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REQUIREMENTS FOR IMPLEMENTATI0N*OF KUSSNBR AND WAGNER
INDICIAL LIFT GROWTH FUNCTIONS INTO THE FLEXSTAB

COMPUTER PROGRAM SYSTEM FOR USE-IN DYNAMIC LOADS ANALYSES

k * by Ronald D. Miller aod John T. Rogers » » *
» « k •Boeing Commercial Airplane Company » t * * %

J
1 * * , ' l.O^SUMMARY* , ' ' ? » * » t

*«* * * * k«« » * * • •, i •
•, t - " m * t * . * * - * . %

This document 4escribes the requirements^* implementation of Kxissner and Wagner
indicial lift growth functions in*, the NASA-Ames FLEXSTAB Computer Program

, System (CPS) to represent unsteady aerodynamics^for use in dynamic gust loads
analyse:,. This study was performer under NAJ3A, contract NAS2-7729, "Development qf
a FLEXSTAB Computer Program" (task |V, item I) % " ' % , \

Use of the Kiissner and ^Wagner unsteady aerodynamig representations is reviewe|l, the
requirements for dynamic loads analyses are outlined, and the applicability to these
requirements of the various program segments existing in the NASA-Ames l.OCT.xx
controls-fixed version of the FLEXSTAB CPS is determined. From this information, the
modifications to the existing FLEXSTAB CPS required* for creating a dynamic gust
loads analysis capability are identified and discussed.

• » * * * * % •* »
1 The conclusion is that a large nttmber of modifications and aflditions to the existing*
* NASA FLEXSTAB CPS would be required before implementation of the Kussner and
! Wagner indicial lift growth functions into'the FLEXSTAB CPS would provide'
* meaningful gust loads analysis capability."'

* » * • » >

-^ \ * ~+ ' 2.0 INTRODUCTION

r«%*r %* *r**** * * *f The NASA has developed the FLEXSTAB CPS (ref. 1)^ primarily for stability and .
' control analyses of controls fixed elastic flighj vehicles using steady state aerodynamics .
'"'and a ̂ low^frequency approximation to ansteady aerodynamics. Other Capabilities
| include the ability to calculate static load distributions (inertia and air loads>»and»tnm *

* »**^ • **-* * »*•* ************ »*•
' In order* tcnoexpana^trte systejj*to rnclude dynamic loads analyses involvfhg ^active ,

control systems artd to, ma^elt attractive for a variety of uses ranging from generalized
» studies to actual design, it is*necessary to have the option of using aerodynamic theories *

t̂- ^ V ^ 't a.

k ranging frbm steady state to unsteady. Reference 2 exanxjneat the feasibility of
incorporating both^the KUssper and Wagner" indicial lifj. growth function unsteady f

t aerodynamic represejitation and a more exaqt un^^ady aerodynamic theory (Doublet
Lattice) into the FLEX6TABtPS»forjuse in'dynamigJoads anal^seA "* k * * k* . *
. 1 . ~+ i?^J°̂ '̂ iJM* ̂ LJk ** .JLA^AJ^V ^L
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This study wa limited to examining onlv .he use of Ktissner and Wagner indicia! lift
< growth unsti dy aerodynamic representatt 'nt> Spi-cific tasks were to detormine:

' • '• "increments for implementation and uso ol She Ku.ssnt-r and * J t idier inaicial
. r.h mt adv ^.To^vn.imu n, re: 'ntatiuos in ti ' iVASA-Ames FLEXSTAB

I . O f i . x for dynamic ioadt,

! • iidi 'tional program requirements to complete the preceding task
I
i • Limirnuon.s and deficiencies which presently exist in tho FLLX8' *\L*. i.OO.xx

system for dynamic loads analyses

I
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3.0 GENERAL REQUIREMENTS FOR DYN.
ANALYSES

fflf ? TT
»ADS

•W -

To evaluate the FLEXSpVp GPS fpr use in calculating Dynamic gust loada^ it is first
necessary to determine the general requirements of, dynamic loads analyses^ These
requirements were established in, reference ,2 ajid are restated, here for subsequent use

**
in this study.

« •* ** * ' * » * - » • < •
A general dynamic aeroelastic loads analysis system includes the following elerqents:

1. Definition of structural geometry and structural and aerodynamic panels.
« h - 4 •- * » s* % -i * * It *

2. * Definition of the structural model* * 1 m *
• * * * » * * £ • »

i *
« * t

3. Calculation of structural vibration characteristics and determination 01 tl
generalized mass and stiffness

4.

5.

6.

7.

8.

generalized

Definition of the aerodynamic model
, . > « * * * • * • * * * « »

Definition of the control system model
. * t* «t * *»* f| <| • •

Definition of excitation functions

Formulation of the equations of motion and load equations

Solution of these equations to determine:

a. Coordinate and load responses in either the, time or, frequency, domain; a*id
power spectral density (PSD) load parameters » • • « • « *

* * *#$ &k *&

f f -, * * *• =''. -» * '*• 8 * » * ' * * * * < ^ $ * * » . * * * * «l
b. Roots of the characteristic equations

The requirements and levels of sophistication for each of these elements need to be
specified in order to establish a base for determining such limitations and deficiencies,
presently existing in the FLEXSTAB CPS, as concern dynamic loads analyses
capabilities. These general requirements are described in the following paragraphs.

, . . . . » "

* w • j •
3.1 GEOMETRY AND PANELING

*. « • * « **
Geometric .data describing the aircraft components are required before dynamic
aeroelastic loads analyses can be performed/Panel characteristics* pfertinent to the
structural and aerodynamic* model representation must be defined; since* tne
aerodynamic and structural panels are seldom identical1, separate'paneling schemes
must be gmployed for each. * if * < * * *» *

„„. . . -»- ,_- . - --•*--- -*-**_.
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*"• ww m " •"•"•»•*» m i . "w^"r'W *"*FWT§ £_Wjk /TPl| ^"W V WW\
) • 3.2 STRWCTUllAl^REPllfelNlr^ripPi

f * • i 'I
• * •* * f | •

The structure may be Represented by beam segment^ or fifiite elements for calculatiqp
of either flexibility or stiffness matrices? If beam segments are modeled, the ma§s $
representation usually consists of lumped masses and inertias which, when summed,
equal the total airplane e.g., weight, and rotary inertias. For a finite element structural

* representation, the mass is usually represented by lumped masses at the finite element
nodes corresponding to the weight c.g.'s of small panels, and again total airplane e.g.,

' weight, and rotary inertias are matched. The number of degrees of freedom resulting
' from these structural and mass representations would be too large for an efficient
' dynamics solution. Consequently, the mass and stiffness or flexibility matrices are used $
' to formulate an eigenvalue problem whose solution produces structural mode shapes \

and frequencies which are used to define a smaller number of generalized coordinates .
than physical coordinates. Thus, the problem can be reduced to a workable size for

! dynamic loads analyses with little loss of accuracy (if enough modes are used). »

"* 3.3 AERODYNAMIC REPRESENTATION

. »
* f

' % ' 1
% * * -%1

The aerodynamic^ model is required to calculate the response and excitation air forces ,
that are used to determine generalized air forces for the equations of motion
development and to form air load contributions for the load equations. The degree of
sophistication required of the aerodynamic representation is dependent upon the type pf *
dynamic aeroelastic loads analysis to be performed. For preliminary design and gusti
loads, quasi-steady aerodynamics modified with Kiissner and Wagner indicial lift^
growth functions are generally satisfactory because of the large attenuation of the^gust *
forcing function at high frequencies. If mode stabilization, flutter suppression, \>rg
stability augmentation systems are considered, then responses at intermediate or higher
frequencies are quite important, and a more exact unsteady aerodynamic representation '
must be used to correctly obtain phase and magnitude responses of the modes.

3.4 CONTROL SYSTEM REPRESENTATION
*

A control system definition is necessary to assess the effects of active controls
responding to arbitrary inputs or feedback signals; e.g., stability augmentation, system
(SAS) signals. The representation is dependent upon the type of dynamic aeroelas^ic^
analysis to be performed. In most cases, the .control system can be represented by linearf
systems amenable to classical control system analysis and synthesis techniques (r^f.3).j|

•• In some ^ases (e.g., certain flutter suppression*systems), nonlinear analysis techniques^
should be applied because of electrical, component nonlinearities,% serv* meehanifen
saturation, or control surface movement limfts. t. 9 ^.'

• '* * i * *
3.5 EXCITAf ION*FUNCTIQN DEFINITION % 1

" i % * % » ' t 1 * ' ' * , * . '
, Excitation functions may be of severat types. They may consist of oscillatory "or
, arbitrary abrupt control surface motion or atmospheric turbulence. For c%ntro> inputs,

the control surface time history qr feedback control signal, serves to describe the
excitation function. Atmospheric* turbulence may be described with elther*a discrete
t'-nt d< pendent or a continuous frequency-dependent model. In the former, a waveform
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is specified^ in tfie TatlerT a*p6%er sf> edlrum based on a statisticaL/le«crJpl£bn o^ random
turbulence is defined. Acceptable models of atmospheric turbulence are readily
available (refs. 4 and 5). • * « ,

* I

3.6 EQUATIONS OF MOTION AND LOAD EQUATION FORMULATION "
% g

Formulation of matrix coefficients ./or the equations of motion and load equations *
requires structural, aerodynamic, and control system data as previously discussed. 1

Provision must be allowed for generation of either constant or frequency-dependent *
matrices resulting from steady .state and unsteady aerodynamics, respectively, and
either panel loads or loads at a reference location. There must be a 'capability "to*
increase matrix size and insert, delete, or change individual matrix elements *to>
incorporate experimental data, additional degrees of freedom, etc. Load equation matrix*
coefficient generation requires that load stations and an arbitrary load reference axi*
system be specified if shears, moments, and torsions are to be calculated. In this case|
the appropriate panel inertia and aerodynamic forces must be summed tOL'the load
station and rotated into the load reference axis system. • * » » < * * « * f * f

• 4 « 4 •*'**•' I *
3.7 SOLUTION ROUTINES — » « • « « * « ** *

Solution routines are necessary to solve the equations of motion and load equations ,jn
both the time domain (time history solutions) and frequency domain (in oi"der to
determine PSD load parameter and to perform time history solutions using the Fourier
transform method if unsteady aerodynamics are used). In addition, it is, neces sary^ to
root the characteristic equation to determine stability characteristics.

The ability to perform dynamic loads analyses is dependent upon satisfying each of
these general requirements. The ability to perform satisfactory dynamic loads analyses
is determined by the level of technical sophistication of each general requirement' of the
preceding elements.

' " * * « * « • * • • » t • a <
i A j a * * A i « » . « k » A ^ . « . - , - , « , — - _ - — ' .. JLm.JL.J
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4.0 REVIEW OF THE INDfcfAL LIFT* GROWTH FUNC U jN
UNSTEADY SUBSONIC AERODYNAMIC REPRESENTATION

FOR USE IN DYNAMIC LOADS ANALYSES

The problem of representing unsteady aerodynamic flow assumed importance in the
!_1930's; subsequently, a number of aerodynamicists began presenting«solutions ior
various formulations of the problem. * • » <

! ~ * » » » *; -

Theodorsen first published in the United States a complete solution for the aerodynamic
forces on a thin airfoil performing simple harmonic oscillations in a uniform
two-dimensional incompressible flow (ref. 6). A solution for the aerodynamic forces on
an airfoil subject to a step change in angle of attack was developed by Wagner; the

, result is reproduced in references 7 and 8. In these two cases, the solution js expressed
i as a product of the quasi-steady lift and a function known after the investigator's name,
, which Hself may be expressed in terms of Bessel functions. A transform relationship
i exists between Theodorsen's reduced frequency-dependent function and Wagner's
: nondimensionalized time-dependent function. * 9 • » j

The gust encounter problem has been approached similarly. Sears published a solution
for the aerodynamic forces on a thin airfoil traversed by a sinusoidal gust (ref. 9). A
solution for Klissner's problem, which considers an airfoil encountering a sharp-edged

i gust, is reproduced in references 7 and 8. These solutions involve terms analogous to the
Theodorsen and Wagner functions; the Sears and KHssner functions.

The Wagner and Kiissner indicial lift growth functions are customarily designated 0 vr)
and ^ (f i, respectively. Although these functions have a relatively simple form, they are
not expressible in terms of simple, well-known functions. Therefore, approximations
written in simple algebraic terms were developed to facilitate use of the indicial
functions. The effect of finite span was considered, by Jones (ref. 10), and additional
approximations of indicial functions were developed for various finite aspect ratios
ranging from 3 tyo infinity. Compressibility effects4w§re considered*bj( ^ajjslsky and'*
Drischler (refs. 11 through 13), ancl tome approximate indicial rfu»cfjo|| expressions '
were developed for various subsoatic Msfcb* numbers from 0.0 to Q.7. ,

:... r • * « >•* f « • 4
S ' • • •* T 9 y jL \

A general procedure in past dynamic loads analyses for flight conditions in the subsonic
regime has been to use two-dimensional incompressible aerodynamic theory modified to
approximate finite span effects* (ref. 14); compressibility effects have been represented
implicitly through use of compressibility factors (Fc) to modify,the lift curve slopes
calculated using theoretical expressions for incompressible 41 ow. Fpr representation-of
unsteady effects, the use of indicial functions^ has "been extendejj to include arbitrary-
ai^bil motion, and gust excitation functions through application of the superposition
integral. This approach has been used extensively throughout the aircraft Industry to
determine dynamic gust design loads for a number of subsonic, relatively high aspect

|ratio, jet aircraft. .Flight test results have been* shown ^.o ̂ gree reasonably well- with,
(theoretical predictions.**

, _:. « .,*—_-_< « ._ ,---' * *_Jfc_»_«_^_

* Richmond, L. P., "A Rational Method of Obtaining Three-Dimensional Unsteady Aerodynamic
Derivatives of Intersecting Airfoils in Subsonic Flow," Boeing document D6-7401, 1962.
Gilley, T. A. and Cast, R. P., "Theoretical and Experimental Frequency Response Functions for

lhe~B-52H Airplanes (WFT 1286),"^ontracTNoTAF 34(601)-22257, 1966.
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«"• - ' f
An analogou^s^ m m w w _ -
in^le*mennnga dynamic Igadfe ca n

» » • • » - - - - -aerodynamic represen^ajiop, fpr^uiated «stn#tHfe steady s
«tht FLEXf-STAB^ CP& is. cpiqbn|ed|j with* the instantaneous inci
growth Yun'ctfbns to develop an approximate unsteady aerodynami

£tu
growth TuffctTons to dev^log an approximate unsteady aerodynamic representation* » p>

. » • « * * *
Unsteady%erodynamic effects are .approximated by considering lifti
accordance with indicial functions of tjie following forms:

« * * « * * • * I • •
, 1.* ^Response indicial function approximation'

m m
* * * -. •*

* * $ <
9 * « »

expa j t - a 2 expa 2 t

* * •* #»
«*»»*»

« » * * 1

* • • * «
. ft * t * '

f * . -
* '- I I

2. #Excitation indicial function approximation
« * *

1 - b i exp 0 j t - b2 exp (32 t - b3 exp 03 t

, 0 « , - . * * » t * , * t « ^ « s s **
The coefficients a^ bj, «j , and 0j are functions of aspect ratio and subsonic Mach
number. For supersonic flow, these coefficients are generally assumed to be zero. The
user is free to choose coefficients that tailor the indicial functions for compatibility with *
individual analysis requirements? In theory, indicial functions can be simply developed '
from harmonic solutions; in practice,- this procedure requires considerable effort. * *

* *

A
'„*• ,

The equations of motion as formulated in* reference 15 and reformulated Ui Deference _!,
* * * r^dy^namic reD^eaen^atjon d*s*ilted*

. . * « » *

* * * r • ••»
* (Strlctural + SAS) + (Response Aerodynamics) =(Gust Excitation Aerodynamics) « »
* ' * *

* \ising* th*e Ibasis of_t|je approximate unsteady aer^dy^
previously, are: . , . ^ . . . • « •

* * ' " ' '" * * *

« •
twhere

• « t

* •-*<-

*
•

.
M2, MS are the appropriate structural matrix coefficients.

(g*i//

* » * « » « *

> * « • *

* indicates convolution.
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W"*"w - — — w « <i-y*y
J The load equations follow the same format as the equations of motion.

[M2]{q} + [M3]{q(+ [M4]{q( *4> + [M5]{q} *0Load= ag

where •• *
* *_ _ — . .

Ml, M2, and M3 are load matrix coefficients of tha, generalized coordinate
displacement, rate, and acceleration, respectively.

••
..
•

* M4 and M5 are load matrix coefficients of the generalized Coordinate rate and
* acceleration convoluted with the Wagner function*

_ * . . - . . • * • % * . .
. C3 is the load matrix coefficient of the excitation function convoluted with the

* Kussner function. f J
* * v * * » * * » ,

The equations of motion, including- indicial functions, may be integrated into the form
(first-order differential equation) required in the existing FEEXSTAB CPS by
transforming the response indicial function into state form (see app. A). Although the
matrix size increases significantly, this form allows a general application of the indicial

i functions. At one extreme, the same form of the indicial function may be applied to all
degrees of freedom or, at the opposite limit, each degree of freedom may be modified by
a separate approximation of the indicial function as defined in appendix A.

. - - - • A *. Jt «. «
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r:7
WPS

: : r

Jtl
a^erodvpainiji represen^at^on^ ^hjchj, range |rom ^ste^ady §ta^e .to^frgqueneyidenend^nt,
unsteady^aerodynamics. The^evaluatjorij was ba§ed on, the general requirements ^e^ailjd,

' in section 3 together with me level of ̂ technical sophistication ̂ reo.uijed for a dynamic
' analysis. The basis for this study was that evaluation, modified to include qnlv t,"

Kussner and Wagner indiciaFlift growth unsteady aerodynamic representation.
addition, *the evaluation *has Been expanded in several areas to furflier clarify th*e'

1 FLEXgTAB^limitltiSnl.

roaas
« • • • • « • * * * I

« * • • « • * • 0 I

« » l * * t f f * | f * « | f f f * t t f f f * * * » * * * * * « * <
! The* Geometry* Befinitioai program 6GD) *caflcula%e^ Jetilil%d»d^'i*ittons %f*tHfe
aerodynamic geoniet^ «ind i«anelingf required in the downstream*progfanls,»fr8mMlfe '

i geneyateinput geoaaetric data. This aerodynamic paneling seheme is adequate fortusft i* l-
>qf fornjjng dynamic leads analyses. * « • * « • * • • « * * * » • » • » » »
• « » « « » * » « ^ « * « » • » • • * • • • » • • * * • • • * •

« • » » • * * * « * * « » : « » » « « « * * * * # » » • « » * * »

*thl
> a^pficsfticfc, "together* wfth«thl eferfeifts Wed*in*selti8n S.

qf aji
tjhe,

fomnos^ of ̂ jnstant s^fness straight lir^e segjne^ntf jflin^n^ s^rujftu^ra^

!«*«* » • » * > * • * • * • • « ••«•••

aatic axi^
"'

^-ihB1 s%n%er*bod£s^ictufarrS)re*seltS;itofs deficient!in two res^e
is rocate'd along the aerodynamic mean centerline (a constant wate7line)""re£anilgss^

; Bi*smiCTu?argel)metry, aim fne^umDedrnras|es are <S>nsidere5 H> "e_pn this straight";
rfanire or*tmsT^prCTema*OB

3 Upb\V Gpt clOQ OT IuS61og6 10

> f^lP affect inftsyfemeft-i? alaryseV*Arlho\iJn

naioerMl to lie
enuae*proper moaenng or a oo

, coin * mil

I MiJIfffeeiofl
I dfeslre*
I tte* *f«ielicfes» » * »
)

«ie«t(»s»n«
pfcrte '

ey;̂  |̂ ^B 91 *p§osijteadi»e^ia«s perpendicular tflfct^ a
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Geometry and paneling
(GD)

Structural
representation
'ISIC, ESIC)

Structural vibration
characteristics
(NM)

Aerodynamic
representation
(AIC, SD&SS)

Control system
definition
(SD&SS)

Excitation function
definition
(SD&SS, TH)

Equation formulation
(SD&SS)

Solution routines
(CER, TH)

Figure 1.—FLEXSTAB Programs Reviewed for Dynamic Loads Analysis

10
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7• • . «^«

FLEXSTAB

Where:
m = mass
10 = pitch moment of inertia about local elastic axis
'0 = roll moment of inertia about local elastic axis
\\ j /= yaw moment of inertia about local elastic axis
i = ith node

Figure 2. —Slender Body Mass Representation

1 1
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^ g. a*TTqfc«na*}' ^ . . . _ _ . . _ _ w . _ . ^_,— ̂ ___ _^__^ ^.
rllusterated^ ir? figare 3^ H&wever, hjjc&use 4here^is>no q^ldwance in th* prdgram»to ]
rthe masses paraliel*to the e*l̂ st!t: ax», rt is ftnpossirjle^tc^mateh th,e bending *ingnlents.«of *
inertia usirjg this technjflufe. • • ^ ** * <k * * • • * * *« ** *

*In g«iJe«Bl*aji^d*a» * " * m "" * •••..— - -A . *. - *
w oflnertia ^ m __

mqdef, th* use^ of a Iwnipe^d %iass» rep^senta|ion ^MiouK
a4el* d^ffcied*For^a beaia»s^uc1«ral,

ne^ias isf>in ffic
for %igi% aTijoldPhe ^nal^is% Tlo^oJal^ rig^d^urp%naj»ana^ife

en4p can, US adqguatel^Vdefi Le**

Total mass

M = 2 mj

Total pitch inertia

I0 = 2 rnj

Total roll inertia

I0 = 2 m;

Total yaw inertia

^ = £mi

C.G. location

C.G. = 2 m j X j / 2 m j

+ S I0.

+ 2 I0.

ftxcaplioiw *e« t * » » 9 « » 4 « *WW% *
» * i *«•

«L.* Ai«crs»ftiji«fhich,the x locations of the»wing«masses coincide veiy «Jo«elji t» t||e •
. , , location of the, total* akcsaft* center »f (gravity #n4 the J>ody -contribution to idh«»

| * « ^"lis^U^u^^P^ttn^uat^ailipitch; « » % * . • •
« * * *

12
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1

i moinen just inbo

The1 iass'momentof iner^ja I)
same orer as

*

sfeoijg.
0

* *
* * "*

blnlin'g
**
* * *

this xample, neglecting me rota^ inertia tgrins Z l j j a#d«I8*x wll» p*o<iuc» *
BignMcSnt*erf or in the rangin

jyjZj for lightweight structures gyucja as ocmiraat-wmgtips.
- the rotary inertia, tgrins IIj$. ami IS0
iding moment because^gf pie^iner^a jgf%c%

» « * *
^ Fjpin^s,, on

aerodynamic panel! is based on the deformati

* w * #

The f aftufafton* of tis$lalcement? amf rotSi^jp,*

• :*»*'

' IH

aerodynamic panels is based on the deformation of |he^e|ir|p1 t̂̂ c|ujalgiq|Je£>oj|itiion
.the elastic §xife. *T8fe'tw^ist and displacement at this node togeth^% vptj| the
perpeihdfeulardista'hce* from* the aerodynamic panel centroid to the elas,tic.axjs
to cakulate panel deflections. This approach neglects the increments in
torsioaa (deflection due' to ftie* elastic axis distance between the intersection,
perpendicular from the panel centroid amFthe structural node location (Ay of fig-5

> * * * 9 *9 * !

The E^temiiEl Stmcteiral fcifluence Coeffi<Seift p*rd|ram*ESlC) is designed to transform
matrices ealeuiaWd Hustngt ftnHe"eIem%nf lecliniqu^s, external to the

body representation has the^s^ie! deficiencies as those ln<!ISIC; that is, the structural
node points are assumed to lie along the mean aerodynamic center-line. This can result j
in large Iqcajized effects on the«structure but the gross effects are Small. Consequently, *
this deficiency ,haji minimal effects on the stability MeMvatiVe Calculations fe SD^SbSlfe '
but sigjiificaptly affects the ^generation* oft the generalized inertia*and stiffness*fdrcH
used in the dynamic equations o| motion, « f t « « t i 9 l t * 4 l * > i * » » # • *

* • » « & • « i t
Tlje use, of cantilever modes is desjrable for structural parameter studies and "fo# tMbse
design cases where only a few structural^ componenls need to be varied (sec»4%f §efl7).
SystemTnddifications required to accommodate Cantilever modes would linvolweftnajor
changes'in the ISIC and ESIC programs because of the nature of the resulting

**b conclusion, ISIC and, to a lesser extent, ESIC do no,t
presentation requirements as defined in sections. The deficjenciqjg 4h,

corrected b%fore*these' programs are suitable for dynamic loads analyses. ,
addition*of<mass*moment of irlerfta*terms for tooth slender and thiq-bo/lies
slender lodies; tKe #ap%bfti^ $> represent both a curved elastic axis not coin

' the mea* ssfcrodyBamic axis and masses located* off the elastic axis. These j-equigemp
' would al»o »eeessitate*th% formufatfori* of flexfbifity* matrices which include dejl

ft

flexibility matrices which includ
and slop* caefficients 'due to moments. The capability is also needed either tp input
ipSJ^gl^pSdel^inlx? ESIC or to fSrmulafa^lerfftlity m»itriees in fSft^E^fc vri^ch

cantilevei| po^s» c»i *b» calculated. Corretting' these deffciebcies would require u
restructupng and»recoddng effort for fcoth -ESIC and ISl€ Aid would, in tuin. affect* t
do wnstre^n .programs such as NM»and^D&SS fcefei^e^ff^ie* matrix compositions;
mass ma

14
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Where s = store
i = wing struct mass

B.M. =Sm.y:z: + 2 1.0 +
c/x + moment due to aero forces

Figure 4.-Bendin9 Moment Caption by Force Sanction Technique

Elastic axis

Aerodynamic
panel centroid

Bending and torsion increments
neglected in computing deflections
at aerodynamic panel centroid

Nearest structural node

Figure 5. — Thin Body Modal Displacement Reference
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„ * 4 & » * * * * * *
' The*normal'"modes program, (I)jjVl) requires |pput'fr»m tHe structural program (ISICJ.

NM^'uses'this input to formulate ano^solve an eigenvalue ^roblefn to produce structural
* fiPee-fre*e mode shapes and frequencies,, that arj» used t* define-^generalized coordinates
* and* to calculate the generalized inertia, and*«tjffnes# forces. ̂ Che stofcturlft input aata,
. sSfnd* eigenvalue froblem formulation and gpluti^n^are deficient for <hd* purposes of

* ifalcul&ting cantilever modes (rigjid body modes ay no|» required to e*al^hlatercantilever
* modes) or inclading*mdments of inerti^ in the mass matrix. gonsequaSitly,"restructuring
4 and receding of^tMs program are necessary to satisfy* th^e requirements defined in*"

(section 3*for a satisfactory dynamic analysis. ^ . ^ *
m 0 . f * ** * *

~ • '" * r .«_ f A 9 - **
« «r « » J5.4 AfiRODWJAMIC REPRESENTATION gVIC,

# ' * * * * * ' * * * " 4 f * ' I t
j»The /unction of the ^aerodynamic influence coefficiei|t program^is tq^ calculate eilliey

P subsgnic or supersonic steady-estate aerodynamic influences coefficient (AI(P) matrices
relating surface pressure to flovf incide'nce, and to proopucg a ^w-freqjienoi^

^approximation to an unsteady AIC matrix relating surface pressuretto flqw incidence
^time rate of change.,The output consisting of elements of the AIC matrices,,is save$for

use in the SD&Sjp! program wkere the*complete AIC matrix is assembled fron^ tb^ese
* elements. * 9 «• * .

. * * ' * ' * »J » • * " » ' * * P * ' «
^fc ^ - ajjfc $ |p ^ ^ ^ jp ^^ tt|> - # jrip P^ i|P

The aerodynamic(,th|ory ^i FJ^EXSTABfcoasidefs linearf potential flow in both s<uba)nicj

* andr sifpersonic regimes. ̂ Solu^oqs rtESs written as "integral* equatimis involving <£e
* strengths of* flow singularities4distrjfcbuted orer dSrodynaftic* mea*l surfaces and mean

Aies.^Sfrengths of th,e flo^r ^singularity *dietribtfti«ns i*re d*ete*rmjned* using
9 approximations based on those used in the fiadte, eteratent ftethod dl? Woodward. Thin^
it bod^ and interference^ body njean ,sur|aces^are represented* by panels, each wi^n an

Associated constant strength vortex Jlow singularity.,SFenier b^dy^neaiPcetaterffnes are
* «tivide*d into fine elements with flow singularities ^represerted By ̂ oubfets* whose
(§• strengths vary qul'dratically. Thicknpss effects may ,,be represetited by**soferces? The
4 isotetedrproblemf are solved and the interference^ incidence arising frotti tfeese s*olu^;ions*

calculated. THis^interference incidence is suppcpssedpr w^th a vortex «distrrou<ion Shd*
If Isolated mcfrtdk. anof soiree distributions. Finally, the pressure is calatilated afcd tMI

is ̂ vailabl* from the relation between pressure and surface flow incidences . * H
W- •'"*- •—- —••'" "'• •- • -<«-'i~».^fe^-«»>»»—A—-"••*-- -» •»- K '

rr* • --y—Tf—W' "* * '** "' * ~* "~W"~ "" "***"V

egodynamk representation 'ma/'be corrected'with exp«
using one of* several schemes ̂ available in FLEXSTAB. In practice. »*«

^corrections lif ,tne AIC matrix are difficult to achieve, and the application -of
schemes has'proven generally unsuccessful in the past (ref. 16).

' > & ^f ^^ ^fr M f- *& * "**

' The* low-frel|u|ncy& approximation to unsteady aerodynalnics*u|ied.jiir ^LEXSTAB h(as
.severe frequency* limitations *!and*is. g%n^ral|y suitable only for calcuiatidb of*dyn%n|i?r
stabifility ide'r^atjyes; FI^X^TAB c*mptites frequenqy-lndepgri^d^nt dyn^rni*

ccpgsponding^to^ Rmi^ Cm^i, at ^-ft)^ et^ T^ i^ienfnt "
> to MachfcmSberJfrel&tionship

l - M2 for- sji -1)/M for supersonic flqwJL

16
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"Result in an AIC matrix which is not suitable for dynamic loads arTalyses Invo
appreciable structural mode response. The envelope of these restrictions for a wing
having an aspect ratio of 8.6- d^-S^j jji subsonic flow is shown in figure'6.-Two flight
conditions from the B-52 LAjyiS st,udy are superimposed on this figure to^shjpw their
relationship to the restrictions. * ' * * t *

* * » « • ! . » , , l " • fc 1

1 Te use of steady state Alp's and the instantaneous 'angle ofnncKien.ee modified with
t» e sVagner indicial lift growth funcMon.'aml fhe*gTitet%tfJfle mortified with the ,Kiissner
i> di lai lift growth function to represent uriptpfidv aerodynamics has been the accepted
rrethod used by the aircraft industry for performing dynamic gust toads analys.es (refs.*
7 fe 17). The aerodynamic influence coefficient program is suitable^. f$r genera tin;
steady slate AIC's for use in formulating the generalized i-espou^se.. and gus
a. rudynamic forces in a dynamic analysis. The low-frequency aerodynamic^
a pi ix.matum is useful* for calculating the airplane static and dynamic stability*
Oi rivaiijes^ used in the dynamic equations of motion. It, is important that the*
io v-a-equency aerodynamic approximation is not used in, ioi inflating the generalized*

< t'oaynamic forces for* ttfe elastic? modes (fig. 6), and especially fur the gus't generalized^'
is important at'jfrequ.enjjjes much above the^HHI

fquency limits of the low-frecfueTicy aerodynamic approximation theory.
' * » » * • . » , * *

' 5.5 CONTROL SYSTEM DIJFINJTION (SD&SS) f
* * »

TT;e control system model defined in the SD&rfS program can include aflerons. rudders,
and elevators. However, if more than one control surface of 'each type is 'defined, they
must be interdependent; i.e., inboard aad outboard ai lerons cannot operate
i 'ependently of each other. Other control .-ur^acps Cs\ich as spoilers, tabs, or other
if iv controls such as side force generators) ,annot be* modeled. Most present aircraft
>p- ra e with some form oi stability, augmentation system (SAS»; future aircraft will
pr^baoh have more sophisticated SAS systems functioning via a wide- variety of control
surfai es Any program capable of performing dynamic loads analyses must allow for a
variei v of active control systems. *

5.6 EXCITATION FUNCTION DEFINITION (SQ&Sb, TH)

exciiaiion function is defined in SD&SS as a time-dependent aerodynamic force at
uei'jccnti-oid. These forces are ' useful in •• the equations pfgnotjon formulatioi '
ur. i> form generalized4 excitation forces. Time-dependent shapes uf the excitaftoff
of incidence defined in TH include (*1 - cos), step, _arjd square waves. To include

>, unsteady effects, these instantaneous angles of incidence need LO M modified with the
Kussper indlcial lift growth functions.:
:

-

-
•

The i
t ,.rn f

o r,« .f .-.n«.

5.7 EQUATIONS OF MOTION AND
LOAD EQUATIONS b OKMULATION (SD&SS)

motion are formulated 111 the SD&SS program u§in% data fr>m the
the geometry, structural, aerodynamic, and control .-.yslem

There is no provision for including the SAS definitions in the
S ice SD&SS is dependent on data from trr -i>-«>vjou«! programs, the dtgrte of

17
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3.0

2.5

2.0

-*

I
I

1.5

1.0

.5

B-52 LAMS data

© First symmetric mode, f = 0.89 Hz
A Sixth symmetric mode, f = 2.76 Hz
Q Ninth antisymmetric mode, f = 4.35 Hz

Flight condition

1.Mach = 0.77, alt = 32 700 ft
2. Mach = 0.37, alt = 4 000 ft

.2 .4 .6

Mach number

1.0

Figure 6.—Reduced Frequency Envelope for the B-52 and for FLEXSTAB Subsonic Aerodynamics
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Sophistication. o£ the equation^ qf motion'Is" ctepehSenC oSRnaT oT eacTTUi1"
•programs.,Presently,: there js jio capability to formulate dynamic load equation
*witheuLthis ^pgbjlity, Jjhe^F^EXSTAB CPS cannot be used for dynamic loads-analyses
* » * » * • * « * * * * I r* , * ** *
rThe us% o| af truncated jiumber of modes plus the residual flexibility of the remainir
|modey3,«includin,g the; apoelastj'c effects as formufated in SD&SS of the FLEXSTAI

i is not considered a satisfactory approach for use in dynamic load analysis. It*can J
pce^ vyisatis/actory results and its use is not recommended. The? reasons for this \

recommendation are discussed in more detail in section 6. <
4 * * * * •

5.8 SOLUTION ROUTINES (CER*; TH)» * *
i § f * $ I .

Ik '$ *

e* Characteristic Equation Rooting program (CER) is a subprogram of SD&SS, and
solves 'for roots of the characteristic 'equations obtained from the equations of motion.
The Time History program (TH) solves the equations of motion in the time domain
several forcing function shapes such as (1 - cos), step, or square waves. No provision is_
presently available for solution' of'the equations in the frequency domain.
» ' * • « • » ! » . $
Since present design -«gust ^loads- criteria require the determination of Joads due
continuous turbulence, a solution routine must be added to solve the equations ot
motion and- load equations using random harmonic analysis techniques. It must be
Capable of calculating steady state solutions, for constant coefficient, linear second-order*8

ISifferenMak*equations. From such steady state solutions, structural dynamic loads due*
*o sinusoidal forcing functions may be determined and statistical characteristics of loads* ;
(due to continuous .turbulence calculated. The equations of motion must be solved *ft>F I
icoordinate .frequency response functions which are retained for use in calculating loa^ •<
transfer* functions (simply load coefficient matrices multiplied by coordinate responses I
tat^eaeh^frqqijBUcy). Load power spectra can then be obtained from the product-of <th* <
dgust spectra and the load transfer functions ̂ squared; From each load spectrum, root j
4me.aq, square Joeid/rooJ; mean square gust velocity (A) and*number of zero crossings (*N») J
jean tje qalfjulate^l. t
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The ibrmulation and use of "residua], fl£x$ij»tjiii' wa*fi*st investigated by M^
Schwendier in the early 1960's (ref. 18). Since then, thiif tA:hnique*for caloila^tign of 4
scability derivatives and "for flutter calculations has been used successfully j^

..• use of this4eehnique for flutter, control system analyses, and especially for
ds analysis.scan lead to significant errors if care. i% net exercised:lo. ork

Ir this technique, the free vibration modes are .partitioned into two sets: the
f .uency explicitly retained modes and the nigher frequency residual modes. The uaait-
a umption is that the inertia and damping forces for the higher frequency set of modes
an' much smaller than the corresponding stiffness forces, and: thusf cafti be neglected;
i.e., mq = cq« ^q.,, This can be considered as equivalent to the genef afizjo1 "mass
bf -oming zero for those modes whose residual flexibility effects only are' $ Be
considered (ref. 13). Figure 7 shows these effects fin. the response 6f*a
si ?! gl "-degree-of-freedom sjstem and the1 errors that can occur. ,' # * * * * ^

, * * » * * * « » * • ' *
For this example, residual effe$ts-,are valid when the forcing frequencies are-muclPllis^

| than the actual resonance frequeuejfcofethe mode whose residual flexibility elfe«ts*brily *
I are included. For* a multidejgr^e-of-freedom system, where modal Coupling oecufsMMs*

region is rather Ill-defined, but the frequency *ftf 1nt;ertst*must be mucjb lesf tl»ai* tie I
i resonance frequency of the last mode explicitly* included. MacNeal and Schweadlerl
i recommended that the modes explicitly included %h6uFd Be all those in the..frequency 4
, range from zero to the maximum frequency of interest * plus the next higher mode. I
( However, if the modes are highly .coupled or the frequency separation between modes is
, small, a considerably Iftgfr number of modes should be included* ? « * I

0 < i » » * # * , * * tr *••** * * . .
The equations used in- dyna'mu; foads analyses n*uat be *ohred in both
frequency domains. If time*history* swutions are obtained, all the modes"
included are excited* 1lke%cc\iracy 01 the results achieved by i ricHfliflg^MSid!

* is dependent upon tl»elmftvAt that each explicitly included mode laf'be'en exci
* the degree of influence -thig dynamically"deleted modes have on these retairfea modes.
* the frequency of a significantly sfrong mode of vibration is close to the natti
? frequencies of the modes whose residual effects onlj a/e included, significant errors *n
^ be introduced because residual stiffness'fofties are includpd^wi^hout^he '
1 forces to partially offset them. • '

le^time^and j

;;V...«*
To show the effects^ of residual -flexibility*afld truncated modes appa-oximafTon on
dynamic analyses solved in the frequency domain, a two-degree-of-freedom mass-spring
problem without damping was modeled* (fig. 8) and solved for the exact, thfe *
apprtbxfeiate residual flexibility, and the approximate truncated mode^o%tipns.

' * "v * ' — » f - ^ i

*In conjunificg
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Frequency range of validity for residual flexibility approximation

3.0 h-

I

c
o

I
1.0 —

180

90

• Actual

• Residual flexibility

1. 2.

Frequency ratio,

Figure 7.— Dynamic Response for a Single- Degree-of- Freedom System (Undamped)

-^—
1

m1

0 o

K2

m2

O O

K3

/////////'///

Figure 8. — Two-Degree-of-Freedom Model
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Ki = K2 = Ko = K

mi = ni2 = in

Fj(t) = a j sin cot

k The naiurai^^i|pci«f&jOTppde shades of the systenf a|e:1

coj2 = K/m

= 3K/m = 3 W J -

"l l"

1 -1

whcj* eoEpespoiffi tfe the gen
*' .̂ -i ^ $W"

> Th* tw0*physical Displacements 1:aLculated bwXi=Z$sj u; ?a-e:
i» * * » " .. * * ' < 3=1 J *J

2K X

^

1 . 1

2KY , . . F !

i n o
!>2 S-Cco/coj)2

1
al

cot

sin wt

duaFFlexibility S^uti^i: (iL= OT

2K

• I -

2K
al

X, =
1 - 3jsir+ ~r I sin cot

- -s- sin co t
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The terms±J- represent the static effects of the «„ mode.

*** '* * **L
2K
a.

K
Y r i i—Xj - 7s11

1 [_1-(co/co,)2 J

- I —I-jl Si
[l-(co/co!)2 J

lioeiAlthough the generalized inertia and damping forces are consi3ereJ*smair
assumptions and are neglected for the modes whose residual effects only are included,
this does not mean that the accelerations of these modes are zero* but**mly that they are
Small. Thus, to obtain accelerations, the displacement solution^ can be differentiated
twice, yielding the>-following: ' ',***> ^F.:Jtl -. ~' ^,"

* -* * ._w *, *
•F..-̂ * mi

ft

« • • < * *'» « *
Exact

•E.
*-

sin cot

2K
al

x -Tx2-|j - (w/w,)
sin cj t

Residual Flexibility Solution:

^i =2K"
al

2K v
ATa, 2

c.

CO

CO2]

T-J-

a;2] .~rr
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2K
sin cot

sin cot

' "Tlf' ^.

These solutions are shown graphically iji figures 9 and 10. When the model includes
viscous damping,* the solution becomes considerably more complicated. This problem
was formulated and solved on a 'digital computer, andithe results for the displacement
and acceleration of mass 1 are shewryn figure 11.

- ~ * • -~ ~
The results shown in figures 9 through 11 illustrate the fo^owing points, * <

* ' * . - , * • A ** »
* ak ^ £ "^ ^

For static response calculations or at frequencies |Jiat may* be, .considered psentf
* static, the residual flexibility fornfulation Us inteaded "In tts ^original ^for|nul|'

accara^ely accounts for the residual stiffness §ffects*of the^neglected higherofdeilm^
in calculating displacements. Ite can provide considerable ^rilproveijaenj, 9over

• truncated mode*9Plutioii. * t * * * * * * * * * %
> » ' * t * • * * » * t — ™

t e V | | ^ ^ A 3 l * ^ ^

?"or frequencies below t^ie fiwt j^sonance. frequency, i»cl\jdmjg fhe«ta|^c |"
residual .flexibility approximation* produce!* a disnlacenlenfe an^ 'accelerati
the exact solution*than the tr\in<|ated inoSes solution. However when*
included in the system, the resMwal flexibility solution begtns^o iep^-t*frolKi %e e^c
solution at a lower frequency than wfthout damping. At £reque%ici*e ^ove fhe *ec|(na,,
resonance frequency (UK = 3tt»? H tt)g Hisplacemenc ofbotb t/bff exact ,an4 mir*atq|J ^
modal'' analy|is approaches zero, -whjerejis the residual flexibnity* apprtpmirfPlont
approacftes% constant. Similarly, the accelerations for the exact and^truneatejd mpaal *
analyses aipproa«h ̂ .constants, \^hereas *he acceleration of the feaj^usd flej|ibij^iy
approximation div%rg^s as a square of ftie frequenpy. However, the ftsi^ia^rfejci|tiTi|^
solutions are invalid at*frefluepdles whkh approach qr exceed

™ /.
^ed the,natuHd §pe< |̂eTicilfe o4

the modes not explicitly «ncjpded.s * * V

**\ *******randpm harmonic analysis techniques, tjie theoretical derivation, requires t]|e •For

u

calculation of solutions for Jbrcii^? frequencies ranging from zero to infinity; in. praol
upper limit of the frequ£ncv*ra<ge ̂ s s,ome fini^p loe. ffhig cutoYf JreqeficjdSs |,

^ith^

g IR&D f9hda were used to
viscous datnping.

aq^t solve Sia- two-degree^of-freedbm model with



_l 8-1/2

First natural frequency Second natural frequency (cjj =v3

Exact

CO 100),

Frequency

Figure 9. —Displacement Response for a Two-Degree-of-Freedom System
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lOco,

Frequency

Figure 10.—Acceleration Response fora Two-Degree-of-Freedom System
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Figure 11.—Response for a Two-Degree-of-Freedom System With Viscous Damping
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frequency""an<f allS" convergence of the S§D parameter (for ^xample.^itmo'spheric
turbulence decreases as appBpximately'"(l/freq)2). Consequently, modes^^ose
frequencies are'slightly higher than this finite cutoff vglue, as well as those* whose
frequencies fall fh this range, must be included to prevent significant errors from, being
introduced into the analysis \shen residual flexibility approximations are included. As
can be seen from'-figures 9, 10, and 11, the error introduced by using "residual flexibility
approximations is much larger at frequencies above the reasonance frequency than that
error if the m6de is left out, as in truncated modal,analyses. Table 1 summarizeaj|;he
results of the prece&ig example as the forcing frequency approaches infinity.

r*. ' *

Table 1.—Response of an Undamped Two-Degree-of-Freedom System
as the Forcing Function Frequency Approaches Infinity

Solution

Exact

Residual flexibility

Modal truncation

OJ * 00

X1
0

F(t)/6K

0

x2

0

F(t)/6K

0

*1

F(t)/K

CO

F(t)/2K

x2

0

00

F(t)2K

*£ Mfa

In general, for dynamic load!* anJ^ses, th* primary value of residual flgpability effects
is in the modeling of all elastic**effects in the rigid body response of the ,aircraft.
However, since it is necessary to have modes explicitly included whose frequencies
range from zero to a level higher than, the maximum frequency of interest which is

Iitself fairly high (order of 15 to* 20 Hz), the increased complexity of including residual
effects,"rather than using truncated modes, is not justified. Because of this increased
complexity and uncertainty at what frequencies the" solutions become invalid, it*is

(^recommended that this technique not be employed for dynamic loads analyses, and that
» only truncated modes'"be used^with.a sufficient number of modes included to'encoifipass
the highest frequency of interest in order to have reasonably accurate resulKP. In
addition, the modes considered must include at least one -bending and oneT;orsi<m »ode
fo& each lifting suWace. This is required to obtain the elastic effects of*all
including cases where the structure is dynamically stiff but statically flexible.
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The following modifications or to
provide the capability to adequatelj^perform dynamic gugt l&ids ajiatys^s:'

fc * * % % * ' * ' * * *
Modify the slender body elastic axis representation%o '-" —
located elastic axis.

Modify the slender body mass representation to include

KModify the thin body mass* representation to include prop
rotary inertias.

* * * ' % * ' *
Modify the aerodynamic reference point interpolai&on" routi

rotation slope changes between structural nodes.

„ _fr »> * i. ^H,

Modify the flexibility matrix formulation to allow calculation of displacements and
rotations due to momenta inl addition to current displacement ang

'

• Incjudf ate capability of using cantilever modes in the analysis

* % \ * % ̂  ^ ' k k ^ l . 1 ! ' 1
x • ModifMhe program to calculate either cantilever or free-free modes. *

Is \ % %. h, '• Include the capability to calculate Joad equations consisting of |hdpr
^ moments,* torsion, net panel forces, toelfc>dyiian>ic||)anel for%s* acqde%pWons,k %

v'^locities.and displacements." ^ t || *

•• * * i " * ̂  T Pi iO k O k%* iLfc-%*• Add the capability to include the SAS representation m ^e wmatio^te fflf motpA *
* * i* I1 t h \ * U I1

A * j i. _ ?9 _ _ i _ * _ _ - . i * . . _ i i _ _ ak ^f _i_ ~at , „ ifc,.tion routine to solve the equations of motion and^o» equa

omain^ ^ t ! % \ ^ % ^ ^

tnd Waeier indicia^ aft growth functions Ib reorekett u

trunca
approximations for.tKe dee

esidual Wexibil^y
ing dynamic gust loads

^Jl ^ m.
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Implementation of these modifications or ftdditigns to ttae FLEXSTAB CPS\vill make it
suitable for dynamic gust loads provided* that^if a SAS system is included, it primarily
influences only the*low-frequency rigid body airplane response. However, the Kiissner
and Wagner indicial lift growth function representation of unsteady aerodynamics is not
satisfactory for analysis of aircraft where mode suppression or flutter suppression with
active controls is required. This type of analysis requires accurate phase and magnitude
relationships between modes, which requires a more exact unsteady aerodynamic and
structural representation as outlined in reference 2. The advantage of the analysis
system outlined <in reference 2 over this system is that it is satisfactory for dynamic
gust loads analyses employing techniques such as the Kiissner and Wagner unsteady
aerodynamic approach and for both dynamic gust loads and active, control analysis
using more exact theories. It thus -appears that implementation of the sygtem proposed
in reference 2 is a much more effective approach than would result from implementation
of the required changes determined ftjpm thisestudy. * * * . * ^

* »* » "* '•** ** *
Boeing Commercial Airplane Gompany «* m « •

P.O. Box 3707 * * • » » * ' * > '**"<»* *
Seattle, Washington 98124; September 1975* *« *

*> " *
..*- - _..—.— .- —A--- ..._Jfc,._. —.-
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APPENDIX A •
* * * * ' • • " " •

EQUATIONS OF MOTIOIg INCLUDING THE WAGjffER INDICIAL
LIFT GROWTH FUNCTION IN STATE F^ORM » '"

I .* .- * -"Y - .**".*.
I When an unsteady aerodynamic representation using indicia* lift growtlf func^jons is
considered, the dynamic eouStions of motion fonmn aircraft may bejvritte'h.tn t^e form:

-. ».*..* t. ^t . ..* * ..« _^ " 4*

[M2]{q} +[M3]{q} +[M4{q}*0 + M 5 { c f } * 0 = {C3)4** (A-l)

"** "* k *, '"Si W — -^-4^^ -s-4 »*-- *̂P *̂ .̂ k̂ '4BL 1(H|

sj, gesuersSized damping matrix ^ ^ ^% *<•» **

*.% m *^ (<fc- m ^ î . ^ •**. ̂ *k ** * ** ***!
= "^gn€iKili^d1hertia matrix, *t <%**».'^ v* *% **%g

«k ^Hk •* <m< '*•'*'' * _, •%, %i ite "**• "•̂ "'̂  l

""^ ^ "" ^ -^ -«K «** * /*" "^^L,-^ ^^ **"^"*f

[Mr] - Ngen^lii^d anH-o%n3fcic%ampmg mat4jl% «»t '%. i<fc|

;•-—».--c.
a

s<* f

tk. -ib. % ^ ^L> .. —

ISmcell

q(o) = q(o) = ag(o) = 0

JC[q(t)] jC[F(t)] = £[/*q(T)F(t-T)dT]
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f"'"**" " *""»"•• «*•"••*• •-»" - • *• _ r.«
T * Then the Laplace transform of 'equation (A-l) is:

V
»~i ,

-
^ ,_

(A-2)

where #s) .JC |>] etc. * %" .» *^ * » '
Jfr «~

Consider an approximation to the Wagner indicial lift growth function having the form:

- b e
-ait -/3it

then

s .0 (s )= a j - s - b j / C s + a ^ - s -

[Define vectors f to write the Wagaer mdiciarfunction in state fora

L - '

_—*—-- *.^--..- i al{Tl(s>} =

ai{r2(s)}=

(A-3)

titute equation (A-3) into equation (A-2); then equations describing the system are:

*?*;&** r~ -
Mj + sM2 + s2M3]|q(s)|+ a, • [M4 + sM5]|q(s) -r^s) -r2(s)| fc^A^j

• (s

'cj jq(s)(= a! • (s+j3j){r2(s))
-
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wfaere «qusftiori*(4,-4; represents the gguafcions of motion with, the Wagner indicial lift
rowthJuntfiWin ftate*form,«and*equ»tioi? (A-5), * ^ " •*••*' •» —- ----

ft* A'. ^ JW» ^(s) to the genejaii^d coordinates a(s). . *
* %*0 * * * »

>In expa*ded^naffi,^fon», equa

ftate*forni,«andtequ*tioif (^-S^elates tfce ii?dJ£ial<^unation vectors
^ ^f,, "*k^*

* * * * * * * * * * * « * • * *
* *

s2

+

M3

M1 +
M4

'1*1

M4

•1̂ 1

«

4

* -^

"q

71

T2

^ -

r ^

q

~2

. + s

M2 +

b1

C1

*

r ••

C3

0

0

M5

a1

M5

a1

...

<

^ ^

q

F1

72

^ >
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