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1. INTRODUCTION

In the exospheric description or - n lar-wind plasma (Eviatar

and Schulz, 1 968; Perkins and Spight, 1970), individual elec-

trons and protons execute trajectories that conserve both total

energy (kinetic plus potential) and first adiabatic invariant

(magnetic moment). The motion of these particles along Br(the

interplanetary magnetic field) is profoundly affected by an

electrostatic field that arises in order to assure charge quasi-

ne. *_rality of the plasma, i " e•, to equalize the escaping fluxes

of protons and electrons in the presence of the Sun's gravi-

tational field (Jocke y s, 191.8; 1970).

Calculation of the corresponding electrostatic potential

cp, at a point where the electron flux is locally isotropic and

Maxwellian except for the escape trajectories, has been described

by Schulz a;id Eviatar (1972). The local potential qp is there-

by related to the pro"on bulk speed u along B by means af expo-

nential and error functions of -g eq)/K Tel where x is Boltzmann's

constant, T  is the electron temperature, and q  (<O) is the

electronic charge. Observations by Feldman et al. (1974a),

however, suggest that the solar-wind electron distribution at

the Earth's orbit is more nearly a superposition of two quasi-

Maxwellian distributions, related in temperature such that T 2 — 6T1

and in density such that N2 M 0.06N 1 . Moreover, the major elec-

tron compono-.t seems to have a velocity distribution that is

symmetric about vp mu sec% - cA (where x is the local spiral angle,

cos%	 B, and cA is the Alfven speed) rather than about v ii - 0

Preceding page blank	 -5-



.

(as exospheric t`ieory would predict).

These new observational findings requ; re that the exospheric

theory be updated, but not necessarily discarded. in view of

the plas,.a-kinetic instabilities (Forslund, 1970) to which an

electron exosphere is subject (Schulz and Eviatar, 1972; Perkins,

1973), it was not really expected that the observed distribution

would be symmetric about v i, = 0 (Hollweg, 1974). Moreover,

much can still be learned about the consequences of such plasma

instabilities by treating the minor (hotter) electron compo-

nent exospherically. By increasing the outward bulk velocity

of the major (cooler) electron component, for example, the un-

stable interplanetary-plasma waves may increase the loca l electro-

static potential cp required to enforce charge quasi-neutrality.

Such a change in cp would profoundly, although indirectly, af-

fect the heat-flow moment of the entire electron distribution.

It is the purpose of this work to examine such plasma ef-

fects in detail. First, by treating moth electron components

exospherically, we hope to estimate cp locally for the hypothetical

(but unstable) electron exosphere. Second, by treating only

the minor (hotter) component exospherically, we hope to esti-

mate the increased cp that is empirically compatible with the

effects of the inevitable plasma turbulence. The analytical

evaluation of heat-flow moments in both cases will serve to

distinguish the two cases in a dynamically interesting way.

-6-



2. TWO-COMPONENT ELECTRON EXOSPHERE

The first step in constructing a properly normalized exo-

spheric distribution function f(v ll ,vl ;r) is to select a closed

surface r - r 0 (not nece:s:3rily a sphere, since r 0 could be

a function of solar latitude) on which cp - cp 0 and beyond which

collisions are considered negligible. Since gravity is negligible

for electrons, the function f(v ll ,v .L ;r) must be even with re-

spect to v,i fur electrons satisfying the condition

m 
e 
v 2 + 2gecpO < 0
	

(1)

and must vanish for vq < 0 for values of v 2 not satisfying (1).

An acceptable choice ( cf. Schulz and Eviatar, 1972) turns out

to be

2

f(vn.vl ; r O ) - I fj(vh,vl;r0)
j=1

- 2[9(vn ) + 8( - vo )3 ( - m ev2 - 2gecP0)I

2

x I N  (meI 2rxT j ) 
3/2

exp ( - mev2 2xT
j )

j-1

x[ 1 +erf( (- gecpO/xTj)1/2)

- 2( - g ecp O/rxTj ) 1/2exp(gepo, Tj)]-1,
	

(2)
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whore 8(x) is the unit step function [8(x) • 1 for x:0 and

8(x) • 0 for x <01. if N  is the proton density and alpha par-

ticles are neglected, quasi-neutrality thus requires that N p .

N 1 +N2 and that

+• 6
Npu sec x • 2ff	 vNf vl dvl dv N .	 (3)

-• 0

The integral in (3) is most easily evaluated in spherical cu-

ordinates,, and the result is that

( 2nmeu2 /xT i )1/2 sec  x -

2
2 1 (N i / Np)(T i  /T 1 ) 1/2 [ 1 - ( geap 0/xT

i
 )] exp l gefp0/xT^ )

J•l

x [1 +erf ( ( • 4ecP0/xTj )1/2)

- 2 ( - gecpo/,ffxTi) 1/2exp( gecp0 /% TJ )]-1.	
( )

This equation determinez. (- g eap 0 /xT 1 ) as a function of

(21tme u2/ xT1) 1/2 sec x for f axed values of N 2 /Np and T 2/T I . Rep-

resentative contours are plotted in Figure 1. The contour N 2/Np • 0
corresponds to the case treated by Schulz and Eviatar (1972),

who also made a minor normalization error that is corrected

here.

It is instructive to define partial heat-flow moments

QJ J ) s 2rrS	 (me/2 ) ( v M - u sec x ) 3 f^ vl dv l dv h	(5a )
- 0 0

-8-
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and

f 
+0

f0( me /2)vi(vl - u sec % )f j v l dv a dv % (5b )Q(j) .2n 

for the "conduction of thermal energy" along d. For Mtaxwellian

distributions truncated as in (2). the moment integrals are

most easily evaluated in spherical velocity coordinates. The

results are given by

(me ss ; ) 3/2 (Q^ J )^ Nj me ) s

- Z(me u 2 /xT j ) 1/2 [3+(me u2 /xT l ) sec 2X] sec X

+ (2n )- 1/2 [1 - 2 ( - %TO/wxTj )
1/2exp(gem O/xT j )

+ erf ( ( - geapo/KTJ
. ) 1/2 ) ] -1

x ) ( q e;p 0 /xT
j
 ) 2 - 2 (geiV0/ KT j ) +2

+ (- 2gecp 0 /xT j) 3/2 (me u 2/PTj ) 1/2 sec x

+3[i - (getpo/xTj >](mE u 2/xT;) sec 2x} exp ( geap o /KT^)

(6a )

and

-to-



(me /xTi ) 3/2 ( QiJ )/Njme) .

112	 /nKT ) 1/`ex (	 %T ).(2n )-	 [1 - 2 l - ge^'Or	 1	 p g e^pp/ J

+ erf(( - gel `xTj)1 /2)1 -1

x [(2/3) (- 2gecp p/xT
i

) 3/2 
( m

e u 2/xT
i

) 1/2 sec %

*- ( q.q)o/xT
i
 ) 2 - 2 (gex p/xT

i
 ) + 2 1 exp ( g ecFp/KT ; )

- (me u 2 /xT
i
 ) t/2 sec%.	 (6b )

Typical values of normalized exospheric heat fluxes are plotted

in Figure 2a, which includes the individual components QnJ)

and QiJ ) the consolidated elements Qn n EQ tJ) and Q, v rQiJ ),

and the total Q =Q 1i +Q, for conditions ( n` = 0.06N, T 2	 6T1)

described as typical by Feldman et a],, (1974a). Figure 2b pro-

vides normalized plots of the total Q for other values of T 2 /T,

and N2/Np.

A numerical example would help to illustrate the use of

Figures 1 and 2. For ,ar •ameLers Oundhausen, 1970) characteris-

tic of the quiet solar w, nd (u = 320 km/ sec, T 1 = 1.2x  10 5 OK)

one obtains sec X = 1.61 and thus (2rrm e u2 /x T 1 ) 1/2 sec x = 0.957.

It follows from Figure la that (- gecp 0/xT 1 ) = 1.464, which is

to say that cp0 a- 15.4 V for N2 = 0.06% and T 2 /T 1 = 6. Locating

this value of (- gecp 0 / xT 1 ) in Figure 2, one obtains (for ex-

:- -31e) the result that ( me /xT 1 ) 3 ' 2 (Q /vprf,.e ) = 2.257, which is

-ii -
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to say that Q - 4.04x 10-2 erg/cm 2 sec for NP = 8 cm-3 , the

proton density recommended by Hundhausen (1970). This heat

flux should be compared with the corrected value

(Q — 1-3x 10 -2 erg/cm 2 sec) obtained observationally by Montgomery

et al. (1968). However, using the N 2 /Np = 0 contour in Figure 1,

one would have obtained (- gecp 0/xT I ) = 1.094 or ( p0 1 1.3 V ;-Qf.

Schulz and Eviatar, 1972). Using (6) to evaluate Q in this

case (which is included in Figure 2b) one obtains

(me /x T 1 ) 3/2 (Q/Npme ) = 0.271 or Q ft 0.72 x 10 -2 erg/cm 2 sec for

Np = 8 cm -3 and T I = 1.2x  105 'K. The hot component ( j = 2)
thus contributes most of the electron heat flux at r = r0 in

this fully exospheric model.

-13-



3. EXOSPHERIC TREATMENT OF HOT COMPONENT ONLY

The ideal electron exosphere described above is unstable

to a variety of plasma wave modes (Forslund, 1970; Schulz ano

Eviatar, 1972; Perkins, 1973). Specific predictions have been

muddled because of an unwillingness of authors (e-g., Schulz

and Eviatar, 1972) to do high-beta calculations for all of the

relevant wave modes, but current opinion (e.g., Hollweg, 1974)

favors the obliquely propagating electromagnetic proton-cyclotron

mode as the dominant instability, operative wherever the peaks

(maxima) of the proton and electron distribution functions are

separated by . c A (the Alfven speed) or more, in velocity space.

For the quiet solar-wind parameters proposed by Hundhausen (1970)

one obta i ns u sec x x 515 km/ sec and cA ft 38.7 km/ sec.

Hollweg (1974) conjectures that the resulting instability

reduces the velocity-space separation between the electron and

proton peaks to a value v 1 m 0, 230 P 
1/3 

O  
a/2CA, where 0 j a BrrN j xT j /B`

for protons (j = p) and electrons (j = e), essentially by ad-

ding u sec x- v 1 to the parallel velocity of each electron in

the distribution. Various arguments have been given for and

against this conjecture. However, the observations of Feldman

eat al. (1974a) seem to bear it out, as applied to the major

(cooler) electron component. In other words, the majority of

solar-wind electrons belong to a distribution having ih :! form

f l (v l^,v l ;r)^r(me/2TrxT 1 ) 3/2 N 1 exp	 mevl/2xT1)

xexp[- (me /2 N T I )(v11-u sec X +-nc A ) 2 ],	 (7)

Preceding page blank	 -1 5 -



(with -n —1) as are empirical fit to the observational data.

This distribution is not exospheric, since it is not an even

function of v 11 for electrons satisfying (1), nor does it vanish

exactly for electrons failing to satisfy (1) at negative v11.

However, it may still make sense to treat the minor (hot)

electron component exospherically, as a first approximation.

On doing so, one obtains

( 2rrmeu 2/ xT2 )1/2 sec x + ( 2nmen2c2/stT 2 )1/2 (  N 
1 /N2)

s 2 [1 - (g etpO /xT 2 )] exp (gecpO/xT 2 )

X [ 1 + erf ( ( - gecp C /xT 2 )1'2 )

- 2 ( - ge^P0/rrxT2) 1/2exp(gejpO/xT2)1- 1	 (8)

instead of (4). Comparison of (4) and (8) reveals that (- gecpo/xT2)

is the same function of (2-n eu 2/ K T 2 )1/2secx+(2rrme r1 2 c 22 x72)1/2(Nl/N2)

in (8) as (- g erPO/xT l ) is of (2rrme u 2 /xT 1 ) 1/2 sec X for N2 /Np = 0
in (4). Thus, the potential cp O given by (8) can be read from

the contour N2 /Np = 0 in Figure 1 7f the ordinate and abscissa

are appropriately relabeled. Continuing the numerical example

of the previous section ( N2 = 0.06Np , T 2 = 6T 1 = 7.2 x 105 A K,

U = 320 km/sec, cA	38.7 km/sec), one obtains a value of 0.9037

on the abscissa for	 = 1. The corresponding value of (- gecoO/xT2)

-16-



9

on the ordinate is 1.169, which is to say that cpo m72.6 V.

The electrostatic potential cp® is significantly larger in this

case than for the purely exospheric treatment of both electron

components.

The exospheric heat fluxes Q (2) and Q (2) remain as given

algebraically by (6), but the relation between (- g ecp0 /Y T 2 )

and ( meu2
 /xT 2 ) 1/2 sec X therein must be obtained from (8) rather

than from (4). Moreover, the heat fluxes carried by fl(vp,vl;r0)

are now given by

(me /vT l ) 3/2 ( Q (i )/ N1me)

- (1/2)[3+(m
e

7l
2c22

/xT 1 )](mk ,rl2c 2 /x 1 1 ) 1/2 	 (9a)

and

(me /x.T 1 ) 3 /2 (Qi 1)/N l me ) = -(me11 2c 22 /, T 1 ) 1/2 (9b)

rather than b y	(6).	 The various contributions to (m_/wT.)3/2

(Q/Npme ) have been plotted (using nob 1) in Figure 3a for com-

parison with Figure 2a. Inserting ap 0 = 72.6 V and Np = 8 cm-3,

one obtains (me/'IT,) 3/2 (Q/Npme ) = 1.519 or Q m 2.72 x 10 -2 erg/cm 2 sec.

This heat flux is considerably smaller than that obtained above

in the purely exospheric two-component model. Moreover, the

total electron heat flux is essentially that of the hot com-

ponent, as Feldman et al• (1974a) have found by analyzing the

observed distribution function f(vj i , v .L ; r) at r— 1 AU.

-17-
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The contours plotted in Figure 3b correspond more nearly

to n m 2, as would be required (Schulz and Eviatar, 1972) for

maQnetosonic instability at r —1 AU. For the solar-wind pa-

rameters used above, this choice of i1 corresponds to an abscissa

of 1.417 (and therefore an ordinate of 0.6122) on the N 2/N
P = 0

contour in Figure la. This value on the ordinate indicates

an electrostatic potential cp 0 .s,38.0 V and (in Figure 3b) a nor-

malized heat flux  ( me / N•T I ) 3/2 (Q/Npme ) = 1.765; for Np = 8 cm-3,

the corresponding physical heat flux is Q f,3.16 x 10-2 erg/cm 2sec.

This lies  between the value for rift 1 ( Q m 2.72 x 10- 2 erg/cm2 sec,

as shown above) and the exospher i c value ( Q m 4.04 x 10-2 erg/cm2 sec).

Similarly, the electrostatic potential obtained for n R,2 (cp0 v 38.0

V) lies  between that obtained for rl ml ( cp 0 ft 72.6 V) and that ob-

tained for the exospheric case (v0 w 15.4 V).

i9-



-f. DISCUSSION

The foregoing results suggest the subtle manner in which

plasma instabilities may reduce the heat flux carried by solar-

wind electrons belonging to the hot (j - 2) component. Although

(in this model) only the cooler (j - 1) electron population

interacts with the unstable waves, the consequently required

Increase in rp O makes the quasi-exospheric hot component less

skewed in velocity space. The result is a diminished heat flow

moment, as given by'(6). Thi. interpretation emphasizes the

macroscopic (non-local) character of the phenomenon.

In the case of a uniform plasma, it might be argued that

only a small portion of even the cooler , electron velocity dis-

tribution could participate in the resonant wave-particle inter-

actions. Thus, it would be difficult to understand how the

cooler distribution as a whole could acquire a mean velocity

u sec x-?IcA . in the interplanetary medium, however, the un-

perturbed motion of the typical electron is a bounded oscil-

lition batween a magnetic mirror point (r - r l ) and an electro-

static mirror point (r - r 2 >r l ). The particle goes through

resonance twice in traveling from r l to r., and receives an

impulse from the unstable waves on each occasion. Involvement

of the entire cooler electron distribution becomes plausible

when viewed in this way, Hollweg (1974) conjectures that the

distribution thus acquires a mean velocity - u sec x -'ncA in the

frame of reference that corotates with the Sun. The observations

of Feldman et all (1974a) confirm t1is conjecture,

The present model does not quite account for the observed
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form (Feldman et a),, 1974a) of the hot- electron distribution

f 2 (v 1 ,vl ;r).	 This is not a major cause for concern. A model

that realistically incorporates collisions and wave-particle

interactions will presumably yield a more nearly Maxwellian

t 2 (v ii ,v i ;r) as observed, without drastically modifying the electro-

static potential cp 0 . The vigilant critic might ask why the

base of the exosphere (r = r 0 ) should happen to coincide with

the position of the observer (r -1 AU), as is tacitly assumed

in applying (1)-(9) to local plasma conditions. This question

serves to emphasize thequasi-exospheric spirit of the present

work and similar past works (e.g., Perkins, 1973; Hollweg, 1974).

The plasma is being treated locally as if it were at the base

of a true exosphere. However, the exosphere itself plays tha

role of a "straw man", corresponding to the role of Vlasov equi-

libria in simpler plasma-kinetic problems.

In the limiting case N 2/Np = 0, the results summarized

by (4) and (6) reduce to the expressions obtained by Hollweg

(1974). The present results for cp 0 bear a close resemblance

to those obtained by Feldman gt al. (1974b) from a more nearly

hydrodynamica l analysis. The quasi-exospheric treatment of-

fered here should be considered as a viable alternative to the

fluid philosophy.

The electrostatic potential m o - 40-70 V, obtained by in-

serting local solar-wind parameters in (8), corresponds to only

a modest increase (<2 km/sec) in the proton bulk velocity u

between r - lAU and r •	 However, the gravitational potential

of the Sun amounts to only -9.4 eV/nucleon at r - 1 AU. If the
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electrostatic potential scales as 1/r, at least back to r• 10-20 r^

(solar radii), then the corresponding radial electric field

is ample to overcome gravity and accelerate solar-wind protons

to the observed bulk speed u ^-320 km/sec. Such exospheric ac-

ce I erat i on would correspond qualitatively to the observed out-

ward proton heat-flow moment (Schulz and Eviatar, 1973). Alpha

particles in the same electric field would experience a smaller

acceleration of the same sign, since the charge/mass ratio is

half that of protons.	 It is difficult to understand in this con-

text, the occasional observations by Asbridge et al. (1974)

that alpha particles have sli ghtly larger bulk velocities than

protons in the solar wind.

In summary, quasi-axospheric models help to clarify cer-

tain observable properties of the interplanetary plasma and

serve as a point of departure for the Vlasov analysis of plasma

turbulence in the solar wind. Such models are strikingly in-

complete, how, ,:r, and leave many important questions unanswered.

If the method of quasilinear theory could be adapted to the

geometry of this inhomogeneous and almost collisionless medium,

the role of wavelike turbulence in the interplanetary plasma

might be ascertained in quantitative detail.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
satility end flexibility have been developed to a high degree by the laboratory
pee sonnei in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
ol ments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aeru h sits Laborator : Launch and reentry aerodynamic%, hest trans-
far, reentry p ysics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high - power gas lasers.

Chemistrand Ph sict Laborator Atmospheric reactions rad atmos-
pheric optics. c e ca reactions in polluted atmospheres, chemi, al reactions
of excited species in rock-t plumes, chemical thermodynamics, plasma and
laser - induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistr y to problems of law enforcement and bicmedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena. including plasma elect romagnetic$; quantum electronics,
lasers, and electro-optics, communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far - infrared technology.

Materials Sciences Laborator : Development of new materials; metal
matrix composites an new orms n carbon: test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment: application of fracture mechanics to stress cor-
rosion and fatigue - induced fractures in structural meta'$.

5ace^Ph sits Laboratory: Atmospheric and ionospheric physics, radia-
tion from the .04 here. density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere: solar physics, studies of solar magnetic
fields; space astr Amy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, s...d solar activity on the earth ' s atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California
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