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RAL EQUATION
AL BASIS FUNCTIONS

• • • • * « • *

J. A. Fromme and D. W; Halstead
Boeing Commercial Airplane Company

- -» . »* «*.4K»4w

*

I

i
»

*

1.0 SUMMARY
* « ; « « « * . * - » * * » « « « ' . * ».

V

V W 1 w W
* * *

The computational procedure and numerical results are presented for a "new method fb
solve Kussner's integral equation in the case of subsonic compressible flow about
harmonically oscillating planar surfaces with controls. Since Kussner's equation is a
linear transformation from-pressure to normalwash, the unknown pressure is expanded
in terms of prescribed basis functions; the unknown basis function coefficients are
determined in the usual manner by satisfying the given normalwash distribution, either
collocationally or in the complex least squares sense. The present method of solution
differs from previous ones in that the basis functions are defined in a continuous
fashion ove,r a relatively small portion of the aerodynamic surface and are zero '
elsewhere. ^Th^s method, termed the local basis function method,; combines the *
smoothness and accuracy of distribution methods with the simplicity and versatility of ;
panel methods. Predictions by the local basis function method for unsteady, flow are
shown herein to be in excellent agreement with other methods. Also, potential
improvements to the present method and extensions to more general classes of solutions
are discussed. •

-w
t » *

•

2.0 INTRODUCTION

Aeroelastic analysis of flight structures involves the coupled dynamic response of
structural and aerodynamical media. Within the confines of linear aeroelas^icity, the
coupling is determined by the matrix of energy that is transmitted across the bo4y-fluyl
interface 'in the form of mechanical work done as the body deforms in one modp against
the pressure'due to another mode. This matrix, called the generalized aerodynamic forcg

Coefficient*matrix, depends for its calculation upon knowledge of the unsteady pressure^
distribution.

» , » . . , • • i . • • «

The pressure distribution may be calculated by various methods. For a comprehensive
discussion of these methods, the interested reader is re'ferred to articles by Ashley and

p Roddem (reffl); Landahl an#S«ark (ref. 2); Ashley, Widnall, Snd Landahl (ref. 3); and to
the more recent work of Morino (ref. 4). The particular method of tne"present study is a
cambinations of two previous methods: (1) the'classical pressure-normal wash meftiofl
osiginating with Kussner (ref. 5) and developed further by Watkins, Runyah, Woolston,
Cunningham, Hsu, Rowe, and others (refs. 6, 7, 8, "9, and 10); and t2) the splined l^cal
basis functioas recently develeped by Mercer, Wefce*, and*others (refs. H and 12) for the*

i case of steady flow. This formulation using local basis ftinetioms<to<%orve*tn% ffasteaidy
^Kussne^ integral equatioa comfciaes; the smoothness and accuracy ofi dtst*ibatftn

|iethods with the simplicity and versatility of paijel,methods. The present study is
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applied to the solution of subsonic, compressible flow problems about oscillating;
surfaces with controls, although the mathematical methods employed apply to a larger
class of solutions such as mxdtMe^oyiplanar su^facesga|ft^«i w ^ < f * * « £ > • * *

.Jfc H • .»» 4L J& - IB *t*-+ ~ ..--.̂  »- ,.̂ V - - - - - -^ftflflMlfll^HlwllMH^H

Let S denote an aerodynamical lifting surface contained in, say, the xy-plane and
immersed in an ideal fluid of density P and sonic speed a. A rectangular cartesian
coordinate system (oxyz) is fixed with respect to the referential surface configuration. S
is assumed to translate with respect to the fluid at uniform subsonic velocity V in the
negative x-direction and to perform simple harmonic oscillations in the direction normal
to S and at a circular frequency of u> radians per second. Then, under the usual
assumptions, the method of acceleration potential (ref. 13) may be used in conjunction
with Green's identities to obtain the well-known Kiissner integral equation, which
states that the normal components of velocity of the fluid and of the body are equal at
the surface. Mathematically."Kxissner's equation

w ( x , y ) = - - n) p(C.n) dA (1)

« «* M». .,, ». «M»» —• ••-.• ••«mr«MK ^
is a linear transformation from pressure p to normalwash w, where the indicated surface
integration is in the sense of Hadamard (ref. 14). The kernel of the transformation
(ref. 6) is given by

K(x ,y ) .

x-M r

- 1

rio)(x - M r

[ ( 2 )

2y2 , and where I j and K | are tne moaiffecwhere M isMach number, r« = yx
functions of the, first order and L i is the Struve function (ref. 15).1

„ .̂ •̂ .fc^^

1

r
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I '*

The solution to equation (1) proceeds by expanding the unknown pressure in terms of a
prescribed set {pn } of basis functions

(3 )

and determining the unknown {bn} by satisfying equation (1), eitherjiollocationally or
in the complex least squares sense, on a set {(xm,ym)} of normalwash control points:

» , « . , * *,.,4»Uk ^ * *" • •* — -T ••"-•- - — -Ji--,. „ rT..|(_J._ _1ft. __ .

- n) {bn},

V H x

where Nw and Np denote the number of normalwash points and pressure basis
functions, respectively.

r
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• «
* * ' * * • > • * • » % .

3.0 SYMBOLS - * < * * » * # ]

Symbols used are listed below. To the right of the symbols are listed their definitions, or
the%ection, equation, or reference in which thejfcar,e defined or first appear.

* ** w 9k * , v V M &
Care has been taken to not use the same symbol for different meanings. There are a few
exceptions, but it should be clear from the context what is meant.

* I
*: yt *

Any dimensionally consistent choice of units is permissible—dimensional or
nendimensional. •» m 9 m m

~
A,-A • areas of primary and secondary surfaces, respectively,

section A.6• * \ m * *

AICgm ,AICjm ,AICgm aerodynamic influence coefficient matrices of chordwise
pitching moment, spanwise rolling moment, and vertical lifting
force, respectively, on panel 8 due to normalwash at point m,
equations (A-23) through (A-25)

Ars generalized aerodynamic force coefficient matrix,
equation (A-26)

f * »' «' *
AR* ( *£§pect ratio « « • » * » \

* * » » * » , * , i i . . „ .

[a,b

* 4

spanwise intervals of integration, equations (7) and (34)
• * ••• ' • * * » * « » * « . » » -as H. «f .

pressure basis function coefficients, equation (3)
' « * « . « * * » * « • « » • * * • • » » » • 4 * - * » H « , g

lectivel

* 9 m
respectively.CL .CL * * * * *lift coefficient for primary and secondary sv

equations (A-12) and (A-13± .f. ̂ , . k ^ „ a ^ ^ ,
» * « • • *

L-. • • •
# « ^ 4 f t s * « * « » !

derivatives of lift coefficient with respect to angle of attack and
§ angle of control deflection, respectiv

• 'wqptitiv* whl^r " •* « *
P i*^ g $ j chord length, flap chord length, figure 27

* ^ " $ I
C(T|) . panel chord length as a function of spanwise coordinate,

. • *nr*\ 1 , n .-> . * » Jl rf

^^^ ^ »* ^K ~*w> ^pr ' •

coefffcie"n?'nflitrix relating normalwash at point m due to nth
pressure basis function, equation (A-18)

K m m A

j * *
* • • » * * »

* * *HP * *

t
* * .

* * * 'if >
spanwise 'sectional lift diatribu|ion fpr jjr jpary and secondary
sfirfiice%, respectively, qHueti0nj^(A-8) and (A-9)

vertical force on panel 8 with dynamic pressure factored out,
equation (A-20)
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pr-w~",r »

1 G(x,y,r?)
• 4

* I t
G(Tj(x,y,ij) *

M:*- |

G.(x,y,T})

streanjywjge (integral, used for calculating finite part'of infinite
* integral, #quation»(7) * I

*
* « * j»-

k

m

N(n)i

N(n)

Np,Nw

dery/a|iy^ of G wjth respect to its thfrd*coordinate

doubly differenced, Cauchy-integrable form of G(x,y,i?),
equation (8)

G, (x,y,Tj) with logarithmfc singularity removed^ figure 9

modified Bessel function of the first kind and first prder,
equation (2)

modified Bessel function of the second kind and first order,
equation (2)

reduced frequency, c»j£ /V

Struve function of the first order, equation (2)
s ' '

characteristic length; also panel index, section A.6.7

Mach number

pitching and rolling moments acting on panel £, section A.6.7

, normalwash index, equation (4) *

the set of indices of basis functions whose supports nontrivially
intersect the panel with index n, equation (A-6)

jthe set of indices of panels contained in the support of the nth*
basis function, equation (A-5)

--,. .^ - ..,, f •;; •- •"• •-• • ^" *~ •*—• • •—™ —— • - •'"• «?/#%? - --• - -----

number of basis functions and number,sof. netrnjalwash points,
respectively, equation (4) * <# -t, $

»LL

f t
1

' n

' /n

?*

* number of loading panels, section A.6.7

the numbers of rows and columns,
covering the surface

«.

basis function index, equation (3) ,
*

pressure basis function, equation (3)
- -IT \ *

'•* *

loading panel 8, section A.6.7

4*

4 *'*

respectively, of panels

* f f « - i *m %^BTT <Bk»r • W\ « • n

w m ( .
* f , j

*>
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—_ •>mi
R,R primary and secondary 'surface planforms, respectively,

figure A-8
* *

* * diagonal matrix of least squares weighting factors,
equation (A-2) ^

fluid velocity normal to aerodynamic surface

.

»» a.-*'-•..;. .». .an.

_________ ___ _ -.^
characteristics function for support of the nth basis function,
witk a symmetry condition, equation (A-4)

,,̂ . ..... -

f '(x,y,z)

, *..^L'yfi *
1 (xm>ym)

* • '̂ MBHHMMIIPVt^WIH^ *-•-*-»"- w^**«r«MMMi
wise basis,function, equation (6)

* « # *

• Jf
I *

. *

« •

streamwise, spanwise, and vertical coordinates
# »* *

* # -•
,, •* »*

«t * * ** «
' *• * *

Imllftmii i j- £ § I

# <t *
** ^

leading-edge coordinates, figure A-6* ( *

m if normalwash points, equation (4) , *
« * *

* * * - - # »
streamwise center of pressure, referred to local chqrd,

* * * ' « * # v. *
spanwise coordinates in fairing, figure A-7 , « •

* ^ » « ^

, * *
I

* » »
, * •

spanwise basis function, equation (6)

•' * *

• *•**•!•!* • • *

*

x ,

. •

. ,

•»«
.

*0* *
* • •
« * »
• • •
«• *

* «
•«•

. f * ^|l ym n^ii«iiiii pin - ^^'- — ~»«T*r-rmm

H 9f m ~ i. 9 Sf *

angle of attack, radians
f * '

• *« * * *•

* » » <
* . « » * * '

equation (2)T ; . » « * i ; ; « «
« pressure difference coefficient, figure 22 „ . * «* *; 1H • • cflap deflection in radians, section 3.4 • * 0 *

» ». • ' , • • *
fairing width ratio, figure A-7

f «* • ' • « • • * • • * '
;ial coordyiate, section A.6.7
JO6 • * a 4 i a ̂  *
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» n
n

s-

& •» 3
*

m

•«' tfnr\ ^

p

r • -"?"* |
' 'Jo- IX

- ™

t |
horizontal spatial coordinate, section A. 6. 7

^ ^ ^
spajiwise center of pressure for primary and secondary
respectively, equation^ (A- 16) andKA-17)

left and right planform extremities, Jigure A-8

f W "f 1|

surface,

, f * 9

left and right control surface edges, figure A-8

fF(l)

~ 7

I ^s^reamwise Multhopp angle, equation (35)
| f - » * * • • • * • * : ?

sweepback angle, section 3.5 < •
. , , *

row index of the panel cover, equation (5) »i * * '
. « > a * * »

Mesa function, equation (27)
I f m

column index of the panel cover, equation (5) * * *
I

streamwise coordinate, equation (li

*'* - * *
local panel coordinate, zero at forward edge, unity at aft edge.
equation (21)

<' It 0 A * '•• ^
three-dimensional spatial coordinate, equation (10)

I v * V •

* * .. * *.
streamwise center of pressure for primary and secondary
surfaces, respectively, equations (A-14) andtA-15)

forward, aft, and midedges, respectively, of a surface

forward and aft e
figure A-8

mueuges, resuecLively, ui a sunace

« « f * •

idges, respectively, of the secondary surface,
t iff f. ~ • • • ft • V

* P » * *
«• » «

* t * * «
U - * f * *

I 0(x^)* ' 4

,
* ^ •» • » «

- * » » •

»«* « • « «
% » » *

%£+ 9 *
^•Vl 9 t »; » • ! • * ! in

*
* *

density „ , 9 ,
» » » » • • • • • •******"

dummy variable of integration, equation ii) * * * « » »

g» flj. *. » WS "̂  ^*

indefinite integral of the mesa function, equation (28)
> » • » * « • * * * • * « * * »

indefinite moment of the mesa function, equation 02&Jf * • •

frequency of structural oscillation, radians per second.

'itt^h n »|»|»«»v*»**f
aerodynamic panel, figure 1

* • ' * 11 i I
^j » w w * "• ™ * "*•
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4.0 DESCRIPTION OF PRESENT METHOD
• *

« «
« » • * * * * « • * « *

• • • < • « • * « « *
4.1 LOCAL BASIS FUNCTION METHOD •

* * - * • » *

.
I
•

*

1

* i

, ,. t * .^
' »

4 • *

A major difficulty with the kernel function methods has been in the selection of efficient
and general pressure basis functions. Early solutions were as suggested by Kiissner, in
which the basis functions were products, pn = Xj,Yn of chordwise functions Xn selected
according to two-dimensional theory and spanwise functions Yn selected according to
lifting line theory. However, as analysis planforms became more realistic, especially
with the incorporation of controls, the need for a more rational approach to the selection
of basis functions became increasingly apparent. A major improvement was provided by
Landahl (ref. 16), using the method of asymptotic expansions to exhibit the precise form
of singularities in pressure that must be present along planform and control boundaries
for the necessary jump discontinuities in boundary conditions there to be satisfied. An
extension to Landahl's mathematical analysis in the case of swept hinge lines has been
pointed out very recently by Rowe (ref. 10) and has resulted in improved accuracy and
improved agreement with experiment.

The pressure basis functions of Kussner (ref. 5); Watkins, Runyan, Woolston, and
Cunningham (refs. 6 and 7); Hsu (ref. 8); Rowe (refs. 9 and 10); and others may be
termed global in the sense that the basis functions are defined over the entire planform.
An inherent difficulty with the use of global basis functions is that the presence of local
planform features such as controls, etc., affect the formulation of each basis function
everywhere on the planform. An improvement may be offered by the use of local basis
functions, which are defined over relatively small subsets of the planform and are zero
elsewhere.

Consider the surace S shown in figure 1. S is represented by a set of panel
arranged into Nc rows and Ns columns. It is convenient to index the panels by double
subscripts as well as single subscripts. 9 V

Figure 1. —Panel Grid
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». » '"Tr^~

The transformation from single to double subscripts is given b^: * ft * < * f> * * *

n = v + (u - 1)NS; 1 < y < NC, 1 < M < Ng (5)

F^P * WI^P^W ̂ ^r^ ~*. ^ ^i jfc * £
It^iSg£O£vyii0n|ttQguae tfoetssltn^sib^riftt equivalence for defining Ipc^l basis fu^ptiDns 1
as separable products, it • • •

I- * * .TZL-̂ —.'. •...«». «*»<>••» .««auitt*. • .a * -

P n ( £ , n ) = X M ( X ) Y V ( H ) ; i < M < NC, i < v < NS (6)

...r̂  is a local chordwise coordinate, where %ach SCjj| is a continuous, meaewise ||
linear spline in the local chordwis* coordiaate, 'and where each ¥„ is a continuously
differentiable, piecewise quadratic ^spUne in the spanwise coordinate. Since mejmsis
functions and panels have the same index set, the number of basis functions equals Uie
number of panels and, therefore, the number of normalwash control points 5&u|t iqMil*
or (txciteitttip nnmhftr of nanfila.

t t. A CHORDWISE FUNCTIONS % * # »

' For a "given value of y, the support* of X^ is (1) row 1 of panels if M= 1, and <P) rows ,,
M-l and p of panels if n = 1. The chordwise functions are depicted in^igpure 2. Xj is ^

define A over* the first row-of panels and has unit value at the panel leading^edge and
zero value at the panel trailing edge.. For /i > 1 each Xp is defined over t^o^pape^ row§,
has zero value at both the leading edge of the front panel and the trailing edge of the
aft pan«J, ̂ d has unit value at the- intersection of the front and rear panels.

ROW 1 ROW 2 ROW 3

Figure 2.—Chordwise Functions

* -r-^^fw ij|ljl»" 4 • " w "̂1111 f "-'i T ; •' •• 7'i|
is the closure of the set on which the function is nonzero.

•4 A. 4 * m
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* I
The support of Y,, is columns 1 and 2 of panels^if v = 1; columns if- l,>t and v + l*if * ;

v< N8; and columns Ns- 1 and N8 if f=NB . fhe'spanwise functi&is'areNdepicted in*
figure 3.'

..«,.»*. -«»-4» J« ̂ » . I II *

•/SYMMETRICy-Y2

COL 1 COL 2 COL N<

Figure 3.—Spanwise Functions
r~~ m -* f ' . »»»*»"•<.-^p-ppw*, »-.«v-4qr9**^r^M». » m <mm »™*-̂ -" -̂̂ g

EacX Yp has unit amplitude and is continuously differentiable across panel boundaries.
If l<i/< N8, Y,, has zero value and at the left and right extremities of its support\If

Y,, has zero value abrf slope on the left and zero value on the rigtt^If |>"»13Y|K
has zerb vahie and slope on the right and zero slope oil "the left «ife that edge is
symmeterically reflective, but zero value instead if -that sedge is
reflective or free. (This case is'not illustrated ia figure 3. > * # « * » $ B ^
* " : - . * # " » » » ' | * - * * * i « » » * * » A

OBeERVATIONS ON LOCAL BASIS FUNCTIONS » » * » f » * ,
* * > •, % « «• » 4 « * |

The above completely defines the pressure basis functions used in the pje^n^ s|pcjy._A ^ .
typical pressure basis function is shown in figure |. §e^erj|l ^>s^rv|itipn& Ql^be noted

Figure 4.—Local Basis Function

10
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1
*ft *iti
*
3.

is~a m 4 » w iflecause it is linearly fhdependent.
« Jfr M •

*> »

> » *

* * *
2. * It is' complete in the Jimit as the maximum panel dimension approaches zero.
« . . * « - „ •«
3. It may be extended topologically to nonplanar surfaces. 9 9 » > '
«** * ' : ~ ^ « » * * * * *
4. Finite sums, used in practice,.provide polygonal approximations chordwise and

quadratic approximations spanwise. « « * * * *

« » » « * ' , « • • * * • > f c » » » * » « « »
5. Further additions such as incorporation of "shape factors .based on t

Landahl-Rowe singularities can be made in a Bti*aig^htforward manner.
k t t f t f l i i ^ ^ § • ^ ^ ^ ** ** *^^ H A

The coefficient matrix of equation (4) is evaluated using Gaussian quadrature as in
reference 17. In this operation the kernel function, equation (2), is separated into
nonsingular and singular terms—equation (9) of reference 17. There are three singular
terms identified as dipole, square root, and logarithmic singularity terms. The
nonsingular terms as well as the square root and logarithmic singularity terms are
readily evaluated. The dipole singularity term, however, requires special attention.

G(x,y,y) y - a b -

(7)

atefral of tffeaipole siiigulagity times thePprtsJnrt, andwhere «

G(x,y,y) - G(x,y,n
y - n ^- - G,n(x,y ,y)J

(8)

1 1
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The coefficient matrix in equation*^ i^ defined iq, te,rnjs gf the.pressur^ baste %nction i
index and the normalwash control point index. Jlowever^ when local basis functions are
employed* it is preferable to index the calculations by panels rather.^ th/1% by basis * *
functions to avoid unnecessary repetitions in calculating the values of the kernel « «
function. It is consequently necessary to determine exactly which basis functions ar,e
supported by each given panel. The required transformations between indices may Ije
obtained in a straightforward fashion from equation (5). Also, it has been found that all
coefficient matrix inversions using local basis functions have been well condition

* * * „ * * « 4 * J * flMl m. * f

12
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* *« »
* «

* «
« *
* «

* *

* *
« » « * *

» « » *

• • * «

•t, * *

« » *

* « •

» « * *
* * * *
* * * *
*Camf>uter resuMs sre*pi«esihted *fo^*sri p^oftefbsT(B a very simple sleady-s
#iq» which *the isiteriftediaie %i8th%iriat?caf ftcHra'cy* is* evaluated; (2) a less simple
,Staa4y-state*problem, alsto ^n*w%ich 'the fntermediafe mathematical accuracy is
l^v^luated;f<3*a«ionsteady prdDStaPiri'v^icti ^br^er%efece* is studied and the resufts are
compared wi|h »anotber» cade;. (4) a noristeady control surface problem in which the
results a.re^cojnpared with another «ode; X5>"a series of asyrrime'trffc planforms consisting
of }skewed parallelograms^ and* (6) the frequency ̂ response of a lar^e, subsonic jet
^ra^isport to gjis^ loading. Problems (1) and (2)-are basic checkout problems ii5 Which fhe^
numerical results w,ere checked by separate calculations, Whereas^r^blSms (f) ft) (B) Ire*
projbl^m| dgsignfd .to validate the program by comparison with tfee %es'ults %f%tBer*
methods. The computer cod# usejd for»thfi present atudylssta numelriclil felfeafclP
reflrridio^asJlRX. , M « ^ » » » » » * * * < > * » * • • * * * *

* *
« «

« *

«

*0

ier
*

5.1 CHECKOUT PROBLEM ONE

*'

j <f. V

ison ̂ b*
ra, €P1,

simBlest possible (problem, The'tolanferrti afild%irlibllm*dftcTlpliol[ are»7 1 « « • * • *•
"

(0,0) (0,1) (0,2)

DWCP 1

Panel

DWCP 2

Panel #2

(1 0) (1,1) (1,2)

Simplest Possible Case
k = 0 2 panels, run as an asymmetrical problem
M = 0

mid panel downwash points
uniform angle of attack

Figure 5. -Planform for Checkout Problem One

13
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For this
yLJLJL:

problem, the coefficient
t

1
I?

•««£*- **^MMMV4MWM*MMM^H

•

Ci1 1

_Cn
•

matrixTinr \

C ~

^•2 1

^

r 1
bl1

• 4

p 4

1

2b ^

uniform downwash (o »
— —• •**• — - ' l f * m e L

4 r = rU 12 U j

lojvs,.that

8w a

The iiuiibfts'tolhifck'afl are given b

c =mn dn,

whertl
* mA

and

Y (n) =
3n - fn2 n e s , = (0,1)

|(2-n)2 n e S 2 = (1,2)

Y 2 ( n ) = Y i ( 2 - n )

(9)

(10)

(in

(12)

(13)

(14)

(15)

14
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jwnThe first point of comparison between CP1 and RRX is G(xm,ym,i7). It may be shown
that

— — _ _ ._, ..*- mr~n m an a ft <Jm1h fl f- r - --— - — -|. 1> • ^

G ( x , y , n ) = Y ( n ) U + (1- |x) Vx2 + & 2 ( y - n > 2 - J(i-

y log V(l-x)2 + B 2 ( y - n ) 2 - (l-x)
+ B a ( y - n ) 2 (16)

where, for simplicity, the subscripts have been omitted. It is necessary to define G(x,y,y)
as a limit; then . • •

1
G(x ,y ,y ) = lim G ( x , y , n > = (2x-x 2 ) Y ( n )

n +y
(17)

The graph of G based on equations 416) and (17) is shown in figure 6. A small ad hoc
digital computer program called ECPJ. was^used'to calculate n^iraericaPkvalues for all
the closed-form resu4ts*presentedj.n thi*.sectitn."Tti"ese values^e^e themc«mp%red with
the numerical values obtained by RRX. The wafties%obtained'"by RRX fojr GcWMre found to
be accurate to about seven and one-hajf decin^rt places with an. average-deviatton in
about the eighth place. All spanwise integration stations for TJ were compared. A brief
excerpt is

Table 1.—G(x,y,r)) for x = 0.5, y = 0.5 Basis Function No. 1

n

.0267 OUSS S463

.1)919 8863 3361

.5080 1136 6639

.9732 9S14 U537

1.976 8560 5193

G(x,y,n) exact

.5008 8328 97KO (-1)

.6982 5165 5022

.7072 6110 0380

.5030 2766 23H1

.2227 9916 0683 (-3)

G(x,y,n> RRX

.5008 8328 8670 (-1)

.6982 5169 2610

.7072 6113 318<»

.5030 2766 1266

.2227 9916 0793 (-3)

»*
Error, p%

-.21

+ 3.95

+ 4.64

-.21

+ .05

* Computations File, Runs CP1.6 and CP1.
** -b* ^* Oneft7c error equals one part in 1(

15
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G(x,y,n) = Vl(n) 1 + (2-x) fx2+02(y-n)2 - (1-x) V (l-x)2+B2(y-n)2

G ( x . y . n )

62(y-n)2 -X^^T* - (1-x) "I

Vx2+s2(y-n)2 + x

.7

0.0 0.4 0.8 1.2 1.6 2.0

Figure 6.—Chordwise Integral-Downwash Point One (CP1)

*'lSfe*infegrarid $f fh#sfliiRviSe Integral'is depicted iir figure 7; it suggests clearly that
tWS*tetxg|ral 'doe% ft)t*ejds1*as»'a# ordinary *ntegral.«f tB-tfcer, ia o*der t» wew the«fSect
"of'Hte G+ tr«ftigfcrlha(*ic»i, thfr graph of the singly differenced function is presented^jn
fig«%8.- It may Bfe *i*w« ttiat this difference fanction differ* from its limit, the
derivative G>TJ(x;y,y) by the order of |y-T|log|y««?| near ^j= y angl t^al ^jP infinite slope ,
will«fee exhibited in-fipure 8 ate the point ij=*y and, furfche», that tbe^o^ly Hiffpr^p.cqfi
ftin«*JMi G* will poesies awloganithmic singularity ,therev TJii,| s^n^ilar^y^^ii^i is j
integeable, tg shown ia, figure 9. RemoyaLof it§ logarithmic singu^ar^tj^is de^pi^ted in
figure 10; the function 6^, is completejy nonsingular and Jiejjce^mjiyjje^a^ily integrated
by standard, high-precision,Gaussian

16
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G(x.y.n) ^ c . f G(x.y.n) d
(y-n)2 mn ~J

a (y-n)2

y ° n

G(x.y.n)
(y-n)2

60

50

40

30

20

10

Note
(y-n)2 dn does not

exist, and 1t 1s necessary

to use the finite part of

the Infinite Integral, as

Indicated by j .

0.4 0.8 1.2 1.6 2.0

Figure 7.-Integrand of the Infinite Spanwise Integral (CP1)

17
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AG n G(x.y.y) - G(x.y.n)
yn y-n

y « n (point of Infinite slope)

-.6
Figure 8.-Singly Differenced Spanwise Integrand (CP1)

18



J 8-1/2 X 11 INCH CROPS

" G(x.v.n) r /„ tf tf\ 1^p5 G,n(x,y,y) J —

mn G(x,y,y) b + l

y - n

Panel*!

Note The singularity displayed
at the downwash chord 1s
Cauchy Integrable and of the
form G* B<y(log |y-n|)

Panel#2

.0 .4 .8 1.2 1.6 2.0

Figure 9.-Doubly Differenced Spanwise Integrand (CPJ)
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G*(x,y,n) - G^x.y.n) + B2Y(n)log|y-n|

.0 .2 .4 .6 .8 1.0

Figure 10.—Readily Integrable Spanwise Integrand (CP1)

20
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'11

i

G(x.y.n)
(y-n)*

dn - G(x.y.n)
(y-n)* dn (18)

We consider ^firsf* the ^integration a,cr«ss'%ie secorj^i jianfl—Tfiat part involving the
analytic integrand. From the standpoint ef rfumerical analysis, one, may use different
numbers, say NG Tof Gaussian quadrature points, an^ different numbers1; say NS of
subintervals. These respective choicgs are independent, - and comparative cSfcufatipns,

. were made for NG = 2,4,8,16 and NS = !£,£& *£he results ffre presented* below
.table 2.*'The1Ji6^point single•subinterval jconrbifStion(rcoMespon3S*ng tft MG=161*s
XTO = 1 appea/-si»ptfcium for ihis- cafe. It js clear that convergence is attained* 'TA

" :e may Ijg obtaffied bv^u^ipg^fche "doubj^ <iM
*• Ik ^ '* "̂''B*9*',. "̂ n "<fc **

»

Table 2.—Legendre-Gaussian Quadrature of lG(x,y,rj)/(y-r))^ dr\

NG

2

H

1

1C

NS * 1

.2137 7125 5836

.3220 8S96 666H

.322$ 5H20 3769

.322$ SH23 02HH

NS « 2

.3166 9H39 1H7S

.322$ H332 1213

.322$ SH23 0226

.322$ SH23 021*

m • «

.3211 M2( OH33

.322$ 5M11 7521

.322$ SH23 02H3

.322$ S*23 02«i|

NS « 1

.322$ 133K 6362

.322$ $H22 9580

.322$ S*23 02"43

.322$ S<*23 02HH

integration o

i

'-ffl dr> = J G * ( x , y , n ) dn G(x,y,y)
L-y y

G , ( x , y , y ) l o g (19)

L * Computations File, Run CP1.10 j
». n. tm m ^i-Vi.i.M«lJfcJi

21
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> ^« r T ' T* .is for purposes»of numerical integration, a matter of-integrating G» for i?e I 0,1J . This is
conveniently'done in* twb {Jartsrije fo .yj and *te | y . l j - Ifx>ne simply uses standard
Legendre-Gaussian quadrature, the numerical results may be expected to be poor
because of the logarithmic singularity rema,inin|^,jn G% that*, is "displayed fn figure 9.
This is^th& caise,<*as ahoVn in table 3. However, if in the analysis precedif!^ rMmlriclil
integration, the logarithmic" singularity is separated as it is in figure 10, then
Legendre-Gaussian quadratue may be used on G* and logarithmic-Gaussian quadrature
may be used ^n the toga-rithmieally singular part. This is,alsfi SJH>W«» iwtaWe^ It^may
be seen that the eight-point Legendre-logarithmic form of Gaussian quadrature'

* converged to almost 12 decimal places.**

Table 3.—Gaussian Quadrature off G* (x,y,ri) dt]
Jo

NG

2

4

8

16

Legendre Only

2.512 623U 7UH3

2.582 1U30 OU9U

2.603 6269 2847

2.609 6812 3399

Legendre-logarithmic

2.770 2077 8297

2.770 03>46 6808

2.770 0355 4307

2.770 0355 U308

The cumulative convergence of the numerical integration procedures for C mn is shown
in table 4. It is seen that the convergence is quite strong. The level of convergence is
between 11 and 12 decimal places.

Tr jfen' ^ f̂c. Jl*k *-* >,nam

Table 4.-Convergence of Coefficient Matrix for CP1

NG

2

4

8

16

Si
5.266 0133 9149

5.259 9913 4187

5.259 9813 1284

5.259 9813 1284

C!,

-.3841 4421 5347

-.3842 0916 7113

-.3842 0735 7155

-.3842 0735 7138

* Computations File, Run CP1.10
Computational File, Runs CP1.11 and CP1.13

1« •f \
22
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By comparison, the results of RRX are shown in table 5 to eight decimal places. It is
seen that the maximum error isM).10% in the smaller, of£diagonal term and 0.04% in
the larger and dominant diagonal terms. Because the integration procedures in RRX are
rather extensively modified versions of those used in the RHO-III code, and*th*e latter is
optimized numerically* for global, basis functions rather than local* basis*functions, the
agreement'slibwri in table 54s Efficient for our purposes. % %

_ A Ik * mi mi n i ^ ^ % %ti fllfc Tim Ifc *» 4Mt_4kfc_<B

Table 5.— Comparison of Cmn From RRX With Values
From Table 4, Which are Essentially Exact

Source

Exact

RRX

p - PUll " *-22

5.259 9813

5.259 6758

C = C

-.3842 0736

-.3842 6833

Although a two-panel solution is extremely crude, it has Been most interesting to
compare these results with those of other codes. On the basis' of the above results, it is
easy to determine the. basis coefficients and then to compute Ct (which is a gross,
measure of the ability to predict pressure accurately). This was done, and calculations
were also performed (1) with the RHO-III code using 48 comparable terms (actually 24
terms per semispan), and (2) with the steady-state method Sf F. T. Johnson (ref.
comparisons are shown in table 6. The agreement is1 remarkaHle. <* %,. % %

"

Table 6.—Comparison of C/ From Different CodesL

Method of Ref. 18

RH0-III

RRX

100 terms*

t8 terms*

2 term *

22. 1+6

2.474

,2.577

For consistency, these .sk£e th^efiective numbers oF'terms if symmetry i.s not discoun
otherwiseHfefse-qiguld ^gd SOJerms, 24* terms, and 1 term.1*

23
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5.2 CHECKOUT PROBLEM TWO*
••« .̂ ***

The purpase oflthe'secorid checkout g£oh}gni, CP2,4e towprofMelte accurate, clos
comparison far a swept (AL= 4*5°), taperedj XT=0.5) wing at a high — u—~ :

. m* „ . v M f̂ci. i . ™ - * ,. JHiMlk. 4Mkk

numer

(0 ,0 )
.Pitch Axis (needed
only for k |l 0)

M = .80 6 panels

k « 0,1 symmetrical

(2*5 ,2%)

Figure 11.—Plan form for Checkout Problem Two

asis Functions: Let the functions defining the leading edge, midchord, and trailing
., J

= 2 (2o)
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1%e local panel coordinates are then
%.

C.

e - ihl
(21)

"~

and the fun«tioriS X^ are given by

t = 1-1) 4 <£!*£<£,—X = ,— X, = 1-^). (22)

•The stream wise functions, Xp, are depicted generically in figure 2. For this particular
problem, thespanwise functions, JO*are depicted by figure 12.

(0 s n < l — Y! = i - 7 n 2 ) & d s n < 2 - » Y 1 = ^ ( 2 - n ) 2 ) (23)

(0 « Cl s n < 2 -^ Y2 = IJ(- lQ+20n-7n2) )

& (2 i r, s 2 - ~ Y 2 r j j c s^n) 2 ) (24)

n 12 — Y, = | ( n - D 2 ) « (2 < n < 2^-^Y, = l -
(25)

Integrals: For aimplicity, the indices

from the coatext what is meant.

'̂Sfc^P^- ' '̂ ?^^?»^ ^ v

G(x,y,n) = Y(n) J x(T)
{e:p(5 (26)

*The symbolism (Vf:P) (Q mean- Co atisfying P, then {also satisfies I

25
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y(x-£,y-n) = 1 +

Mn)

Figure 12.—Spanwise Spline Functions (CP2)
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Since X(f) is linear in X -{, G is expressible in terms of the*indefinite

*(x-e.y-n) = J (28)

- J (29)

8 2 ( y - n ) 2 , (30)

-^) 2 •«• P 2 ( y - n )

3sB*(y-n)2 log +e 2 (y -n ) 2 (31)

"*', - — ̂  < - • <*' •'w-'r: *- ~^m •".
Indeterminacies in 0 and ^r must be handled a's limits. - In addition, it is essential to
recognize that along tj = y, the behavior of certain singularities* depends onljjmpon the
sign of x - f . One finds * *» ',,

G(x 'y 'n) =

-£2 (n) ,y-n) - ,y-n) ] » (32)

G(x 'y 'n) = ,y-n)3

-5i ( n) ,y-n) 3

'In order to calculate G(Ssfcr,«Pisr cKlx.y.M), the streamwise HiJtMfes of the daBuiPfcoh'BJui Jinate
*f , ̂  ^^^ 'ifhfr ^<

x*with respect th the panel boundaries,* i|'.'f enter vie^he signs of x-{ (*?), x-( Cl), and
i- /«ii «fc * I 2 3 ' *

27
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here c(r}) is the local panel che

Based on the above closed-form expressions, the values of G(x,y,Tj),
G,_(xry,y) were computed* with an ad hoc digital computer ^program called* ECP2.

ations were made at each downwash point and at each of the many spanwise
ntegration stations used by RRX. Several thousand numbers were compared;** the

of RRX for the CP2 were as accurate as in CP1.

?or this problem, Cjun will depend upon integration over as many as 12 panels. The
ownwash point will belong to, at most, one panel, and the Hadamard integral must

performed for that particular panel. All other panels support analytic integrands. Thus,
ite

mn G*.Cx,y,n)

(34)G,n(x,y.y) log

where the summation's performed over the spanwise coordinate projection of those
panels in which the-f downwash point is not contained, and the last three terms
correspond to the one in which it is. The analytic int'e'grands on the intervals integrated
by ordinary Legendre-Gaussian quadrature and the logarithmically singular integrands
on [a#,b# ] are integrated by logarithmic-Gaussian quadrature. On the basis of these

^.oi/niiafinna *** the ^6 coefficient matrix «for CP2 4s show^ to^six^decimal places.
___^™« * _^fc* _ ^fe i i^ML_. _<•», _ i _-»-^_ i_i A. i ^Mfc. ^ik '%% '"%*t ^Values from^pi^arfishown' in parent. ^ ' ' - * i%;"%>

K.

'V '
the abov* Values of G and G, -"along T}=y must be worked out analytically from the above expressions

due to indetermfnacies. Limit calculations on the computer using ECP2 were fatally ill
. . . . . 'm ^ «*conditioned.

**RRX Calculations File, Runs CP2.3 through CP2.9.
***RRX Calculations File, Ruos CP2.10 through CP2.14. The results converged

'"'J11-̂  ^ *fe«t ^ ^ ^ ^ ~

•
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M

2.41 405
(2.41 419)

-1.23 159
(-1.23 161)

-.465 187
(-.465 187)

2.23 192
(2.23 192)

-1.13 757
(-1.13 757)

-.433 378
(-.483 378)

fc In addition, thj?pi^3sure
^' L

BBfcll_JBfal MUl fflft1 • <4tefc*«JlBfe

j , L9.68 476
(9.68 387)

.729 411
(.729 438)

3.58 102
(3.58 089)

-1.86 858
(-1.86 860)

-.679 055
(-.679 013)

3.40 261
(3.40 261)

-1.75 293
(-1.75 293)

-.034 795
(-.034 795)

1.12 170
(1.12 167)

3.41 598
(3.41 585)

-.119 257
(-.119 219)

-.108 931
(-.108 930)

4.63 633
(4.63 633)

-1.76 993
(-1.76 961)

-2.26 456
(-2.26 454)

-.822 622
(-.S22 621)

4.69 607
(4.69 620)

-2.27 143
(-2.27 145)

-.924 643
(-.924 643)

.066 543
(.066 607

-1.58 112
(-1.58 098)

-2.80 607
(-2.80 606)

.028 633
(.028 760)

6.95 942
(6.95 929)

-3.49 212
(-3.49 214)

-.044 384
(-.044 384)

.186 115
(.186 145)

-1.63 181
(-1.63 169)

-.139 504
(-.139 504)

.964 842
(.964 812)

8.13 560
(8.13 547)

8.25 933 14.8471
(8.25 935) (14.8476)

2.25 404
(2.25 420

™*mp^ ^^Mr i^^fe *î & *î M*K:**iMViNHIMf*l*4HNî  ^fpwfc ^M* *^MIP ***«••»
and tJlQffi^^i&and center of presage ^jjg "afc^ ^^

2.36 621 -1.74 502 J ,
(2.36 619) (-1.74 532)

? - ;.,. ^Vlk ^B
gHa^a

C. = 3 .74 249 ( 3 . 7 4 241),

Xcp = < 2 5 2 22° ( * 2 5 2

n = .432 977 ( .432 980) .

C. = 3 .742 (RH0-III using 24 terms)
Lo

C. = 3 .784 (RAMROD-X using 6 terms)
La
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r* < i % ik» virvijMry'irfc'i 111'*''
*TJb5Kigr*Sement is wry good in view of the factSSret the six-panel "reprSSta^oJf is'
quite crude. Since there are only two%streamwise rows of panllsjithe chort&a^ prej^Wej
distribution consists of exactly two straight lines. This representation is illustrated in
figure 13. Although no comparison of pressure was made with the RHO-III code, the
sectional lift and center of pressure were compared and the results are shown in figure
14. The agreement for sectional distributions is quite good, but not as good as that of
the lift coefficient. In general, integrated coefficients agree most closely and are the
least severe comparison, sectional distributions tend to agree less closely and are a more
severe comparison, and pressure comparisons are the most severe,j»f al|j

CLa - 3.742 (3.784 ROWE)

0.2522 (0.2628 ROWE)

Figure 13.—Pressure Distribution From a Small Number of Basis Functions
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c£ 2.0

.2

O

.4 .6 .8 1.0

— PRESENT
METHOD

O ROWE

Figure 14.—Sectional Distributions From a Small Number of Basis Functions
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5.3 VALIDATION PROBLEM ONE

i
particular study,

gHO-III code. *This o
u/isteady aearodyriami

•M

:al£ulati£n$ for VP1 are arranged ^pt&
_ J rf^ • _ _ . ^u Jft *

* t *
;|P: ,Tb# first nonsteady run*m|de wit

stuced frequency set equal to unity. Whereas

lod^e was adopted in 1968 by AGARD as the^r^rjpiarjLstandard for
ics. * * '

- * * ' ' \ * * • •* , * * * • * # * *
L are arranged into four series: the CP2 series, A series, rf series,«

' . * * , * . 4 ..

tn,
was the same as CP2, exceptj? ™
tiie steady-state case (k = 0),

^ J» _JK (f TP

terror in (J ,̂ \^tsrl%; fn the unsteady caae (k = 1), tSie error was g2%.*_- Tnepexteot of
Ptffis change is indicative of the difficulties encountered as one passes frotn steady to
fc,,3CnA,«j.,n«* i • v * * * ^ " *unsteady flow.

Ir t f f * - * ' *> * f ** - ! ' f * ^-y
first question addressed is what are the jUnprovements that are, g&inea by

rffer&smg*'the numb^T of panels. It would be^ natural to expect a greater improvement
rom*increasing the rgirober of choijdwtse panels than from an equivalent increase in<*he
-umber' of spanwise^pariels." Therefore, the second |run used four chqrdwise |>aoeK
--^--lad of only two. This caused the error to, drop from 22% to 7%.

* .m* »'* » •^ »«** * f

of tfie lift coefficient calculations are depicted in figure'15 using the complex
Diane representation. The ,comparison|, for the steady-st^e calculations is shqpvn also,
jtnj&eariag(along4 the real ajcis^Tlxe pa^ei« arrangements are indicated as ^h^iqpribef of

' e ^>altelS ^irnes the number of spanwisfe panels. Thus, ?for example, 4$xJ3£f
faurfchor^Wise panels and three spanwise panels. This s^ime jsepre^entaljlfon is

, tige <lHO-Ilf calculations, but in* tnat*ca*se. 6C x 4S denotes six chordwise
I 7* ~^ ^.^A lA' *

pressure, functtons ^yTbur spanwise pressure functions. For the six^panei calculajtiohs.^
the se/;tiongil Distributions for^ lift Coemciept find efente%of pi)sssui^ are,, compared fin

Ki ic ™;ti- the*2» term results'from RHO-III. The agreement is s^en to Ae*
i* fr ' .JS

fair and qualitative!^ correct. Additional comparisons, using feiore"
p^santed later (C |ei|tes$. * — t t* t *" # * ' <t &

quantita
,panelr . I

' '<m» «M "
*For puJposes o^the^presaut stndy. er^r is defined in'the unateaHy^aswasthe magnitude of the
Complex difference .between tl«e RRX and*RHO-III va*nes7 'es, divided byrb^lHO-in \^lue. m **

^ *"* <«k ̂ ^ ~Mk «• *" -<••Wf <^ ^ «fe ̂ T <<^ ^»
4 .̂ ^^ 4k. ^k t̂e._ '̂  > ̂  ^ l̂» «^u ^» .̂.J
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vt
<d

. 4«j
g

s

R H 0 - I I I
6C x 4S

RRX
4C x 3S

Cf Steady State:

R H 0 - I I I 6C x 4S

RRX 2C x 3S

1 2 3

Lift Coefficient, In Phase

-w-

M = .80

k - 1.0

PANELIZATION

(a) 2C x 3S

(b) 4C x 3S

Figure 15.—Nonsteady Lift Convergence—Validation Problem One (CP2Series)
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.50

.40

.30

.20

.10

.00

3 O O

3 a

.2 .4 .6 .8 1.0
n/s

In Phase Out of Phase RRX (6 panels)
In Phase Q Out of Phase RH(J-III (24 terms)

Figure 16.— Comparison of Nonsteady Sectional Distributions for Six Panels—VP1 (CP2 Series)
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f-^A a^ries^irie^uwposemi th» series isrfo^tudy^tne convergence
* are "made^mallfer, first in-the»span,wisejdirec|^on, then in
. both* * * * * * > « • * • * *" « V*

ft%4 • * * * - + ». * . .„ 4 - * - - ' » r «
Feur paneliflations areoemploye^J 2C.X 2S^C x^S, 4Q x 2S, and*4C x*4S. Iraving no «r

'prioti panefcatie® criteria for the RRX code, we* begin by Busing* in? lfti9*seriefc thai
** .̂

fso-oalled*'Multhopp equiangular^ partition (ref. 19) in which me cRord\#isee and*
spanwise>|)aneik boundaries am determinedjw 9 m

4

TT . 1 - cos9X - • — 0 < 6 < IT (35).

n = 0 < $ < w/2 (36)

f
UI» IIIILVI ,.y. I ,,,

—r .^^.^^^U^^^UM^CU lr^>.^rJlira iu - ~~~ r -.^ -̂ -. rhe%ffeclf isato
jp panel density in the regions oflargelt pressure* gmdients; i.e., along the leading ;
^trailing ^dges (where the pressure gradient is Infinite) and along the t\f (w^re ifcis^

also infinite). These panelizations'are illustrated in figure 17.

By and large, me results ̂ re aS ejq)ecte1d. The2C s»2S rrni pro
* ,+ ++•#• *

By and large, me relults "are aS expected. The 2C x»2S run produced an erroj in gLa°fc
21.2%. Doubiirig the*number ofspanwise panels produced aji «rrgr of gl.5%|̂ )ut with aL
more accurate "pliase angle, as^may^be seen, by referring to^figur^ 18. On the otHer
hand, (toublfng iri&tead'the number at cho»dwis& paneis geduce/1 the^errojto 5^%. It is
apparent that*in*the presefet method,* it is preferable to have a larger 'numoW or
chofdwise* pan*el# fha* spStawise paaels- -Finallym doubling Jt>othr the number of*
choAlwise4 and"spanVise panels seduced thfe erjor qven fiirther to jg.5%. UrmayHbe

I df>setved«lhat the 4Qx 4Swase iias. nearly the*sam$ magnitude as tjie 4C^ 2S (?ase, €ut
i tSiat ttle 4CTx 4S"case* hae a more .accurate, phase angle, an important criterion*in
* pfoblefts svfth a-flutter, j^and i# an uffecl^hat^he complex error mafnituffe cr^ferioif
f may* n«t "ac^irateiy reflect. *In any evenL however,^it is clear that "this %erie# doe#
i1 display,positive cpiverpence|^hara<:ter^ics.. ^ J^A

& . *» , ^. -— . -
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Figure 17.-Equiangular Penalization—VP1 (A Series)
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o
+J
3
*

•M

£
•r-
o

so

RH0-III 6C x 4S y RRX 4C x 2S

RRX 2C x 4S

RRX 2C x 2S

M - .80

k - 1.0

0 1 2 3 4

Lift Coefficient, In Phase

Figure 18.-Nonsteady Lift Convergence for EquiangularPanelization-VP1 (A Series)
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»«
B Ster*s.*Tlte%*p«Be*oMtaie«>e«ea is t»i»vestigate
RRX code to oaneliaataoi* density in-terms of
with tke A »eries«f«ak;uiatjons. » « » * * *

* *

The paneliietipn* ar«*agai* 4$ $2$, $n& 4£ fc4§. this gerje^,
From a

the, equiangular paj|e|j^:a£iQjp. Jd^ljjf, ^t yould be^h^pqd tha^tjje wlutign is
insjengitivejio .the, j^rticuJar^pa^udizatmn^Re/errin^io figure2Q\ this is appatently_
case, with^ slight deterioration Jn accuracy (*1%) when the equidistant
is Used. In particular, 2C x 2S has an error in CL of 'jj/S.4%, the 2C x 4S of 22.5%, the 4C x 2S
of 6.9%, and 40 x 4S of 9.2%. a

,* -

"rAc fact tnaft^ fc x 4& pltnelSafon iffl *s accurate'tntn^Ml Ifc x 2f§ ft anoliafoili.'
Once this anomaly is recognized, it is seen to be present in the 2Cxj4S (22.5%) and«2C x 2S (22.4%) pair, though to a lesser extent. In retrospect, it was also present in the
A' series: compare^C x*4if (21.5%)* with 2C x*2S (21.2%j. The

Since the collocation points are being placed at midpanel,* it is seen that, with
equidistant spacing, the distance from the apex chord to the inner collocation points* is*
mucfe <3os%r*than*>with -the equiangular spacing-'^nflfe *he««aT*ex^rtlu*es*a»ii%i^Bi»tj«
in Awn wash thaf is;'plrys1cally*inao:lnissiMe'artd e5rr«ne6u», plaeinf oellftcatidfe po»t
ctos% to %u€h % %ii%uilartty> wilk produce efrrwieeus result®. Furthern ttae 4K«sspe|
operator fe ifn*v* t*bt dfccenlin«Dus for plaaferrdte »ith break* Ipis^appave^t. +0* t*
avoid «pl»ciilgi*uj»n«ce»sary*restricteoBK on* the 4ooatfen-? of o®H»cai,ioji 4)0
pianforimnaust he atn«otkee^ and*the «m»otibiBg must^ii»'praoticp, i^tfipplifd^o the
in<|jpri|>r » * « • '

,̂o

series of calculations is to refine J.hg Canalization
of tBe^lre^sure distribution. 4 • » 4* * *

«. * * * * * *

»gte»Ce1froni*gurefc!L Using
rfsp*ec£ively. The

seem a*' cdbv^rgence ol
p&IrEls, tH6 4 i iOrS u*.^ tt*1* "SB* 'Tft «jf« »-'«*' j «K«AfBVk A .t^ /f i A vcij'^'V'UA * *jijr r j. iiv^ ui

• cdmfjarisdh fc ftiat of the^se^tigynaj distributions, shoV^I in figure 22. It4
I" 4"l» M/!iC<ri l4ifc ^^\T^^~ ~ -^— -^J- -^ J-l- - - . - . - I J . - _ P i t _ _ T^TTr~v TTT . » _1 . ;*: .'• '-'• j ™ J_l_ _

ivkinity of tHe
Actual p»resSu%e
4)anele, respectivery,*for tne" mid-semispajpi «h«rd» R>r» a* preliminary

i Convergence may* be considered quite good. The approximational fimitations imposed
I %y chardwise MnearTty*of*the basis funcjiopsjalsp way beseent '

is isf ?Thi
P ^agd

requirements are that the number o
*(NW > Nbf, fe«th^t!lhl c8ntrol*pd

'
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Figure 19.—Equidistant Penalization—VP1 (B Series)
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-

OJ

3

R H 0 - I I I 6C x 4S

RRX 4C x 2S

RRX 2C x 2S

Note 4x4 anomaly (see text),

M - .80

k - 1.0

0 1 2 3 4

Lift Coefficient, In Phase

Figure 20.—Nonsteady Lift Convergence for Equidistant Panelization—VPl (B Series)
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s
u

RHP-III 6C M 4S

RRX 8C x 85-

RRX 4C « 45

RRX 2C M 2!

0 1 2 3 4

Lift Coefficient, In Phase

M • .80

k • 1.0

PANELIZATION

Figure 21.—Nonsteady Lift Convergence for 4, 16, and 64 Panels—VP1 (C Series)
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.2 .4 .6

Span Station n/s

8 1.0

R Real

I Imaginary

0 R H 0 - I I I 6C x 4S

RRX
2C x 2S

4C x 4S

8C x Be

.2 .4 .6

Span Station n/s

1.0

Figure 22.—Nonsteady Section Loads Convergence Using 4, 16, and 64 Panels—VPI (CSeries)
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Figure 23.—Comparison of Nonsteady Pressure Using Two Chordwise Panels—VPJ (CSeries)
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Figure 24.—Comparison of Nonsteady Pressure Using Four Chordwise Panels—VP1 (CSeries)
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/\(XX)
M • .80

k - 1.0

— © — RHf-III

~~ ~~ ™~ RRX

R Real

I Imaginary

n • SOS span

.2 .4

Chordwlse Location x/c

Figure 25.-Comparison of Nonsteady Pressure Using Eight Chordwise Pane/s-VPJ (CSeries)
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5.4 VALIDATION PROBLEM TWO •

to-ijyjjy RRX for a suifuee_w|jB^cpntrol. The pflfeform,
icient versus reduced frequency, and chordwise pressure distribution are she

in figures 26, 27, and 28. The control surface is a 40% chord full-spaif'flap.
slization used six equiangular spacings from the leading "ecfge to the

equiangular spacings from the hinge line to the trailing edge, 'and
liangular spacings across the semispan. The agreenient "with Rowe-"is"seen to
silent. Of particular interest is the close'agreement m pressure near the leadir

and hinge line, even though no special shape functions were used.

M - 0

.4c 4 1 - 2 50 panels k • 0,.5.1.0

Figure 26. —Wing Control Surface-Validation Problem Two
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CL,

C/Cf - 0.40
/«-2
M-0

— PRESENT METHOD
O ROWE

Figure 27.—Lift Coefficient vs Frequency Due to Control Motion—VP2

PRESENT
METHOD

OROWE

Figure 28.—Chordwise Pressure Distribution Due to Control Motion- VP2
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*«*
Tt

5.5 VALIDATION PROBLEM THREE

.

' ^ ^f- ' ^^ .

The purpose of VP3 is to demonstrate the use of RRX for asymmetrical planforms.
Symmetry conditions employed in tl)£ present study permit the left planform boundary
to be symmetric,*'antisymmetric, or asymmetric. Tie results of an asymmetric analysis
are shown in figures 29 and 30 for a series of skewed parallelogram planforms with
sweep'tangles ranging from 0° to 60°. The Mach number is 0.80 and the normalwash
mode is that of uniform angle of attack.. Figure 29 shows tine overall center of pressure
versus sweep angle, and figure 30 shows the sectionaLient§pwf pressure. ' ia*"k •**'

__•<•* ^F* •̂̂ ^UF*̂  ^mtHK 'JeHf ~ f̂
_^^-f .Aû HHHMAv -*MAM»* ,«*P*

.245

.240

"CP

.500

Figure 29.—Overall Center of Pressure for Skewed Wings—VP3

.30

.20

.10

rA -60-

-A -0»

.4 1.0

Figure 30. -Sectional Center of Pressure for Skewed Wings- VP3
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5.6 VALIDATION P FOUR
* vm £;t-

I - IP^W qRr *fc m •* - 1» %> M 1** 4fe "* »

All resfilfe p*e3*r4ed^sqj'ar h?a\^ bteen fiw «igjd normalw*ash dfstribut^gpi^ îe* purp'os*
^^4ts to ideapoijstiate the^ile 9f RRX fipr flexible mod^. The dynamic respons^tot

st loading for a large, subsonic jet transport (including only the wing flexible'degrees*
tank hjssjae^en calculated* using feoth Jhe present medio^ and that of Bfovie ~

3=1, 32, and 33 compare the results of the preserft method vqjth. those of Rbwe
theTtiagmtuda-of the response amplitudes, with fixed controls for wing root shear "

5^Wn^>root^)Qpd;ng moment, and-waigtip^acceleration, respectively.

I
* IK

JLA *

14,000

12,000

10.000

FREQUENCY 8'000

RESPONSE
(LB SEC/FT)

6,000

4,000

2,000

— PRESENT
METHOD

O ROWE

2 4 6 8
FREQUENCY (CYCLES/SEC)

Figure 3J. —Wing Root Shear Frequency Response-VP4
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FREQUENCY
RESPONSE
(LBSEC)

5x 105| r

4x 105

3x 10

2x 105

1 x 10

— PRESENT
METHOD

O ROWE

2 4 6 8 10
FREQUENCY (CYCLES/SEC)

Figure 32.—Wing Root Bending Moment Frequency Response—VP4

FREQUENCY
RESPONSE
(SEC'1)

20

10

0 2 4 6 8 10
FREQUENCY (CYCLES/SEC)

— PRESENT
METHOD

O ROWE

Figure 33.—Wingtip Acceleration Frequency Response—VP4
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K

- » *« * f
6.1 CURRENT STATUS

5PPi*ni~~
*m_~ r~ •"!_•>• " •?• m.-™fv* * -4| »' 'J • « * - " * **FWIhe feasibility of using local basis functions for calculating unsteady airloads has been
successfully demonstrated. The numerical results show a degree of smoothness and
accuracy approachmg" that of the global basis function methods while refining the
versatility and simplicity of panel methods. ' t * ft * , • »

For a given planar aerodynamic surface, Mach .number, reduced frequency, and
normalwash distribution, the computer code developed during the present ..study will
predict pressure,1 sectional lift, sectional center of j,pressurf, pverall lift, apd overall
center of pressure. If a control is present, vajues £r% calculated, for the primary surface
and for 'the secondary (control) surface. In addition, force and moment coefficient
matrices can be calculated if desired. Symmetrical, antisymmetrical, and asymmetrical
problems can be runt * n * §r % $ i * •

m 9 * 9 f
* II * •

Potenttal 'improvements would be, found by extending the method to multiple nonplarfer*
su»fe(Ses,fiitKH£>o»atin8 the Jjandahl-Rowe singularities, implementing a fairing oftioh,

»a«e]», optim tion, and optimizing the' computational*
• ft, , «r.

* f' * *• * »

6.2 CONCLUSIONS AND RECOMMENDATIONS

SnStStrated wiat splfned local fasls funct*>rte thriaulated in>
« ^rms of^Cfipijratioja. potential douolefs ckr? pftvlde an afcc$rate an«l useSuUoneans

--'^-'--- *n%exib1e*aircrfft*TRis*w«rlPwiisftinde«taiie»
if *defmin8f a ntetfto^ dapable of practical

At the outset it was recognized that local basis functions similar to the ones noted above
but formulated in terms of velocity potential doublets, rather than in terms of
acceleration potential doublets, might provide a more direct growth capability to
general nonplanar, three-dimensional applications. A parallel steady flow research
effort by Johnson (ref. 18) utilizing the velocity potential formulation has recently
demonstrated a superiority over the earlier steady acceleration potential (or vortex
spline) formulation by Mercer (refs. 11 and 12). However, for unsteady flow, the
technology for integrating the acceleration potential kernel was readily available,
whereas the difficulties associated with integration of the velocity potential doublet
were unknown. Hence, a decision was made at the outset to utilize acceleration
potential doublets, taking a more conservative approach that would suffice to evaluate
the salient'behavior of local basis functions in unsteady aerodynamics.

'
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\ w* ~* • •• «»» <«« •• m «ar*wF «t *_ , "*, T if * •*••"'••'"* ••"it "w •*>- * wMfc * " * * » ** »inee«tqptgti^e» t^e^rflblem. of integrating the subsonic velocity potential
I » kernel has been addressed. This unpublished work, carried out by Johnson, si
» integrating, mostly^n closed form, the unsteady velocity potential source and doublet

kernels with $he local basis functions used in the work'of reference 18. Thus, it now «
appears possible to work toward the goal 'of'unsteady analysis of arbitrary
thijee^dimensional ^configurations by implementing the above mentioned unsteady
kernels into the velocity potential approach of reference 18. * * * * ' f**r$ « » t *• «

< « t » , «r£ *

A.«£I*«. •
Boeing Commercial Airplane Company

P.O. Box 3707
Seattle, Washington 98124

September 15, 1975
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CGMBUTBIfrOOBE

sections below describe th
- • • » » » • "•

* % » * « » * *

* * * * , « « * * * A.I ORGANIZATION
k A ft ft A ft 4^ ^ '

e purpose of the RRX code is to demonstrate the Yea*silJilrty of using the Ipca^ b^j
functions to calculate unsteady airloads, and to do so in a manner that could facili
its possible application in the future to a FLEXSTAB system. The layout of the^ccfle.possible application jn Jhft future to a FLEXSTAB system
been determined with |hese considerations in mind. Figure A-l depicts five dLstui'
arts of the code, labeled |-V^ which .approximate the ftt>w*wfthm the actual codj.

rate the work into rela^iv|lyfcindeg^qdeBt units for purp8se% of pfanlhiftj.

The bulk of the computing lies in calculating the coefficient matrix, denoted by 1C J in
part III of figure A-l. From the initial development and numerical analysis viewpoints,
part III is the most critical part of the code. Less critical are the input and output
interfacers, shown as parts II and V. Solution of the linear algebraic equations is shown
in part IV. The solutions may be required in terms of the basis function coefficients or
in terms of the .inverse of the coefficient matrix, and may be either a determinate
collocated solution or an overdetermined complex least squares solution.

i A • * <i
_. - _ -^•MMMriV^M JA( ̂ ^. flftal^ft flUB

* • « * ma <
> ? f •* i * ; • • * » »

gegoting by [^C mnj the'coefficient matrix appearing \n equationi(4), y
and nlis the pressure basis function index, we have », 0

colic

wI
N w x l

8ir L mnJ \ nj

N w xNp Npxl (A-l)

I EquaEquation A-l is solved deterniinately if, and only if, the number Nw of downwash-points
equals the number Np of pressure basis functions. The solution may be over.detewiined

'in the sense of^jomplex least square error by usjnj* more downwashwpo'&ts Ui^j bteis1^
function^_Ii^"tjjat c§ge,*Nw*>Np and (A-l) isj^eplaced^y '̂ ^^ %». ^ ** ^ •*»> '*>lfc

(bn)
Npxl

conjugatete transposition and [W I denotes "a "
t«r»(i«f.iieOI. * * * - •

« « * » « * * f i t !.***?
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I
MASTER

PROGRAM

II. INPUT INTERFACER

• Data Reading Section

• Data Testing Section
• Control Data Section

cycling
output
downwash
panellzatlon

III. [C] MATRIX CALCULATOR

• Spline Functions
• Kernel Function

• Numerical Integration

I
IV. EQUATION SOLVER

• b or [C]"'

• Determinate or Least Squares

II
V. AERODYNAMIC LOADING QUANTITIES

• Surface Coefficients
• Sectional Coefficients
• Pressure Coefficient
• Force and Moment Coefficient Matrices
•Generalized Aerodynamic Force Matrix
• Final Computer Output

printing
plotting
punched cards
tape storage

Figure A-1. -Program Organization-Preliminary Layout (Schedule Development Phase)
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i The actual calculation of the coefficient matrix is performed as described in section 4.24
; However, when the left planform boundary intersects a'vertical reflection plane (i.e.,
'< symmetric or antisymmetric, but not asymmetric), the integration for Cnm is extended*

from the support R n of Pn to its 'reflection R^ about the left boundary and the value of
Pn or R*n is equal to, or equal to the negative of, the value of Pn on Rn, depending upon
whether the reflection is symmetric or antisymmetric. Thus,. for nonasymmetriq
conditions, m - • * « * • »

mn n
-.ft

dA> (A-3)

••••«
f, is^a symmetry-characteristicr function.
Jtv:

+ 1 ? e R.

xn(t) = ^

n

-1

symmetric

antisymmetric

(A-4)

^ r̂ ^ «» «r MT *P W f̂ ^F ^Pr*"'̂ r"

Equations (A-3) and (A-4) reduce the number of unknowns by a fector»of two when they
apply. The dependence of Cmn on both downwash location (xm, ym) and the location Q£
the support Rn of the basis function Pn is deplic1fed*hifig*ire( A-2* * » j| * ' _M

(Reflective Left Boundary Depicted)

Figure A-2.—Downwash Point and Pressure Support for Typical Planform
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* * * «I
ie \ernel *

I * i

* * * * » « « s * « « t e « • » • * * ,
In ordfer *to avoid expensive ajid» unnecessary^ r§p^ity>n| in

^funcfidfe, the numemcai integijatjpn. must be j)ejfoonfid jaanel by panel, oince uie
• c<fefHci*n1& metiax is«le(Bned Jjy^tbjp pressureJaasis^function number, it is necessary m

I •defcewnkieiwkioh pr̂ s||rej|b|̂ ij| f^nqtio^i^uDports intellect'the pan'el *at*hftio? "RiJI

* *
The panels are arranged into NC rows and -Ng columns and are all distinct from one
another. The supports, however, overlap Sn <an essential fashion but,are arranged also
into Nc rows and*Ng cBlifmife. The riurribe* of supports «qualg,th£ nu^bgr gf panels, and
in both cases we number them*from 1 to Np= NcNs starting in,the first row, proceeding
left to right, thence to the second row and so on. This numbering system causes the
index to be given in terms of the row and column numbers by equation (5) for both the
panels and the basis functions.

Thus, associated with each* basis function index n is a se£ N(n) of indices ortianefs ftiat
constitute the support of that basis funcHojg,. §rgm_ <«"•"»*'««« t^\

•
9

*
I

*
|

N ( n ) = {(y-1) NS + v: ( y , v ) i: An> (A- 5)

E!Tfie
n is fliefef^re'trfe

(N N ( n ) = {n: n e H(n)} (A-6)

n, pr^ogramnie
gf t$i% kernel function,

eml rectangular covers

••

^ ------
A.4 PANELING CONSIDERATIONS

t'rovide fhe1 d
%i%h| M

S^ 6ie* bas
* * * « * • » * » «

* «S JLf

A generic panelization of an a^ergdynamic surface with a control is 'depicted in figure
A-3. Greater panel density maj be needed in regions'of rapid*changes"in'pressure. Thus,*
along the leadiqg-gdge, J,in^ |nd trailing-edge regionl, felSti^ery Harrow panels are» j
suggested. In the^ ca^se shown, where'the fef<Bp'fenfonn*bouiiaa«'y*is* a reflective*
boundary, ^greater density M not neeaecrtlierR Aolta^fer* ir*a*fco*tiolii8^)resent^,then
increased panel densities are required on*both*sidfes^>f<h0 c*i»oMe*ii(Bgifed8e*ind side
edges. With only a few additional intermediate panel boundaries,-the number of panels
can become significant. For the crude example shown, 99 panels are*sfd.k

^JT'-* '^LJAJLJf • t* J.̂ * **-*--
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Once the planform boundary and panelization have been specified, the type of splined
pressure functions to be employed are determined in accordance with the edge system

, indicated in figure A-4.

Note. 9 chordwlse by
11 spanwlse = 99 panels

Figure A-3. —Possible Panelization for Primary Surface With Control

P
•Leading Edge
• Interior Line
•Control Hinge Line

• Free Edge
• Reflective (S or A/S)
• Interior Line
• Control Side Edge Left

Fore

Right

• Free Edge
• Interior Line
•Control Side Edge

Aft

• Trailing Edge
• Interior Line
• Control Hinge Line

Figure A-4.-Generalized Panel Edge System Used in RRX
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A.5 PLANFORM SPECIFICATION

1

The planform is specified as the union of a number of subsurfaces^, as*»slepk:ted»JTi figure
, '- ^" '" • t

A-5, Each SuBSurface is-a trapezoidal area defined by a'number of chord%as depicted by
Igure A*%. E?Seh ̂ fchorak is defined by the coordinates 8f its most upstream pQlnt^and its
ength.'Bpelfficatekmswof th^ interniediate chord and span stations as shown then .suffices

to deteltei^ife the paael
««^Kk> mm

ri

LH semi span
present Iff
S or A/S

Subsurfaces I-VI
constitute an
aerodynamical surface

Separated surfaces
not Implemented 1n
prototype code

Figure A-5.—Aerodynamical Surface as a Union of Subsurfaces
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Intermediate

chord stations

(3 shown)

Main Chords (3 shown)

31

32

33

Intermediate Span Stations (5 shown)

Figure A-6. —Possible Subsurface Scheme for Prototype Code
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„
If a discontinuity exists in the spanwise slope of the n^anf^rm boundary, as depicted in
figure A-7, an inadmissible singularity in downwash, results. It is inadmissible in the
following sense: the limit of the Kiissner operator for smooth edges as the radius of

' curvature approaches zero doe? not equal the Kiissner operator of the limit function (it
* is a discontinuous functional). Since the physical flow^is smoothed across the boundary
i layer by the phenomenon of viscosity, it is clear that planfbrnibreaks couI3~ be faired. ***• j

One such fairing scheme is depicted in figure A-7 in which the fairing width is some
» fraction, 6p, of the width qf th£ bqundary trapezoids. •

Figure A-7.—Fairing Scheme at Plan form Breaks
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f * f
•

A.6 AERODYNAMIC LOADING QUANT I
• * , * i « e *»

fthe manform^EoiifiguflitRin depictei^ii^figuie A

L —

5A(n)

Figure A-8.—Primary and Secondary Surface Nomenclature

Then, using the nyngnciatare introcmc* ip figure A-8, the followin

, A.6.1 PRESSURE COEFFICIENT

NP

(A-7)

61



8-1/2 X 11 I N C H CROPS

A.6.2 SECTION LIFT COEFFICIENT

CA(n)

(A-8)

ciH
(n) • e

CF(n)

(A-9)

I

'SECTIONAL CENTER OF PRESSURE
•»»- t n A .j.

CA(n)

71^ IH •'.

- CF(n)

5 F ( n ) (A-10)

x o <n) = JT7^ JH -

-CF (n)

5 F (n )
CA (n) -

AC

(A-ll)

A.6.4 SURFACE LIFT COEFFICIENT
k • %__ * .^

C, = AC < 5 , n > dA ; A = JJ dA (A-12)
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'LH • i / J AC ( £ , n ) dA ;
P

dA

R

A.6.5 STREAMWISE CENTER OF PRESSURE
... ^_ _, i J" >

CT A
LHMl

U,n) dA

(A-13)

(A-m)

s dA
(A-15)

(C,n> dA
(A-16)

C A
LH

(A-17)
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*r*
A.6.7 FORCE AND MOMENT COEFFICIENT MATRICES

, n > e P ,

«, = 1,2,. . . ,NL

<V = -

AC U,n> = -8»LPn<e,n>J Ccr {$n mrr

(A-18)

(A-19)

AC (5,n) dA (A-20)

ff <-n^
U. *

(A-21)

Jj (A-22)
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m '~~~^^tr^~~^l*1ilF*~~*~^IH^7^~*'ip'~~~~i~^^fr*l*~i~~^fi '̂f'~^ '̂f~*' "~ "̂̂ BrTT*"<lll!|i
2. Programmed^gquatioqs—thejfioemcieat matnites of F>, MS ,*anoM-0 "with'

todovynwffsh:'
•«

[AICJJ = -8w [Jj Pn<6,

NPxNW NLxNP

iMM*
i

mn

NPxNW
(A-23)

= -en [JJ ^n-n^) Pn(e,

NPxNW NLxNP

n)

NPxNW (A-2U)

NPxNW NLxNP

dA

-1

NPxNW
(A-25)

Note: If tlje least^squar^ (^»lujtio% is»used (Nw > Np), the gten'eralized iri1

"^ ^* _ ^^B •__ -^ -*•- bb. -1

inveree from

A.6.8

The generalized aerodynamical force coefficient ^maJtrix^ defined earlier diaa» not been
programmed into the RRX code. For future referejice^ hjjwe^er,, the equation to program
this important quantity* is displayed belo^w.^It ̂ hmfld^b^nQted^thgit the essential
practical 'difficulty lies "'in the proper interpolation.-oO.he.stxucbirai mpdeg since, in

*• ,. f% "» ^k ^fc W V "'I* ^* ^" ^*

practice,*the'ir connnu&m distributions are seldom known. _ ,^ ^- ««. •^ IM *4»
. ^ •, m. m...̂ , «fc.m. ». <^«fc.«L. JkJlk..lt. %.^. .̂ '

Ars = - Sir
ff»i! L P n ( 5 , n ) J dA

mode s (A-26)

65



"Page missing from available version"



_l 8-1/2 X 11 I N C H CROPS

• • WP^I w^W'~w ^ W~W 2 t ~~^ •-* ••••-" •— — —
REFERENCES

» * * * . * .
* •

1. Ashley, H.; and Rodden.fjW,)?.: "Wing-Body Aerodynamic Interaction," Annual
Review of Fluid Mechanics, vol. 4, pp 431-472, 1972.

2. Landahl, M. T.; and Stark, V. J. E.: "Numerical Lifting Surface Theory—Problems
and Progress." AIAA Journal, vol. 6. no. 11, pp 2049-2060, 1968.

3. Ashley. H.; Widnall, 8.; and Landahl, M. T.: "New Directions in Lifting Surface
Thoorv." AIAA Journal, \ol 3, no. 1, pp 3-16, 1965.

4. Morin >, .,.; and K.UO, '. ".. Unsteady Subsonic Compressible Flow Around Finite
Thickness Wings AiAA pap--r 73-21.'?, 1973.

5. Kiissner, H. G.: "Allgemeine Tragflachentheorie." Luftfahrtforschung, vol. 17, no.
11/12, pp 310-378, 1940 (translation NACA TM 979).

6. £ Watkins, C. E.; Runyan, H. L.; and Woolston, D. S.: On the Kernel Function of the
^ntegral Equation Relating the Lift and Downwash Distributions of Oscillating

Yings in Subsonic Flow. NACA senortJL234, 1955.
^t **^fc_ ^m, — --**- -**•• •* * -—- -^ %K •«» *̂ B, ML mf tA. -—.lVV^

I 1 C " V \r

7^ *WSttMnf, 6. %.~ WooTstonrD^ ̂ ; |n<| ^unni^gham, *[.iJ.« A Systematic Kernel
'FiOtction Procedhre^ for Determining Aerodynamic, Forces otv Oscillating or Steady

d by Control Surfa* Motions.*1Journal of Aircraft, jroL ll.Jio- 1, pp 45-54,
Ui« ««*««•'- ;...

J. EH; and> Rfedmaft,:%t.^D.? "§ome Kecent Developments in« * *xv. *^"Ttf;,^I* •4^
kJ» HEuwP Vym u* A"» eeuir IVT;UXUCCU, ITJ..-"^.. oum ivcvcuit i^cvciupiu

Predic^ng iTnsteady'Loadings <Catised*bjl jtfoiftrol %u*face Motions." To be
* * ^V.f P AT 11 «

* s fJ8 SSf^* *"' at* *7g * * * * *11. Iw^e^^^jj^eber, J^A.jJand»Lasfiercfc 9. 9. JIlA&oayriamiclInfluence Coefficient
* * Method Using Singularity Sp/ines.«NASA «Rl£4e3!»197^ * * *,..T» ; . * • • « • * * * » •
l"2.*Merfer?^f E*.;^eber, J. A.;fT£]tf!$eiyl,f.i&.:,Aerodynaffii<*Influence Coefficien
* *Afetftod*tfls>ing S*ingufar&Sptin£s^]A±p$p<f ^-i2», »7». P » « * '
« • • * « * ? . , * * » • • «
!S.«Pi?aAi1^ 0.: *"^Slgln|eme Betrachtungeij ube§ die Stabmung zusammendruckbare13

14. •Hadaraarct,

•

arer

* * * ** f c f c v £ • •
n Cauchv's Problem in Linear Partial Differential
P~SS 1923.

67



_l 8-1/Z X 11 INCH CROPS

fp i * v v w -*• •»
15. Watson? 6. «N

edition»ia5ai

"•""y jsr"*w i" -§'" 3§

Jf Besser functions. Cambridge JQijivgrsity Press, 2nd
0 J, 8f & )P !

. » » • » * * « « » « • *

tor Oscii^ifMia. \^in^s .ar^l Control
% ^"Jlii^,^. uu^^pc^pu^pi^n —^.i. v., .i-j. ^, j»jj K^tr^'re, i"^"'» * • ) $ * #

• • t f ^ l f t * ^ ^ * ' * * ™

17. ^Rowe, ^jV. ^g JVptherj B. »A* Aicf RedtaMi^^ fl.: Pretficn'on j/" fJnsteady
Aerodynami<^ Lgadirigs, C&uvedF fl^ fraififrif Bftf£ control surface M^tion^ in

* *s*n! ^*s* 4 / r * » - s * n - « * *' ' * » * « ' * ' "
18. 'Johnson, F. T • a^d^Rubbeit, F. «.y Adt&n&c£I%r&l-fyfle Influence Coefficient

' *• 9 9 9 { £ g jf^ g| ^ || :|, § * '

19. ftffillSop*p,*Hi? ̂ llthods^foT r;g|pi4ating the Lift Bistribu^ot of Wings!" British
/» r>/^fa>XL*fn9o}* i^cn*1^50. ^ f f , . , , :i . * f

20. Fromme, J. A.: "Least Squares Approach to Unsteady Kernel Function Aero-
dynamics." AIAA Journal, vol. 2, no. 6, pp 1349-1350, 1964.

68




