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SUMMARY

In an earlier effort, a method for analyzing measured airfoil pressure
distributions into their Glauert components was developed and applied.
In general, the higher ordered components of the results obtained
from the analyzed data were larger than could be rationalized. The
present effort was undertaken to investigate and resolve the problem.

Using the techniques investigated in this effort, it was not possible
to develop a computational procedure which would, in general, analyze
airfoil pressure distributions into their Glauert components with
reasonable accuracy. An alternate to the Glauert set of functions
was considered but similar difficulties were encountered. Reason-
able accuracy could not, in general, be obtained. The accuracy of
the results was found to be influenced by many different parameters
and aspects of the problem; however, there is one common denominator
to them all and that is the non-orthogonality of the function-set
chosen as the basis for the analysis.

The pressure distribution analysis problem is fundamentally that of
analyzing a function into its constituitive components when given
only a few isolated points on the.function; the problem is compounded
by the existance of errors contained in the data points. The diffi-
culty of this task is closely tied to the function-set chosen as the
basis for the analysis. Thus, the choice of the function-set, as well
as the analysis technique, will influence the accuracy. Ultimately,
however, there are two requirements on the basis function-set;
interpretive usefulness and numerical accuracy.

The report discusses the difficulties encountered in attempting to
analyze pressure distributions using two different basis function-
sets.

- i.-



TABLE OF CONTENTS

Page No.

SUMMARY i

LIST OF FIGURES iv

LIST OF TABLES v

1.0 INTRODUCTION 1

SYMBOLS 3

2.0 RESULTS AND CONCLUSIONS 5

3.0 TECHNICAL DISCUSSION 7

3.1 Statement of the Problem 7

3.1.1 The Airfoil Pressure 7
Distribution

3.1.2 The Mathematical Problem 8

3.2 Pressure Function-Sets 9

3.2.1 The Glauert Functions 10

3.2.2 The Unsteady Pressure 12
Response Functions

3.2.3 Leading Term of the 14
Function-Set

3.3 Solution Procedure 16

4.0 DISCUSSION OF DIFFICULTIES ENCOUNTERED 18

4.1 Discussion 18

4.2 Examples 24

-11-



Page No,

REFERENCES 28

TABLES 30

FIGURES 34

APPENDIXES

I EQUATIONS AND PROCEDURE FOR ANALYZING fcf.(6;t} 39
IN TERMS OF THE GLAUERT FUNCTIONS

II EQUATIONS AND ANALYSIS PROCEDURE FOR 41
USING THE UNSTEADY PRESSURE RESPONSE
FUNCTIONS (UPRF)

-111-



LIST OF FIGURES

Figure No. Title Page No,

1. UNSTEADY PRESSURE RESPONSE FUNCTIONS 34
@ REDUCED FREQUENCY, k =O.1U

2. COMPARISON OF MEASURED NACA 0012 AIRFOIL 35
PRESSURE DISTRIBUTIONS WITH Cot 6/2.

3. INTERPOLATION OF "DATA" TO EQUAL SPACING 36
SYNTHESIZED (&(.&) OF NACA 4415 AT ot = 6°

4. 5% ERROR ON ONE "DATA" POINT SYNTHESIZED fcCptO) 37
OF NACA 4415 AIRFOIL AT ot = 6°

5. THEORETICAL AND MEASURED UNSTEADY PRESSURE 38
DISTRIBUTION - DUE TO OSCILLATION IN PLUNGE
ONLY

-IV-



LIST OF TABLES

No. Title Page No.

1. COMPARISONS OF ACTUAL AND CALCULATED VALUES OF 30
GLAUERT COEFFICIENTS, ft^ , IN A SYNTHESIZED

2. DIRECTION COSINES, $.« i^ , OF FIRST TWO 31
GLAUERT FUNCTIONS RELATIVE TO REMAINDER OF
SET FOR TWO CASES

3. AIRFOIL STIMULUS AMPLITUDE AND PHASE ( Y^t v^ ) 32
CALCULATED FROM SYNTHESIZED &?(&} DUE ONLY
TO PLUNGE OSCILLATION

A. AIRFOIL STIMULUS AMPLITUDE AND PHASE ( rm , V^. ) 32
CALCULATED FROM SYNTHESIZED &CpC9) DUE TO PLUNGE
AND PITCH OSCILLATIONS

5 AIRFOIL STIMULUS AMPLITUDE AND PHASE (r^ >Y^ ) 33
CALCULATED FROM A MEASURED ftCfte) DUE TO ONLY
PLUNGE OSCILLATION

6. DIRECTION COSINES OF THE FIRST TWO COMPONENTS OF 33
THE UPRF SET, i.e., CORRESPONDING T0r;*,ir; STIMULUS

-Vr



ANALYSIS OF MEASURED AIRFOIL PRESSURE DISTRIBUTIONS *

1.0 INTRODUCTION

Traditionally airfoil development has been carried out via two-
dimensional steady-state wind tunnel tests and this has been
quite satisfactory for fixed wing applications. Reasonable
results have also been obtained by the application of such air-
foils and airfoil data to helicopter rotors. However, when
attempting to optimize airfoils for the helicopter application,
the use of such results is not well justified because the re-
maining gains which may be possible will most likely be dependent
on second order aspects of the airfoil aerodynamic operating en-
vironment. The operating environment for the helicopter airfoil
is both non-steady and substantially different from the two-dimen-
sional wind tunnel.

If the performance of an airfoil in the wind tunnel could be re-
lated to its performance on a rotor, then wind tunnel results could
be more effectively used to develop improved helicopter airfoils.
Furthermore, it would be helpful if more detailed descriptions of
the actual .aerodynamic operating environment of helicopter airfoils
could be obtained. The need for such information was one of the
objectives of a coordinated experimental research program initiated
by the U. S. Army Aviation Material Laboratories (USAAVLABS) some
years ago. As a part of this program, the chordwise rotor airfoil
pressure distributions were measured in flight on several different
helicopters(references 1, 2, 3 and 4) and in wind tunnel tests of
steady and oscillating airfoils (references 5, 6 arid 7). The
results of this program have been useful and did confirm the
non-uniformity of the rotor inflow, however the debates con-
tinued concerning subjects such as the actual aerodynamic angles

* The contract research effort which has lead to the results
in this report was financially supported by USAAMRDL
(Langley Directorate)
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of attack experienced, the chordwise variation of the inflow
(e.g., induced camber) and the applicability of wind tunnel data,

There was now a large body of data but inadequate means for extracting
some of the desired additional information. Specifically there were
no known rational quantitative means for .analyzing airfoil pressure
data. The data analyses were qualitative, i.e., "eyeball" compar-
isons of the flight and wind tunnel data (e.g., reference 8). What
was now required was a rational method for quantitatively characterizing
airfoil pressure distributions relative to their geometry and aero-
dynamic operating environment. This was basically the objective of
an earlier effort by Tung and DuWaldt (reference 9) wherein a method
was developed based on thin airfoil theory and then used to analyze
measured pressure distributions into components corresponding to the
terms of the Glauert series. In reporting the results of that effort
the authors noted that the higher order coefficients evaluated fronr-
the pressure data were often much larger than expected. It was sub-
sequently speculated that the methodology used may have been inadequate
Thus the effort, reported herein, was undertaken in an attempt to
resolve this problem.

The specific objective of this effort was to correct the .problems
in the method for evaluating the Glauert coefficients from airfoil
pressure distributions. The scope of this effort is limited to the
linear operating range of the airfoils in steady-state or periodic
operating conditions. --• ,-----,-

The ultimate objective of this effort was to develop a rational
method for quantitatively characterizing airfoil pressure distributions
relative to their geometry and aerodynamic operating environment.
This capability would substantially enhance the value of pressure
data in efforts to improve helicopter airfoils by enabling compari-
sons of pressure distributions to be made on a quantitative basis.
Also the characteristics of the airfoil operating environment could
now be determined from its measured pressure distribution.

-2-



SYMBOLS

e
F.,F,

Nf>

t

V

ftT

ur
Xi
Cwi

coefficients of the Glauert function analysis

semi-chord

pressure distribution due to angle of attack

differential pressure coefficient

subscript indicating "effective" value

real part of unsteady pressure response function
to IQ, and *7

discrete or vector form of the basis function-set

imaginery part of unsteady pressure response
function due to Q and r;

reduced frequency r bw/s/

number of function component considered by the
analysis

number of data points

chordwise distribution of pressure

coefficients of the components of the stimulus

time variable

local free stream velocity

wake induced velocity normal to chord

sum of. all velocities normal to chord

chordwise coordinate

angle of attack

pitch rate relative to mid-chord

phase angle of stimulus, r^

chordwise bound vorticity distribution

total bound circulation
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0 - transformed chordwise coordinate;

•y - density of§ the air

(J): - the components of the basis function-set

<JO - frequency of airfoil oscillation
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2.0 RESULTS AND CONCLUSIONS

This effort investigated the problem of analyzing
measured airfoil pressure distributions into their Glauert
components. While it can be demonstrated theoretically that
airfoil pressure distributions are composed of these com-

ponent functions, it was not possible ,to_-extract. these, com-
ponents from the^data with sufficient accuracy with the
.procedures investigated in this effort.

An alternate set of component functions was also considered
as the basis for the analysis because they are more char-
acteristic of the unsteady airfoil pressure distribution,
&CC©"} > and thus required fewer components to rep-
resent the &{2, . However, as with the Glauert functions,
it was not possible to extract these components with rea-
sonable accuracy by the procedures investigated herein.

The fundamental source of the poor accuracy and the difficul-
ties encountered was traced to characteristics of the
function-set considered as the basis for the analysis, that
is, their non-orthogonality and their fundamental linear
dependence. The non-orthogonality of the chosen basis set
leads to a requirement that a large number of elements of
the set be considered in the analysis to allow accurate de-
termination of the component amplitudes. However, because
the infinite basis set is linearly dependent, the sub-set
considered for the analysis approaches linear dependence as
the number of elements considered is increased. Fundamentally
it was these two characteristics of the chosen function-sets
which have prevented reasonable accuracy from being obtained
in the analysis of airfoil pressure distributions.

The development of additional information relative to the

general shape of a subject function which is given,
only at isolated points can be readily accomplished via num-

erous interpolation and curve fitting techniques. However,
the analysis of the subject function into its constituitive
components relative to a specific basis function-set is not
as readily accomplished when given only isolated points on
the function.

-5-



This effort was by no means exhaustive of possible function-
sets which could be used in the analysis of airfoil pressure
distribution data. Hence because of the potential benefits
which would result from a technique for quantitatively
analyzing airfoil pressure data, it is recommended that:

1) other basis function-sets be sought and
evaluated which

a) are orthogonal on the interval
of the airfoil chord

b) can be readily interpreted in
terms of the airfoil geometry
and operating environment

3) alternative analysis procedures be considered
such as

a) use of a minimization parameter
other than the sum of the square
errors

b) imposing semi-empirical constraints
on the analysis such as the integrals
of the function, e.g., the lift and
moment

c) use statistical criteria to limit the
number of components considered in
the analysis.

-6-



3.0 TECHNICAL DISCUSSIONS

3.1 Statement of the Problem

How can quantitative information regarding the airfoil and its
operating environment be extracted from the measured pressure
distribution , ̂ £(.6) , in a rational and consistent
manner? Eor limited parameter ranges, the airfoil pressure
distribution can be shown to be closely approximated by the

sum of the component pressure distributions due to individual
sources (or stimuli). Thus, if this set of individual
pressure functions is used as a basis for analyzing the measured
AfH©) then the mathematical problem is that of deter-
mining the coefficients of these components.

3.1.1 The Airfoil Pressure Distribution

The airfoil and its near wake can be considered as the
"system" governing the airfoil "pressure-response" to a
"stimulus". The stimulus and pressure-response in the air-
foil problem are (respectively) analogus to the forcing
function and dynamic response of a mass-elastic system.

The airfoil stimulus is, in general, time varying and is de-
fined as the chordwise velocity distribution (normal to
the chord) impressed on the airfoil from all sources except
that induced by the airfoil near wake. It is generally dom-
inated by the chordwise uniform normal velocity generated by
the angle of attack, but it also includes the normal chord-
wise velocity distributions due the airfoil camber, airfoil
motions, and freestream disturbances such as gusts, turbu-
lence and interference velocities.

The general operating environment of an airfoil includes the
freestream velocity, density, viscosity and the airfoil stim
ulus. Thus, in general, the pressure-response of the air-
foil to a given stimulus will also be influenced by the Mach
number and Reynolds number. However, within limited ranges
of the parameters of the airfoil operating environment, the

-7-
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pressure response to the individual components of the
stimulus can beexpected to combine linearly. Thus a .
desirable characteristic of the set of functions used
to analyze the pressure distribution, ££(0) , is that the
components of the set bear a one-to-one correspondence to
the individual components of the stimulus. Such a set is
suggested by thin airfoil theory (reference 9). This set,
the Glauert functions, occupied the main thrust of this
effort. A second, closely allied set, was also considered
but to a lesser extent. These two pressure component sets,
criteria for the choice of the set, and their relation to
the airfoil pressure distribution are discussed in section
3.2.

3.1.2 The Mathematical Problem

For a specific choice of the function-set, the mathematical
problem is that of analyzing a given &fi- function into
these components of the set. Thus if

represents the chosen function-set and the given Ap-function
was composed as

NV

i) apoo =
then the mathematical problem is to determine the NN co-
efficients, Aj . However in practice the measured data,
which experimentally define &£(.*.) , are obtained only
at discrete points, Xi , thus the mathematical problem
is defined by the following set of equations

2)
where NP> NA is the number of measured data points.
Mathematically a unique solution exists for the NA coeffici-
ents if the functions, ^3-CX^ > are linearly independent,
i.e. ,

3> >C<JUx - O

can be satisfied if, and only if, all the Cj are zero.

-8-



3.2 Pressure Function-Sets

There are several relevent considerations in making a choice
of the function-set to be used for analyzing measured air-
foil pressure distributions. The first is their inter-
prative value;and the second is the total number of the
member functions required to describe the pressure distri-
bution. As a result of this investigation, a third and
dominating characteristic of the function-set which must be

. considered is the orthogonolity of the set.

To be useful for interpretation, the analysis of the pressure
distribution into components must provide information re-
garding the character of the flow response about the airfoil
and the character of the airfoil operating environment.
For example, relative to the flow response, can the pressure
distribution analysis determine if the airfoil is operating
in its linear range and, if not, which non-linear effects
are present (i.e., stall, proximity to stall, what type of
stall, separation bubble, shock wave, etc.)? Relative to
the operating environment, what are the steady and dynamic
"effective aerodynamic" angle of attack, pitch, rate, camber,
and other higher ordered stimuli? Also what is the relative
magnitude in the pressure distribution of the influence of
the unsteady conditions?

The number of member functions required to describe the
pressure distribution is of concern because the maximum number
which can be calculated directly from the data is limited by
the number of available data points on the chord. While
additional "data" may be deduced from the original experi-
mental data by curve fitting techniques, these "manufactured"
data can lead to serious distortions in the determination
of true components of the pressure distribution.

The use of a non-orthogonal set to analyze the pressure
distribution leads to errors attributable to the fact that "
neglected terms affect those determined. The advantage of
the use of an orthogonal set is the independence of each
component of the set.
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The dominating importance of this latter criteria in relation
to the pressure analysis problem was not appreciated until
well into the investigation. Hence the key criteria for the
choice of function-sets was their interpretive value. The
two function-sets chosen on this basis are presented in the
following two sections. A third section discusses consid-
eration associated with the choice of the leading terms of
the function-sets. It is noted however, that the scope of this
early effort is limited to the linear range .only.

3.2.1 The Glauert Functions

Because the scope of this developmental effort is limited to
the linear range of airfoil operation, and because linear-
ized thin airfoil theory has been well demonstrated to yield
good correlation with experiment, it is natural to look to
the theory for suggestions as to the choice of a function-
set. The solution procedure developed by Glauert suggests
one possibility. The coefficients of this series are in
one-to-one correspondence with coefficients of a cosine
series expansion of the chordwise distribution of normal
velocities (stimuli plus induced). Thus they would provide
information about the airfoil operating environment and were
therefore selected as the basis for the analysis. This
selection was made in the initial effort reported in reference
9 and followed herein. This correspondence of the coefficients
and their interpretation are discussed in the following.

The statement of the chordwise boundary condition of no flow
through the airfoil is

where UT(X,t) is the chordwise distribution of the sum of
velocities normal to the chord from all external sources,
such as the airfoil motions, angle of attack, gusts, etc.,
including, as here written, the wake induced velocities in
the time varying situation. Thus W(T£/t} represents
the sum of the induced and stimulus velocity distributions.
The integral in (4) represents the induced velocity distribu-
tion due to the airfoil bound vorticity, V(X,*.)
If the distribution of bound vorticity is represented by the
Glauert series

-10-



(where %=—bCoS Q is a convenient coordinate trans-
formation) and substituted in (4), the result obtained is

6)
m

Thus correspondence of the Glauert coefficients with those
of a cosine expansion of the chordwise distribution of normal
velocities is obtained by a term by term comparison of
equations (5) and (6).

The relevence of the Glauert coefficients to the operating
environment of the airfoil can be deduced from (6). It is
observed that A0 represents the magnitude of the
uniform component of the normal velocities, jUT , over the
chord and can be related to the instantaneous "effective angle-
of-attack", ote , thusly

7)

where V is the local free stream velocity. Similarily (\t ,
represents the linear chordwise variation of these velocities
and is related to the instantaneous "effective pitch rate",

ote , thusly

or related to the instantaneous "effective camber" (parabolic),
thusly

A. i

9)

Likewise the successively high order coefficients represent
higher ordered chordwise variations of the normal velocities,
XU" . Therefore, if these coefficients can be obtained

from the measured pressure distribution they will provide the
type of information sought. Note that these instantaneous
effective parameters would include both the wake induced and
stimulus components.

When, the Glauert functions are used to analyze the pressure
distribution, the following is the representation of

10) &p<.e) ^ 2fv[ftcCB<-f
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From the theory, the chordwise distribution of pressure expressed
in terms of the Glauert coefficients is (in the 0 -coordinate)

ii) &p(e,i) = 2f vf
S

**N I-*

+{ft.U> * zAf*)}4ii6 *£ Z m [-fttt) -*- ftCi^4^n me]

It is thus observed, by comparison (10) and (11), that the
analysis represented by (10) would result in coefficients,
ft^ , which would be the Glauert coefficients, A^. ,

only when the airfoil operating conditions are steady. How-
ever, if the unsteady motions of. the airfoil are periodic, it
is also possible to obtain the A^. from the ft,^
The development of the equations for this transformation is
outlined in Appendix I. Basically the assumption of periodic
'time variation allows the partial deviatives of (11) to be
evaluated formally and a set of transformation equations to
be derived.

In application of this function-set to the analysis of measured

&f>(.©) the Cot" Q/2. function, which is singular
at the leading edge ( 9= O ), is replaced by similar
empirical function as discussed in the section "Leading Term
of the Function Set".

3.2.2 The Unsteady Pressure Response Functions

Because the results of the ,̂-pCO) analysis using the Glauert
functions were not satisfactory, another function-set was
developed from thin airfoil theory which has two advantages
over the Glauert functions. First, fewer terms would be
required to represent the &pl6} and second, each function
of this set is proportional to a corresponding stimulus com-
ponent of the chordwise distribution of normal velocities
rather than the combination of the stimulus and induced com-
ponents as are the Glauert functions. The rational basis for
this set is discussed below.

This function-set is derived from the fact that the total
circulation, P , about an airfoil (in theory) depends
only on the ft0 and ft, Glauert coefficients of the

-12-



airfoil bound vorticity distribution YlTt,t} (equation 5),
that is

•a

12 ) p = J \Cx,t> AX = ZTT b jXtf > + '4 ft.

In discussion of the above section, it was shown that
(the chordwise distribution of velocities normal to the
chord) and the coefficients Q,*!̂  of its cosine represen
tation are, in general, the sum of an induced and a stimulus
component, say ft_ s M* •»• Y~ • Thus equation (6)

*«\ "Ô  &W
becomes

13)
- Z ̂C

Now consider the case where there is only an J£ stimulus
(say r; = f; Cos u)t ) then it is clear that all the \
other ftm will contain only an induced part (i.e.1

£Sm = Wm )• This will be due to the airfoil wake generated
by the time variation of r0 . When this resulting set
of Ar*\ is then substituted in (11), the corresponding
pressure distribution, P0 , due to an r0 — only
stimulus is obtained. This f*, is the first function of
the set. The second function of the set, F$ , due to an

Y\ — only stimulus is obtained similarily. Now because
the wake vorticity is determined by the time-rate-of-change
of the P , and J1 depends only on F\o and A» the
higher ordered r^ (i.e. *v\ > I ) will not generate any
wake nor any ft^ at orders other then w\ . That is an
r^. — stimulus will yield only an ftm ( = r^ ) and when

substituted in (11) yield a corresponding f*^ . Because
these pressure functions each contain all the unsteady
aerodynamic effects as per (11) fewer terms than the Glauert
series are required to represent Ck-^ i.e., they are char-
acteristic of the airfoil pressure response. They are re-
ferred to herein as the unsteady pressure response functions
(UPRF) and when the time variation is periodic they are func-
tions of the reduced frequency, fe . They reduce to the
Glauert functions in the steady-state case when t^=o .

-13-



The C0 and •? , correspond respectively to the effective
angle of attack stimulus, o^e > and the effective pitch-
rate (relative to mid-chord) stimulus, o<e . The corres-
ponding UPRF are obtained from integral representations in
the literature (e.g. reference I'O) . For the r0 ^ <rt stimuli

and

.t̂  F.U,x}G*U>t -

— reduced frequency

- Theodorsen function

CO -^ frequency

I — "^ Correspondes to Cot
v b-vic

Examples of these two UPRF are presented in figure 1 for U.-
The procedure for using this function-set is similar to that
for the Glauert function. The procedure and equations are
presented in Appendix II.

3.2.3 Leading Term of the Function Set

The leading term for the pressure distribution representa-
tions obtained from thin airfoil theory is singular at the
airfoil leading edge because the airfoil is represented with
zero radius at the leading edge. With the exception of the
near vicinity of the leading edge, the solution of thin air-
foil theory have been demonstrated to be quite good for the
linear operating range of the airfoil. This term represents
the pressure distribution due to a steady f^ stimulus (i.e.,

-14-



angle of attack). In the chordwise Tt— coordinate, it is

b-Y

while in the 6— coordinate (where "¥= — kCcS© ) it is

Using this singular function in the analysis of pressure dis-
tributions would result in significant errors if there were
data points near the leading edge.

One possible alternative is to apply a thick airfoil correction
to Cdt ®/2_ • Roshko (reference 10), for example, de-
velop a correction of this type utilizing an ellipse (fit
to the forward part of the subject airfoil) plus a flat plate
fin extension (to obtain the desired chord length).

Another possibility, for this leading term, is to use the
measured steady-state pressure distribution obtained for"1

the subject airfoil at a small angle-of-attack and normalized
by this angle. The typical correlation of Cô ®/z. with
measured steady-state small-angle &.jp. is observed in figure 2.
For this developmental effort measured &>p. were used to -
define the leading term and is designated as

It is noted that a characteristic of this leading term
in the £ — coordinate system is that it will have a zero
slope at &-O . This is simply the result of the co-
ordinate transformation "*.-=. -bGos© and the fact that,
in general, the airfoil surface pressure distribution is a
continuous function of the "surface coordinate" around the
leading edge.

-15-



3.3 Solution Procedure

The analysis is defined by the set of equations , (2) . If
the number, |V\ , of functional components to be considered
by the analysis (i.e., to be evaluated) is equal to the
number, NP , of data points defining the measured &fi.
function, then equations (2) are a set of NP linear
simultaneous equations in, .the- NP unknown coefficients.
However, when the number, CA >of components to be evalu-
ated from the measured &.f. is less than the number of data
points, equations (2) will represent an overdetermined
system; that is, there are more data (and thus equations)
than unknown coefficients. This "extra" data can effectively
be used to determine the, |v\ , unknown coefficients by
application of the method of least squares. The function,

T̂fL , defined by these, rA , components will be the
best "fit" to the data, &4H£<̂  > in the sense that
the average square error (residual) at the data points

HP

n. »&
will be minimumized and the "fit" will not pass through the
data points. However, when iA-=. NP , the residual will
be zero and the "fit" will pass through the data. That is
when t*\- N? the results will be the same as those
obtained directly from equations (2).

By applying the principle of least squares, the equations
(2) to be solved for the unknown, Am 5 become

17 >
- W

2L *•* 1 *£- ty
**-n U»»

where the number, NP , of data points must be greater than
or equal to the number, KV , of functions considered. Equa-
tions (17) are a set of, l*\ , linear simultaneous equations
in the, NA , unknown, A,^ , where the coefficients,

of the equations are determined only by the function-set used
by the analysis and the data point locations, X*. . Thus,
for application to a given set of measured &o (all obtained

-16-



at the same Yi. ) the coefficient-matrix [/̂ "A. of

(17) need only be evaluated and inverted once. The analysis
of each measured &$ is then obtained by simply evaluating
the right-hand side of (17) and pre-multiplying it by the

inverse.
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4.0 DISCUSSION OF DIFFICULTIES ENCOUNTERED

Unless otherwise stated, and only for the purposes of the
following discussions, the measured pressure data is considered
to be free from experimental error and to coincide with
the actual airfoil pressure distribution (the subject
function) at their respective chordwise locations.
The following is a discussion of the various aspects of
the overall problem, the difficulties encountered, their
interelations and their relation to the various aspects
of the problem as posed. This investigation was begun
recognizing that there was a difficulty with the analysis
as developed and reported in reference 9. However, the
essential nature of the difficulty was not fully appre-
ciated. Thus, many false starts were made and blind
alleys traveled in search of an adequate analysis pro-
cedure. The following discussion is neither exhaustive
nor conclusive but simply a presentation of the present
hindsight views of the problem.

4.1 Discussion

The problem objective is to analyze airfoil.pressure
distributions, &,p. , into their Glauert function com-
ponents. That,is, determine the coefficients of a series
expansion of the airfoil pressure function where the

basis functions for the representation are the Glauert
functions. The pressure distribution ("subject function")
is a continuous function and an infinite number of
points are required to define it. However, this con-
tinuous subject function is not available for the an-
alysis. The data are available only at a relatively few
isolated points and thus define a "discrete function"
(or vector) with only a finite number of components. It
is clear that an unlimited number of continuous functions
(in addition to the subject function) can be made co-
incident with these data points. Thus the subject function

-18-



is not uniquely defined and there is the following
question: Which of the many possible continuous func-
tions has been (or is being) analyzed? The task, there-
fore, is not to determine the coefficients of any

smooth."fit" to the data but specifically the coefficients
for the subject function from which the data are obtained.

The finite number of available components for this
data-defined discrete function limit the analysis to
this number of components. That is, the coefficients
for only NP components can be evaluated (where NP is the
number of data points). If the function-set used as
the basis for the analysis is orthogonal then it is math-
ematically possible to determine the first NP coefficients
because each is independent of the others. However, if

the function-set is non-orthogonal, then all the com-
ponents of the subject function are inter-dependent and

thus all present must be evaluated simultaneously to
obtain the correct values. That is, of all components
of the subject function are not included in the analysis

then the neglected components will give rise to errors
in the coefficients of those included. These errors
are herein referred to as truncation errors. In general,
the number of components (in terms of the chosen function -
set) actually contained in the pressure function will be
greater than the number of data points. Thus, some com-
ponents must, of necessity, be neglected. Non-orthogon-
ality of the basis for the analysis will then give rise
to truncation errors in the computed components. due to
the neglected components.

The number of components of the chosen function-set
actually contained in the subject pressure function (i.e.,
required to represent it) will, of course, depend on the
function-set chosen. If the chosen set is characteristic
of the airfoil pressure function, &.p. , then rela-
tively few components will, in general, be required to
represent it. The Glauert functions are characteristic
of the theoretical airfoil &jflt6) . This, primarily be-
cause of the leading angle-of-attack pressure function.
If, for example, the set of sine functions were the chosen
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set, then theoretically an infinite set of these com-
ponents would be required just to represent the angle-

of-attack function component of &-p-̂ ^ • Thus the
specific function used for this angle-of-attack function
will be crucial with regard to the total number of com-
ponents required to represent &{2.C6) . That is, that
portion of the actual A-p(O) which cannot be repre-
sented by the chosen angle-of-attack function must be
represented by the remainder of the function set.

Because of the practical limitation of a finite number of
data points, the analysis task must work with finite-
component discrete functions rather than the continuous
subject function and the continuous functions of the
chosen function-set (basis). These finite-component
discrete functions are (or can be considered as) finite

NP- dimensional vectors where the magnitude of each com-
ponent of the vector is the magnitude of the corres-
ponding function at each chord point and the vector
space is the specific set of chord points. That is the
discrete function is a plot of the vector components.
Given a set of chord points, the pressure function
defines the "measured vector" and the basis function-set
defines a "basis vector-set". However, it is noted that
orthogonality of the function-set will not assure orthog-
onality of the corresponding vector-set. The skewness
(degree of non-orthogonality) of the resulting vector-

set will be determined not only by the functions but also
by the specific chord points used to define the vectors.
That is, for a given function-set the.skewness of the
corresponding vector-set will vary with the number and
distribution of the chord points used. Thus, the inter-
dependence of the coefficients and the truncation errors
due to neglected components (discussed above) will, for :

the actual analysis, be determined by the skewness of the
vector-set (rather than the function set).

Skewness of the basis vector-set wi.ll influence the "con-
dition" of the governing equations of the analysis. The
governing equations (section 3.3) are a system of linear
equations. When small perturbations in the elements of
the coefficient matrix of these equations or in the right-
hand sides or in the process of solution of this system
have little influence on the solution, the system is termed
"well-conditioned"; however, if the influence is large,
i.e., the solution is sensitive to these perturbations, then
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the system is "ill-conditioned". As stated in reference
12, "all methods of solving an ill-conditioned system of
linear equations are generally bad". Generally as the skew-
ness of the basis is increased, the condition of the system
deteriorates. For linear systems, ill-conditioning occurs
when the matrix of coefficients is nearly singular, i.e.,
when some rows or columns are almost linearly dependent.
When the system is ill-conditioned it becomes numerically
very difficult to obtain an accurate inverse. However,
even if an exact inverse is available, the solution will be
very sensitive to perturbutions of the right-hand side of the
equations which are determined by the data. Thus small
changes in the data will result in significant changes in
the results.

/

The Glauert function-set (section 3.2.1) is composed of a
leading term ( BIB} )» representing the G-fUB) due to
angle-of-attack plus the sine functions SIAB. *e-, n = t,i,"-NS.
This set of functions is non-orthogonal because of the

leading function. Also this set of functions has the char-
acteristic that as NS increases, the set approaches linear

dependance. (The UPRF-set (section 3.2.2) also have this
characteristic)- Because the set of sine functions (for
f\~*-oo ) are a complete set on the interval O 66£7T ,
all bounded integrable functions on this interval may be
represented by a linear combination of them. If NS is
large enough, the B16} of the Glauert function-set can
be represented by a linear combination of the sines and
thus the set will be linearly dependent. In practice, how-
ever, the problem is not that the set of functions will be
linearly dependant but that the governing equations become
increasingly ill-conditioned as NS is increased and the
set approaches linear dependance. This leads to the nu-
merical and sensitivity problems of ill-conditioned systems
discussed above.

The limitation (due to the finite number of data) on the
number of components considered by the analysis, and thus
the resulting truncation errors, could possibly be cir-
cumvented if additional (psuedo) data were obtained from the
measured data by interpolation. This however, can lead to
two difficulties. First, as described above for the Glauert
and UPRF-sets, if the number of functions used is increased,
the governing equations become ill-conditioned. Second,
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the interpolated data will not necessarily coincide with the
subject function, i.e. false data can be introduced.
Depending on the magnitude of the interpolation error in
this false data and the sensitivity of the governing
equations (which also will be increased by increasing the
number of components.-), large errors in the computed
coefficients can occur.

Another possibility for circumventing the difficulties re-
lated to°the non-orthogonality of the function-set is to
orthogonalize the set. The analysis of the subject function
could then be performed relative to the orthogonal set and
would be free from these difficulties. The coefficients
of the expansion relative to the orthogonal set could then be
transformed back to the non-orthogonal set. There are,
however, two difficulties which are presented by this
approach. In general, many more functional components will
be required to represent the airfoil pressure function in
the orthogonal set than in the non-orthogonal set. All
of these additional components (in the orthogonal set)
must be included in the analysis if the truncation errors
are to be avoided because, in general, each component in the
.non-orthogonal set will depend on all components in the or-
thogonal set. But, as described above, the available in-
formation (i.e., the number of data points) defining the
subject function is very limited and thus it is not possible
to expand the number of components to be considered without
encountering other problems. Thus, this approach is not a
viable one for avoiding the truncation error difficulty.
Furthermore it is not useful for avoiding the problem of
ill-conditioning. It can be shown that if the governing
equations for the analysis relative to the skewed set are
ill-conditioned then the equations for transforming the re-
sults back to the skewed set from the orthogonal set will
also be ill-conditioned.

The difficulties discussed above are encountered in the
absence of error in the data. If the data contain error,
the difficulties are severly compounded because the
relatively.few data are the only information available con-
cerning the unknown subject function. Recall, even if exact
they do not adequately define the subject function. When
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the data contain error they, in effect, are obtained from
a function which differs from the subject function by an
unknown amount. Thus, in general, while it is theoretically
possible to calculate a set of coefficients from a given •-
set of data using a given set of linearily independent func-
tions, in practice the resulting coefficients will bear
little resemblence to the true coefficients of the subject
function from which the data were obtained except under
special conditions.

The coefficients of the representation of the subject
function in.terms of the chosen function-set can be obtained
when the number of functions of the set included in the
analysis encompasses all that are present in the subject
function or if there are neglected components, they are
orthogonal to all the components which have included in the
analysis. These conditions will always be satisfied if
the chosen set is orthogonal.

The above statements are true when the data points actually
coincide with the subject function (i.e., no errors). If
there are errors in the data, then the influence on the
resulting coefficients will depend on their distribution.
If they are distributed such that they represent a per-
turbation from the subject function which is orthogonal to
each of the component functions which have been considered
in the analyses, then they will not influence the results.
If, however, this error perturbation on the subject function
is not orthogonal to the included components then, of
course, the error will contribute to them.

In considering all the above ramifications of the problem,
it becomes clear that the non-orthogonality of the basis func-
tions-set can influence the analysis in many ways. Thus,
it is desirable that the chosen function-set not only be
useful interpretation of the airfoil pressure distributions
(as discussed in section 3.2) but also be orthogonal on
set of chord points at which the dataare given.
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4.2 Examples

The following examples are presented to illustrate the
nature and severity of some of the difficulties discussed
in the above section. For this purpose, a synthesized
pressure distribution, kCpCft") > approximating the
NACA 4415 at oi~ O« I radian is synthesized from the
first nine Glauert functions so the true content of the
subject function is known. The values of these coefficients
are presented in Table 1 and the function is presented as
the curve in figures 3 and 4.

Thirteen "data points" are selected from this subject func-
tion at the same chordwise locations used for the wind
tunnel tests of reference 6. If these data are analyzed
considering at least the first nine components of the
Glauert function-set, then the true values of the coefficients
are obtained because all the functional components actually
in the data are included in the analysis (none are neg-
lected).

If these thirteen data points (the •+• symbols in figure 3)
are interpolated to obtain eighteen equally spaced points,
they will not be on the subject function as shown in ex-
ample 1 of figure 3. (A spline-fitting interpolation pro-
cedure was used to obtain these points.) These interpolated
(psuedo)1 data are from a different function whose composi-
tion includes more than the first nine Glauert components.
Thus when this psuedo-data is analyzed considering only the
first nine components of the Glauert function-set, those
components beyond the first nine will have been neglected.
Because the function-set is non-orthogonal, "truncation
errors" result. The magnitude of these errors is evident
in the resulting coefficients presented in Table 1 where
they are compared to the true values of the subject func-
tion.

In the above example, the deviation of the psuedo-data
from the subject function are relatively small except at one
point. Yet the errors in the results are large, thus the
degree of sensitivity of the solution to the data is ob-
served to be large. This sensitivity is. demonstrated in
example 2 where eighteen equally spaced data points were
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taken from the subject function and a -5yo error was intro-
duced in one point as shown in figure 4. When a ten com-
ponent analysis is made of this "data" the resulting co-
efficients, presented in Table 1, contain significant
errors. Whether .the data is considered to actually
contain components neglected by the analysis or errors in
the individual data points, the results are the same. In
practice both neglected components and data error will be
present simultaneously and must be coped with.

The truncation errors result from the non-orthogonality
(or skewness) of the basis used for the analysis. As dis-
cussed in section 4.1, the basis functions are not used
directly but rather a set of discrete functions (vectors)
defined by them and the chordwise distribution of data
points is the actual basis for the analysis. The direction
cosines (dot product of unit vector pair) of a vector pair
is a measure of their skewness (or the generalized angle
between them). The value of the direction cosine range
between zero and one with a value of one indicating the
two vectors are parallel (i.e., the one discrete function
of the pair is a constant times the other) and a value of
zero indicating that the two are orthogonal.

The influence of the chordwise distribution of the data on
the skewness of the vector set defined by the Glauert
functions is illustrated in Table 2 for two distributions.
Presented are the direction cosines (relative to the re-
mainder of the set) of the first two vectors of the set, i.e.,
the one corresponding to the angle-of-attack function
, -f •= 8(6) > an^ tne one corresponding to the -f, =. Sine 1«9.
The first case is for eighteen equally spaced •
points along the chord. Because the sequence of sine func-
tions [ (^ -ft, = Sirv« irv.0, *\=t,l,3, ••» ) are oroth-
ogonal and the points are equally spaced. The resulting
vectors are orthogonal as is evident by the small values
( t * \O~t> ) of the corresponding direction cosines
(i.e., for -f, »-frt )• The skewness of 40 = Bt6>
relative to the remainder of the set is evident by the
relatively large values of the -f 0 • ̂n • For the second
case, the thirteen non-equally spaced points of reference 6
are used.(shown in figure 3) Here-in column 2 the non-
zero values ( -f, »-fn ) indicate that the vectors corres-
ponding to the sine functions are no longer orthogonal, and
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the values of the direction cosines ( 4 0 • ~̂ rx ) in
column 1 are generally larger than for case 1 indicating that
the skewness of BC©) relative to the sine functions is
greater in the second case.

The truncation errors resulting from non-orthogonality
are also dependent on the components of the subject function
neglected by the analysis. A relatively large number of
Glauert components are required to represent the &C$.C£)
because of the shed wake effects, thus, in general, neglected
components are ever present in the subject function relative
to this function-set. As discussed in section 3.2.2, the
UPRF set are theoretically .characteristic of the &CrCfe'>
and thus, in general, only a few components should be required
and the neglected components, if any, should be small and
few. Thus the use of this set was explored using a
synthesized &CpC©) corresponding to an experimental
case of reference 6 for an airfoil occilating in plunge
only (i.e., the only stimulus present is r^-ill-lS with

The chordwise distribution of the magnitude of this
and its phase distribution are presented in figure 5
as the dashed curves. The corresponding experimental data
(11 points) are also shown for comparison. As explained in
section 3.2.2, the &CPl©\ is represented in terms of the
unsteady pressure response functions (UPRF) due to the
stimuli, r^ . Thus as shown in AppendixDj the stimulus
amplitudes, rv»>. , become the coefficients of the represen-
tation sought by the analysis and for the first two (i.e.,
fo ^ *"i ) there are redundant solutions, one each, from
the sine and the cosine components of the AC^C©) (equa-
tions 3-a and '3-b of Appendix]!). The results of analyzing
this synthesized &CpC6) using "data" selected from it
at the eleven chordwise locations of reference 6 are pre-
sented in Table 3. (For r0 a, v\ the redundant solutions
are presented.) Three analyses were made progressively
increasing the number, (v\ , of stimulus components con-
sidered by the analysis. It is observed that for r*\ - \ the
results are exact but that they deteriorate as more components
are considered.
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A second &Cp(.6̂  was synthesized for a combination of
y~0 & v*, stimulus, i.e., a combination of plunge and
pitch. The results of three analysis considering pro-
gressively more components are presented in Table 4. Here
the results are observed to be poor for all three cases.
The experimental data shown in figure 5 corresponding to.
the first &Cp(.&V were also analyzed in a similar manner
and the results are presented in Table 5. Here the results
are, again, very poor and the differences between the
results in Tables 3 and 5 correspond to the differences
between the synthesized and experimental ACpt.6} presented
in figure 5. These differences in these results are in part
due to the influence of data errors and/or truncation errors

\ for tfre UPRF set. However the direction cosines of the UPRF set,
| presented in Table 6, for the real and imaginary parts corresponding

to r0 $ TJ- , stimuli reveal that they are an extremely skewed set
j and therefore the solutions are extremely sensitive to minor per-

turbations in the data and/or the numerical processing. Thus while

the UPRF set is characteristic of the unsteady airfoil pressure
response, i.e.,very few terms of the UPRF set are required to rep-

j resent the &Gp(.©̂  , the functions are poorly suited for analysis.
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TABLE 1

Comparisons of Actual and Calculated Values of Glauert
Coefficients, ft^ , in a Synthesized

Two Examples:

No. 1 Interpolation of Data to Equal Spacing

No. 2 5% Error on One Data Point

m

0

i
.2

3

4

5

6

7

8

9

10

ACTUAL
VALUE fV

25.00

40.75

6.925

1.3325

-1.045

-1.025

. 0.23375

0.635

0.007475

0.0

0.0

EXAMPLE
No. 1
( f ig - 3)

-10.95

101.34

75.28

50.20

37.82

26.44

19.38

12.67

8.80

5.86

4.68

EXAMPLE
No. 2
' (fig. A)

19.38

50.04

17 . 19

8.36

4.44

2.60

2.60

2.09

1.00

0.753

0.533
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TABLE 2

Direction Cosines, of First Two_
Glauert Functions Relative to Remainder of
Set for Two Cases

m

0

i
2

3

4

5

6

7

8

9

10

Case No. 1
18 Equally

Spaced Points

{.**„

1.0

.280

.316

.227

.186

.132

.093

.062

.j043

.1027

.011

-T.-Pm

*lxlO"6

1.0

«lxlO"6

Case No. 2
13 Non-equally
Spaced Points

, . of.Ref. 6 .

•P-f~e *»vv

1.0

.596

.673

.492

.223

i .0747

.0703

.0767

.0855

,0875'"

.0670

*,-C

.596

1.0

.243

.0975

-.170

-.225

.0763

.0302

.0200

.0665

.0743
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TABLE 3

Airfoil Stimulus Amplitude and Phase ( »̂ ,, Vpn )
Calculated from Synthesized &Ĉ 16} Due Only to Plunge
Oscillation.

f^\

1

2

3

Eq,n.

Cos.

Sin.

Cos.

Sin.

Cos .

Sin.

U,V 0 )

(21. 75, -90°)

(21. 75, -90°)

(16.1, -96°)

(27.0, -33°)

(15. 7, -97°)

(26. 7, -34°)

Cri ,x)

—

(0 .6 ,0°)

(2. 4, -90°)

(0.6, -10°)

(2. 3, -90°)

Crv ,*O

—

(0 .2 , -90°)

TABLE 4

Airfoil Stimulus Amplitude and Phase (
Calculated from Synthesized &Cp Due to Plunge and Pitch
Oscillations

= (21. 75, -90°); = (4 .35,0°) ; fe = 0.211
•̂ ••••̂ Ma^^B î̂

K\

1

2

3

Eqn.

Cos.

Sin.

Cos.

Sin.

Cos.

Sin.

.
(n ,x^

(85. 2, -78°)

(25. 8, -36°)

(16. 3, -100°)

(26. 8, -38)

(12. 7, -102°)

(23. 9, -44°)

•̂̂ •̂ ••̂ •••̂ ^̂ ••̂ •••̂ •̂ •̂(̂ ••̂ •̂••̂

C»t , -w;^

— —

(7. 2, -7°)

(5.3,-l°)

(5.3,0°)

(4. 7, -23°)

Ca , -v^

—

—

(4. 4, -45°)
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TABLE 5

Airfoil Stimulus Amplitude and Phase ( r^^v^ ) Calculated
from a Measured &Cp Due to Only Plunge Oscillation

( r0>-jT0 ) =..(21.75-90°); ..... k =0.211

iV\

1

2

3

Eqn.

Cos.

Sin.

Cos .

Sin.

Cos .

Sin.

c^-o
.(44. 4, -86°)

(43. 3, -19°)

(70. 5, -108°)

(539.2, 16°)

(475. 7, -62°)

(2264. , 24°)

(r. *vt)

—

(37.2, 72° )

(101.1, -150°)

(474.6, 90°)

(1365. ,-175°)

CrV ,TO

—

—

("202. 8, -113°)

TABLE 6

Direction Cosines of the First Two Components of the
UPRF set, i.e., Corresponding to Yj, 4, r; Stimulus

Fo

Go

FI

GI

FO

1.0000

-.95919

.79785

.99117

G*

-.95919

1.0000

-.59484

-.94489

F1

.79785

-.59484

1.0000

.80325

Gl

.99117

-.94489

.80325

1.0000

F;^ are the real part of the Rvx due to r^

''Gi»nare tne imaginary part of the fjyx due to CU
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APPENDIX I

EQUATIONS AND PROCEDURE FOR ANALYZING
•IN TERMS OF THE GLAUERT FUNCTIONS

The following is an outline of the equations and procedures
for analyzing measured airfoil pressure distributions relative
to the Glauert function-set.

The airfoil pressure distribution in terms of the Glauert func-
tions (with the theoretical Cat 6/2_ angle-of -attack function
replaced a semi-empirical Bl.6,1 function) as obtained thin
airfoil theory is

me

+ 1*X

mat

If the operating conditions are periodic then the Glauert co-
efficients fty^ for W. = o,i,7.,»«-iA can be represented as

2a)

2b)

thus

Now if the Q - term of (1) is expanded in a sine series,
thusly

3) e =

and the result, (3), substituted in equation (1) along with
equations (2), the result, at each harmonic, can be put in the
following form:
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Pie,-*) =
Y\ '

where

WC

The coefficients CIWK 4 C«MS °^ '(5) are then related to the
components CX^,W ^. b^^ of the Glauert coefficients p(
(equations (2) ) by the following

6a) C-cn~CiLon

60

The procedure for analyzing the experimental p̂(6,t in terms
of the Glauert function is:

1) Put the data in the dimensional form

2) Harmonically analyze the PCQ,) to obtain the
functional components P^®^ and PC6i as per
equation (4).

3) The &} and >M' are analyzed as per equa-
tions (5) to obtain the coefficients C*nn 4 Sw»*%.

4) The coefficients Cmrv and SWrv are used in equa-
tions 6) to obtain the O.mn 4, k̂ ,«. components of the
Glauert coefficients as in equation (4).
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APPENDIX II

EQUATIONS AND ANALYSIS PROCEDURE FOR USING
THE UNSTEADY PRESSURE RESPONSE FUNCTIONS (UPRF)

The following is an outline of the equations and procudure used
for analyzing both steady and unsteady airfoil pressure distri-
bution in terms of the UPRF.

Because the phase of the airfoil unsteady pressure response
varies over the chord, the experimental ApOB/̂ /i'*? V is
resolved into two component functions, 4̂®̂  an<^ ^r»t®^ ^y
harmonically analyzing &pC®,"*} at each chord location

© thusly;

1) &f(A,*} -

These two component pressure distributions
define the chordwise distributions of the amplitude and phase
of the unsteady pressure response of the airfoil relative to
the observational reference system. If the .airfoil stimulus
(defined in section 3.1) at each harmonic is considered to be
represented by the following cosine series

/ M \
2) RC©,*) = ( z_ *? Cos-j© ) GosC"01*-*-̂

j L^ \ "̂̂ ^ • / *

then it can be shown that the two pressure distribution com-

ponents, PC®) an^ ^ C®) can t>e represented as follows
WC. «k

.•A

m9

NX
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where the F0t© <kj&̂ , F,C©̂  , <a,CS) and the Sine w\e
are the components of the UPRF 'set (as defined in section
3.2.2). The expansions represented by equations (3) are
the form of the analysis of the airfoil pressure distribution
in terms of the UPRF. Each of the pressure distribution com-

ponent functions ^^^ an^ »̂Ĉ  are analyzed
(resolved) to obtain the coefficients of equations (3). The
resulting coefficients of the analysis are related to the
coefficients of the stimulus representation (equations 2)
as follows

Nlt= r, Cos K,
N,, = r; 4w\ V,

N

where Nt = l ^ 0 for ^1 and

CM.js •= (fj <kvv Y.> for \ 2. 1,"%, - - - tA

The procedure thus is:

1) The data must first put in the dimensional form

2) The PO, is harmonically analyzed to obtain
the P(.fĉ  an<^ P(©} as per equation (1).

3) The functions tĈ ^ and * are analyzed
as per equations (3)' to obtain the coefficents
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4) The Cvnc and (V̂ , are use(j in equations (4b)
to obtain the t t̂ <$. Njs for } a 2.,-̂  v.v <v\

5) Finally, the N^«. and N}s for ^ * o,\ ,~L t <• .
are used in equations (4a) and (4c) to obtain amp-
litude, r , and phase , .
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