General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
QUASI-EXOSPHERIC HEAT FLUX OF SOLAR-WIND ELECTRONS
Aharon Eviatar, et al
Aerospace Corporation

Prepared for:
Space and Missile Systems Organization
National Science Foundation
National Aeronautics and Space Administration

15 May 1975
Quasi-Exospheric Heat Flux
of Solar-Wind Electrons

AHARON EVIATAR
Department of Physics
and Institute of Geophysics and Planetary Physics
University of California
Los Angeles, Calif. 90024

and

MICHAEL SCHULZ
Space Physics Laboratory
Laboratory Operations
The Aerospace Corporation
El Segundo, Calif. 90245

15 May 1975

Interim Report

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station
Los Angeles, Calif. 90045

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield, VA 22151
Density, bulk-velocity, and heat-flow moments are calculated for truncated Maxwellian distributions representing the cool and hot populations of solar-wind electrons, as realized at the base of a hypothetical exosphere. The electrostatic potential is thus calculated by requiring charge quasi-neutrality and the absence of electrical current. Plasma-kinetic coupling of the cool-electron and proton bulk velocities leads to an increase in the electrostatic potential and a decrease in the heat-flow moment. If the velocities differ...
by the Alfvén speed along the magnetic field, for example, the potential rises to 72.6 V and the heat flux falls to 2.72×10^{-2} erg/cm2-sec. In each case the heat flux is carried mainly by the quasi-exospheric hot electrons.
Aharon Eviatar is on sabbatical leave from the Department of Environmental Sciences, Tel-Aviv University, Ramat-Aviv, Israel.

The authors are pleased to thank Dr. W. C. Feldman, Dr. J. V. Hollweg, and Dr. W. W. Perkins for helpful discussions concerning the physical processes that operate in the solar wind, and Mr. D. D. Barbosa for his computational advice.

The work of A. Eviatar was supported in part by the U.S. National Science Foundation (NSF) under grant GA-34148, and in part by the U.S. National Aeronautics and Space Administration (NASA) under contract NGR 05-007-190. The work of M. Schulz was conducted under U.S. Air Force Space and Missile Systems Organization (SAMSO) contract F04701-74-C-0075.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. TWO-COMPONENT ELECTRON EXOSPHERE</td>
<td>7</td>
</tr>
<tr>
<td>3. EXOSPHERIC TREATMENT OF HOT COMPONENT ONLY</td>
<td>15</td>
</tr>
<tr>
<td>4. DISCUSSION</td>
<td>21</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
</tbody>
</table>

FIGURES

1. Dependence of electrostatic potential (ϕ_0) on proton bulk velocity (u) for selected values of N_2/N_p and T_2/T_1 at the base of an ideal solar exosphere 9

2. Dependence of heat flux (Q) along the magnetic field on electrostatic potential (ϕ_0) for selected values of N_2/N_p and T_2/T_1 at the base of an ideal solar exosphere 12

3. Dependence of field-aligned heat flux (Q) and its constituent parts on electrostatic potential (ϕ_0) for selected values of N_2/N_p, T_2/T_1, and $(m_e^2c^2/\kappa T_1)^{1/2}$ at the base of an ideal hot-electron exosphere 18
1. INTRODUCTION

In the exospheric description of solar-wind plasma (Eviatar and Schulz, 1968; Perkins and Spight, 1970), individual electrons and protons execute trajectories that conserve both total energy (kinetic plus potential) and first adiabatic invariant (magnetic moment). The motion of these particles along \mathbf{B} (the interplanetary magnetic field) is profoundly affected by an electrostatic field that arises in order to assure charge quasi-neutrality of the plasma, i.e., to equalize the escaping fluxes of protons and electrons in the presence of the Sun's gravitational field (Jockers, 1968; 1970).

Calculation of the corresponding electrostatic potential ϕ, at a point where the electron flux is locally isotropic and Maxwellian except for the escape trajectories, has been described by Schulz and Eviatar (1972). The local potential ϕ is thereby related to the proton bulk speed u along \mathbf{B} by means of exponential and error functions of $-q_e \phi/kT_e$, where k is Boltzmann's constant, T_e is the electron temperature, and q_e (<0) is the electronic charge. Observations by Feldman et al. (1974a), however, suggest that the solar-wind electron distribution at the Earth's orbit is more nearly a superposition of two quasi-Maxwellian distributions, related in temperature such that $T_2 \sim 6T_1$ and in density such that $N_2 \sim 0.06N_1$. Moreover, the major electron component seems to have a velocity distribution that is symmetric about $v_\parallel = u \sec x - c_A$ (where x is the local spiral angle, $\cos x = \hat{r} \cdot \hat{B}$, and c_A is the Alfvén speed) rather than about $v_\parallel = 0$.

Preceding page blank
(as exospheric theory would predict).

These new observational findings require that the exospheric theory be updated, but not necessarily discarded. In view of the plasma-kinetic instabilities (Forslund, 1970) to which an electron exosphere is subject (Schulz and Eviatar, 1972; Perkins, 1973), it was not really expected that the observed distribution would be symmetric about $v_\parallel = 0$ (Hollweg, 1974). Moreover, much can still be learned about the consequences of such plasma instabilities by treating the minor (hotter) electron component exospherically. By increasing the outward bulk velocity of the major (cooler) electron component, for example, the unstable interplanetary-plasma waves may increase the local electrostatic potential φ required to enforce charge quasi-neutrality. Such a change in φ would profoundly, although indirectly, affect the heat-flow moment of the entire electron distribution.

It is the purpose of this work to examine such plasma effects in detail. First, by treating both electron components exospherically, we hope to estimate φ locally for the hypothetical (but unstable) electron exosphere. Second, by treating only the minor (hotter) component exospherically, we hope to estimate the increased φ that is empirically compatible with the effects of the inevitable plasma turbulence. The analytical evaluation of heat-flow moments in both cases will serve to distinguish the two cases in a dynamically interesting way.
2. TWO-COMPONENT ELECTRON EXOSPHERE

The first step in constructing a properly normalized exospheric distribution function \(f(v_\parallel, v_\perp; r) \) is to select a closed surface \(r = r_0 \) (not necessarily a sphere, since \(r_0 \) could be a function of solar latitude) on which \(\phi = \phi_0 \) and beyond which collisions are considered negligible. Since gravity is negligible for electrons, the function \(f(v_\parallel, v_\perp; r) \) must be even with respect to \(v_\parallel \) for electrons satisfying the condition

\[
m_e v^2 + 2 q_e \phi_0 < 0 \tag{1}
\]

and must vanish for \(v_\parallel < 0 \) for values of \(v_\parallel \) not satisfying (1). An acceptable choice (cf., Schulz and Eviatar, 1972) turns out to be

\[
f(v_\parallel, v_\perp; r_0) = \sum_{j=1}^{2} f_j(v_\parallel, v_\perp; r_0) = 2 \left[g(v_\parallel) + g(-v_\parallel) g(-m_e v^2 - 2 q_e \phi_0) \right]
\]

\[
\times \sum_{j=1}^{2} N_j (m_e/2 \pi k T_j)^{3/2} \exp(-m_e v^2/2 k T_j) \times \left[1 + \text{erf}((-q_e \phi_0/k T_j)^{1/2}) \right] -2(-q_e \phi_0/k T_j)^{1/2} \exp(q_e \phi_0/k T_j)]^{-1}. \tag{2}
\]
where $\theta(x)$ is the unit step function [$\theta(x) = 1$ for $x \geq 0$ and $\theta(x) = 0$ for $x < 0$]. If N_p is the proton density and alpha particles are neglected, quasi-neutrality thus requires that $N_p = N_1 + N_2$ and that

$$N_p u \sec \chi = 2\pi \int_{-\infty}^{+\infty} v_\| v_\perp \, dv_\perp \, dv_\|.$$

(3)

The integral in (3) is most easily evaluated in spherical coordinates, and the result is that

$$
(2m_e u^2 / \kappa T_1)^{1/2} \sec \chi = \\
\sum_{j=1}^2 \left(N_j / N_p \right) \left(T_j / T_1 \right)^{1/2} \left[1 - (q_{e0} / \kappa T_j) \exp \left(q_{e0} / \kappa T_j \right) \right] \\
\times \left[1 + \text{erf} \left(- q_{e0} / \kappa T_j \right)^{1/2} \right] \\
- 2 \left(- q_{e0} / \kappa T_j \right)^{1/2} \exp \left(q_{e0} / \kappa T_j \right) \right]^{-1}.
$$

(4)

This equation determines $(- q_{e0} / \kappa T_1)$ as a function of $(2m_e u^2 / \kappa T_1)^{1/2} \sec \chi$ for fixed values of N_2 / N_p and T_2 / T_1. Representative contours are plotted in Figure 1. The contour $N_2 / N_p = 0$ corresponds to the case treated by Schulz and Eviatar (1972), who also made a minor normalization error that is corrected here.

It is instructive to define partial heat-flow moments

$$Q^{(j)} = 2\pi \int_{-\infty}^{+\infty} \left(m_e / 2 \right) (v_\| - u \sec \chi)^3 f_j v_\perp \, dv_\perp \, dv_\|.$$

(5a)
Figure 1. Dependence of electrostatic potential (ϕ_0) on proton bulk velocity (u) for selected values of N_2/N_p and T_2/T_1 at the base of an ideal solar exosphere.
and

\[Q_\perp^{(1)} = 2\pi \int_{-\infty}^{\infty} (m_e/2) v_\perp^2 (v_\perp - u_\sec \chi) f_j v_\perp \, dv_\perp \, dv_\parallel \] \hspace{1cm} (5b)

for the "conduction of thermal energy" along B. For Maxwellian distributions truncated as in (2), the moment integrals are most easily evaluated in spherical velocity coordinates. The results are given by

\[(m_e/\hbar) \frac{3}{2} (Q_\parallel^{(j)}/N_j m_e) = \]

\[- \frac{1}{2} \left(\frac{m_e u^2}{\hbar T_j} \right)^{1/2} [3 + \left(\frac{m_e u^2}{\hbar T_j} \right) \sec^2 \chi] \sec \chi \]

\[+ (2\pi)^{-1/2} \left[1 - 2 \left(- \frac{q_e \phi_0}{\hbar \pi T_j} \right)^{1/2} \exp \left(\frac{q_e \phi_0}{\hbar T_j} \right) \right] \cdot \exp \left(\frac{q_e \phi_0}{\hbar T_j} \right) \]

\[+ \text{erf} \left(\left(- \frac{q_e \phi_0}{\hbar T_j} \right)^{1/2} \right) - 1 \]

\[\times \left(q_e \phi_0 / \hbar T_j \right)^2 - 2 \left(q_e \phi_0 / \hbar T_j \right) + 2 \]

\[+ \left(- 2 q_e \phi_0 / \hbar T_j \right)^{3/2} \left(\frac{m_e u^2}{\hbar T_j} \right)^{1/2} \sec \chi \]

\[+ 3 \left[1 - \left(q_e \phi_0 / \hbar T_j \right) \right] \left(\frac{m_e u^2}{\hbar T_j} \right) \sec^2 \chi \exp \left(q_e \phi_0 / \hbar T_j \right) \]

(6a)

and
\[
\frac{(m_e/\kappa T_j)^{3/2}}{N_j m_e} = \\
(2\pi)^{-1/2} \left[1 - 2 \left(- q_e \varphi_0 / \kappa T_j \right) \right]^{1/2} \exp \left(q_e \varphi_0 / \kappa T_j \right) \\
+ \text{erf} \left(- q_e \varphi_0 / \kappa T_j \right)^{1/2})^{-1} \\
\times \left[\frac{(2/3) \left(- 2 q_e \varphi_0 / \kappa T_j \right)^{3/2} (m_e u^2 / \kappa T_j)^{1/2} \sec \chi \right] \\
+ (q_e \varphi_0 / \kappa T_j)^2 - 2(q_e \varphi_0 / \kappa T_j) + 2 \exp (q_e \varphi_0 / \kappa T_j) \\
- (m_e u^2 / \kappa T_j)^{1/2} \sec \chi. \tag{6b}
\]

Typical values of normalized exospheric heat fluxes are plotted in Figure 2a, which includes the individual components \(Q_{\|}^{(j)}\) and \(Q_{\perp}^{(j)}\), the consolidated elements \(Q_{\|} = \Sigma Q_{\|}^{(j)}\) and \(Q_{\perp} = \Sigma Q_{\perp}^{(j)}\), and the total \(Q = Q_{\|} + Q_{\perp}\) for conditions \((N_2 = 0.06 N_p, T_2 = 6 T_1)\) described as typical by Feldman et al. (1974a). Figure 2b provides normalized plots of the total \(Q\) for other values of \(T_2/T_1\) and \(N_2/N_p\).

A numerical example would help to illustrate the use of Figures 1 and 2. For parameters (Lund Hansen, 1970) characteristic of the quiet solar wind \((u = 320 \text{ km/sec}, T_1 = 1.2 \times 10^5 \text{ K})\) one obtains \(\sec \chi = 1.61\) and thus \((2 m_e u^2 / \kappa T_1)^{1/2} \sec \chi = 0.957\). It follows from Figure 1a that \((- q_e \varphi_0 / \kappa T_1) = 1.484\), which is to say that \(\varphi_0 = 15.4 \text{ V}\) for \(N_2 = 0.06 N_p\) and \(T_2/T_1 = 6\). Locating this value of \((- q_e \varphi_0 / \kappa T_1)\) in Figure 2, one obtains (for example) the result that \((m_e / \kappa T_1)^{3/2} (0/N_p m_e) = 2.257\), which is
Figure 2. Dependence of heat flux \(Q \) along the magnetic field on electrostatic potential \(\phi_0 \) for selected values of \(N_2/N_p \) and \(T_2/T_1 \) at the base of an ideal solar exosphere. In the left panel (a), various contributions to \(Q \) are indicated separately.
to say that $Q = 4.04 \times 10^{-2}$ erg/cm2sec for $N_p = 8$ cm$^{-3}$, the proton density recommended by Hundhausen (1970). This heat flux should be compared with the corrected value ($Q \sim 1.3 \times 10^{-2}$ erg/cm2sec) obtained observationally by Montgomery et al. (1968). However, using the $N_2/N_p = 0$ contour in Figure 1, one would have obtained $(-q_e \varphi_0/\kappa T_1) = 1.094$ or $\varphi_0 \approx 11.3$ V (cf. Schulz and Eviatar, 1972). Using (6) to evaluate Q in this case (which is included in Figure 2b) one obtains

$$(\frac{m_e}{\kappa T_1})^{3/2}(Q/N_p m_e) = 0.271$$

or $Q \approx 0.72 \times 10^{-2}$ erg/cm2sec for $N_p = 8$ cm$^{-3}$ and $T_1 = 1.2 \times 10^5$ oK. The hot component ($j = 2$) thus contributes most of the electron heat flux at $r = r_0$ in this fully exospheric model.
3. EXOSPHERIC TREATMENT OF HOT COMPONENT ONLY

The ideal electron exosphere described above is unstable to a variety of plasma wave modes (Forslund, 1970; Schulz and Eviatar, 1972; Perkins, 1973). Specific predictions have been muddled because of an unwillingness of authors (e.g., Schulz and Eviatar, 1972) to do high-beta calculations for all of the relevant wave modes, but current opinion (e.g., Hollweg, 1974) favors the obliquely propagating electromagnetic proton-cyclotron mode as the dominant instability, operative wherever the peaks (maxima) of the proton and electron distribution functions are separated by \(\sim c_A \) (the Alfvén speed) or more, in velocity space. For the quiet solar-wind parameters proposed by Hundhausen (1970) one obtains \(u_{\text{sec}x} \approx 515 \text{ km/sec} \) and \(c_A \approx 38.7 \text{ km/sec} \).

Hollweg (1974) conjectures that the resulting instability reduces the velocity-space separation between the electron and proton peaks to a value \(v_1 \approx 0.23B_p^{-1/3}B_e^{1/2}c_A \), where \(B_j = 8\pi N_jkT_j/B^2 \) for protons (\(j = p \)) and electrons (\(j = e \)), essentially by adding \(u_{\text{sec}x} - v_1 \) to the parallel velocity of each electron in the distribution. Various arguments have been given for and against this conjecture. However, the observations of Feldman et al. (1974a) seem to bear it out, as applied to the major (cooler) electron component. In other words, the majority of solar-wind electrons belong to a distribution having the form

\[
f_1(v_\parallel,v_\perp;r) = (m_e/2\pi kT_1)^{3/2}N_1 \exp \left[-m_e v_\perp^2/2kT_1 \right] \times \exp \left[-(m_e/2\nu T_1)(v_\parallel - u_{\text{sec}x} + \eta c_A)^2 \right],
\]

\(f_1 \)
(with $\eta \sim 1$) as an empirical fit to the observational data. This distribution is not exospheric, since it is not an even function of v_\parallel for electrons satisfying (1), nor does it vanish exactly for electrons failing to satisfy (1) at negative v_\parallel.

However, it may still make sense to treat the minor (hot) electron component exospherically, as a first approximation. On doing so, one obtains

\[
(2\pi m_e u^2/\kappa T_2)^{1/2} \sec x + (2\pi m_e \eta^2 c_A^2/\kappa T_2)^{1/2} (N_1/N_2)
\]

\[
= 2 \left[1 - (q_e \varphi_0/\kappa T_2) \right] \exp(q_e \varphi_0/\kappa T_2)
\]

\[
x \left[1 + \text{erf} \left(-q_e \varphi_0/\kappa T_2 \right)^{1/2} \right]
\]

\[
- 2 \left(-q_e \varphi_0/\kappa T_2 \right)^{1/2} \exp(q_e \varphi_0/\kappa T_2) \right]^{-1} \quad (8)
\]

Instead of (4). Comparison of (4) and (8) reveals that $(-q_e \varphi_0/\kappa T_2)$ is the same function of $(2\pi m_e u^2/\kappa T_2)^{1/2} \sec x + (2\pi m_e \eta^2 c_A^2/\kappa T_2)^{1/2} (N_1/N_2)$ in (8) as $(-q_e \varphi_0/\kappa T_1)$ is of $(2\pi m_e u^2/\kappa T_1)^{1/2} \sec x$ for $N_2/N_p = 0$ in (4). Thus, the potential φ_0 given by (8) can be read from the contour $N_2/N_p = 0$ in Figure 1 if the ordinate and abscissa are appropriately relabeled. Continuing the numerical example of the previous section ($N_2 = 0.06 N_p$, $T_2 = 6 T_1 = 7.2 \times 10^5$ K, $u = 320$ km/sec, $c_A = 38.7$ km/sec), one obtains a value of 0.9037 on the abscissa for $\eta = 1$. The corresponding value of $(-q_e \varphi_0/\kappa T_2)$
on the ordinate is 1.169, which is to say that $\Phi_0 \approx 72.6 \text{ V}$.

The electrostatic potential Φ_0 is significantly larger in this case than for the purely exospheric treatment of both electron components.

The exospheric heat fluxes $Q_{\parallel}^{(2)}$ and $Q_{\perp}^{(2)}$ remain as given algebraically by (6), but the relation between $(- q_e \Phi_0 / k T_2)$ and $(m_e u^2 / k T_2)^{1/2}$ therein must be obtained from (8) rather than from (4). Moreover, the heat fluxes carried by $f_1(v_{\parallel}, v_{\perp}; r_0)$ are now given by

$$
\left(m_e / k T_1 \right)^{3/2} \left(Q_{\parallel}^{(1)} / N_1 m_e \right)
=-(1/2)[3 + (m_e / k T_1)] \left(m_e c^2 / k T_1 \right)^{1/2}
$$

(9a)

and

$$
\left(m_e / k T_1 \right)^{3/2} \left(Q_{\perp}^{(1)} / N_1 m_e \right) = - \left(m_e c^2 / k T_1 \right)^{1/2}
$$

(9b)

rather than by (6). The various contributions to $(m_e / k T_1)^{3/2} (Q / N_p m_e)$ have been plotted (using $\eta \approx 1$) in Figure 3a for comparison with Figure 2a. Inserting $\Phi_0 = 72.6 \text{ V}$ and $N_p = 8 \text{ cm}^{-3}$, one obtains $(m_e / k T_1)^{3/2} (Q / N_p m_e) = 1.519$ or $Q \approx 2.72 \times 10^{-2} \text{ erg/cm}^2 \text{ sec}$.

This heat flux is considerably smaller than that obtained above in the purely exospheric two-component model. Moreover, the total electron heat flux is essentially that of the hot component, as Feldman et al. (1974a) have found by analyzing the observed distribution function $f(v_{\parallel}, v_{\perp}; r)$ at $r \approx 1 \text{ AU}$.

-17-
Figure 3. Dependence of field-aligned heat flux \(Q\) and its constituent parts on electrostatic potential \(\phi_0\) for selected values of \(N_2/N_p\), \(T_2/T_1\), and \((m_e\eta^2c^2_A/kT_1)^{1/2}\) at the base of an ideal hot-electron exosphere. Cooler electrons \((j = 1)\) here belong to isotropic Maxwellian with bulk velocity \(u \sec x = \eta c_A\) along \(B\) in the frame of reference that corotates with the Sun.
The contours plotted in Figure 3b correspond more nearly to \(\eta \approx 2 \), as would be required (Schulz and Eviatar, 1972) for magnetosonic instability at \(r \sim 1 \) AU. For the solar-wind parameters used above, this choice of \(\eta \) corresponds to an abscissa of 1.417 (and therefore an ordinate of 0.6122) on the \(N_2/N_p = 0 \) contour in Figure 1a. This value on the ordinate indicates an electrostatic potential \(\varphi_0 \approx 38.0 \) V and (in Figure 3b) a normalized heat flux \((m_e/kT_1)^{3/2}(Q/N_p m_e) = 1.765 \); for \(N_p = 8 \) cm\(^{-3}\), the corresponding physical heat flux is \(Q \approx 3.16 \times 10^{-2} \) erg/cm\(^2\) sec. This lies between the value for \(\eta \approx 1 \) \((Q \approx 2.72 \times 10^{-2} \) erg/cm\(^2\) sec, as shown above) and the exospheric value \((Q \approx 4.04 \times 10^{-2} \) erg/cm\(^2\) sec). Similarly, the electrostatic potential obtained for \(\eta \approx 2 \) \((\varphi_0 \approx 38.0 \) V) lies between that obtained for \(\eta \approx 1 \) \((\varphi_0 \approx 72.6 \) V) and that obtained for the exospheric case \((\varphi_0 \approx 15.4 \) V).
DISCUSSION

The foregoing results suggest the subtle manner in which plasma instabilities may reduce the heat flux carried by solar-wind electrons belonging to the hot \((j = 2)\) component. Although (in this model) only the cooler \((j = 1)\) electron population interacts with the unstable waves, the consequently required increase in \(\varphi_0\) makes the quasi-exospheric hot component less skewed in velocity space. The result is a diminished heat flow moment, as given by (6). This interpretation emphasizes the macroscopic (non-local) character of the phenomenon.

In the case of a uniform plasma, it might be argued that only a small portion of even the cooler electron velocity distribution could participate in the resonant wave-particle interactions. Thus, it would be difficult to understand how the cooler distribution as a whole could acquire a mean velocity \(\sim u \sec x - \eta c_A\). In the interplanetary medium, however, the unperturbed motion of the typical electron is a bounded oscillation between a magnetic mirror point \((r = r_1)\) and an electrostatic mirror point \((r = r_2 > r_1)\). The particle goes through resonance twice in traveling from \(r_1\) to \(r_2\), and receives an impulse from the unstable waves on each occasion. Involvement of the entire cooler electron distribution becomes plausible when viewed in this way. Hollweg (1974) conjectures that the distribution thus acquires a mean velocity \(\sim u \sec x - \eta c_A\) in the frame of reference that corotates with the Sun. The observations of Feldman et al. (1974a) confirm this conjecture.

The present model does not quite account for the observed
form (Feldman et al., 1974a) of the hot-electron distribution $f_2(v_{\parallel}, v_{\perp}; r)$. This is not a major cause for concern. A model that realistically incorporates collisions and wave-particle interactions will presumably yield a more nearly Maxwellian $f_2(v_{\parallel}, v_{\perp}; r)$ as observed, without drastically modifying the electrostatic potential ϕ_0. The vigilant critic might ask why the base of the exosphere ($r = r_0$) should happen to coincide with the position of the observer ($r \sim 1$ AU), as is tacitly assumed in applying (1)-(9) to local plasma conditions. This question serves to emphasize the quasi-exospheric spirit of the present work and similar past works (e.g., Perkins, 1973; Hollweg, 1974). The plasma is being treated locally as if it were at the base of a true exosphere. However, the exosphere itself plays the role of a "straw man", corresponding to the role of Vlasov equilibria in simpler plasma-kinetic problems.

In the limiting case $N_2/N_p = 0$, the results summarized by (4) and (6) reduce to the expressions obtained by Hollweg (1974). The present results for ϕ_0 bear a close resemblance to those obtained by Feldman et al. (1974b) from a more nearly hydrodynamical analysis. The quasi-exospheric treatment offered here should be considered as a viable alternative to the fluid philosophy.

The electrostatic potential $\phi_0 \sim 40-70$ V, obtained by inserting local solar-wind parameters in (8), corresponds to only a modest increase (<2 km/sec) in the proton bulk velocity u between $r \sim 1$ AU and $r = \infty$. However, the gravitational potential of the Sun amounts to only -9.4 eV/nucleon at $r \sim 1$ AU. If the
electrostatic potential scales as $1/r$, at least back to $r \sim 10-20 r_\odot$ (solar radii), then the corresponding radial electric field is ample to overcome gravity and accelerate solar-wind protons to the observed bulk speed $u \sim 320$ km/sec. Such exospheric acceleration would correspond qualitatively to the observed outward proton heat-flow moment (Schulz and Eviatar, 1973). Alpha particles in the same electric field would experience a smaller acceleration of the same sign, since the charge/mass ratio is half that of protons. It is difficult to understand, in this context, the occasional observations by Asbridge et al. (1974) that alpha particles have slightly larger bulk velocities than protons in the solar wind.

In summary, quasi-exospheric models help to clarify certain observable properties of the interplanetary plasma and serve as a point of departure for the Vlasov analysis of plasma turbulence in the solar wind. Such models are strikingly incomplete, however, and leave many important questions unanswered. If the method of quasilinear theory could be adapted to the geometry of this inhomogeneous and almost collisionless medium, the role of wavelike turbulence in the interplanetary plasma might be ascertained in quantitative detail.
REFERENCES

Preceding page blank
LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting experimental and theoretical investigations necessary for the evaluation and application of scientific advances to new military concepts and systems. Versatility and flexibility have been developed to a high degree by the laboratory personnel in dealing with the many problems encountered in the nation's rapidly developing space and missile systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat transfer, reentry physics, chemical kinetics, structural mechanics, flight dynamics, atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmospheric optics; chemical reactions in polluted atmospheres; chemical reactions of excited species in rocket plumes; chemical thermodynamics; plasma and laser-induced reactions; laser chemistry; propulsion chemistry; space vacuum and radiation effects on materials; lubrication and surface phenomena; photosensitive materials and sensors; high precision laser ranging; and the application of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and propagation phenomena, including plasma electromagnetics; quantum electronics; lasers; and electro-optics; communication sciences; applied electronics; semiconductor, superconducting, and crystal device physics; optical and acoustical imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal matrix composites and new forms of carbon; test and evaluation of graphite and ceramics in reentry; spacecraft materials and electronic components in nuclear weapons environment; application of fracture mechanics to stress corrosion and fatigue-induced fractures in structural metals.

Space Physics Laboratory: Atmospheric and ionospheric physics; radiation from the atmosphere; density and composition of the atmosphere; aurorae and airglow; magnetospheric physics; cosmic rays; generation and propagation of plasma waves in the magnetosphere; solar physics; studies of solar magnetic fields; space astronomy; x-ray astronomy; the effects of nuclear explosions, magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and magnetosphere; the effects of optical, electromagnetic, and particulate radiations in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California