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The final report of this study is 
presented in three volumes: 

I Summary Report 

II Technical Report 

III Appendixes. 

Use of Metric and English Units 
in this Report 

The results of this study are reported in metric and 
English units. The metric notation generally is quoted 
first. However, since in the present transition phase 
most of the engineering work is still being performed in 
terms of English units, some of the supporting calcula-" 
tions are reported only in these units. In other instances 
English units are stated first, with metric units in 
parentheses, e.g., in reference to a iZ-foot (3. 66 meter) 
antenna dish. 
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APPENDIX A
 

STATE OF PROPULSION TECHNOLOGY
 

L. BACKGROUND
 

Propulsion systems to be used in the multi-mission propulsion . 

module must satisfy criteria that are unique to the missions considered 

in this ,study, including the followihg: 

6 	 Mission life may approach 10 years 

* luorine may be required as oxidizer to provide the high 
performance essential to the missions (high specific 
impulse) 

* 	 Multiple restarts are required with long dormant periods, 
-e. g. , major AV impulse at earth departure is followed by 
the planetary orbit insertion maneuver many years later 

* 	 The system must be compatible with different thermal 
-conditions in extremely hot (Mercury orbiter) or cold 
(outer-planet orbiter) mission environments 

o 	 The system must conform with strict safety requirements 
of the Shuttle orbiter as launch platform, i.e., safety of 
propellant-handling and storage; remote leak detection; 
rapid disposal of propellants by overboard dumping, etc. 

a 	 Multi-purpose use of propellants is desired, with main, 
thrust and auxiliary thrust engines to'be supplied-by a 
common tankage and pressurization system. 

A prudent design approach must be taken which satisfies the long 

mission life requirement without demanding extraordinary advances in 

technology. It must minimize risk due to possible component unrelia­

bility by adding component redundancy and functional redundancy and by 

avoiding sources of wearout failure. 

A system with a i0-year lifetime cannot be tested practically in 

real time. Accelerated life tests may be performed in some instances 

at elevated operating temperatures, higher than normal pressure, in­

creased cycle rates or other intensified conditions that tend to expose 

design weaknesses, improper materials selection, or faulty fabrication 

techniques. However, such a test approach may not be truly repre­

sentative of failure mechanisms and combined degradation effects that 
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occur under prolonged use in actual missions. Therefore, it is obvius 

that the problem of developing systems for extremely long life missions 

without prohibitive demonstration cost will continue to be a technical 

challenge. 

For systems using earth-storable propellants, a primary objective 

is extension of the demonstrated, capability from about 2 years up to 

about a decade. Propulsion systems using earth-storable bipropellants 
(:NZO 4 /,MiH) -have demonstrated lifetimes on the order of Z years in 

actual flight programs. Monopropellant hydrazine (NzH4 ) propulsion 

systems have a somewhat longer demonstrated life. 

For space-storable systems with fluorine oxidizers the technology 

base is quite limited and a considerably greater advancement in the state 

of the art is necessary. Although technology efforts and advanced de­

velopments have been started, no fluorine system has flown thus far. 

An important question relates to long-term s'torage and isolation of 
the fluorine oxidizer. A properly passivated elemental (non-alloy) 

metallic tank containing pure fluorine should be capable of indefinite 

storage. Practical considerations include effects of alloy materials in 
the tank, impurities in the tank and imperfections of manufacture. 

Planetaty orbit missions with total impulse requirements in the 

3000 to 4500 m/sec class, such-as the missions -considered here, may 

well be the first missions to justify flight application of fluorine pro­

pulsion. Other applications may then follow. 

The applicable technology, including materials, components, engine 

characteristics, cooling techniques, and feed systems will be reviewed 
here. Areas where additional development is required will be indicated. 

2. TECHNOLOGY STATUS 

Table A-i summarizes the technology status, or state of the art, 

that existed as of 1974 and forms the basis of this study. 

For earth-storable systems, the state of the art is represented 

by systems using cold-gas pressurized N40 and MMII with pressure-fed 
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Table A-I. Initially Assurned Specific Impulse and.Propulsion 
Module Inert Weight Data 

Item """r.nr-""ropellant, P o eln.Type 

N 4 /OMMH ' Fz/NzH 4 

Specific impulse 296 sec 363 sec (demonstrated) 

(For E = '52, 376 sec (anticipate d) 
F = 600 lb, Z730 N)m 

Propulsion 'module W. = 0.163W +Z7.Zkg W. =0.163 W ' +36.3 kg 
, inert weight P a 

(for total mass between Does not include mission-peculiar equipment 
1000 and 6000 lbm; such as sun shades, etc. 
441 and Z7Z0 kg) (see later revision, Section 7) 

M0.82'0.8ZIMasd fraction. 

NN'ot: , nozzle expansion ratio
 

-Ft.='.thrust fd'rce
 



ablative, conduction or radiation cooled engines operating at i00 to 

200 psi (7 to 14 bar) chamber pressures. Spacecraft propulsion systems 

utilizing this propulsion technology include TRW's Multi-Mission Bipro­

pellant Propulsion System (IviMBPS); Mariner and Viking propulsion' 

systems of the Jet Propulsion Laboratory (JPL); NASA's Apollo Service 

Module, Lunar Descent (LMDE) and Lunar ascent propulsion systems; the 

Titan Transtage and several reaction control systems (RCS). The 

M-MBPS, Mariner, and Viking are those most similar to the systems con­

sidered in this study. 

No space-storable propulsion systems have been flown or even 

qualified. Much of the recent interest in such systems has been at the 

Jet Propulsion Laboratory, where in-house and sponsored work aimed 

at planetary retropropulsion applications has been conducted for several 

years. 

JPL has sucessfully tested a complete (although not flight-weight) 

fluorine propulsion system at their facilities at Edwards Air Force Base, 

California, with good success (Reference 1). 

The 	technology baselines used in this study are defined as follows: 

1) 	 Earth-storable (N.0 4 / IMMH) 

a) 	 TRW MMBPS 

b) 	 SPL Mariner (Reference 16) 

Z) 	 Space-storable (LFz/NzH 4 ) 

a) 	 JPL F2 IN 2 H4 test propulsion system (Reference 1) 

b) 	 TRW design or inNAS7-750 (Reference 4). 

c) 	 FINH 4 engines as described in "Comparison Study of 
Ftuorne/Hydrazine Engine Concepts" performed for JPL 
NAS7-iOO PO 953943 (Reference 7) 

d) 	 Fz/NzH4 engine experience at TRW 

e) 	 F 2 compatibility as described in "Compatibility Testing of 
Spacecraft Materials and Space -Storable Liquid Propel­
lants" performed for JPL by TRW under NAS7-i00 task 
order RD-31 and 93 (Reference 18) 

f) 	Other liquid fluorine experience as described in the 
literature. 
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Table A-2 summarizes applicability of the data base. Pertinent 

characteristics of the baseline technology for N 2 0 4 /MMH and LF 2 /N 2 0 4 

are summarized in Tables A-3 and A-4, respectively. 

3. ENGINE TECHNOLOGY 

3. 1 Typical Characteristics 

The state of the art in N 2 0 4 /MMH engines includes both radiation­

cooled and regeneratively-cooled engines in the size and chamber pres­

sure range of 100 to 1000 lbf (445 to 4450 N) and 80 to 200 psi (5.5 to i3. 8 

bar). Radiation-cooled engines, in general, are lighter than ablative 

engines. Five examples of existing engines are given in Table A-5. 

Characteristics of a rocket engine under development by Marquardt 

for the Space Shuttle RCS application are also shown in Table A-5. Its 

film-cooled columbium combustion chamber operates at a throat tem­

perature of 1800 to ZZ0°F (980 to 12000 C) and is designed for very long 

life. Operating parameters are optimized fox the Space Shuttle mission 

and are not typical of an engine designed for a planetary orbiter 

mission. 

Radiation-cooled columbium chambers have been successfully used 

in vacuum with throat temperatures of at least Z500°F (13700C) at a 

chamber pressure of around 100 psia (7 bar). One engine with a molyb­

denum chamber is quoted as operating at 100 lbf (445 N) thrust at 

170 psia (11. 7 bar) chamber pressure, with specific impulse of Z90 

seconds and a throat temperature of 2500'F (13700C). Operating tem­

perature of up to approximately 2500°F (13700C) is thus considered the 

state of the art of 1974 for radiation-cooled N2 0 4 / MMH engines. 

3. 	 2 Cooling Techniques 

Combustion chamber cooling techniques on engines in the range of 

interest are embodied primarily by two types of chambers: radiation­

cooled or silica-phenolic ablatively-cooled chambers, with oz without 

throat inserts. The lighter radiation cooling approach is preferred if 

suitable for the configuration. In both cases boundary-layer film 

cooling is used as a supplementary cooling method but with a resulting 
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Table A-Z. 

Propulsion system 

Flight experience 

Engines 

Materials 

Ground operations 

Spacecraft Propulsion System Data Base Used in.Study..­

Earth-Storable Systems 
(N 2 04 /MMI4) 

MMBPS (TRW) 


Mariner Mars '71 (SPL) 

Apollo lunar module descent stage 

(TRW) 

Published literature 


Extensive (TRW, JPL, and others) 

TRW family of scalable engines: 
lunar module descent eng-ne, 
MMBPS 
Mariner 1 

Established technology 

TRW flight programs 

Mariner 

MMBPS - Multimission bipropellant propulsion system (TRW) 

Space-Storable Systems . . 
(F 2 /N 2 H4)4 

No FZ!'NzH 4 flight systems 

Published literature.d 
TRW space-storable thermal ton­
trol technology study (under SPL 
contract) 
TRW propellant isolation shutoff 
valve study (under JPL contract) 

Oxidizer 
F2 : negligible 

Other cryogenie: extensive 
with LO, 

Fuel 

N 2 H 4 : extensive 

Other amine bipropellants: 
extensive
 

TRW advanced developments 
JPL advanced developments 

TRW Fz materials compatibility 
test program (under JPL contract) 

TRW test site experience 

TRW and JPL monopropellant 
flight programs (fuel side, not LF 2 ) 
Published literature 



Table A-3. Characteristics of-State-of-the-Art N 2 0 4 /MMH Propulsion System Technology 

Component Area 	 Mariner Mars '71 Other Available Technology 

I. 	 Propellant containment Heat treated 6A1-4V titanium Aluminum; cryoformed stainless 
material ary = 160 - 175, 000; SFB = 2 steel 

Z. 	 Pressurant containment Annealed 6AI-4V titanium
 
4000 psig, a = 135, 000 psi;
 
cry = 125, 000psi; SF = a
 

3. 	 Pressurant isolation Pyrotechnic actuated shears
 
parent metal
 

4. 	 Propellant isolation Pyrotechnic actuated shears
 
parent metal
 

5. 	 Propellant acquisition Bladders and standpipe Centrifugal action; surface
 
tension
 

6. 	 Engine operating modes Bipropellant Bipropellant/monopropellant

dual mode (bimodal)
 

7. 	 Engine cooling method Boundary layer/conduction - Radiation cooled, ablative; re­
radiation nozzle; Isp = 288 sec generative; Isp = 296 sec
 

8. 	 Thermal control Absorptivity/emissivity Electric heaters; radioisotope
 
control heating units
 

9. 	 Microneteoroid protection Metal honeycomb; quartz fabric 

10. 	 Structure Beryllium tube truss; mag- Titanium truss; aluminum fittings 
nesium and steel fittings 

Note: cry = yield strength 

aFu 	 = strength ultimate 

SF B = burst safety factor 



Table A-4. Technology Applicable to (or in Advanced Development for)
 
Space-Storable (FzINZH4) Propulsion Systems'4:
 

Propulsion System Assumed as Baseline Other Technology 
Component Area 

i. 	 Propellant containment CRES stainless steel, 6AI-4V titanium alloy 
6A!-4V titanitun - alloy Z1i9 aluninu n or nickel liner 

Z. 	 Propellant isolation Aluminum and gold metal­
to-metal seals 

3. 	 Propellant acquisition Active expulsion devices not 
applicable to LF Z tank; 
use settling rocket (non­
spinner) or centrifugal 
action (spinner) 

4. 	 Engine operating modes Bipropellant (liquid-liquid) Dual mode (gas-liquid combustor) 
possible 

5. 	 Engine cooling method Ablative with throat insert Radiation-cooled graphite with 
barrier cooling 

6. 	 Propellant thermal control Thermal shielding for LF Z 
tanks (insulation alone not 
sufficient) 

7. 	 Thermal control Absorptivity/emissivity con­
trol by zones on t6.nk 

8. 	 Micrometeoroid protection Silica fabric co,'er (Beta Metal honeycomb or foils 
cloth) 

9. Insulation 	 Closed-cell PBI foam on LF Z 

tanks, rnultilayer insulation 
qn NzH 4 tanks 

Entries apply to LFZ (oxidizer) part of system, exceptions noted 



Table A-5. Characteristics of Existing Earth-Storable Bipropellant Engines 

MBB 
MMBPS Shuttle RCS Symphonie Mariner 71 P-50 ISP S 

Propellant N2 0 4 /MMH N2 0 4 /MMH N2 0 4 /A 50 Nz0 4 /MMH IIHDA/USO* 

Thrust, N (lbf) 391 - (88) 2880 (87Z) 391 (88) 1317 (296) 396 (89) 

Specific Impulse (.sec) Z95 290 303 Z87 272 

Chamber Pressure 6. z (91) 10.3 (152) 7 (102) 8 (115) 6-.4 (94) 
Bar (psi) 

Nozzel Area Ratio 5z:l 22:1 77:1 40:1 52:I 
10 

Weightkg (Ibm) 4.54 (10) 6.6 (14.5) 1.95 (4.3) 7.8 (17.1) 3.5 (7.7) 

iHDA (High Density Acid) - 54% HNQ 3 /44% NZ0 4
 

USO (Lockheed designation) - 99% UDMH/1% silicon oil
 



loss in specific impulse performance. These engines have used earth­

storable propellants (N O4 IMMiH or similar). Radiation-cooled engines 

have been limited to about 100-psia chamber pressure. Cooling of 

LF IN 2 H4 is accomplished predominantly with carbon or graphite liners, 

often with addition of silica-phenolic backup layers. 

3.3 	 LF N1- Engin s 

'Considerable experience with the LIFZ/IN,ZLT4 propellant combination 

has been accumulated. However, this cannot compare with the experi 

ence gained on the many flight'systems which use earth-storable propel­

lants. A considerable amount of testing with. LFz/NzH 4 was conducted 

in the 1950's and 19601s. Recent tests have used heat-sink and carbon­

containing liners such as pyrolytic graphite or carbon fibers (e.g., 

Garb-i-tex combinations). 'These are more durable under exposure to 

the reaction products of LFZ/N 2 H 4 than are silica materials. 

3.4 	 Dual Mode Engines 

- Dual mode, also called bimodal, engines are also considered in 

this study. A dual mode engine operates either on bipropellants or 

alternatively, on NzH4 monopropellant. Flexibility achieved by bimodal 

operation offers such advantages as: i) small impulse maneuvers can be 

accomplished accurately, 24 propellants can be settled without acquisi­

tion devices in the oxidizer tank, and 3) in the case of systems using 

N2 H4 as fuel, reserve propellant can be tanked and used either for 

velocity or attitude maneuvers without advance apportionment to either 

mode of engine operation. For the propulsion systems considered In 

this study, the conventional bipropellant (or liquid-liquid) engine is 

adopted. Principal reasons for this selection are design conservatism 

and uncertainty regarding -prospects of dual-mode engine development. 

3.5 	 Auxiliary Thruster State -of -the-Art 

Several auxiliary thrusters are presently available in the size 

range of interest (see Table A-6). Monopropellant hydrazine is the 

state-of-the-art propellant for low thrust engines, although a flight 

system using NzO4 /Aerozine-50 has been developed in Europe. 

A-10 



Table A-6. Examples 

Propellant 

Status 

Thrust levels (lbf) 
(N) 

Minimum impulse bit (lbf-sec) 

(N-see) 

Specific 	impulse (see) 

at steady state (typical) (see) 

with minimum impulse bit (see) 

of 	Candidate Auxiliary Thrusters 
C 

Monopropellant Bipropellant 
Thrusters Symphonie

(European) 


N2I1 4 N2 0 4 /A-50 

Qualified Qualified 

0.35 to i. 2 2 to 3 
(1.6 to 5.5) (9.1 to 13.6) 

0.03 0.04 

(0.±4) (0.18) 

ZIZ 	to Z30 Z93 


Z20 


n10 


Thrusters 
Technology
Program 

N2 0 4/MMH 

Under 
Development 

2 to 5 
(9.1 to 22.7) 

0.04 

(0.18) 

Z90 to 300 

Z90 

Zoo to 2Z0 



J- -nat ce a.rfox Othe auxiliary thrusters in the pulsed mode is 

fuLhctibno- pclse duration as illustrated in Figure A-I and A-Z for 

fionoptopcllant nd bipropellant, respectively. " Selection of appropriate 

auxiliary tlhrusters -for the mission in question depends on the state of ­

:devplopment.and on system performance tradeoffs. 

in the thrust class of less than 5 lb (22. Z N) and for near-term 

applications, with a development cycle of only a few years, the flight 

proven Nz-H4 mornopropellatit thrusters are the best choice. -A NZC)4 

MMH bipropellant system with a 2 to 5 lbf thrust level (8.9 to.22o ? N) 

has undergone a considerable amount of testing and may become opera­

tional within a few years. A similar European-developed 2. 2 lbf (10 N) 

bipropellant thruster using N C /Aerozine 50 is being used on the.2 4
 
German-French Syrnphonie satellite.
 

In the class of less than 1 ibf (4.5 N) of thrust, monopropellant 

NzH4 thrusters are the best choice, considering their low cost and-high 

reliability, even at the low I level (ZOO to ZZ0 sec) characteristic ofsp 
these thrusters. In the propulsion module using F 2 /IN2H4, the hydra­

zine can serve as monopropellant for the auxiliary thrusters. For the 

earth-storable (N 2 0 4 /MMH) systems, auxiliary thrusters of the bi­
.propellant type can be used if a 2 to 5 lbf (8.9 to 22. 2 N) thrust level is 

acceptable. 

A-lZ 
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APPENDIX B 

SUMMARY OF FLUORINE SYSTEM SAFETY 
CONSIDERATIONS AND LAUNCH SITE ASSEMBLY SEQUENCE 

This appendix presents a summary of results of related studies 

dealing with Shuttle safety implications with regard to loading, trans­

porting and launching of payloads that include liquid fluorine as pro­

pellant, and with launch site assembly procedures. This material 

augments the discussion of LFz handling and storage presented in 

Section 5 of Volume IL " ­

1. SAFETY IMPLICATIONS 

Results of a concurrent study of Shuttle safety implications per­

formed by TRW (Reference 8) are directly applicable to this.study and 

were used in assessing safety characteristics and providing safety 

features of the space-storable propulsion system. The following para­

graphs give a brief summary of the objectives of that study and the 

results obtained. -

The study objectives were: 

1) To identify any unique system requirements and constraints 
imposed by the use of LF as oxidizer in the propulsion sys­
tem of a planetary spacecraft launched by Shuttle orbiter. 

2) To compare the safety interfaces between the Shuttle (crew 
and hardware) and the spacecraft propulsion system when 
LF 2 , instead of N204, is used as oxidizer. 

The primary hazard to personnel is leakage of LF 2 during pro­

pellant loading operations. Loading is similar to rputine transfers of " 

LF2from tanker trucks to industrial user facilities. The operations 

involved should be isolated from locations where personnel.and ficilities 

are concentrated. 

Transportation and installation of thd loaded piopuflsionmodule 

rank next in the list of potential hazards. Safety of these operatio-is can 

be improved by applying stricter regulations and standards thlan thqse 

currently adhered to when transporting the chemical on public iighways- _-

Regarding the installation of the loaded propulsion module on-oard the'.-

B-I
 



Shuttle cargo bay, regular safety requirementsmust be enforced and 

careless handling (e. g. , high shock loads) is ruled out. 

If the propulsion system has been loaded, transported, and installed 

in accordance with strict safety requirements and procedures, and if 

external hazards from other systems in the Shuttle cargo bay are mini­

mized, any residual hazards during normal flight operations appear low. 

Clearly, the risk of performing a Shuttle abort and emergency landing 

with a large quantity of liquid fluorine onboard would be too high and 

dumping provisions must be made available to dispose of the fluorine 

along with the other propellaaits (e. g. , those carried by the Shuttle upper 

stage) that also must be dumped prior to an abort. To handle the dumping 

procedure of LF during Shuttle orbital operations is comparable to 

dumping of other hypergolic propellants except for requiring a specially 

treated (passivated) dump line. 

-The overall rationale for accepting the risks inherent in using LFa 
as oxidizer in Shuttle-launched interpalafietary spacecraft compared with 

NZ0 4 is summarized as follows: 

i,) 	 The likelihood of accidents involving N 0 is comparable to 
and at least not higher than when this oxigizer is carried for 
other uses, particularly for the Shuttle orbit maneuvering 
system (OMS Kits), because in the spacecraft propulsion 
module there are fewer and smaller tanks, and no external 
lines containing the oxidizer. 

Z) 	 The likelihood of accidents involving LF can be made com­
parable to N O4 or even lower through siricter safety c7 
provisions. 

3) 	 In both cases the chance of accidents can be made remote by 
adhering to strict safety standards in all phases of handling 
and operation. 

Key 	safety recommendations of the referenced study are summar­

ized 	as follows: 

e 	 Isolate oxidizers by confinement in tanks only, i.e., 
eliminate oxidizers from pipes while in transit 

o 	 Use all-welded construction and double-walls for, 
propellant tanks 

o 	 Provide appropriate remote propellant loading facilities 

B-2 



* 	 Automate leak detection and warning at the launch site 

* 	 Institute appropriate safeguards and handling procedures 
at the launch site and during flight 

* 	 Provide appropriate safety features on the Shuttle orbiter,especially to prevent hazards from other systems 

* 	 Provide liquid nitrogen cooling of the LF 2 tanks until 
liftoff 

* 	 Provide propellant status instrumentation and display 
to the Shuttle crew 

* 	 Provide a dump system for immediate safe disposal of all 
propulsion module propellants in the event of leak or other 
unsafe conditions; also, if integrity of the LF2or N00 
tanks is threatened by malfunction of other systems;and 	in'preparation for a mission abort. 

A second study recently completed by TRW Systems under contract 

with NASA, Kennedy Space Center (Reference 31) covered the various 

phases of ground processing of Shuttle payloads that use fluorine propul­

sion stages. The study confirmed the feasibility of processing such sys­

tems for launch by the Shuttle orbiter without undue safety hazards and 

without significant impact on the environment (ecology). The study defines 

ground processing and ground safety criteria that must be adhered to 

when-handling the toxic, corros-ive and highly flammable chemical, and 

compares these requirements with the conventional safety provisions that 

apply in handling nitrogen tetroxide (NzO4 ). It recommends development 

of caution-and-warning sensors to be installed at the assembly and load­

ing stations and onboard the Shuttle orbiter and the further development 

of protective clothing for ground support personnel. 

2. 	 PROPELLANT LOADING 

Loading of propellant presumably occurs at a location remote 

from the Space Shuttle launch pad 39. The loading operation consists of: 

o 	 Receiving the propulsion system from the point of manu­

facture and inspecting it for damage. 

O 	 Ensuring that the fluorine components are "fluorine-clean" 

* 	 Passivating the system with first diluted and then pure 
,fluorine gas 
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o .Chil t doxvn the tank with LN in the cooling coil 

-. 	 Loading LF - by gravity feed or by cryopumping as the 
tankc ss, chilled by LN Z 

She ioded propulsion system is capped and transported 
• to a storage shed pending installation into the Shuttle 

orbiter.* 

Storage should be at a temperature near the LF 2 normal boiling 

point of -306 0 F. The normal boiling point of LNZ is -32iOF, which 

allows a convenient margin. 

3. LAUNCH SITE ASSEMBLY SEQUENCE 

The selected baseline sequence corresponds to Option 3 identified 

in previous JPL and TRW studies (References 8 and 32). This option, 

even though the most difficult to implement, was selected because it is 

the safest. The specific sequence is as follows (also see Figures B-i 

and B-2): 

i) Either the interim upper stage or Tug (IUS/Tug), or whatever 
upper stage is used, is installed horizontally in the orbiter 
cargo bay. This is done in the Orbiter Processing Facility 
(OPP). The orbiter will then be erected in the Vehicle 
Assembly Building (VAB) and transported in a vertical posi­
tion to launch pad 39A or B. Also, the upper stage has an 
interstage truss installed in the OPF. 

Z) The Payload Changeout Facility (PCF) is used to install 
solid propellant kick stages to eliminate safety hazards to 
the OPF or VAB. This may affect the timeline'as the PC 
will not be available to accommodate the spacecraft and its 
propulsion until after the solid rocket is installed. The kick 
stage is attached to a thrust case which is mounted to the 
interstage truss. 

3) When the Shuttle upper stages are ready, the-Pioneer or. 
Mariner type spacecraft and integrated propulsion module(s) 
will be.ttansported to the pad, disconnected from their 
coolant supply in the case of LF 2 , and hoisted into the POF. 
Cooling vill then be reconnected. 

4) The flight spacecraft will be installed within the cargo bay, 
and cooling reconnected through the lines which enter the 
cargo bay via the umbilical. 

5) The spacecraft will be joined at all disconnect points and 
through its field joint (interface) to the IUS/Tug. (Resume 
LN2 cooling and check out the GHe prechill cooling mode.) 
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Figure B-I. 	 Launch Pad Operations - Payload Installation 
on Pad, RTG Installation on Pad 
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At STANDBY STATUS
Sk COUNTDOWN 

1&LlIFTOFF 

LEGEND 
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CONDITIONING 

GSE - GROUND SUPPORT EQUIPMENT 	 FC CRYO SERVICE - FUEL CELL CRYOGENIC 
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Figure B-2. 	 Launch Pad Operations - Payload Installation 
on Pad, RTG Installation on Pad (continued) 
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6) When cooling of the fluorine tanks has resumed, checkout of 
the spacecraft to IUS/Tug interface will be performed. 

7)'. Flights using fluorine and carrying Dump Kit Peculiar 
Fluorine (DKPF)-1lines from the spacecraft interface through 
the orbiter are passivated with gaseous fluorine. 

8) The Shuttle cargo bay doors are closed. 

9) Other operations preparatoryto launch are accomplished as 
shown in Figure B-1 (Reference,5, SPL Study) including 
cabin closeout, orbiter external tank propellant ser4idiig 
(loading) and IUS/Tug hypergolic propellant servicing (loading), 
etc., prior to launch. 

10) After doors are closed and prior to the scheduled launch the 
LF cooling may be changed from normal LN 2 to OHe pre­
chii mode to provide-greater heat soak capability in the 
propellant. 

A possible variation to the above'is currently being investigated 

to provide more convenient access to separation joints on the flight 

spacecraft and inter stage adapter. This involves steps i through -4 

of the sequence. Instead of mating the flight spacecraft to the inter­

stage adapter (and possibly solid propellant motor) already.installed 

on the IUS/Tug in the Shuttle orbiter bay, these units are mated first. 

outside the bay, and then installed in the bay together. 
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APPENDIX C 

STRUCTURAL ANALYSIS 

This appendix presents the structural analysis documentation 

including stress analyses and preliminary weight assessments for four 

configurations: 

i) Tandem Pioneer i. This configuration includes a 
750-pound Pioneer spacecraft supported by a pair 
of tandem propulsion modules that use earth-storable 
propellants for an inbound mission. 

2) Tandem Pioneer 2. Same configuration as Pioneer 
except that it is sized for the lower-volume 
space-storable propellant. 

I 

3) Tandem Mariner i. This configuration includes a 
i210-pound Mariner Spacecraft supported by a pair 
of tandem propulsion modules that use earth-storable 
propellants for an inbound mission. Also included is 
an adapter between the spacecraft and upper module. 

4) Tandem Mariner 2. Same configuration as Mariner i 
except that it is sized for the space-storable propellant. 

C-i 
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APPENDIX D
 

PERFORMANCE DATA FOR VARIOUS
 
SHUTTLE/UPPER STAGE COMBINATIONS
 

This appendix presents supporting data'on the performance of 

various Space Shuttle/upper stage combinations that were designated by 

NASA for purposes of this study as launch vehicle candidates (see 

Section 7 of Volume II). 

1. 	 CANDIDATE LAUNCH VEHICLES 

The launch vehicle combinations considered include the following 

twenty: 

Shuttle Upper Stage 	 Kick Stage 

Centaur D-iS (planetary) 

i. 	 Centaur D-IS Burner II (Z300) 

2. 	 Centaur D-iS TE 364-4 (2300), spin-stabilized 

3. 	 Centaur D-IS APM-I 

4. 	 Centaur D-iS APM-i, spin-stabilized 

5. 	 Centaur D-IS PM (2300) 

6. 	 Centaur D-iS (plus spin
 
table)
 

7. 	 Centaur D-IS 

Space Tug 

8. 	 Space Tug Burner II (2300) 

9. 	 Space Tug TE 364-4 (2300), spin-stabilized 

10. Space Tug 	 APM-I 

ii. Space Tug APM-I, spin-stabilized 

iZ. Space Tug PM (Z300) 

13. Space Tug (plus spin 
table)
 

14. Space Tug 

Transtage 

i5. Dual short Transtage Kick stage (4400)-

16. Dual short transtage -Kick stage (4400), spin-stabilized 

D-i
 



S17. "Dual-short Transtage 

i83; Dual short Transtage 

. (plus.spin table) 

In addifion, theperformance of two Titan III-class expendable launch 

Svehiclea.was cofnsidered (for comparison only): 

Titan IE/Centaur D-IT Burnei II (Z300) 

Titan IIIE/Centaur D-IT TE 364-4 (2300), spin-stabilized. 

Note that.the designations used above are not firmtly established. Num­

bers in parentheses following the designation of the kick stage-indicate 

the propellant loading (in lbm). The kick stage denoted as APM-I, cur­

rently in advanced design, was formerly designated as SPM (1800), 

where 1-800 is the propellant mass plus motor case (in kg). 

The term SPM (1800) was used consistently in the body of this. 

report (Volume I). Performance data for'the first 14 upper stage com­

binations listed above were generated by TRW." The data on the final 

6 combinations were reproduced from external sources. 

Z. PERFORMANCE CHARACTERISTICS 

A detailed and precise launch phase trajectory simulation was per­
formed, taking all velocity losses into account. The following 16 charts 

with 5 columns of entries defined as follows, give performance detail: 

Column i: Twice the total vehicle energy at kick stage burnout, 
C 

3 

Column 2- Net-launch vehicle payload (injected mass) 

Column 3: Vehicle mass at first burn ignition. This column will 
show where off-loading of the upper stage begins (if 
required) 

Column 4: Total gravity loss of injection maneuver 
is defined by 

(both stages) 

G i =AVRC - AVIMP. 
1 1­

where AVRC = the ideal stage AV capability as computed 
from the rocket equation, and AVIMp = the propulsive 
AV that must be added to the upper stage ignition speed 
in order to increase the total vehicle energy to the 
actual stage burnout energy. 

D-Z
 



Column 5: 	 Total vehicle AV. This is the difference between the 
vehicle speed at kick stage burnout and at upper stage 
ignition. 

Above the tabular data several additional lines of information are 

printed out. The first line gives the spin-table mass (zero for three­

axis stabilized payloads). The second line identifies the upper stage 

and its mass and performance parameters (in the order slated): 

i) Usable fuel mass (kg) 

2) Burnout mass (kg) 

3) Adapter mass (kg) 

4) Nonimpulsive inert mass (kg) 

5) Specific impulse (sec) 

6) Thrust magnitude (ib) 

7) Maximum allowable first ignition mass 

The third line (if present) identifies the kick stage and its characteristics 

(items (i) through (6)). 

Figures D-i to D-3 present the launch vehicle performance char­

acteristics in terms of net payload mass versus injection C3 (columns i 

and 2 of the tabulated data). 

The performance of single upper stages (Centaur class and Space 

Tug) are compared in Figures D-4 and D-5. These stages are considered 

for use in the Mercury orbiter mission only, where the required C3 
values are 	so low as to make the addition of a solid kick stage 

unnecessary.
 

Assumptions used in simulating the mass characteristics, specific 

impulse and thrust levels-of the variohs vehicles are sumrmarized as 

follows: 

a) 	 First burn ignition occurs in'a circular earth orbit At-160 km 
altitude. The earth is assumed to be a splktYe xy'ith-a radius 
of 20, 925, 673 feet (6, 378. 222 kn). ­

b) 	 The thrust and specific impulse of both upperjstage4 and kick! 
stage are assumed to be specified constants as grt';eh in- -

Table D-i. 

D-3 



SPINTAELE MASS rC.0 
SPACE-TUC(EXPEN) 2262..C 2u4Z.0 104.5 1,29.7 45.56..5U C, 2837-,7.0 
APP-1 1710.C 144.0 9.0 1.i) 297.0 15000.2 

C3(K fSEC,,§2) NET PAYLO.C(KG) INI. MASS(KG) GRAV. LOSS(MPS) 
.a... . .... . .. .. .. .. .. .. 

159.832 "1 I(W 
.. .. 
CO 

.... ..... . ... ..... 
2637c.SS9 

. ... ...... . ................. 
52i.712 

146.501 1200 0CC 28376.SS9 500.276 
135.325 1401!?.XOOP 28376.S99 479.815 
125.706 1600.0O 28376.GS9 461.216 
117.263 180OC0 28376.999 441.403 
109.737 20GO.CCO 28376.999 423.316 
10 2.946 22L, .COt: 28376.99 4!u5.906 
96.757 2400.0CC 2837.9•9 389.134 
917.070 2600.CO 28376.999 "72.966 
85.808 2800oCCC 28376.S99 357.373 
8k" .91- 28376.SS9 342.328 
76.329 3200o.CCC 28376.SS9 327. 88 
72.025 34(7).000 28376. 99 313.794 
67.96b 3600 .CCO 28376. 99 300.265 
64.125 38(4. XCC 28376.S99 287.2 4 
60.479 4000.000 28376.99 274.596 
57 .0V; 4200 .000 28376.S99 262.425 
53.700 4400.CCO 2837t.9S9 250.678 
5;,.536 46tL1. CO 28376.G99 239.342 
47.506 4800.0CC 28376,999 228.4403 
44.597 5c.0- G0G 28376.999 217.851 
41.802 5200.0CC 28376.SG9 207.674 
39.11, 5 4 (.0 28376.9G9 !97.862 
36.5 1, 5600.00 28374.c99 188.44Q5 
34 .i12 58C .O0C 2b376.S99g 179.292 
31.591 6060.CCC 26376.399 170.515 
29.25 621 1 iB3lL-.SS9 162o 64 

TCTAL 'V(M S) 

.736g1,025 
6965..897 
6613,490
 
630,7. 414
 
6036.97)
 
5794.804
 
5575.656
 
5375.637
 

'5191.791
 
5021-8 1q
 
4863.89­
4716.54:) 
4578,561)
 
4448.950.
 
4326.852
 
4211,554
 
4102.437 
3998,96'
 
39n,0.669 
38,7.133
 
3717.997
 
3632.926 

3551.62,
 
3473.836
 
3399.37)?
33Z7.819.? 
3L59.17' 

0 



SPINTAELE t"ASS . t. ' 
SPACE-TUC(EXPEN) 226 25.C 2642.C 14.t 5 L'9.7 45 6. 1 ,X.0 28377 .0 
e[I (2300) I . 4! 226.% 12.7 . 83.! L, 

C3(KV/SEC*2) NET PAYLJAD(KG) I N.., ASSiMG) SRAV. LOISS(WPS) TCUAL OV (MrI) 
..... ... ... ... .. ........................OQ. 0 e . m I .............................. • Q Q~ 

I56. 156 13,i0 . C'a) 27654.3S9 555.735 7275.1011 
143.'915 1o00. rCc 27824.3-S9 542.390 6878.243 
133.862 12sf .', 28"C443s9 52q.765 6546.37: 
125.337 14O0.C cc 28264.2S9 517.767 626,.626 
117.566 160Ct 2E31C.S9 501. 772 6J04..49­
110.284 La 1o CC 2S376.SS9 451711 577,.r I­
103.703 2f r'.. 2B376..SS 462. 385 55S.S4 
97.686 2COC.,C Z837t.S-99 , 752 5354.73) 
t2.1lei 24C: tL.iB237e.SG9 425.778 3186.217 
87 .003 2600 .'CC 28376. S 9 408. 432 5020.775 

U, 82.205 28L' .CC. 28376.GG9 3 910,8o 't866.687 
77.705 3C03.GCG 28376.99 375.515 4722.57 1 
73.467 32k'."l 2EB7t.%S 9 35'9.596 4587.3) 
69.462. '3400 .OCC 26376A.'S 34L .39 45Q.943 
65.663 36'.' .1,0g 2E376.9SS. 33 .,234 4339.72' 
62.051 380 .CC 2276.S99 31t.154 4225,96 
59 .6('8 '4).iZkl28376.S3SY 30L.552 4118.11, 
55.317 4200.0C 28376.9G9 289.412 4015.66j 
52.167 44C!,' . 2E376.SS9 276.72, 3 I-.18­
49.145 /60.CCC 8376."99 264-.-63 3u2 .294 
4o.242 49Ci..-C0" 28376.999 2-2.67 5736.655,i 
43 ..448 5Olo .GCC 28376.S99 241.200 3651.962 
40.755 52(,'.'C' 28376.9SG 23" .171 357t .94­
38.157 
.35 .647 

5t.C-COCC 
560m, .QC 

28376.,99 
2837 C.SS9 

.19.528 
-C9. i26 

.3493.34 
3418. 9 3 5 

33.219 5800.C0C 25376.q99 199.3511 3347.513 
30.868 61 ,..tY,. 2376.SSS [9.812 3278.896 
28.590 6200.CCC 2E376.S99 1R.612 3212.892 



SPI NT AELE PASS 
SPACE-TUC(EXPEN) 22625.C 2642.0 1c4.5 I S.7 456.$ 151, .. 3772*
P (2? 1', ) 10 4 . ,2 75 . C 14 . 0 . 2 8 i 0 ZtG oX ,
 

C3(XM/SEC*2) 
• m e om 


159.774 

146.837 

136.315 

127.451 
119.634 

112.147 

105 .398 

99.247 

93.59 1 

88.351 

83.468 

78.89)O 

74.590 
70.526 

66.675 

63.016 
59.529 

56.199 

53.t' 13 

49.958 

47.023 

44.201 

41.482 

38.859 

36.325 

33.876 
3i .5i 
29 .2>7 

NET PAYLOAC(KG) 
.. .......e.. ..... 


8000C 

1000 .Cco 

1200 0CC 

14()C . 0f: 
1600.0CCO 
1800.CCC 

20GO.000 
220",.0 0"; 
2400.0CC 

2600.CCC 

2800.0Cx 


.C C 
3200 XCON 
3400.0CO 
360C .CCC 
38fVW ., r 
L000.OCO 
4200 .CCC 
40C.CCI 

460%VtJI 
4800.00 

5000.000 

520O.CCC 

54 rtn.o:C 

5600 .000 
5800.0CC 

6CCO CCC 

62r, .CC'
.] 

INI, MASS(KG) GRAV .. L0SS(VPS) 
...... ............ ...
........... 


,
275421i9 559. 547 

27763.IS9 545. 991 

27983.199 53 .184 

26203. i9 521.124 
28376.G99 5C7.470 

28376.S99 487.2j 

28376.999 467.676 

28376.S99 448. 855 

28376.99 43C.703 

28376.Ss9 413.186 

28376.999 396.277 

2E376. 99 379.949 
287C. 999 364.179 
28376.SS9 348.947 

283 76. S99 334.232 

28376.G99 32!","16 

28376.SS 3(6.283 

28376.S99 293.(,16 

.2837e.Ssg 28c 202 

28376.GG9 267. 825 

28376.S99 255.873 

28376. S9sq 244.334 

28376.999 233.196 

28376. ;(; 222.446 

2837e.$99 212. )76 

2837,6.9s 2, 2.' 73 

2837e. G9 19-. 29 

2837t.$99 183. 134 


TCTAL CV(NPS) 
.. ...........
 

7390-625
 
6973.479
 
t627.b22
 
6331.648 
6070.426 
5831 ,/;7 
5612.907 
5414.74s
 
5232.515
 
51L-63.869 
4906.973
 
476;0 .37,) 
4622 .676
 
4493.522
 
,371 .486
 
4256.8
 
4146.714
 
4?42 .87A
 
394-t.111
 
385 .313 

3760.291
 
3o74.371
 
3592.591
 
35!4 .)97
 

' 3433.856
 
3366.65!5
 
-):97, 9') 
323.! . 6-1) 7
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SPINTAELE MASS 
SFACE-T6UCEXPEN) 
TE364-4(2300) 

C3(KP/SEC4'2) 

151.894 

140 .479 
13;,.989 
122.870 

115.179 

03.141 


13[1.754 
95.901
9V' .4969f.9 


85.,470

80.772 


76.359 
7Z.199 

68.261 

64.52A 

6u.967 

57.573 

54.329 
51.220 

48.236, 

45.368 
42.607 

39.944 

37.374 

34 .o9," 
32.487 

3 15 9 

(NET 


. 

22625. 
1C4 


PAYLI]ACIMG) 

8166.196ICO .CCC 
IC C. .e, 
12C, .CC,' 

140o.CC, 
1600.GCC 
18V' .fV i 
2tD00.CCC 5 
220.)ogCtr 
24CC.Crr'
° 261 . ...64.C.,, 

28C0. CC 
3000 .CC'J 
320C.CCC: 
34CI .H> 
3600.CCC 
3800.0 cC 
4000.CC 

421. fi t' 
44000,CCC. 
4600.0CC 

480O,.CC 

5 k.I..t', tC, 
52C0.CC 

5400 .0C0 

5600 .CCC 

5qo : .c"' 
6C000 .CC 

6200.C'3 

2c4., 1L. 5 
. 

INI. MASS(KG) 


i 451.1S 

7 77i. .. 

e78S1.159 

28111.199 

28331.1S9 

2837E.SS9 

2376.SS9 
28376.qq9 
2U37t.S9

28376.9959 

2E376.SG9 

26376.qq9 


28f376.qS9 
28376 .SS9 

2837t. 99 

28376. SS1 
2E376.Sg9

2837Z. SS791 

' 
28374.cgg
 
28376.999 

2837e.G 9 

2837 ..A 55 
28376.q9q 

28376.;99 

2837E. 59 


.
2837- %9 

2E376.s;9 

2837t.5g9 


1.c.7 4r6.5 U30X 0 28377. 0 
2.1"
 

GRAV. LGSSU'PS) TLTAL OV(NVPS) 

565.47Z 

562 

538.456 
526. 1"35 
51.217 

414. 583 
4"t.72 

456.643 
43 h .215


+2 .436 

,4t3.276

366.708 

370.707 

35 .2.5. 
341. 324 

325.901 

311.968 

298.508 
2P5.5'7 
272.948 

260.821 

U+*9.ill 
237.3' 5 

226.895 

216.367 

2C0.zz. 
196.419. 

186.980 

?&91i.433
 
U37.b-3 .5 
o76 .2,)5 
b4 5,.319 
6177.'2" 
5927.479 
57" 1 .2 1 
5495.519 
R33+.95


5132..87J 

4971.255

4820.505 

4o79.333 
+546.682
 
4t21.67e
 
4303.5 7 
4i91.749
 
4085 .65i 
3984.82 
3o88.821
 
3797.31i
 
3709.947 
3626.436
 
35A6.513
 
3469.933
 
3396.w91 
3325.968
 
3258.83
 

http:2U37t.S9


SPINTAELE VASS .q 
C-ISIPLANETARY) 1 53-9.0 2219." 61.0 18;G 439.8 3YXJt.. 29377.C 
APM-I 71 i 14.O 9.0 C.) 297.0 15CO0.0 

C3(KM/SECti*2) NET PAYLOAD(KG) .INI. MASS(KG) GRAV. LOSS(f'PS) TCTAL CV(PS) 
........... .................................... .....................................
 

143.723 

128.096 

115.65J 
105.372 

96 .66C 
89.127 

82.511 

76.626 

71.339 
66.549 

62.177 

58 . 162 
54.456 
51.020 

47.819 

44.829 

42 .""25 
39.389 

36.94 
34.556 

32.333 
30.223 

28.218 

26.309 

24.489 
22.751 
2 1 .f88 
19.497 

6C0 C 

8t:. .0(C, 

1OO .Cc0 

12u0 .C,0 
1400.CCC 

16(C .Go, 
!800.CCO 
2C ,0U. .C 
2200.CC 

24(,'.CU2 
2600.CCC 

280..sc(i 

3000.0 CC 
321.1'0 ,,: 
34GO.CC 

36b t:aC 

3800 .CC0 

40C..0 0 
4200.0GC 

44QC). 
4600 . CC 

480( If 
5CO0.0CC 

52C0 XCCP 

54c0.CCc 

F60il' .Cf', 
5800.Gcc 

6 r0.C, 
6200o.00C 


1B310CCO 
1853k .O u 
1875C.CCo 

1897C.CCO 

1919C.CCO 

1941' .Ci(t 
1963C.CCO 

198 C.CCO 

2007C.CCO 


2 .4.tC 
2051C.CCO 

20730.CC0 
20950. COO 
21171.C.,. 
213SC.COO 

2161C.CCC 

2183C.CCO 

22t, 5?. 0. 
2227C.CCO 

224C.CCO 
227,1C.CCU 

2293K .4tt, 
23150.CC0 

23370.CCa 

2359C.CCO 

238h .C t 
24030.CCG 
2425C.M' 
2447C.CC 


Z,7. 75 
63.414 
59.694 

56.543 

53.803 

51.377 
49.197 

47.219 

45.408 
43.739 
42.192 

40.751 
39.403 

38.139 

36. 9 5 
35.828 

34.766 

33.761 

32.8,6 

31.698 

31.033 

3k .21%8 
29.42, 

28.667 

27.946 

27.255 
26. 592 

25. 956' 
25.345 


-875 3 AS 
8126. 579 
7637.522
 
7237.840
 
6900.596
 
669 .333 
6353.296
 
6125.091
 
5919.426 
5732.01 
556.99.3 
5402 951 
5256.414
 
5119.912 
4992.239
 
4872.397
 
4759:547
 
4652.981
 
4552.t)95
 
4456.369
 
4365.347
 
4278.638 
4195.894
 
4116.803
 
4041.1083
 
3968.550 
3898.917
 
3832.01A 
3767.660­

http:2447C.CC


SPINTAELE MASS 
£-IS ( FL tN ETARY) 
eI I 1230)) 


C3(KM/SeC*-2) 


188.473 
159 .363 
138.942 

12..279 
111 .07c 
101.126 

9?.743 
,5o515 
79.173 

73. 3) 

68 .456' 
63.851 
59 .641 
55.768 

52.18o 
4$1 859 
45.756 
42.851 
47.124 


•55.132 
32.843 

3 .6 

,:Z8
.6C,2 

26.638 
24.767 


135-q.C 

£043.3 


NET PAYLOAD(KG) 


2G0.CCC 

400.0CC 

6CO.CCC 

r ,r 

10C') .CC 
1200.CC0 

.4C.CC 


C16t..CC"' 
1800.0co 

20CO.CC 

2-c0.003 
24 

"2600.0C3 
2800.CCC 

300C.CC 
3 21.' .C sZ. 
3400. C C 

360).0CC 

3800.0CO 

4 C 
4ZV",0.0 
4400 .CC 

4600.000C 

48('Q .
 
5000.0C 

520.0CC 


221.I c8.0 
7226.0 1.Z' 

INI. M4S-( KG) 

1733C.2C0i 
175 3 .2L' 
177C.M2C0 

179 6, .2 
1818C .2CC 
1841, .2, 

i862C.2,4u 
18blj.2C; 
19G6C.2,X 

1928 .21,. 

19 CC.Z C 
19 2172..2-, 
1994C.2o 
2Q6e .2,': 
2038C.200 

1C' .2hA 
22,82.,. 2C 
21GI4, .'. 
2126C.2C0 

148C .2C,' 


2170.20u 
2192' .2t2., 
2Z14C. 200 
22r. .2;,.' 

22580.200 
2.86C,.2,,, 


237.0
439.e 300,.Z. 

11.1 283.' 5.
 

RAV. LCSSU'PS) TCAL CV(M1PS) 

67.586 9503.362 
63.449 8649 .:81 
5q.873 
56. 776 

8.24.514 
72 0 .91, 

34. 1 C,) 
51.72) 

71134.516 
oS 4.997 

49. 592 6522.32e 
47.644 6274.661 
4!i552 b 054.21,3 
4a.193 5E5S.S3: 
42.649q , .(,9 
41.2,3 55 :e.77q 
39.848 5355.537 
38.572 5213.214 
37.368 508.40b 
36.23 495 .97'4 
35r .151 /-3 k .974t 
34. 1-7 472;.btw 
33.153 46_4.Z57 
32.226 4525 .31l 
31.34L 4431.29 
3'.49b 434i 7 

29.6qi5
28.92 I 

. !,~ 143 
4j74.85' 

28.181 4096.822 
27.472 4,22. '57 

http:1994C.2o
http:18blj.2C


SPINTAELE VASS C.c 
C-S(5PLANET ARY 13539.C 2219.0 61.0 1 .0 439.8 3CO ) u'28377.0 
Pp(2300) 10 3.C 175.0 14.0 .c 283.0 15u . 

C3(KM/SECm2) NET PAYLOAD(KG) INI. M..S(KG) GRAV. LCSS(IPS)Y TCTA:L' CV.IPPS') 
S. . ............. .. . . . .. . .. ..... .. . a...... . . ... .. . ... . . . ..... .. 

199.290" 200.000 i7269.CCO 68.937 9810o356. 
166.116 400.0CC 17469. CC0 64.493 885U .671 
143 .7J8 6*4 .("i" 1767S. Ct 60. 772 8172. 12, 
126.895 800.0CC 178SS.CC 57.545 7645.2l', 
113.980 
103.543 

1CC).0CC 
1200.CCC 

1811 .CcU 
1833S.CCu 

54. 777 
52.337 

7229.25) 
6685.518 

94.811 14( .C;0 1Xi855c. cLh 50.145 6592.429 
87.320 16000CC 18779. CU 48.152 6336.8:;}5 

"8Q.772 1800 .0CC 189SS.CCO 46.322 6110.34. 
-
C 

74.965 
69.755 

2000.CCC 
22u' Wtv 

1921S.CCO 
IS43 ,L. 

44.630 
43.056 

59q6.232 
5721 . 134 

65.036 2400.0CC 196,9. CJ 41.586 5551.612 
60 .729 260000C0 19879.CC0 A.0.208 5395.278 
56.774 2800.CC 2C099.CCO 38.912 5252. 269 
53.12,' 3PU&-.C'6 2t 31s.O(*, 37.690 5115.103 
49.729 32C0.0CC 2C53S.CC, 36.534 4988.581 
46.569 3400.0cc 207,5,.CCO 35.440 4869.715 
43.615 3600.00C 20979.CCO 34.402 4757.688 
40.842 38( C .CC 211 S S.e 33.415 4651.805 
38.234 4000.C C0 2141.Ca 32.475 4551.477 
35.773 4200.0C0 21639.CC0 3!.580 4-56.20) 
33.447 4400.CCC 21859.0CCO 30.725 4365.53) 
31.273 46Ck P,2 7 , .&7. 29.909 4279.09'-) 
29.150 
27.160 

4800.0CC 
50CO.OCC 

222S. Cfti 
.22519.CCQ 

29.128 
28.380 

41q60557 
4117.612 

25.265 5200 oCC 2273S. CCC' 27.664 4C,41.999 



SPINTAELE MASS
 
C-S(PLAKEIRY) 13539.C 2215.0 6.Z 16.0 43:).5 Cse..j L?377.0 

TE364-4(23 l:) IA4.:., 86.fh 9... 283. "5 

C3(KN/SEC,**2) NET PAYLOAU(KG) INf. MASS(KG) GRAV. LOSS(MPS) TCTAL CV(WPS)
 
....................222.674 ' 00: t .... *...... . ...... ... .......
I.... ..................... .. 


222.674 200.CC* 17117.CCC '.%11.5
 
179.305 'rt, . 11377 .(th t6.416 9238.293 
152.510 bCO.LCC 17587.CCC 62.309 5441.76e
 
133.332 80" f ' 178O7. .. 325 784f.84z 
119.'18 LOCO.OCt 1b027.CCG 53.388 7392.722 
107 .665 12('. 4 18247.', -$.3?3 7L22.11i 
98.289 1400.CCC 184+61 . CCC 51.035 67D,9. 811 
90.323 1btr .(IC (; 18687.CCC 48.964 6439.773 
83.41Q 180Q.CCC 189C7.CCO 47.,70 6201.786 
77.314 21'( .rc' 19127.tk. 45.322 59 d.973 
71.868 22GI.CCC 19347.CCC 4:1.701 5796.483
 
66.955 240' .t 19567.<i, 4.189 5620 .7 7 
62.484 26C(0 .Ccf 19787. CCO 40. 774 5,59. 179
 
56.388 28',..I' 28f'C7.Cf, 39.445 5319.634 
54.614 0Oc.C.CC 20227.CGO 38.192 517.).512 
51.117 32(T" .Cr]'P( 4 17 . Ccm 17 . 5040 . 506.01C 
47.864 3400.0C., 20667.0CO 35.691 491A.-548 
44.827 3 61g .,t" i' 8E8.Cu' 3'. 8 3 , 48 3.751 
41.981 3800.0CC 211C.CGG 33.822 4695.375
 
3 9 . 306 4C1f0 .Cr., 21321. 3 , 32.863 4592.791 
36.785 42C0(30 21547.0CC 31.949. 4495.459
 
34.404 4410 .-CIf 21761.(.L 31.78 44 2.91, 
32.150 46(500.CCC 212;87.C0C 313.246 4314.753 
30 .0 12 480' .0C. 222. 1. IiC 29.450 4230.621 
27.981 5000.0CC 22427.CCG 28.t89 4150.205 
26.047 ,. 4, 22647.bim 27.96, 4.,73.229 

http:0Oc.C.CC
http:28f'C7.Cf
http:19127.tk


SPINTAELE'VASS. 112.4 ." 
SPACE-TUG(EXPEN) 
APM-1 I 

2262..C 
71f.C 

2755.4 
2517.4 

IC4.5 
9.0 

12. 9.7 
X. 

456.5 
297.0 

15,x'.,. 28377? 
15000.rC 

C3(Kr/SEC *2) NET PAYLOAD(KG) 
..................................................... 


157.207 1000.CC 
144.1t38 12L 0 .t; % 
133.003 14t0C C 
123.509 1600.0C0 
115.178 1800.000 


7.753 ..
7ZCK;0OC 
101.r54 220.a.CC;) 
94.948 2400.0cc 

89.338 2600.000 

84.146 28G,0.0CC. 
79.313 3 00r, . C0.0-
74.793 3200 .nc' 

70.545 3400.0CC 

66.538 3610A.V: C 

62.746 3800 . ­
59.16 4000.000 

55.720 4200.CCC 
52.451 44..CC C 

49.325 46CtCM, 
46.330 4800.0CC 

43.456 5000.GCC 

4C?.693 5 z .XyC 

38.132 54,' . CC Q 
35.467 5600 OCC 

32.990 50O0CC 

3fl .596 6;Or .(,C 
28.279 6.2, CCC 

INI. MASS(KG) 

28376.SS9 
28376.99;9 
28376.99 
28376.SS9 
28376.SS9 

28376.999 

2E37 .SS9 
28376.q9g 

28376.S99 

28376.SG9 
2837t.59 
2837(.99 

28376o. 9 

28376.S99 

2h376.G99 

28376.9-9 

28376.959 
28376 S(39 

28376.959 
28376.G99 

28376.c,$9 

28579.9 

26376o.S9 
28376.599 

2837(.9S99 

2837-. S99 
28376. 599 


GRAV. LOSS(UPS) 

511.45:, 
490.363 
47Co 234 
450.956 
432.452 

414,662 

397.54-
31.045 

365.145 

349.810 
335.:%315 
320.738 

3C6.959 

293.658 

28.0. 819 

268.426 

256-464 

244.920 

233.782 
223.136 

212.671 

202.6t77 

13.u43 

183.759 

174.815 

166. 202 

157.912 


fCTAL CV(FPS) 
.............
 

73. 9.r9 
6897.37. 
6548.21H
 
6245.177 
5977.572
 
5738.069
 
5521.41) 
5323.750
 
5142.118
 
4974.233 
4818.282
 
4672.799
 
4536.584
 
4"rtOB638
 
4285.124
 
4174.326
 
4:e66.633
 
39 4,.5 11
 
3867.497 
3775.179
 
3687.195
 
3603°2,20
 
3522.96)
 
344b.i5? 
3372.555 
330i .952 
3234. 138 

http:26376o.S9
http:2837(.99
http:2837t.59
http:28376.99
http:220.a.CC


SPINTAELE vAS'S 112.4
 
SPACE-TUGC(EXPEN) 22625.C 

T E3 6 4 -4 (23 ,t 1L4 . .
 

C,5{K/SEC'*2) NET PAYLOAC(KG) 

. .. 

163417SCGCCC2754% 


149.331 ICIC.CCC 

138 .1. 12', .t 
128.770 14C0 .CCC 
123.557 16CO.CCQ 

112.6AC 180C.CCC 

15.922 2 *' 
99 •t4-t 220.CC J 

93.891 2400.CC.g 

88.575 2600.CCC 

83.633 286C".tC 

79.01 300C i.( C . 
74.669 3 2k2Q .OC,. 
70.57t 3400.CC. 
66.698 361 f' C. 
63.01R 38CC.0C.. 

59.514 400.CC 

56.173 42C0.CCC 

52.972 44:t *Q , 
49.907 46.C.CaCI 
46.964 4S00.0CC 

44.135 5000.0CC 

41 .4L 520( .1 (;' 
38.783 54GC.CCI 
36.25 5600.0CC 
31.793 58C0.0CC 

31.419 6A.. . 

2755.4 lCq#.5 ".. 456.5 ,'. . 28377. 
20 1.4 9 .u c.o .. ..$O. U 

IN[. MAS(KG) GRAV. LSSCNPL) TCTAL CV('FS)
 
............. ......................
 

27784.5% 9 

281 A.5 s 
28224. 59 
28376.SS9 

2837e. Sg9 


8376.96.9C 
2837t.S99 

2837E.SGY 
28376.SSS 

28376.s99 

2E376.SSS 

2837t.959 

28376.S9 

28376. S. 
2837C.SS9 

2837t.S59 

2E376.sG 

28376.sY 
2b3lt.S9 

28376.S99 

28376.SSq 

2837 .SG; 

2837 .S99 

28376. S9 

2b37e.SS9 

28376. SS9 

53&.1757' 

S45 . 141 

309 

52, . 144 
55.6W 

4&X.A61 


447.2'c 

429.10 
411.629 

394.76t) 

373.483 

36 ".759 

3t7. 7C 

33E.898 

318.725 

3-Z5.033 

291.80 

79. C31 

26. .693 

254.77b 

243.276 


. 32. 17 
221.458 

211.122 

2-1. 153 
191. 541 

7510.99 '3 
7.5P .671 
6690.453
 
6379.363
 
bl. ­l;
 
58,i.417
 
563 
5432.841
 
52 47.15')
 
5C73.76:
 
4916.677
 
4768.3'J2
 
4629.364
 
4496 .818
 
4375 -798
 
4259.571
 
4149.517
 
4,45."99
 
3945.85 
3851.34:
 
3761.267
 
3675.249
 
353 .014 
.3514.3 2
 
3 7.P7
 
3364, .511 
3297 .017
 

http:2b3lt.S9
http:28376.sY
http:2E376.sG
http:8376.96.9C
http:286C".tC


SPINT AELE t'ASS 11 .A 
£-:S(PLANETARY) 1 53S.1 2332.4 61.t Ip3, ' 439.8 3, 28 37.0 
APM-I 17IC.C 257.4 9.0 ',C.0 297.0 l5t':.fl 

,C3(K/SEC**2) 


. .0 


161.899 

141.447 

126..6 

113.716 

1.3 °575 

94.983 

87.555 

81.033 

75.235 

70.025 

65 .3P3 

60.998 

57.0 2 

53.391 


46.850 


43.903 

e1.140 
38.541 

36.091 

33.77t 

31.584 

29.5Q3 
27.525 

25.642 
23-846 


NET PAYLOAC(KG) INI. MASS(KG) 

...... ............................................ 


6(0-.01 

8C3 .CCo 


!0t .,CUi( 

12CO.0CC 

14CU0 QtJ 

1600.CCO 

18Uf .{(Cr 

2000.CCC 

22t0 .1,C 

2400 .CCC 

260fl .(Cc 

28CO.CCC 

3K:,,(JC 

3200.CC0 

6>XCt'
•34 

36(0.CCC 


380f CrC 
4000,C. 

421.G f',Ck: 
44C0.CCC 
ALT( .,(K 
4800.CCG 

t.k. Q. 

5200.CCC 
4(%5W C0,EtI 

5600.CCO 


18423.4C0 

18643.4C.3 

18863.AU. 

i9083.4CC 

193C3.4C0 

19523.4CC 
19743 . ;,.. 
19963.4C0 
2,,E13.4c0 

204C3.4C0 

2162.3 . 
20843.40C 

21u63I C0 

212E3.4C0 

2151 3.4C,
21723.400 


2142.4CC 
22163.4C0 

22383 .4t L 
226C3-.'iCC 

22823. 4C.3 

23043.4C0 

23263. A~4, 

2348..4CC) 

237C.4 0, 
23923.4C0 , 

GRAV. LOSS($PS) TETAL CV(VPS) 


67.067 

62.563 

58.893 

55.787 

53.089 

50.700 

48.556 

46.61j 

44.829 

43.187 

41.666 

4,.249 

38.924 

37.681 

36.511

33.Al7 

34.363 

33.374 

32.435 

31.541 
30. 690 
29.878 

29. It3 
26.361 
27.651 

26.971 


8681 . 575 
8058 .7,03 
7573.399 
7177U,8;6
 
6842.934
 
6554O512
 
63( 1 ..)97 
6v75 .317 
5671.899
 
5686.9q,
 
5517.504
 
5361.271
 
5216.431
 
5081.513
 
4955.33C
4836.894 

4725.362
 
4620.039
 
452:u. 325 
4425.7m 
4335.733
 
- 250.017 
4i68 21
 

1 
4015 .170 
3943.421 

c 

http:20843.40
http:18863.AU


SPINTELE MASS 	 1I3.4 
' C-IS(PLANhETPRY) 1353;. - 2332.4 bl. 1.3 139.8 j --.. 28377.0 

TE364-4(23'00) 	 l0 4.C 201.4 G.C C.) 283.3 Ioo3.O 

C3(KW/SECfl2) NET PAYLUAE(KG) INI. MASS(KG) CRAV. LCSS(NPS) TCIL CV(PS) 
............................................................ :J....... i. ;;6 .6.." " 

218.848 20A: .CC'. 172 S. A't. 	 69.94, 1,356 .6ZY? 
175.951 4(0 .OCO 1749C.4C0 	 6j.251 9143.299
 
149.510 6V0 .CCC 1770'. 4'i ,,, 6l221 8352.83 
13t. .621 8CC.GCC 1792C.ACC 57. 512 7765.b02 
116.542" 1LC' . it' 1814I. ACf 54. 938 7314.5T Q 

105.387 120i .CC 163EC.4Co 	 52.431 6948.571 
96.183 1400 .CC 1Z,8'.4.t; 5% • 190 o64 .442 
88.36t 1000 .CCC 128CC.AC6 4P.173 6374.lms 

,8 1.585 18C .0 4 19,2 .4t'	 46.322 6139.677 
75.60 o 2 000.0 C 1924C.ACiO 44.616 5933.63r, 
7Nu.265 2 19W t' 43.",3'174..4670C.QCC 4 
65.447 4C .ccc 196C.ACC 	 .1.553 5567.410 
6 1.- 62 2b6 '.. 0 CC , 4 171 5 '418 . 339 

.57.045 2800.CfC 2i2CC. 36.872 5261.0972C, AG 
53.3t l 3000 .-Cc 2034f . 4o. 37.647 5124.115 

't9 049.9-1 - $2,C.CCr Z0SC.4C0 3. 49Q6.10. 
46o718 34( r .2 .78. , "zh%.395 4676 .,)01 
43.736 3600 .0CC 21GCC. 4c0 	 34.356 1762.941
 
40.941 3800.CCC 2122< .4t' 33.369 465o . 191, 
:38.314. 40GC.CCC Z144Z.4CC 32.429 4555.13) 
35.838 42f(,A. 0 2166&.4t. 	 31.534 4459.231 
33.498 	 4A0,0 .0C C 2 18 PC. L Q 30. 680 4363.033 

3 '4600.CCC 22•0(.A. 44"1.142
29.!81 48C0.CCC 222C.4Cv , 29. 084 rt198. 207 

27.183 5e4A,;C, .4 	 4118.9232t145(:,2 	 26.337 
25. 280 52C O GCC 2276C.4CE* 27.622 4043.017 

'23.466 5400 .CC 22981.- 4i,. 26. 935 397.,.248 

http:2166&.4t


SPINT.AELE PASS CC 
SPACE-TUC(EXPEN) 22625.C 2642.0 27.0 1 9,7 456.5 15000.0 28377.0 

C3(KM/SECn 2) NET PAYLOAC(KG) INI. MA SS(KG) GRAy. LCSSU"PS) 
.. .. . . . I .. . . . . . . . . . . . . . . . . . 

162.303 ZCC .CCC 256C3.S9 698.847 
154 X46 400 .00 25802.6S9 6P0.002 
146.126 600.CCC 26013.o69 661.394 
138.537 80'. .1),( 7,6233.6S9 643.056 
131.575 lO0. Ccr. 2643.699 625.775 
125 .159 1200.oCO Z6673.1699 609.445 
119.22J 1400.0CO 268 93.6S9 593.975 
113.7024 160",. Vu 27113.699 579.287 
108.563 1 8C0.cCC 27323.6S9 565.314 

013.757 2000.CCO 27553.699 551.995 
99.251 2200.0C 27773.6S9 539.279 
95 X17 24G .Cr," 27G3.6G9 527.'121 
91.027 2600.CC 2E213.699 515.478 
87072 2800.CCO 28376.S,9 5G1.894 
82.783 3000.0CC 28376.s59 481.957 
78.6 3 32U .' 28376. 99 462.720 
74.786 3400.0CC 2837'.599 444.lI U 
7 1.j48 3600 CCO 26376.999 426.218 
67.467 3800.CCC 28376.,GG' 408.893 
64 1.,31 4.(,i il{t 26376.C9 '392. 166 
60.729 4200.CCC 2E376.9G9 376.<QC 
57.553 4400.0C 28376.S59 360.379 
54.494 4600.0CC 2b376•qG- 345.283 
51.544 48t ,.At. 28376. ,G9 33.i695 
48.b97 50C00.OCC 28376.G99 316.397 
45 -9-1o 5200.000 28376.3G9 -302.975 
43.285 5400 .GC0 28376.S9 289.813 
4C' .7 i- 56"1, .X :C 28376.9, 277.G97 
38.214 5800.0CC( 2837E.;99 264.815 
35.795 6000.CCJ 28376.Gr,9 252.953 

TCT ALCV(.PFS,1
 
.... 


'7435 .5Y(
 
7177.0,92
 
6925.897
 
6682.095 
645'.6.8
 
62A4.642
 
6047.257
 
586L.097
 
5687.937
 
5523.723 •
 

5368,544
 
5221.606
 
5J82•21'z
 
4947.376
 
4812.499
 

.46F4.1127 
4561;811 
4445.146 
4333.762 
4227.327
 
4125.532
 
4028.09%
 
3934.76k
 
3845.295
 
3759°46,
 
a677.073
 
35q7.924
 
3521.839
 
3448.651
 
3378.201
 



SPI kN' AELE MASS 	 C .0 
.
C-IS(PLANETARY] 13 5?c.i' ,'7.,, 	 . 439.3 3' , . 28377.2LiS.' 

C3(KM/SEC**2) NET PAYLOAC;(KG) INI Mt SS(KG) GkAV. LCSS(MPS) TO AL CVCMPS) 
. . ................................................. 4 .................. .. . . . . . . . ......................... 


128.442 20C .0C0 160C3. C. *7,t.233 173b.133 
Ui9.608 4t .1!( Ib2f3.' 7' .872 7456 5 
111.282 6C0.CCc 1t413.CCt 67.b43' 7187.5S? 
IV3.434 8c.;.,: 1663.tU 	 64.544 6933.297 
96.343 1300 .";C. 1668 e. CCo 	 61.•698 oo94.265 
89 .897 12t, .& 17" 72.(^,,. G. 71 6476 .583 
84 .0)o 14CC .CC 172S3. CC, ,6.c 44 6Z7-t.941 
78.596 161,ft . (fl"i 17513 . .; 54.389, 6087.429 
73.609 i800.0CC 17733.CCU 52.286 5912.45-) 
68.993 21-Vx .0C', 17953. . ! .322 5748.653 
6i.705 2 -60 .CCC 1817. CC *8.483 59,. 9.;3-61j. .711 2 4 t .,rt I C-r 	 16.756 545"1 . 199 
56.980 2600.0CC 1B613.CCJ 	 45.135 5313.696
53.485 8t,i: .0' 18833. (4' 	 43.6,6 5184.651 

50.201 30CO.CCC 19cq •Ctco 	 4Z.163 5,.62.4u
 
47 115 32Qt.tQ.' 19273. CC 4C.798 4946.421 
44 . 203 3400.003 194S3.CC 39. 50 453.15" 

41.451 36 . .' (v 19713 .'(, 36.281 473,.179 
38 .848 3800.CCc 1993h. CC 37.113 4631 .'H-
S36.. '79 4",J(J' ." C,. 2Q15 . ' 44' 3 .'J 12. 4535.51-, 
'36 .)3 5 4200. OC 20373. CC 3t.959 4444.151 

.3t sv7 4411: .4'Q, 2( 5q3 .C 33. 57 4356.699 
29.684 4600 .CZC 81:.CC 	 3 .0C, 4272.89. 
2f.661 	 48Cr1". 1.:3 " 32.08b 4192.502 

.729 5000 .PC; 21253. CCC 3.213 4115.304 
23.863 521 C,.(UC 21473.1 u 	 31 .378 4,;4'.I: 
22. 117 54CO,.CCC 2163.CCO 29.S79 3969.71l) 

21.,,. 25 560 , .1c 21913&. T ZU.813 3900.96. 
18.803 5800.0C0 22133.CCO 	 2i.073 3634.716 

http:194S3.CC
http:5,.62.4u


SPINTAELE V'SS 113.4 
SPACE-TUC(EXPEN) 2262 5. 275i.4 27.0 IC9.7 456-5 15J0J.U Z837- .0 

C3(KP/SEC*-*2) 	 NET 

................... 


15.3J2CQ.CU 
149.681 

142.130 

134.876 

128•2042 

122.042 

116.328 
111 .;1 
106 .4)46 
10 1.399 


- 97.036 

oo 	 92.931 


89.06;0 

84.835 

80.651 

76.657 

72.839 

69.184 

65.678 

62.313 


59.q77 

55.962 

52.960 

5', .;64 

47.267 

44.564 

41.947 

39.414 

36.95b 

34.576 


PAYL)AC(KG) INI. MASS(KG) GRAV. LGSS(UPS) TCTAL CV(I4IS) 0 0 
........................................................... 

400.CCC 
25717I.CSS 
25917.CS9 

6M28.2(
669.8b2 

728 6 .5 
7)39.056 C-

600.CCO 26127.C99 651.8(,2 6797,916 
800.0Co 26347. C99 634.023 6563.358 c 

ffJCO.LC, 2656 C9 617.245 6345 oA,99 
1200.0CO 26787.0C9 601.369 6141.239 
1400.CCC 27C7,IS 586.311 595, .371 
1600.00 27227.C9t 571.999 5771.02, 
180Q .CD 27447.f99 558.37Q 5602 . Ill 
2000.C0 27667.CS9 545.368 5442.66,) 
2200.CCO 27887.VSS 532.945 5291.82i 
2400.CCC 28107. C99 521.057 3i48.85; 
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c) 	 Only the principal term of the earth's gravitational potential 
(i. e. , M/r) is included in the burn simulation (g = 1. 4076468 
X Q0I6 ft 3 /sec? ) . The resulting equations of motion are inte­
grated numerically. 

d) 	 The thrust vector is always aligned with the current inertial 
velocity vector of the vehicle. 

e) 	 The total vehicle mass at upper stage ignition is required to be 
- less than or equal to a specified upper limit, WUB (see table 

below). This corresponds to the nominal Shuttle payload capa­
bilityin a 160 km circular orbit (65,000 lbm). The combined 
mass of the vehicle and adapter-pallet must not exceed 
65, 000 lbf. The values of WUB are a function of the upper 
stage only.
 

Upper Limit of Vehicle Mass 

at Upper Stage Ignition 

Upper Stage 	 WUB (kg) 

Space-Tug 	 28, 62Z 

D-IS Centaur 	 z6,137 

f) 	 If the mass of the fully loaded vehicle would exceed WUB the 
upper stage fuel is off-loaded until the total vehicle mass equals 
WUB. The kick stage is never off-loaded. 

g). 	 Each stage is burned until its. fuel is depleted. 

h) 	 After a stage has burned out it is jettisoned. The jettisoned mass 
includes the burnout mass plus the interstage adapter. 

i) 	 The time interval between upper stage burnout and kick stage 
ignition is assumed to be zero. 

j) 	 The burn simulation algorithm permits specification of the 
following parameters for the upper stages and kick stages. 
(Values used in this study are given in Table D-i.) 

a 	 Upper stage burnout mass 

a 	 Upper stage usable propellant mass 

e 	 Upper stage nonimpulsive inert mass. This mass consists 
of the propellant and other fluids that are present at first 
buri ignition but consumed at upper stage burnout. They 
do not contribute to the vehicle thrust. This mass is 
assumed to be expended at uniform rate from a specified 
value at first btrn ignition to zero at upper stage burnout. 
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Table D-i. Propulsion and Mass Characteristics 
Used in Performance Evaluation 

of Stage Vehicles 

Stage Data Source 

Burout 

Mas s 
kg 

(lk) 
m 

Usable 

Propellant 

Mass(lbk 
(lbm) 

Noairnpulsive 

Inerts 

MassIlcgkgkg 
(Ibm) 

IntrLage 

Adapter 
(lb )

In 

SpecificSpeifipThus 
Impulse Magnitude 
(sec) (1bf)C 

0 

D-iS Centaur 
(Planetary) 

Centaur/Shuttle Integration Study 
Final Report (Vol. II) 
Contract NAS3-16786 

zzi9 
(489Z) 

13539: 
(Z9854) 

18 
(40) 

61 
(135) 439.8 30000 

Space-Tug 
(Expendable) 

Baseline SpacerTug Configura-
tion Definition, 
MSFC 68M00039-2, MSFC 
Science and Eng. Dir. 
MSFC-EA-EI01, 15 July 1974, 
pp 41-4Z, pp 79 and 25 

264Z 
(58Z5) 

22625 
(49889) 

109 
(Z41) 

104 
(Z30) 456.5 15000 

Burner I (2300 Report No. BMI-NLVP-TM-
73-4 on Space Shuttle Expen.
Upper Stages to NASA, Con­
tract No. NASw-Z018, 
28 Dec. 1973, pp B-4 

Z26 
(498.Z) 

1043 
(2300) 

i.2 
(24.8) 

1Z.7 
(28) 283 15000 

TE 364-4 (2300) (Pioneer F version) 
R. Hofstetter, Pioneer Launch 
Vehicle and Operations, 
Mar. 1973 

88 
(194) 

1043 
(2300) 

0 
0 

9 
19.8 Z83 1500 

APM-i 
Formerly designated 
SPM (1800) 

T. W. Behrn, JPL (informal 
communication) 

144 
(318) 

1710 
(3771) 

0 
0 

9 
19.8 

297 15000 

PM (2300) D. Dugan, NASA Ames 
(informal communication) 

175 
(386) 

1043 
(2300) 

0 
0 

14 
31 283 1500 



a -	 Upper stagelkick stage adapter mass 

a 	 Kick stage burnout mass 

O 	 Kick stage usable propellant mass 

o 	 Kick stage nonimpulsive inert mass 

a Kick stage/payload adapter mass. This mass equals a 
specified constant plus the term WX [0, 0. 10 (payload 
mass - 500 kg)]. 

it) 	 The net payload determined by the simulation consists of every­
thing above the kick stage adapter. 

1) 	 If the mission requires a spin-stabilized kick stage the spin 
table mass is as surned to be 13.34 kg. In the simulation the 
spin table mass is added to the upper stage burnout 
mass. 
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APPENDIX E 

OPTIMIZATION OF PLANETARY INSERTION MANEUVERS 

An automatic search routine is described which is designed to 

determine planetary insertion maneuvers with minimum propellant 

requirements. Maneuver constraints such as fixed thrust orientation 

or constant rate of change of thrust orientation can be imposed readily 

on the search routine. 

Assumptions and constraints in defining the optimization approach 

and thY' algorithm used in the study are described below. 

For purposes of illustration a vehicle with two propulsion modules 

operating in tandem (i. e. , the Mercury orbiter) is assumed. Generali­

zation to other configurations can be made without difficulty. 

i. ASSUMPTIONS AND CONSTRAINTS 

1) The vehicle being inserted into planetary orbit consists of a 

payload of mass mp and two similar stages. Each stage is required to 

have the same fuel capacity, n. The inert mass is cll + c21 mC 

for the first stage and clz + czz rnz for the second stage. There is an 

interstage adapter of mass m A and a payload adapter of mass mPA. The 

quantities np, Ci, CZ11 c z mPA are all specified constants.Z, A, 

Z) The thrust and specific impulse of the first stage, F1 , I i , and 

of the second stage, F 2 , I, are specified constants. 

3) The thrust vector is required to be coplanar with the plane of 

the planetary approach hyperbola. 

4) The in-plane thrust direction must be specified although it is 

unrestricted. 

5) The magnitude of the incoming V-infinity vector, Vo, is 

specified. The periapse radius of the incoming hyperbola, Rp, is 

unspecified. R -ill be determined by the algorithm. 

The propulsion module will be referred to as "stage" in the discussion 
that follows. 
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6) The periapse radius and total energy of the target orbit, RT 

and ET' are specified. 

7) The time of first burn ignition, T, is specified. T = 0 at 

periapse. of the approach hyperbola. 

8) The coast time between burns is zero. This condition could 

be relaxed without difficulty. 

9) A preinsertion propellant budget (for midcourse corrections, 

etc.), Mfpl, and a post-insertion propellant reserve, mR , are specified 

constants. mp 1 m C and m <m C . 

2. PROBLEM DEFINITION 

Given mp, CI, Cz,1 c1 z, C2 2 , mA' mPA' Fi, IV F Z , I, the in­

plane thrust direction, a Vco, RT, ET and T, the algorithm described 

below shall determine Rp and the smallest value of m 0 which results in 

attainment of the specified targets R T and ET. Initially, all propellant 

tanks are full, and at burnout of the insertion maneuver only the propel­

lant reserve, mR, remains. 

3. ALGORITHM 

I) SetR RT . 

2) Obtain an initial guess for m. This number may either be 

externally supplied or computed assuming ideal thrust maneuvers. 

3) Compute the vehicle state vector at periapse of the approach 

hyperbola assuming no insertion burn occurs 

S 0 (1) = p 

S0(2) 0 

S0 (3) o 

S0(4) 0 

S0(5) 2 ET + 21.1/It 

S0(6) 0 
The coordinate~systern has its x-axis along the line of apsides of the in­

coming hyperbola and the z-axis along the angular momentum vector of thi 

incoming hyperbola. The time is zero at periapse on the incoming hyper­

bola assuming no insertion burn. 
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4) Propagate the periapse state (i. e., S) backwards to T. Call 

this 	state vector
 

5) . Compute the first-stage burn time, tBi = (i C - 'pI) Iif F I 

o 	 The mass of the fully loaded vehicle, mFL, is given by 

InFL = inP + m C + Ce11 + ci1z mG + m C + c 12 

+ Clzm C +m A + mpA
 

a 	 The vehicle mass at the beginning of the first burn is 
mFL - mp. 

* 	 The propellant used during the first insertion burn is 
given by: m C - mfpi. 

6) 	 Propagate S I to T + t B. Call the new state SZ. 

7) 	 Compute the second-stage burn time, tB2 = (mC - inR) IZ/F2 

o 	 The vehicle mass at the beginning of the second insertion 
burn is: mp+ Ciz + Czm C +mC +.mPA 

o 	 The propellant used during the second insertion burn is: 
mC - mR 

a 	 The ignition time of the second insertion burn is the same 
as the burnout time of the first insertion maneuver (i. e. , 
T +t Bi). 

8) 	 Propagate S2 to T + t + tBZ. Call the new state S3 

9) 	 Compute the periapse radius and total energy corresponding 

to S3* Call these variables rT and eT respectively. 

10) If IrT - RTI and leT - ETI are less than specified tolerances 

the problem is solved (i. e. , the current values of Rp and mC define the 
insertion trajectory that meets the given targets). Ifthe tolerances are 

not 	met, continue. 

This means update the state vector by numerical integration or any 
other means. The fidelity of the simulation is constrained only by 
the conditions explicitly called out above. Note that the gravitational 
model is unconstrained but the thrust, specific impulse and thrust 
direction are. 
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il) Compute-a new estimate of Rp A simple offset method works 

very well. More specifically, the new estimate of Rp is given by the 

formula: R p + (rT --RT). 

iZ) " Compute a new estimte of mC (see details in the next section). 

13) Return to step 3). 

4. mc UPDATE PROCEDURE 

On the very. first iteration m C is determined by step-Z above. For 

the second and third passes mC in incremented by a constant. For the 

fourth and subsequent iterations the following procedure is used. 

Let wi, x, Yi and zi denote: stage propellant capacity, the 

approach hyperbola periapse radius, the periapse radius at insertion 

maneuver burnout, and the total energy at insertion maneuver burnout 

on the i t h iteration. The physical problem is such that when"w i and xi 

are given, yi and z. are computed by the above algorithm. The problem 

considered here.is that of determining vi+ i and xi+ i such that: -Yi+i = RT 

and zi+ i = E T . Closed form solutions for these quantities do not.exist;. 

at best, a convergent sequence may be calculated. As noted previously 

xi i- x.I + (yi - RT) 

is used here as an estimate for hyperbolic radius. 

Clearly, 

zi+ i = f (wi+ ,, x%9; f is unknown 

or, equivalently, 

zi. 1 = f(w. + A , x. +Ax) 

Now, assuming Aw and Ax are small it follows that 

z fw.,x.)+ Aw - f + Ax -if+""-+H.O.T.zi+1 = fw xi 73ix
 

In the region near w i and xi it may be further assumed that the partial 

derivatives of f are constants. This leads to the relation 

z -Z, (w.+ - w.) A + (xi -x)B 
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or 

z - z = (w.+ i -vwi ) A + (yi - R B M 

where A and B are constants. Now, since i in the above equation may be 

any integer it follows that 

z i - z (w. - wVi) A + (yi - RT) B 

and i > Z 

z i - z wi -w i Z ) A + (yi-i - RT) B 

From these two equations A and B may be computed then substituted into 

equation (1) and wi+I may be computed (for this calculation z = ET). 

5. MINIMUM PROPELLANT PLANETARY INSERTION 

The above algorithm determines the minimum propellant mass
 

required for insertion into a spectified orbit when T and C are given
 

where C denotes the set of constants: mp, Cjj, Czi C1i2 6 Z' mA
, 

MPA' Fi, IV, FZ, IZ, oo, RT ET. To find the value of T that yields 

the overall minimum propellant mass a one-dimensional optimization 

problem, requiring repeated applications of the algorithm, must be 

solved. The computer program implementing this approach employs 

-the above algorithm and a "golden section optimization routine" to deter­

mine the absolute minimum propellant mass when the set of constants, 

- CG, is given. 
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APPENDIX F 

SUPPORTING DATA ON ORBIT INSERTION PERFORMANCE 

i.-	 MERCURY ORBIT INSERTION WITH FIXED 
AND VARIABLE THRUST ORIENTATION 

Optimum and near-optimum orbit insertion modes at Mercury were 

determined by a systematic performance optimization technique (see 

Appendix E) for given arrival conditions and a specified periapsis alti­

tude (500 km), periapsis location and eccentricity of the capture orbit. 

Results were summarized in Section 7 of Volume II. Table F-i lists
0 

maneuver requirements for tandem and single-stage Mercury orbit 

insertion, for earth- and space-storable propellants, and for fixed and 

variable thrust orientations. The maneuver requirements correspond 

to mission option I (see Section 2, Volume II) and propellant mass 

characteristics reflect the initial inert weight assumptions stated in that 

section. Although these results do not represent the final performance 

characteristics given in Section 7, they are useful in illustrating the 

relatively minor performance differences between the optimum fixed ­

thrust pointing mode and the variable thrust pointing mode, where the 

thrust vector is oriented parallel and opposite to the velocity vector. 

Comparison of the single-stage and tandem-stage orbit insertion 

modes shows the very large increase in propellant mass and total 

spacecraft mass if the inefficient single-stage insertion procedure were 

to be used. This would make the use of the Mercury mission module for 

outer-planet orbit missions quite impractical. 

Figure F-i illustrates the sensitivity of initial spacecraft mass 

and propellant requirements to thrust initiation time for both variable 

and fixed thrust orientations. It also shows the comparatively small 

difference between the two thrust pointing modes. 

Mariner class spacecraft can implement a variable thrust pointing 

maneuver quite readily, using a stored program of orientation commands 

and an attitude gyro. Pioneer class spacecraft preferably maintain a 

fixed attitude during the maneuver. The results presented above show 
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Table F-i. Mercury Orbit Insertion Performance Characteristics 
and Propulsion Module Sizing Data 

Ip 

(eec) 

No. of 
Stages 

Used 

Thrust 
Orientation 

Mode 

Maneuver Timing 
Thrust Tu 

ation 2Time1 Time 

Approach 
Hyperbola 
Periapsis
Altitude 

Periapsis 
Angl 9
Shift 
(deg) 

Weight Characteristics, 
Flight Stage

Spacecraft
Initial MassZass 

kg (ibm) 

PropellantZ 

(sec) (see) (krn) Mass 

Module A, Payload Mlass 340 kg 

376 2 Variable 
Fixed 

-734 
-734 

557 
561 

604 
483 

21.0 
22.0 

1291 
1297 

(Z847) 
(2860) 

71 
72 

(157) 
(j59) 

404 
407 

(891) 
(897) 0 

z96 2 Variable -1059 767 649 25.0 Z002 (4414) 125 (276) 706 (1557) 
Fixed -1068 778 458 26.0 Z0Z8 (4472) IZ6 (278) 717 (1581) 

376 1 Variable -889 1350 640 25.0 149Z (3Z90) 172 (379) 979 (2159) 
Fixed -892 1365 469 26.0 1505 (3319) 175 (386) 990 (Z183) 

296 1 Variable 
Fixed 

-1824 
-1752 Z 

2457 
468 

790 
361 

18.0 
30.0 

3003 
3015 

(6622)
(6648) 

400 
401 

(882)
(884) 

Z64 
ZZ74 

(4992)
(5014) 

Module B, Payload Mass 550 kg' 

376 2 Variable -1278 939 699 29.6 Zi5Z (4745) 120 (265) 681 (1502) 
Fixed -iZ95 953 426 30.4 2177 (4800) I2 (269) 692 (1526) 

296 2 Variable -1931 1327 77Z 28.i 3426 (7510) 216 (476) 1ZZZ (2695) 
Fixed -1946 1357 332 32.3 3492 (7700) ZZi (487) iZ50 (2756) 

376 1 Variable -1561' 2318 763 .36.0 Z528 (5574) 296 (653) 1681 (3707) 
Fixed -16Z4 2383 369 34.0 2583 (5096) 305 (673) 1728 (3810) 

2963 i Variable4 -4211 5492 1308 6 65035(14339) 893 (i969) 5060 (ll56) 

Assumptions Legend 
Thrust level 600 lbf (2730 N) lRelative to periapsis passage of approach hyperbola 
Mission Type I (launch date 19 June 1988) 
Midcourse and orbit trim maneuvers not included 
Preliminary inert weight scaling laws:' 

t 
2 Each stage
3 Angle between apsidal line of incoming hyperbola and 

Wi = 0.163 W, + 18.1 kg (40 ibm)
Mercury orbit: periapsis elitrud500 kn; 'e = 0. 8Mri0 

elliptical orbit 
4 Maneu('e not feasible with fixed thrust orientation 

in this case 
5 Gross mass exceeds Shuttle/Space Tug capability 



3.0 \\ 	 I 

12.8 

--2.6 

g.OPTIMUM 	 FIXED 

I THRUST ORIENTATION 

t= PAYLOAD 550 KG 
3
- --	 [I = 76 SEC
 

THRUST 600 BfJ
 

2.2 TWO-STAGE INSERTION 	 TANGENTIAL 

W. = 550 + 2 (I * 0.176) WPR 	 TANGENTIAL 

RETRO THRUST­
12.0_ 

3 -2.6 -2.2 -1.8 -1.4 -1.0 -0.6 -0.2 

IGNITION TIME OF FIRST STAGE (103 SEC) 
RELATIVE TO PERIAPSIS PASSAGE 

Figure F-Z. 	 Performance Comparison of Two Retro-Thrust Modes 
Versus Ignition Time for Mercury Orbiter 

that the greater simplicity of a fixed maneuver attitude in the case of 

Pioneer class payload outweighs the performance gain obtainable by 

introducing the more sophisticated maneuver mode. 

Z. OUTER PLANET ORBIT INSERTION PERFORMANCE 

- Orbit insertion performance characteristics at Saturn and Uranus 

are presented in Tables F-2 and F-3 for a preliminary multi-mission 

propulsion size derived from data given in Table F-i for the Mercury 

orbit mission. Only results for space-storable propulsion and for a 

Mariner class payload (680 kg) are listed. For this case the propellant 

capacity of the propulsion module -wouldbe about 700 kg as indicated by 

the first two rows (under Module B) in Table F-i, see last column. 

For the range of trip times covered in Tables F-Z and F-3, iZ50 

to 1750 days for the Saturn orbiter and 2560 to 4360 days for the Uranus 

orbiter, the propellant requirements vary over a ratio of more than Z:1 

and exceed the available propellant capacity (700 kg) for missions with 

the shortest trip times in both cases, as indicated by asterisks. Note 

that in the case of the Saturn.orbiter the plane change maneuver require­

ments are included. 
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Table F-Z. Propellant Required for Orbit Insertion and Plane Change in 1985 Saturn
Orbit Mission 	(Mariner Class Payload; Space-Storable Propellants) 

Propellant Requirements in kg (Im 	 _) 

Trip Orbit Insertion Maneuver 
Time V Plane 

mo Variable Fixed Thrust Orientation Change
Days Thrust at Thrust Angle 4 (deg)t Maneuver 

(Years) (krm/sec) Orientation 250 260 270 280 290 

iZ50 9.73 893"" 974 "' 91Z" 893 91Z 971 iZ8
(3.42) 	 (1969) (2148) (2011) (1969) (2011) (Z41) (282) 

1400 8.31 656 709* 668 656 669 711 14Z 
(3.84) 	 (1446) (1563) (1473) (1446) (1475) (1568) (313) 

1550 7. Z3 518 559 5Z8 518 528 561 156 
(4. 25) 	 (14) (iZ33) (i164) (114Z) (1164) (iZ37) (344) 

1750 6.Z2 409 441 418 409 416 441 167 
(4.79) 	 (90z) (97Z) (92z) (90z) (917) (97Z) (368) 

Assumptions: 	 Saturn orbit dimensions Z.5 X 6f. 1 S 
Payload mass 680 kg
Maximum propellant capacity 700 kg Defined for Mercury orbiter 
Propulsion module inert mass 130 kg,
Specific impulse 375 sec
 
Thrust level
 

Notes: 	 1 Near-optimurn thrust orientation, antipdrallel to velocity vector 

2 Defined dlockwise from radius vector; = 270 degrees antiparallel 
to velocity at periapsis 

3Asterisk indicates that propellant mass exceeds propellant capacity
of multi-missiori module 



Table F-3. 'Propellant Required for Uranus Orbit Insertion (1985 Mission) 
(Mariner Class Payload; Space-Storable Propellants) 

Trip Propellant Requirements in kg (Ibm) 
Time co Variable Fixed Thrust Orientation 

ZDays TrustThrust atThrust Anjle V)(de_)
(Years) (km/sec) Orientationt 250 

Z560 9.91 8Z9" 
(7.01) (1829) 

2860 8.57 601 
(7.83) (±325) 

3260 7.23 43 1 
(8.93) (951) 

3660 6.25 334 
(i0.0Z) (736) 

4360 5. Zi Z51 
(1.90) (554) 

,3."1... 
899" 

(U982) 

644 
(1421) 

453 
(1008) 

354 
(781) 

269 
(592) 


260 270 280 290
 

;837 "
;c 
853 37 85Z' 903 
(1882) (1848) (1879) (99t) 

616 605 614 643 
(1357) (1335) (1354) (±418) 

438 433 439 456 
(965) (955) (967) (1006) 

339 335 339 353 
(747) (739) (747) (779) 

Z55 z5z 256 267 
(563) (556) (564) (590)
 

Assumed Uranus orbit dimensions 1. 1 X 32. I R 

Assuihptions otherwise identical to those for Saturn Orbiter, Table F-2 
•Notes : •­

SNear-optimurn thrust orientation, antiparallel to velocity vector 
2Defined clockwise from radius vector; = 270 degrees antiparallel 
to velocity at periapsis

*3Asterisk indicates that propellant mass exceeds propellant capacity 
of multi-mission module 



i 

- 'The result ';show that orbit insertion propellant, requirements at
 

Iotph. paefs ae quite insensitive to the selected maneuver mode.
 

Differences oet,veen optimum fixed thrust and variable thrust pointing
 

modes are not discernible in the case of the Saturn orbiter, axid are
 

percent or less in the case of the Uranus orbiter. Deviations from
 

optimrniafixed thrust orientation (tangential to the velocity vector at
 

periapsis) cause only minor performance penalties, i e., less than
 

Z. 5 percent for a 1O-degree orientation offset, in both Saturn and
 

Uranus orbit missions.
 

3. REVISED PROPULSION MODULE SIZING DATA 

Results of design iteration and performance analysis of the Mercury 

orbiter are reflected in the 'propellant mass, inert mass and tank size 

data listed in Table F-4. Indicating a size reduction from the values 

listed previously in Table 4-i (Volume II), these data conform with the 

-mass values given in Table 7-1. 

Table F-4. 	 Propellant Mass, Tank Volume and Dimensions 
Adopted for Mercury Orbiter 

Tank Volume Dimensions 
P~ropellant nr Vtot %ih1Propulsion Module Mnert Without With f5% Z Spheres 4 Spheres 

Mass Mass'* Margin MarginType 

(lb) (1b) m (in. ) 	 cm (in.) 

Module A 

Earth storable 894 Z09.4 0.976 .izz 102.1 81.0 
,. (1971) (462) (59,478) (68,400) (40.2) (31.9) 

Space storable 551 175,1 0.530 0.609 74.0 58.7 
(1215) (386) (32,31Z) (37,159) (3Z. 9) (26.1) 

Module B 

Earth storable 172 247.2 1.388 i.596 114.9 91.2 
(Z805) (545) (84,626) (97, 320) (45, Z) (35.9) 

Space storable 781 198.1 0.751 0.864 93.7 74.4 
(17ZZ) (437) (45,801) (52,671) (36.9) (29.3) 

Each module
 

Each tank
 

Note:
 
-- oidule A: Fixed thrust angle assumed 'with 5-degree offset from optimum orientation
 

Module B: Variable retro-thrust pointing angle assumed
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APPENDIX G
 

DYNAMICS AND -ATTITUDE CONTROL OF
 
PROPULSION MODULE A
 

This appendix considers dynamic and attitude-control character­

*istics of the selected spinning spacecraft/propulsion module configura-­

tion.from a feasibility standpoint. Of primary interest are: 

* 	 Thrust accelerations 

a 	 Deployment and control of the flexible, spin-stabilized 
o spacecraft sun shade in the inbound mission 

% 	 The effect of solar pressure unbalance due to addition of 
the propulsion module and sun shade 

* 	 Control of principal axes of inertia in the outbound 
miss ions 

-	 Dynamic effects of main thrust application. 

1. THRUST ACCELERATIONS 

Figure 0-1 shows thrust accelerations acting on the flight space­

craft versus spacecraft mass for four thrust levels. Mass variations for 

the mission classes and propulsion system types for both spinning and 

nonspinning payload vehicles are indicated at the bottom of the graph. 

Maximum thrust accelerations, are about 0.7 gin the inbound, and 0.16 g 

in the outbound Pioneer class missions, and 0.48 g and 0. 104 g, 

respectively, for Mariner class missions. 

The large acceleration of the Pioneer Mercury orbiter requires 

retraction of the sun shade to prevent unaccaptable deformations. The 

payload spacecraft itself (Pioneer Venus) can withstand much larger 

thrust levels since it is designed for solid rocket thrusts of several 

thousand pounds in the original Venus orbiter application. 

Maximum iccelerations occurring in the outer planet missions, 

by contrast, require some structural stiffening of the payload spacecraft 

appendages but are readily tolerated by the propulsion module. 
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Figure G-1. 	 Thrust Accelerations Versus Spacecraft 
Mass For Several Thrust Levels 

Z.. SUN-SHADE DEPLOYM ENT AND CONTROL 

(PIONEER MERCURY ORBITER) 

Only the Pioneer Mercury orbiter requires a deployed sun shade. 

The deployment of this flexible structure by centrifugal action is initiated 

and controlled by individual drive motors, one each per roll-up mandrel. 

Slow deployment by the drive motors is necessary to limit deploy­

ment transients due to Coriolis effects and to prevent ripping of the shade 

material when thE shade reaches full deployment. 

G-2
 



Tension forces in the deployed shade depend on its size and con­

figuration and on the spin rate. The equilibrium between sheet tension, 

cable tension and centrifugal force in the indented, four-leaf shade 

configuration shown in the design drawing (Figure 4-12) depends on the 

angle of attachment of the deployed sheet and, therefore on the depth of 

indentation. A simplified analysis shows that in first-order 

approximation the sheet tension is given by 

p 

FS=T
i 

sin(5+ 
c 

c) 

and the total cable tension by 

F=P in aX
 

c c sin (45 + a)
 

wh&re P = resultant centrifugal force in each quadrant of the sheet 

a = angle between sheet tension force and circular tangent at 
cable attachment points as identified in diagram, 
Figure G-2 

F S 

Pc i S 

Fc = 2FF SIN a 

2 SIN (45+a) 

Figure G-Z. Force Equilibrium on Deployed Sun Shade 
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Figure G-3 shows the sheet and cable tensions as functions of the attach­

ment angle a. For zero attachment angle the cylindrical sheet would 

theoretically be self-supporting with no cable tension acting at the 

attachment points. Actually, to give stability to the deployed sun shade 

it is necessary to provide a sizeable cable tension. This produces 

restoring forces and damping if the sun shade is deflected from the 

symmetrical steady state configuration as a result of small torques 

or AV maneuvers. 

0.8 

0 

U 0.4 

0.2- FC CABLE TENSION 

FS SHEET TENSION 

PC RADIAL FORCE 

0 15 	 30 45 

ATTACHMENT ANGLE, c(DEG) 

Figure G-3. 	 Variation of Sheet and Gable Tension 
with Attachment Angle 

Figure G-4 illustrates cable deflections due to forces acting 

parallel to the spacecraft Z axis, e.g., as a result of a precession 

maneuver by which the sun shade is deflected from its alignment with 

the X-Y plane. The combined effect of centrifugal forces and cable 

tensions will restore the sun shade to the steady state position through 

a series of slow oscillations, dissipating energy through cable and 

sheet deformations. 
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Figure G-4. 	 Deflection of Sun Shade and Retention Cables 
During Coupled Nutation of Body and Sun Shade 

In the design 	for the space-storable propulsion configuration shown 

in Figure 4-12 an attachment angle (a) of 28.6 degrees was selected such 

that the cable tension equals half the centrifugal force per sun-shade 

quadrant, or 3.5 lbf (16 N) for the weight, dimensions and nominal spin 

rate of the system. 

An approximate value for frequency' of oscillations that would 

result from a small sun shade deflection, neglecting interaction with the 

precession of the spacecraft is given by 

f gIV1 2c = 0. 155 cps ­

where W. = 15 lbm (6.8 kg) = the mass of the sun sha'de 

c = 8 ft (2.44 	m) - length of radial cable. 

3. PRECESSION MANEUVERS (MERCURY ORBITER) 

Actually, a spacecraft precession maneuver reads to totpled oscil­

lations involving the spacecraft and center body and the deployed non­

rigid sun shade that are not reflected in the simplified expression given 

above. 
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-" Fgurt-.G5 shows the nature of the dynamic coupling. A preces­

sibn toi'que'applied:to deflect the ahgular momentum vector H by A"1 

produces a r,eactioi torque from the sun shade retention cables, with 
-'the sun.shado initi'aly retaining its former inertial orientation. The 

reaction torque has the effect of introducing a smali secondary angular­

momentum increment AH Z oriented normal to'AH i , -whichsets up a 

small nutation. The reaction on the sun shade is to produce a corres­

ponding nutation in oppbsite direction, 

INITIAL ANGULAR MOMENTUM 
- I PRIMARY MOMENTUM CHANGE 

DUE TO PRECESSION THRUST 
- H~ AH 1 AH SECONDARY MOMENTUM CHANGE 

DUE TO SUN-SHADE LAG 

H0 

Ll PRIMARY'PRECESS ION'TORQUE 

I L -12SECONDARY PRECESSION TORQUE 
DUE TO SUN-SHADE LAG 

- igure G-5. Effect of Sun Shade on Precession 
Maneuver
 

Structural- damping and propellant sloshing will ultimately reduce 

these nutations to zero, with the effect that the sun shade aligns *itself 

with the new spin axis orientation of the center body. 

-. Even without further analysis of the dynamic response of the 

coupled system, the following qualitative criteria and rules of operation 

can be deduced: 

G-6
 

http:Fgurt-.G5


0 Precession maneuvers should be performed infrequently 
and at a slow rate. (Actually, the nominal cruise orienta­
4tion can be maintained for long intervals without requiring 
precession maneuvers.)
 

o 	 Any precession maneuver isaccompanied by slowly
 
damped coupled nutations. Enough time should be
 
allowed for nutations to be damped out before orbit
 
correction maneuvers or attitude-sensitive scientific 
observations are conducted. The required interval is 
estimated as about 1 hour. 

* 	 The use of teardrop tanks is beneficial in providing 
increased damping due to propellant sloshing. 

0 	 -Damping can be further increased by incorporating an 
appropriately tuned nutation damper, e. g. , a mechanism 
actuated by cable deflections. 

- As a general rule, other dynamic effects such as angular accelera­

tions during spin-up and despin maneuvers and Coriolis acceleration 

during shade deployment and retraction sequences can also be minimized 

by performing -these maneuvers at a slow rate. Generally, there are no 

time constraints -demanding rapid maneuver completion. 

4. SOLAR PRESSURE UNBALANCE (MERCURY ORBITER) 

In the Mercury orbiter mission the large deployed sun shade, with 

its center of pressure, offset by se-veral feet from the spacecraft mass - ­

center, causes an appreciable solar pressure unbalance torque. The 

unbalance torque increases with time as the center of mass shifts upward 

along the Z axis due to a) propellant depletion and b) first propulsion 

module staging. Unless counterbalanced by intermittent precession 

maneuvers, the unbalance torque will cause a spin axis precession in 

the plane normal to the sun line. Typically, at closest solar distance 

the precession rate ranges from 50 to 75 degrees per day, depending 

on whether the sun shade is-partially or fully deployed. During the 

earth-to-Mercury transit phase the unbalance effect and, hence, the
 

precession rate are of course less pronounced.
 

Unchecked precession of the spin axis is undesirable since it can 

interfere with effective earth communication. Propellant requirements 

for intermittent precession maneuvers necessary to retain the nominal 
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ORIGN~ AL I 
.0p -POOR QUALIP, 

cruise attitude are anpreciable. Figure G-6 shows the time history of 

the unbalanced solar pressure torque and the resulting propellant require­

ments. The figure shows results for three sun shade deployment modes: 

1) fully deployed throughout the mission, (2) partially retracted after 

staging the first propulsi6n module, and 3) partially-retracted and with 

the lower shade portion jettisoned at the time of propulsion module 

staging. 

-10 3 MN 

1 	 •,In 
U 
z 

2ENOF1.0-	 MISSION 

WO , 0.5­

< 0.5- 2
 
WW3
 
U4 

_ _ _ARRIVAL AT
MERCURY o- 0a 

KG LBM 

.20 - I - FULLY DEPLOYED SHADE 
z . 40 - 2 - PARTIALLY RETRACTED 

WD 	 3 - PARTIALLY RETRACTED
 
_ AND PARTLY JETTISONED
 

W, W-x 10 20-30 

oL 0 2 	 4 50 1 3 

YEARS FROM LAUNCH 

Figure G-6. 	 Average Solar-Pressure Unbalance Moment 
and Propellant Required for Compensation 
in Pioneer Mercury Orbit Missions 

The expenditure of between 20"and 30 pounds (9.1 to 13. 6 kg) of 

attitude control propellant for unbalance compensation is an unattractive 

side effect of retaining the second propulsion module and sun shade during 

the entire orbital mission phase.. The option of jettisoning that module 
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when only minor maneuver requirements remain should therefore be 

seriously considered. This would require that, in the case of the Mercury 

orbiter, a second set of auxiliary thrusters be carried by the payload 

spacecraft along with the monopropellant tanks available in its original 

design. 

5. INCREASED SPIN RATE DURING HIGH THRUST MANEUVERS 

Spacecraft operation at a higher than nominal spin rate will be re­

quired to i) increase orientation stability during high thrust maneuvers 

to achieve greater thrust pointing accuracy and reduced residual pointing 

errors, and Z) to provide additional bending stiffness of deployed append­

ages against thrust acceleration loads. 

Due to unavoidable small thrust vector misalignments. the high 

thrust maneuver introduces a buildup of precession and nutation angles. 

After completion of the maneuver, the nutation angle will decay gradually 

through wobble-damper action and/or inherent damping of deployed 

structures. 

Figure G-7 (A) and (B) show typical pointing errors caused by the 

main thrust maneuver in Mercury and outer-planet orbiter configurations. 
The maximum value of the pointing error varies with the inverse square 

of the spin rate as shown by solid lines. After thrust termination the 

wobble portion of the pointing error will decay exponentially, leaving a 

residual pointing error which is shown by the dotted lines in Figure G-7. 

These results are based on data from the recent Pioneer outer-planet 

orbiter study (Reference 6). Upper bounds of the pointing error for the 
Mercury orbiter at the increased spin rate of 30 rpm are 1. 2 to 3. 5 

degrees. For the outer-planet orbiter, at 15 rpm spin rate, they are 

0.5 to 0.6 degrees 

Spin rate variations due to worst-case thrust misalignment can be 

as large as ±Z rpm during a large .V maneuver with a duration of 25 

to 30 minutes. This effect is comparatively small for the selected ma­

neuver phase spin rate of 15 rpm. If a spin rate of only 10 rpm were 

selected,a 2-rpm deviation would be significant by causing a large 

(56, percent) increase in maximum pointing errors. 
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6. 	 APPENDAGE DEPLOYMENT OF OUTER-PLANET SPACECRAFT 

The Pioneer outer planet flyby spacecraft configuration has an 

asymmetrical lateral distribution of deployed masses which must be 

carefully 6ontrolled so as to keep the principal axis of inertia oriented 

parallel to the spacecraft centerline in the deployed configuration. 

Addition of the large propulsion module lowers the center-of-mass loca­

tion on the Z axis such that an asymmetrical lateral mass distribution 

on the payload spacecraft would tend to produce a principal-axis tilt. 

As a result, unless the principal axis is restored to the cente'rline, 

there would be a conical motion of the centerline, degrading high-gain 

antenna 	operation. 

This can be avoided'by assuring that the center of mass.of the 

deployed appendages of the payload spacecraft remains on the centerline 

in all stages of deployment. This requires that adeployment counterweight 

be placed at the tip of the Z0-foot (6. 1-rn) magnetometer boom. Secondly, 

in contrast to the sequential deployment procedure used in Pioneer i0/il, 

simultaneous deployment is required. The occurrence of large nutatidn 

angles during the deployment phase which would impose excessive struc­

tural loads on the RTG support arms and the magnetometer boom is 

thereby precluded. 

Results of dynamic analyses performed as part of the Pioneer 

outer-planet-orbiter study (Reference 6) showed that nutation angles and 

structural loads can be adequately controlled if start and termination of 

the deployment phase of the three appendages occur at the same time. 

Lateral dynamic loads imposed on the magnetometer boom due to 

Coriolis acceleration can be adequately controlled by limiting'the maxi­

mum deployment rate. In consequence, the structural load on append­

ages due to deployment dynamics can be effectively reduced, and any 

boom stiffening requirements are largely those, due to thrust accele.ration. 

7. 	 STRUCTURAL STIFFENING OF DEPLOYED APPENDAGES 

(OUTER-PLANET ORBITERS) , . 

Axial loads on deployed payload appendages induced-by. higgh'thrft I 

application combine with radial loads due to the centrifugal effect. 1.'_ 
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the ss£in rat&is incrieased this leads to an-effective stiffening of the de­

ployd 'appttndages against bending due to axial acceleration. Figure G-8 

scheniaticafly-illtstrates the stiffening effect due to high spin rates . 

as a result of-.the-vector combination of axial (F) and radial (F) reac­

tion forces . -" " -•: 

SPIN 
* AXIS. 

tL*I I. 

F 

.Figure G-8. Cantilevered Boom Under Axial (F ) 
and Radial (Fr) Load 

The magnetometer boom tends to align itself with the resultant 

reaction force vector at the tip. Since it is hinged at the root with a 

:+3-degree deflection range, only boom deflections in excess of ±3 degrees 

actually induce bending stresses. Previous analysis of bending effects on 

the appendages of the Pioneer Jupiter orbiter (Reference 24) indicate that 

the axial and centrifugal load interaction tends to keep the tip deflections 

of the magnetometer boom and the RTG booms approximately equal. 

-Asymmetry of mass distribution due to boom deflectiohis and, hence, 

tilting of the principal axis of inertia can thus be minimized. 

Consideration was given to the possibility of providing additional 

stiffening by guy wires extending from deployment reels mounted at the 

top of the high-gain antenna feed structure. However, this would tend to 

interfere with-wobble damper action by the magnetometer boom, 

which makes the concept unacceptable. 

Thd present conceptual design relies on structural reinforcement
 

added to the deployment booms and on stiffening due to the increased
 

spin rate.
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