft
should be placed in an orbit of at least 30° inclination to ensure a 50- _
year lifetime probability approaching 97-99%. However, if planet and
satellite quarantine is imposed on a Jupiter orbiter mission, this
lifetime probability may not be high enough. It will then be required to
design the post-operational initial orbit specifically for collision
avoidance. Among the 'possibilities mentioned are: 1) hyperbolic
escape, 2) circular orbit, 3) critical inclination orbit, and 4) Callisto -
resonant orbit beyond Ganymede. The question as to Whether such
collision avoidance orbits are compatible with the operational sequence
and maneuver budget of the nominal mission design was beyond the

scope of this study and left for more detailed mission analysis.

a. ''Jupiter Orbiter Lifetime - The Hazard of Galilean Satellite Collision"
see bibliography in Section 3.
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2.5,  Titan Mission Concepts Study (490 man-hours)

Titan is the only satéllite in our solar system presently
known to have an appreciable atmosphere. As such it has long beena -
body of considerable interest to planetary scientists. In addition to
being the smallest known body with an atmosphere, beyond Mars it may
be the only atmosphered body whose surface can be reached with an
entry probe, and its atmospheric properties have led some investigatoi-s
to suggest Titan as a possible source of life. Recently, a workshop was '
sponsored by NASA to assemble and evaluate all available information
on the satellite's atmosphefe for the purpose of planning' future Titan
missions. Following the Titan Atmosphere Workshop, this task was
assigned to SAI_ with the objective of generating preliminary defi_nitioﬁs '
of explofatory mission concepts which would serve advanced mission
planning needs and provide a basis for selection of more detailed Titan
mission studies. Initiated late in the last contract period, this task is
_ béing continued as part of the current task schedule with a report of

results expected in January 1976.

Four mission concepts are under study: 1) Saturn flybys

with Titan atmospheric probes, 2) Saturn orbiters with Titan penetrators,

3) Saturn orbitei-s with _Titan landers, and 4) Titan orbiters. Subjects
* of consideration for each of these concepts include launch vehicles,
launch opportunities, transfer trajectories, spacecraft classes, guidance/
navigation requirements, encounter operations, and data requirements.
Analysis to date has been devoted to the earth-Saturn transfer character-
istics, Saturn orbit trade-offs, and initial Titan entry studies. Results

of this work are beginning to clarify basic Titan mission requirements.

Transfer characteristics have been examined for both
flyby and orbiter class missions considering both ballistic and solar-

electric low thrust flight modes. For fast ballistic flyby missions
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(less than 3.5-year trip times to Saturn) and all ‘solar—elef:tric missions
the transfer energy requirements are relatively 'msen'sitive to launch
opportunity changes. The launch opportunities occur énnually being
spaced on an average 54-week interval. Ballistic orbiter missions,
however, are sensitive to launch opportunity changes with energy
requireme.nts>modulated by Saturn's movement in and out of the ecliptic
plane. The best (minimum energy) opportunity for a Saturn (or Titan)
orbiter mission occurs in 1985; the worst opportunity through the end of
the century occurs in 1993. Unfortunately, the present pace of outer
planet exploration suggests that dedicated Titan missions using Saturn
orbits will probably occur closer to 1993 than 1985. Should this prove
to be the case, a high energy Shuttle upper stage, e.g. an expendible A

Tug, and solar-electric propulsion may be required to do these missions. |

Minimum Titan asymptotic approach spéeds are desired for -

entry probes, communication characteristics and remote sensing
spacecréft experiments. For Saturn-orbiter class Titan missions this
creates a dilemma. Net useful payload is increased by lowering the
orbit periapse, whereas the Titan aipproach speed is lowered by raising
periapse. It should also be noted that, because Titan is the only massive
satellite in the Saturnian system, once a Saturn orbit is estéblished
significant changes in the Titan approach speed can only be accomplished
with spacecraft propulsion. The orbital Titan approach speed character-
istics plotted as a function of trip time to Saturn for the 1985 and 1993
direct ballistic transfers are presented in Fig. 3 for two extreme
periapse radii: a low value of 3 Saturn radii just above the Rings, and

a high value of 19.5 Saturn radii, just below Titan's orbit. Apparent
fromthe figure is the fact that placing the orbit periapsis up near Titan's
orbit radius can reduce Titan approach speeds by as much as a factor of

four. The difference in approach speeds due to launch dpportunity,
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also shown in the figure, results from the orientation of Saturn's

equatorial plane which has an obliquity of about 26. 6°.

The performance requirements for establishing a high
periapse radius Saturn orbit are rather severe. For example‘, assumé
that a 750 kg orbit payload is needed to perform the mission. . Using a
2000-day 1993 ballistic transfer, the required injected mass is only
1025 kg if a 3_RS periapse, 96-day Saturn orbit is selected assuming a
space-storable retro propulsion system is used. If instead, a 19.5 RS
periapse radius is selected to achieve the lower Titan approach speeds
mentioned above, the injected mass requirement is doubled to 2065 kg.
Fortunately, using either a Titan gravity-assist or bielliptié capture
‘maneuver will reduce this requirement considerably and still provide the
same orbit. Either of these options will bring the injected mass down to
about 1480 kg, which is still a 45% increase over 1025 kg and more than
doubles the retro system propellant requirement. It should be noted
that the .initial orbit period does not influence Titan approach speeds
significantly until the period is reduced to less than two Titan orbit
periods, i.e. ~32 days. A larger initial orbit period does, however,
improve payload performance, which is why a 96-day period (~6 Titan
periods) was chosen in the example above. This orbit can be reduced.
to an .elliptical Titan synchronous period with just two Titan swingbys
if the orbit inclination and periapse are allowed to float. The Titan

approach speed, however, will remain unchanged.

The characteristics of Titan entry trajectories are also

' being investigated. Initial computations have been done lising existing
entry probe designs to assess the entry characteristics by comparison
with previous study experience. Some preliminary results are presented

in Figure 4. Two entry profiles of altitude versus time are presented
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assuming the nominal Titan atmosphéric model suggested by Devinez.
The two profiles can be considered extremes in entry design. The left-
hand profile assumes the entry probe is of the SUEP design with a large
ballistic coefficient and high entry speed deployed from a Saturn flyby
spacecraft. It can be seen that the probe would impact a Danielson-type
surface beforé any data could be collected. On the other hand, if a
Pollack-like greenhouse exists this probe might work successfully. The.
right profile depicts the entry of a Mars—type penetrator with a very.low
ballistic coefficient and low entry speed typical of a Saturn orbiter
deployment. This penetrator entry system is overdesigned for the.
assumed conditions and tends to ""hang up' in the atmoSphei'e well above
all postulated Titan ""surfaces'. Much more work is still to be done on .
Titan entry, but it is already apparent that the problem is very model |
dependent and our knowledge of Titan's atmosphere will be a limiting

factor on the evolved entry designs.

2.6.  Advanced Planning Activity (2000 man-hours)

The purpose of this task is to provide technical assistance -
to the Planetary Program Office on unscheduled planning activities which
arise'durin'g the contract period. This type of advanced planning support
is a traditional segment of the broader advanced studies work the staff
at SAI have performed for Code SL during all past contract periods.
The subtasks within this activity range from straightforward exchanges‘
of technical data by phone, through several page responsés by malil or
telecopier, to more extensive memoranda and presentations, and finally
to short mission studies. The level of effort per subtask can vary from

as little one man-hour to as much as three man-months. A total of 17

2. Devine, N., "Titan Atmosphere Models (1973)", JPL Tech. Mermo
33-672, Jet Propulsion Laboratory, February 1974,
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of the more significant»advanced planning subtasks, performed during
the last contract period, are summarized here, all of which were the
" subject of written submissions at the time of their completion. These
subtasks are tabulated in Table 18. A brief summary description of

each of these subtasks is presented in the subsections which follow.

2.6.1. Planetary Mission Cost Estimates With Inheritance

The purpose of t'his subtask was to provide an initial
demonstration of the SAI Cost Estimation Model applied to future
planetary missions. Seven missions were analyzed. The missions and
their total cost in FY '74 dollars (excluding contingency, NASA manage-.

ment, and contractor fees), including inheritance when applicablé, are

as follows:

1978 Encke Slow Flyby (SEP) - $139M
1979 Pioneer Saturn Probe - 142M
1981 Encke Rendezvous (SEP) = - 174M

1981 Mariner Jupiter Orbiter 210M
1983 Venus Radar Mapper ' 214M
1985 Mariner Saturn Orbiter Probe  243M
1987 Mariner Mercury Orbiter _158M

These results do not include launch vehicle or SEP Costs. The data
were also used to validate other cost estimates of these missions
provided as part of a budget planning activity of the then current

planetary mission model.

2.6.2. SEP Out-of-Ecliptic Performance Analysis

The purpose of this subtask Was to provide a prelim‘inary
- performance estimate of an SEP IAU out-of-ecliptic mission using

either an Atlas/Centaur or Titan IIIE /Centaur launch vehicle.
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Performance data were generated in terms of heliographic latitude and

net payload mass as a function of launch vehicle, SEP iﬁstalled power and
number of thrust periods (mission time). The results show that a 250 kg
net payload can be delivered in 800 days (5 thrust periods) to: 1) a
heliographic latitude of about 27° with an Atlas/Centaur/SEP (6 kw); or

2) a latitude of about 54° (twice as inclined) with a Titan IIIE /Centaur/

SEP (15 kw). The sfudy results were given to NASA Hq. and JPL, where
further. analyéis confirmed these results and determined some performance

improvement with longer thrust periods.

 2.6.3. NEP Outer Planet Mission Performance Analysis

The purpose of this subtask was to summarize the perfor—
mance capab111ty of a 120 kw Nuclear Electric Propulsion (NEP) system
compared to several chemical and SEP propulsion options for difficult
outer planet missions. Three missions were considered: 1) a 1990
 Ganymede Orbiter/lander, 2) a Uranus Orbiter, and 3) a Neptune Orbiter.
The results showed that, particuarly for the latter two missions, that
fewer stages and less trip time are required to deliver equal payloads
to orbit if an NEP system is used. These data were supplied to NASA
Hq. for the purpose of a presentation on the benefits of nuclear low
thrust prdpul_sion for advanced missions in the last decade of this

century.

2.6.4. Summary of Mercury Orbiter Mission Alternatives

For advanced program planning purposes a performance
comparison of alternative Mercury Orbiter missions was requested. |
" Four Mercury orbiter transfers were analyzed: 1) a 1987 direct
ballistic transfer, 2) a 1988 single Venus swingby ballistic transfer,
3) a 1978 double Venus swingby transfer,and 4) a direct SEP (20 kw)

transfer. For each type of transfer payload performance data were
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computed assuming either a Titan IIIE/Centaur or Shuttle/Centaur

launch vehiclé and either a circular or elliptical 24-hour Mercury
orbiter. Net orbit payload ranged from zero for a direct ballistic ‘
transfer to almost 1000 kg for a SEP (20 kw) transfer off the Shuttle/
Centaur. These results were tabulated and transmitted via telecopier in -

response to an immediate request for the data.

2.6.5. Mars Atmospheric Systems for Exploration Mobility

This subtask was undertaken as a result of a request from
the Administrator's office regarding the feasibility of atmospheric
devices for future Mars exploration. Working with the Planetary ‘
Programs Office a set of five concepts applied to two exploration '
purposes were defined for analysis. The concepts included aircraft,
helicopters, balloons, dirigibles, and surface sailers. The exploration',
purposes were for atmospheric (altitudes) studies and for transport 4
(range) operations. Of the conéepts analyzed, aircraft appeared to have
the best application poential. Active lift was considered more useful
than buoyancy in the thin Mars atmosphere. All of the concepts had large
size/mass ratios, also due to the thin atmosphere. Nothing in earth
atmospheric devices would be directly applicable to similar Mars
objectives.

2.6.6. Ballistic/SEP Outer Planet Missions Performance
Comparison

The purpose of this task was to develop performance
comparisons of several "driver" outer planet missions using candidate
IUS escape stages with and without solar electric propulsion. The
request by NASA Hq. for this data was made to determine if smaller
IUS candidates augmented with an SEP stage would provide adequate

performance for the more difficult outer planet missions. Net payload
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versus flight time performance data were generéted for 1) a 1981

Jupiter orbiter, 2) a 1985 Saturn orbiter, and 3) a 1986 Uranus/Neptune
swingby. For comparison the transtage and Centaur IUS candidates Were
used with and without a 20 kw SEP stage. The SEP stage does improve
the payload performance of the orbiter missions to acceptable levels at
somewhat longe_r trip times, but cannot meet the high energy require-
ment of the Uranus/Neptune swingby mission. The results of this : |
analysis were telecopied to NASA Hq. in the form of payload/ flight '

time performance plots.

2.6.7. Outer Planet Probe Cost Estimates - First Impressions

This subtask was an invited paper requested by ARC with
NASA Hq. concurrence for the Outer Planet Probe Technology Workshop
held at ARC in May 1974. The purpose of the paper was to examine
early estimates of outer planet atmospheric probe cost and evaluate
them by comparison with past cost experience of planetary projects.
The SAI cbst model was heavily involved in this analysis. Using newly
derived estimating relationships for planetary entry probes a cost '
estimate of $48M (FY'74 dollars) was derived compared to a contractor
- Phase B estirhate of $40M. In both estimates the subsystem cost drivers
were for science and communications. Savings in attitude control
(which is passive) were found to be offset by difficult packaging of
components in the prdbe.- The cost of the aero deceleration system
was a reasonable fraction of the total cost, but m'ight not be if entry
conditions are allowed to exceed the simulation capacities of current
and near-future test facilities. The most 'important point stressed in
the paper was the need for more project cost data to improve confidence

in cost estimates of future probe missions.
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2.6.8. Post-Viking/75 Mars Mission Strategy Analysis -

. The purp-ose of this subtask was to address theAquestiQn:
""What type of mission would be a logical follow-on to the Viking/75 «
lander presuming several different Viking Achievement Scenarios?"" The
motivation for this study was to determine under what circumstancés a
Pioneer Mars Penetrator mission might be most preferred for the 1979
Mars launch opportunity. The analysis was requested by ARC as part of
their penetrator study activity and had NASA Hq. concurrence. The type
of achievément scenarios envisioned ranged from the lunar-type results
of Surveyor to detection of active surface life. It was concluded that
penetrators would be most popular if Viking results failed to detect life
but did find evidence for active internal proceéses. Penetrators could
then address the natufe and source of this internal activity as Wéll as
extend the search for life related conditions such as subsurface water.
It was furfher concluded that if the Viking results make a strong case for
life, the penetrator concept might only be postponed, rather than dropped,
until Mars geology reestablished its relevance as an exploration |

objective.

2.6.9. 1981 Pioneer Mars Penetrator Performance Requirements

The purpose of this task, requested by ARC, was to
determine the energ-y' requirements of a 1981 Pioneer Mars Penetrator
Mission as part of the contingency planning of the 1979 mission. Type II
transfer conditions were found with similar C3 launch requirements, but
the Mars approach speeds are up about 400 m/sec. from the 1979
minimum Vhp's of about 2.65 km/sec. The impact of this increase is
the requirement for a larger nonéexisting solid retro motor or removal
~ of one penetrator to decrease the captured orbital mass. A summary of
the energy requirements was plotted as a function of launch date and

transmitted to ARC for planning considerations.
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2.6.10. Dual Martian Explorer (DME) Mission Concept Evaluation

The purpose of this subtask was to evaluate the DME
mission concept proposed by the Aeronomy Section of fhe Planetary _
Physics Branch at LaRC. SAI was requested by NASA Hq. to make this
evaluation since it had recently completed a concepfﬁal study of a Pioneer
Mars aeronomy mission and could make an objective comparison of the
two concepts. The DME mission involves mother and daﬁghter spacecraft
in coplanar Mars orbits simultaneously performing complementary
measurements of the thermosphere and exosphere. Measurement
objeétives include neutral composition, vertical structure, lateral
' variations,' exospheric temperature, and atmospheric energy response.
The concept would be based on the Dual Air Density (DAD) Explorer
mission to be flown at earth in 1975. A new mother spacecraft would be
needed but the daughter would be a modified version of the DAD daughter.
A total launched mass of 309 kg is within the capability of the Delta 2914
launch vehicle for either the 1977 or 1979 Mars opportunities. The
LaRC estimated cost for this mission excluding DSN services and laﬁnch

vehicle costs was just under $25M in FY 73 dollars.

- The analyses performed verified fhe basic mission
characteristics and developed an independent estimate of cost. In
general, the DME mission was considered an interesting alternative to
the Pioneer Mars Aeronorhy mission. Specific advantages included:

1) no sterilization requirement; 2) pole to pole latitude covérage;

3) dual altitude measurements; and 4) reduced thermal and attitude
control loads on the spacecraft. Disadvantages found in the comparison
were: 1) gréater operational complexity; 2) new spacecraft development
for the mother orbiter; and 3) no in situ low altitude (<120 km) science.

The mission cost was estimated with the SAI Cost Model to be about

51



$55M which strongly suggested that the La RC estimate of $25M was much
too low. Finally, the science rationale of a Mars aeronomy mission was
not yet subjected-to competitive planning with other future Mars mi.séion
concepts. This was recommended in order to determine at what cost the - |

aeronomy mission ceases to be of competitive value.

2.6.11. Planetary Mission Opportunities Performance Summary

This subtask, performed at the request of NASA Hq ,
was a compilation of planetary mission energy requirements and launch
vehicle performance curves intended as supporting data Afor' the SSB
COMPLEX meeting at Snowmass in August 1974. Injected payload
performance curves were included in the data package for the Titan IIIE/
Centaur D1-T and the Shuttle IUS candidates Transtage, Agena, and
. Centaur along with various added kick stages. Basic transfer charac-
teristics for Venus orbiter and Mars surface sample rétur-n missions
were provided for launch opportunities between 1979 and 1986. Launch
energy requirements were also plotted for outer planet missions to
Jupiter, Saturn, Uranus and Neptune during the period 1978-1985 using
fixed trip time transfer conditions. These data were used by COMPLEX
to evaluate the impact of moving mission launch dates to alternative

opportunities as various mission model strategies were explored.

2.6.12, 1978/1980 Pioneer Venus Opportunities Comparison

This short subtask was performed for NASA Hq. as part
of their contingency planning for future projects. The objective of the
analysis was to evaluate the performance impact of deferred Pioneer )
Venus launches. Ballistic transfer characteristics of the 1980 oppor-
tunity are such that Type II transfers are preferred for both the probe
and orbiter missions with both launches taking place in a 21-day period

in April 1980. An added kick stage may be required for the probe
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mission and a larger retro motor would be needed for the orbiter due to
higher approach speeds. In general, the 1980 transfers would have an
unfavorable impact on the Pioneer Venus propulsion requirements, all

other systems being equal.

2.6.13. Planetary Mlssmn Model Cost Est1mates

Seven missions from the 1973 Planetary Mission Model
were evaluated with the SAI cost model as a subtask for NASA Hq. to
provide independent cost estimates for evaluation purposes. The

missions analyzed were as follows:

" Venus Orbiter Imaging Radar - $220M
Mariner Jupiter Orbiter 256M
Encke Rendezvous (SEP) ' '_ 201M
Pibneef Saturn Probe ' 108M
Pioneer Saturn/Uranus Flyby 133M
Pioneer Jupiter Probe o - 126M
Mars Surface Sample Return 690M

where the mission costs are given in FY "75 dollars. Several of these
missions are the same as those estimated in Subtask 1. A comparison
of costs will show highér values here due to several factors. These-
are: 1) diffefent mission definitions; 2) improved estimating
relationships of post—launch operations and data analysis costs; and

3) FY '"75 dollars instead of FY '74 dollars. In general, these estimates
compared favorably with those supplied by the various study teams at

the NASA Centers responsible for the mission definitions.

2.6.14. Uranus Flyby Launch Vehicle Requirements: 1979-94

The purpose of this task was to prepare and present a

summary of pérformance characteristics of Uranus flyby mission in the
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period 1979-1994. The scope of the analysis included four payload levels,
six launch vehicles (some including SEP), and swingby as well as direct
transfers. Graphical and summary tabular data of flight time require—
ments with each payload/launch vehicle combination were prepared. The
presentation was made to the Symposium on Outer Planet Exploration
(SOPE) which wé,s debating the importance of an early Uranus flyby

(with optional probe) mission.

Among the conclusions drawn from this summary analysis,
it was pointed out that the 1979 J upiter swingby mission Waé ;i unique
opportunity in that the propulsion requirements were much less than direét
transfers and Uranus was encountered when its pole was facing the sun.

If and when an expendable Tug was added to the Space Transportation
System, ité performance shortened trip times to Uranus more signifi-
cantly than any other option compared with a Titan/Centaur/Kick direct
launch to the planet. The next low energy Jupiter swingby opportunities |
after the 1979/80 pair begin in 1994. Finally, it was concluded that
Vega-class Uranus transfers were impractical, both in terms of total

trip time and post-launch maneuver requirements.

2.6.15. Cost Model Description Memo

Several requests were received late in calendar 1974 from
MSFC and JPL for details of the SAI cost model to assist in several
mission planning activities. Because' a publishéble document of the
model was not scheduled until the end of the contract period (January
1975) a memo was prepared and mailed to these groups indicating the
input requirements, computational methodology, and estimating the
capability of the cost model. These prelirhinary data are being followed
up with an expanded distribution of the sanitized cost model report

referenced in the bibliography of Section 5.
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- 2.6.16. OUTLOOK Planetary Mission Cost Estimates

The purpose of this task was to provide preliminary. cost
estimates of advanced lunar and planetary missions being considered as
part of the long-range planning activity of the NASA-organized OUTLOOK
Committee. A total of 30 different missions were analyzed ranging from
fairly simple ﬁlterplanetary probes to complex sample return concepts.
Key project event times and baseline performance requirements were
generated in addition to the project cost estimates. The estimates were
broken down into six categories: science, spacecraft, mission operations,
MCCC, NASA management, and contingency. A funding spread of the
total cost was also provided based on the assigned launch date. Launch
vehicle selections were made for each mission but their costs were nbot |
" included in the estimates. The total accumulated cost for all 30 missions
which span the remainder of this century was almost $9B in FY "5
. dollars. No attempt was made in the cost estimation ahalysis to reflect
ahy‘thing more than typical inheritance cost benefits. Low cost standard-
ized hardware or block buys, for example, were not included in the

estimates of project costs.

2.6, 17. PJO, Type II Transfer Characteristics

At the request of the- Chairman of the Symposium on
Outer Planet ExplorationA(SOPE) an analysis was performed and presen-
tation given on the encounter characteristics of TypIe II transfers for a
1980 Pioneer Jupiter Orbiter with probe (PJ Op) mission. A preliminary
PJ 0p base}ine mission definition used a Type I Jupiter transfer which
required a nightside entry of the probe. A dayside entry is much
preferred scientifically and could be achieved With a longer trip time
Type II transfer. The analysis, supported by data received from ARC,
showed that a 1050-day Type II transfer (about 200 days longer than the
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previous Type I baseline) would permit the entry and a 30 minute descent
to be completed in daylight. Of additional benefit was the fact that the
approach speed was reduced by about 850 m/sec reducing the orbit

capture impulse requirement for the retro propulsion system.

In addition to the Type II PJ O results data were also
presented for two other outer planet mlssmns of planning interest. The
first is a 5.5 year 1983 ballistic Saturn transfer which passes through
the lagging Trojan asteroid group. The second is a 1980 Jupiter/Saturn
swingby transfer en which the Titan IIIE /Centaur/TE364_. 4 has sufficient
performance to place two Pioneer spacecraft with probes. One could be
targeted for a_nightside Jupiter entry and the second could perform a
- terminator entry at Saturh. |

2.1. Error/Control Analysis of Penetrator Deployment at the
Moon and Mercury (730 man-hours)

Penetrators are missile -shaped objects designed to
implant electronic instrumentation in a wide variety of soils with a high
speed impact, i.e. 150 m/sec. They have been used successfully in
many- terrestrial applications over the past decade. Recently they have
also been proposed for post—viking/75 Mars exploration. The most |
significant advantage of planetary penetrators is that they avoid the high
cost of soft landers without imposing the extreme impact conditions of
rough surface landers on the payload. An initial favorable response by
the science community to the exploration potential of Mars penetrators
has prompted an interest in the application of this concept to in situ
subsurface studies of other terrestrial bodies and planetary satellites.
Unlike Mars many of these objects do not have atmospheres. A first
order feasibility question has thus arisen: "Can penetrators be
successfully guided to required near-zero angle-of-attack impact
conditions in the absence of an atmosphere' ? A preliminary answer to

this question was the purpose of this task.
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The scope of the analysis included two potential targets,
the moon and Mercury, involved several different penetrator deployment
modes, and focused on impact errors arising from open-loop and closed-
loop deployment .control systems. Successful penetrator implacement '
requires: 1) that.the impact speed be controlled, nominally to
150 m/sec; 2) that the penetrator angle of attack, measured between the
longitudinal axis and velocity vector, be in the range 0° - llovat impact;
and 3) that the impact flight path angle be within 15° of vertical. It was
the errors in these terminal conditions that were the principle concern |

of this study.

- The best mode of penetrator deployment identified uses an
'orbiting spacecraft as a penetrator launch platform. This mode, labeled
the Intermediate Ellipse Transfer (IET) Mode, is depicted in Table 19. |
Prior to deployment the orbiter is first placed in an elliptical low-
periapse altitude orbit. The penetrator is launched at periapse with a
retro motor which kills its orbital velocity. It is then pitched over and
allowed to free-fall to the surface. The deployment characteristics of
the IET Mode are also summarized in Table 19. The initial orbit is
circular at the moon and elliptical at Mercury. A free-fall impact
velocity of 150 m/sec means that the periapse altitudes of these orbits
must be lowered to 7T km and 3 km at the moon and Mercury, respectively,
prior to penetrator deployment. This should not be a problem at the
moon, but at Mercury a combination of several orbital maneuvers,
onboard radar altimetry, and solar perturbation control will be necesSary
to achieve the very low altitude of 3 km. Also it will be undesirable to
leave the orbiter in this orbit for more than several revolutions due to the
impact hazard without continuous contfol, The penetrator retro AV
requirements to kill the orbital periapse velocity are a nominal

1700 m/sec at the moon, but over 4 km/sec at Mercury. Assuming a
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Table 19

REFERENCE DEPLOYMENT MODE

o INTERMEDIATE ELLIPSE TRANSFER (IE'T) DEPLOYMENT SCHEMATIC

periapse: penetrator deploymént/retro
g; - maneuver ‘ '

orbiter flight path ‘/,,#_H

. —’// ) ' T Q\
X‘/, ) | .
free fall l '
altitude
S i; - 150 m/sec impact
surface / / / / / \7““\.}
o' Py .‘( / am
/?"/ /: 'y / // / ’/ ;7 ‘ / ;,/ 4 ,-"/_,//._/;'.-"}//{/’ ."t.,

o IET DEPLOYMENT CHARACTERISTICS

- Moon - - - Mercury
Initial orbit periapse altitude (km) 100 600
Initial orbit eccentricity B 0.0 0.8
_Penetrator deployment periapse altitude (km) 7.0 . 3.0
Penetrator retro impulse (m/sec) ‘ 1698 . 4065
Penetrator impact velocity (m/sec) 150 150 |
Penetrator impact inass (kg) . 31 31

Penetrator deployment mass® (kg) 81 ‘ 251

a. Just prior to single stage solid retro.
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penetrator impact mass of 31 kg (i. e the Mars design), 10 kg for the
attitude control system, and a single stage solid motor retro system, the
total deployed mass of each penetrator is 81 kg at the moon and 251 kg at
Mercury. These values can be compared with a deployed mass of only

"~ 45 kg at Mars where atmospheric braking is used to slow the penetrators.

Key results of the deploymerit error analysis are summar-
ized in Table 20. The errors in DSN tracking of the orbiter's state at | A
.deployment are small and have little effect on a.ny of the impact condit'ions
except impact location. The primary error source of impact velocity and
angle-of-attack errors is penetrator retro execution errors. The
execution errors shown in the table are scaled to the magnitude of the
impulse assuming 3 ¢ pointing errors of 1. 5° and 3 o magnitude errors of
1%. The affect of these errors on impact conditions are shown as open-
lobp impact errors. The critical errors are in impaét angles of attack
which are dominated by errors in the terminal flight path angle. With
a maximum acéeptable impact angle of attack of 11° required to success-
fully penetrate even very soft soils it is readily seen that the open-loop
control mode is unsatisfactory having 3 o values of 15 degrees at the moon
and 36 degrees at Mercury. Adding an accelerometer triad to the |
penetrator to monitor the retro burn errors easily reduces the angle of
attack errors to very small values (20) as can be seen by the tabulated
closed-loop error summary. It should be noted, however, that nothing
is done in the c’losed-loop mode to correct the eXec@tion errors; the
attitude control system just accomodates them. Hence, the impact
flight path angle, at Mercui'y in particular, may still be larger than the
15° off-vertical limit desired by some of the penetrator experiments,

e.g. seismometers.
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Table 20

PENETRATOR DEPLOYMENT ERROR SUMMARY"

Moon Mercury
e DSN TRACKING ERRORS AT DEPLOYMENT
Altitude (m) | | o 100 150
Velocity (m/sec) _ 10 24
e RETRO EXECUTION ERRORS (m/sec)
Radial (x) N . 30 71
In Path (y) | o | 26 61
Cross Path (z) - _ 80 | 71
e OPEN LOOP IMPACT ERRORS | |
Speed (m/sec) . o S : - 8 41
Angle of Attack (deg) ' '_ ' o 15 . 36
Miss Distance (km) - _ 15 21
o CLOSED-LOOP IMPACT ERRORS |
~ Speed (m/sec) | o | o 8 41
Angle of Attack (deg) : - 2 )
Miss Distance (km) : ' 15 21

a. 30 errors of IET deployment mode
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As an overall conclusion to this analysis, the deployment
of lunar penetrators appears to pose no unreasonable performance or
control requirements. Conversely, the low deployment altitudes, the
large retro mass, and large retro execution erxfors all raise feasibility
questions for a Mercury penetrator mission. More detailed analysis

will be required to resolve these issues and is recommended.
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3. REPORTS AND PUBLICATIONS

Science Applications, Inc. is required, as part of its advanced
studies contract with the Planetary Programs Division, to document the
results of its analyses. This documentation traditionally has beeﬁ in one
of two forms.- First, reports are prepared for.each scheduled contract
task. Second, publications are prepared by individual staff members on
subjects within the contract tasks which are considered of general
interest to the aerospace community. A bibliography of the reports and
publicatioris completed during the contract period 1 February 1975 |
throﬁgh 31 January 1975 is presented below. Unless otherwise indicated,

these documents are available to interested readers upon request.

3.1. Task Reports for NASA Contract NASW-2613

1. ""Manpower /Cosf Estimation Model for Automated Planetary
Projects", Lawrence D. Kitchen, Report No. SAI 1- 120 194-C1,
March 1975.

2. "Planetary Missions Performance Handbook—Volumé I, Outer

Planets', Report No. SAI 1-120-194-M2, November 1974.

3. "J upitér Orbiter Lifetime - The Hazard of Galilean Satellite
Collision", Alan L. Friedlander, Report No. SAI 1-120-194-T2,
February 1975.

4, "Error Analysis of Penetrator Impacts on Bodies Without
Atmosphere", Donald R. Davis, Report No. SAI 1-120-194-T3,
March 1975. ' '

‘5. ""Advanced Planetary Studies Second Annual Report', Report No.

SAI 1-120-194-A2, March 1975.

- 3.2. Related Publications

1. ""Comet Encke Flyby - Asteroid Rendezvous Mission",
Alan L. Frledlander Journal of Spacecraft and Rockets 11, 4,
pp. 270-272, April 1974
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""Outer Planet Probe Cost Estimates - First Impressions", '
John C. Niehoff, Outer Planet Probe Technology Workshop paper,
ARC/NASA, May 1974,

"Comparison of Advanced Propulsion Capabilities for Future
Planetary Missions', John C. Niehoff and Alan L. Friedlander,
Journal of Spacecraft and Rockets, 11, 8, pp. 566-573,

August, 1974,

"Pioneer Mars 1979 Mission Options', John C. Niehoff and
Alan L. Friedlander, AIAA Paper No. 74-783, Mechanics and
Control of Flight Conference Anaheim, August 1974.
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