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Abstract, We study five relativistic plane nonlinear waves:
 

circularly polarized waves and electrostatic plasma oscillations
 

propagating parallel to the magnetic field, relativistic Alfven
 

waves, linearly polarized transverse waves propagating in zero
 

magnetic field, and finally the relativistic analog of the extra­

ordinary mode propagating at an arbitrary angle to the magnetic
 

field. When the ions are driven relativistic, they behave like
 

electrons, and the assumption of an "electron-positron" plasma
 

guides us to equations which have the form of a one-dimensional
 

potential well. Our solutions indicate that a large-amplitude
 

superluminous wave determines the average plasma properties,
 

and not vice versa. For example, linearly polarized waves impose
 

a plasma number flux equal to the relativistic addition of Nc/0
 

and NVE, where N is the density, c the speed of light, 0 (>1)
 

the ratio of the phase speed to c and VE the Ex B speed mea­

sured in the frame moving with speed c/p with respect to the
 

frame in which the phase speed is measured. The implications
 

for cosmic ray acceleration in pulsar magnetospheres are considered.
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1. Introduction
 

With the discovery that a rotating magnetized neutron star
 

energizes the electrons in the Crab nebula, a major astrophysical
 

problem was solved, but a major new plasma physical problem
 

posed. It is generally agreed that neutron stars rotate and
 

have an immense magnetic field, since they must conserve both
 

angular momentum and magnetic flux during their collapse from
 

their pre-supernova state (Gold, 1968). Furthermore, plasma
 

processes in the magnetic field ought to communicate rotational
 

energy to the surrounding nebula.
 

Those rotating magnetized neutron stars observed as pulsars
 

.probably have misaligned magnetic dipole and rotational axes;
 

otherwise there would be no rotationally asymmetric feature
 

capable of producing a pulse. If such an "oblique rotator"
 

is in vacuo, it will emit, according to Maxwell's equations,
 

a strong magnetic dipole wave which carries off rotational energy
 

and angular momentum (Pacini, 1968; Gunn and Ostriker, 1969).
 

Even this simplest model of a pulsar magnetosphere does rather
 

well, since the estimates of the surface magnetic field based
 

on flux conservation arguments, B -1011"12 Gauss, lead to rota­

tional deceleration rates in rough agreement with the observed
 

gradual lengthening of the time interval between pulses. At
 

this point Ostriker and Gunn (1969) raised an important question.
 

They found that a single charged particle dropped into the vacuum
 

wave could be accelerated to extremely high energies. Could
 

the pulsar wave accelerate cosmic rays? At the same time, Goldreich
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and Julian (1969) observed that a rotating magnetized neutron
 

star would never find itself in vacuo: Its electric field has
 

such a large component E1l parallel to the magnetic field near
 

the star that field emission from the solid surface of the neutron
 

star would be inevitable. They argued that the magnetosphere
 

would fill up with plasma until sufficient densities would be
 

reached that E11l 0, and the hydromagnetic approximation becomes
 

a valid way to describe the magnetosphere.
 

The fact that the plasma density would not be negligible
 

in pulsar magnetospheres started two new lines of research.
 

First, relativistic versions of the solar wind were proposed
 

(Michel, 1969). For mathematical simplicity, the dipole was
 

assumed aligned and all time dependencies were neglected. Secondly,
 

it became important to understand self-consistent plasma waves
 

of relativistic amplitude. For this work, there existed the
 

pioneering effort of Akhiezer and Polovin (1956) on electro­

magnetic waves which drive electrons relativistic. This work
 

was extended for laser-plasma interactions by Kaw and Dawson
 

(1970) and inpart for pulsars by Max and Perkins (1971, 1972)
 

and Max (1973). We will discuss in more detail a recent paper
 

by Clermow (1974) later.
 

At present, the question of whether the outer magnetospheres
 

of pulsars are "winds" or "waves", or, as is conceivable for
 

oblique rotators, a mixture of winds and waves, has not been
 

resolved by a clearcut theoretical delineation between the regimes,
 

and consequently by observation. Kennel, Schmidt and Wilcox
 

(1973) found that when ions as well as electrons are driven
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relativistic by a plane wave propagating in an unmagnetized
 

plasma, there is an upper limit to the cosmic ray number flux
 

which can be transported by a wave of a given,amplitude, above
 

which the wave encounters a cutoff. The plasma wave cutoff
 

flux corresponds to the lower limit on density for which the
 

hydromagnetic approximation is valid. Asseo, Kennel and Pellat
 

(1975) reached a similar conclusion for the more realistic case
 

of a spherical wave. Thus, wind and wave solutions may even­

tually be distinguishable observationally on the basis of density.
 

This paper concentrates upon extending our basic under­

standing of relativistic nonlinear waves. We focus on linearly
 

polarized superluminous waves in a magnetic field. We will
 

argue shortly that only waves with phase speeds exceeding that
 

of light can have arbitrarily large amplitudes, and that linear
 

polarization leads to a unique relation between the cosmic ray
 

flux transported by the wave and the wave amplitude, whereas
 

circular polarization does not. We include a magnetic field
 

to gain some insight into possible wind-wave solutions. In
 

particular, we ask how the limiting cosmic ray flux is affected
 

by the magnetic field. While our motivation is primarily astro­

physical, our work might eventually be applicable to laser-plasma
 

interactions, since in the near future lasers will be suffi­

ciently powerful to drive at least the electrons relativistic.
 

Here again, the inclusion of the magnetic field might prove
 

interesting.
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2. Basic Equations
 

The fluid equations for a two-species (j = 1, 2) cold collision­

less plasma are 

e - - - -B 

= e f
 . J (2.1)
 

btt~yj +v =--.0 (2.2)
 

v . E = 4vp (2.3) 

v. B = 0 (2.4) 

vxE 6_B (2.5) 
c bt 

vxB = 4r +1c bbt (2.6) 

p = ej I neyj (2.7) 

j cI nie (2.8) 
J 

Equations (2.1)- (2.8) are written in an arbitrary reference
 

frame which we will henceforth designate as the laboratory frame.
 

The notation above is standard (e, = particle charge, Mj = rest
 

mass, y. = 1+U, , where Uj is the reduced momentum, and c the
 

speed of light), n denotes the proper density and N. the labora­

tory frame density.
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We now specialize (2.1)- (2.8) to a plane wave propagating 

in the x-direction. In addition, following Kennel et al. (1973), 

we change variables from (x, t) to phase n1= w(t- A-), where 

w is the frequency and B the normalized phase velocity. 

Writing (2.1) in components, defining U = (U, V, W) and
 

suppressing the species index where the meaning is obvious,
 

we find
 

AdU = YV +Viz . Wy (2.9a) 
AdH=Yx+Vz -W 

dV = yv +Wcy - Un (2.9b) 

Add = Y-x + Uny - Vx (2.9c) 

Ad-= U x +Vy +WV (2.9d).
 

where in (2.9) we have normalized the electric and magnetic
 

fields relativistically by defining
 

-. ejE - ejBvi - Mj-c 11 - Mj Wc (2.10) 

The equation of continuity (2.2) becomes
 

d-(nA) = 0 (2.11)
 

where we have defined the relativistic Landau function A
 

Pm (2.12)A -- uy 
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-y ~U (2. 12) 

When A = 0, a particle moves with the wave phase velocity in
 

the x-direction. Equation (2.11) can be integrated to yield
 

n0 A° (2.13) 
n A 

where subscript zero denotes the arbitrary phase point -no where
 

all boundary conditions specifying the plasma are imposed.
 

Equation (2.4) and the x-component of (2.5) combine to
 

yield
 

x = constant (2.14) 

The remaining two components of (2.5) are 

i(ny+ z) =~() o(2.15)d, 


Similarly, the y and z components of (2.6) become
 

dB" 
d~ 

dE 
dn 

= _4T~c 2I 
)Y 

el.(2.16a)' 
i J 

dB dE J e (2.16b 
d dne (2.16) 

Equation (2.3) and the x-component of (2.6) yield equi­

valent expressions
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dE 42dEx e. Trr ney (2.17) 
J J 

Equation (2.17) describes a fundamental property of rela­

tivistic electromagnetic waves. Even if the proper densities
 

of electrons and ions are equal, there is in general an electro­

static field component Ex, which disappears only under special
 

assumptions. In this paper, we will exploit the fact that when
 

the ions are driven relativistic by the wave, the plasma acts
 

like an electron-positron plasma (or like a gas of charged pho­

tons) to eliminate the electrostatic field Ex.
 

It is illuminating to consider the properties of equations
 

(2.9)- (2.17) under Lorentz transformation to a frame moving
 

in the x-direction with respect to the laboratory frame. Let
 

us denote the normalized x-momentum vector of the transforma­

tion by (tI, ) and transformed quantities by superscript tilde.
 

Under transformation, the phase becomes in this frame
 

'n f + " (2.18) 

while Faraday's law, equation (2.15), leads to
 

~~z('1y3j +4y(~ 
 dZ T) (2.19)
 

The other quantities transform in standard fashion. It is evi­

dent that there are two particularly convenient transformations.
 

For subluminous waves, < 1, we may choose V = T1/0. In this
 

frame, which moves at the wave phase velocity, the phase variable
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rjbecomes the transformed space variable x, and the transformed
 

transverse components of the electric field are constant. For
 

superluminous waves, 0> 1, we can choose 7/o = V, a frame which
 

moves with speed c/o. Here rj becomes the transformed time,
 

and all components of the magnetic field are entirely constant.
 

We will denote quantities pertaining to the transformation to
 

this space-independent frame characteristic of superluminous
 

waves by subscript star, in other words
 

B 

Y= 8 * T -

-* 

I- (2.20) 

Our strategy will be to seek special wave polarizations
 

which render the wave equations (2.9)- (2.17) simple to solve
 

and to exploit the special Lorentz transformations (2.18)- (2.20)
 

to illuminate the physics of the special solutions so obtained.
 

The simplest polarization--circular--leads to an algebraic dis­

persion relation. We review this solution, already obtained
 

by many authors, in Chapter 3. Barring an algebraic dispersion
 

relation, the next best thing is a second-order ordinary dif­

ferential equation integrable once by quadrature, so that we
 

can exploit the analogy with the equations of classical mechanics
 

for a particle in a potential well. Such techniques have been
 

successful for nonlinear waves and solitons in non-relativistic
 

plasmas, and we shall seek cases where they can be applied to
 

nonlinear waves of relativistic amplitude. In Chapter 4 we
 

discuss the simplest possible linearly polarized wave, an electro­

static plasma oscillation propagating parallel to an external
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magnetic field. In Chapters 3 and 4, ions and electrons make
 

equal contributions to the dispersion relations when the ions
 

are driven relativistic by the wave. In other words, the masses
 

of the particles are determined by the kinetic energy acquired
 

from the wave, and we can neglect their rest masses, and more
 

importantly, the differences between rest masses,' This sug­

gests that setting M i = Me produces a set of equations valid
 

in the large amplitude limit which can guide us to differen­

tial equations in potential form. Sturrock (1971) has suggested
 

that an electron-positron plasma will in fact be injected into
 

the wind or wave zone of a pulsar magnetosphere.
 

In Chapter 3 we will find that circularly polarized waves
 

do not impose a unique mean number or energy flux on the back­

ground plasma. No unique statements concerning cosmic ray trans­

port can be made for circularly polarized waves. Thus we con­

centrate upon linearly polarized waves in an electron-positron
 

plasma containing a uniform magnetic field. In Chapter 5 we
 

derive the equations for such a wave propagating at an arbi­

trary angle to the magnetic field. We then transform this labora­

tory frame equation to the space- and time-independent frames
 

for the subluminous Alfven and superluminous extraordinary modes,
 

respectively. In Chapter 6 we study the subluminous relativistic
 

Alfven solitary wave. We find that it "breaks" at relatively
 

low amplitudes, when the plasma encounters the A = 0 Landau
 

singularity. On the other hand, when 0 >1, A must always be
 

positive. Thus superluminous waves can reach arbitrarily large
 

amplitudes without encountering a fundamental difficulty within
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cold fluid theory. In Chapter 7 we specialize to the case of
 

superluminous waves in zero-average electric or magnetic fields,
 

first treated by Akhiezer and Polovin (1956) in the limit M.- =.
 

In the limit Mi -Me we find an exact solution valid at all ampli­

tudes. In Chapter 8 we consider the extraordinary mode in the
 

large amplitude limit; we find a dispersion relation indepen­

dent of the particle mass, justifying a posteriori our assumption
 

of equal masses, or better, of a charged photon gas. We will
 

find that superluminous linearly polarized waves impose charac­

teristic number fluxes on the background plasma in the large
 

amplitude limit.
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3. Transverse Circularly Polarized Waves
 

We choose EX = 0, but Ey and Ez non-zero. We keep B. non­

zero, but require that the phase-averaged y and z magnetic field 

components (By), MBz) = 0, which implies that By = -Ez and 

Bz = Ey/B. Equation (2.9) then reduces to 

dU V Y +W z 1 d  (3.1a)
 

=dV AVy +Wz d AV Vn (3.lb) 

where the particle species index has been suppressed. For a
 

circularly polarized wave (Ey = E cos n, Ez = E sin , y1 A,
 

U, and n are constant. In addition, for each species
 

(v 2 +w2} (3.2) 

where v elEI Substituting (3.2) into (2.16a) leads to the
where Mwc 
dispersion relation 

2 2
2 - 2 

= 0 j/yj 

2 4Tnj e? 

where w M an W y2wpj denote the squares of the
 

proper and laboratory frame plasma frequencies respectively,
 

and =oj
-MiBx is the signed cyclotron frequency. The + signs
 
J 

in (3.2) and (3.3) distinguish right and left circular polari­

zations. We are free to choose all the Uj identically zero,
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whereupon (3.3) is formally identical to the dispersion relation
 

for circularly polarized waves of non-relativistic amplitude,
 

with the rest masses multiplied by the appropriate yj factors.
 

The yj in turn are calculated by substituting (3.2) into y,= Ai +lV
 

which gives a quartic for yj
 

- 1+f( + ij (3.4)
 

when vjI >> , j >>I, an approximate solution to (3.4) is
 

Yj = IVj 1- xj1 (35) 

so that the dispersion relation (3.3) is independent of the
 

particle rest masses.
 

Equation (3.3) does not necessarily describe superluminous
 

waves, but in the limit w>>wij/Aj it does so. In this limit
 

(3.3) is also the dispersion relation for a circularly polari­

zed wave propagating in a plasma with zero magnetic field.
 

It is interesting to note the differences in dispersion relation
 

created by the change from circular to linear polarization,
 

as shown by equation (7.7). An even more fundamental difference
 

is that the circularly polarized wave, unlike that in equation
 

(7.7) or the others to be studied, does not fix the mean number
 

and energy flux. Because of this, it is difficult to make any
 

unique and meaningful statements concerning cosmic ray trans­

port by circularly polarized waves.
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4. Longitudinal Superluminous Relativistic Plasma Oscillations
 

Hee Bz
Here weechoschoose Ey = Ez = Byy = B = V = W = 0 everywhere. 

We solve for the electrostatic potential defined by 

Ex dx c d (4.1) 

Normalizing relativistically, y = 2 , the particle equa­

tions of motion reduce to
 

dU = dw_ _ U14. (4.2)
'njY~; A q -

for both species. We solve (4.2) for the dependence of y upon
 

2
T, using y = 1+U and A = y- U/0. Omitting the species subscript
 

y= Y*Q(r +860)+j1 +'4(T +60)21 

,*ti( °0) 1 4.a2S +6+ (4.3a)
 

U = 
2

{Y(+o)A (4.3b) 

0 = U0 -YO/ , where subscript zero denotes the phase points 

where 'q = 0. One more equation relating y and I can be found 

by solving (4.2) for y/A (or U/A) and inserting into Poisson's 

equations (or the equation for conservation of charge), equation 

(2.17), using the definition (4.1), and integrating once
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1 2 E§E 2c2 rrn 0 A0 M c 2Y1 (4.4)
204d1) = E 2 4nojojj Oi j 

where E is an arbitrary constant of integration.
 

Equations (4.3) and (4.4), a second-order differential
 

equation integrable once by quadrature, present a strong analogy
 

with particle mechanics. If (d{/di) 2 represents the kinetic
 

energy of a "particle", then the E represents "total energy"
 

and the remaining term in (4.4)-"potential energy". We seek
 

periodic nonlinear solutions to (4.4); therefore we adjust E
 

so that the "particle" bounces back and forth between zeros
 

2
of (dl/d 1 ) There must be at least two zeros for a periodic
 

solution to exist. One zero can be fixed by choosing E pro­

perly. Let i be the maximum positive potential in the wave.
 

Then, if
 

22
 
2L 521,A iy(;) (4.AE = z4knoAojMJc2 (4.5) 

()= 0. The other zero of d§/dT, C, can only be determined
 

from the explicit form of dl/dn which we deduce inserting
 

(4.3a) into (4.4), using (4.5). In so doing we encounter the
 

quantity
 

14TnojAojM c22 j_ = J4nojAojej (4.6) 

j i 

which we assume vanishes.
 

In (4.4) we have used a mixed notation, with § on the left
 

hand side and wj on the right, through yj, equation (4.3a).
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We now specialize to a two-species plasma, electrons (e) and
 

ions (i), and write (4.4) in terms of the relativistically norma­

lized electron potential Ye.
 

We note that e= - Ryi, where
 

R = M i/ZMe
 

and Z is the ionic charge. Thus
 

2
dw 2 

-f(-d = AoY* 3fRJVl+Y,2te/R -86)2)1-]
 

+y2 +8)2 1+y*&('e 1 } (4.7) 

where, consistent with assumption (4.6), we choose 80i = 80e" 

The dispersion relation is the condition that TI changes by n
 

when the solution passes between two zeroes of d e/d :
 

, e d -1
 
dyve\-) n (4.8)
 

e
 

Equations (4.7) and (4.8), while mathematically satisfactory,
 

are not physically complete because they involve wpO , the proper
 

electron plasma frequency at the point Y = 0, rather than the
 

average proper or laboratory plasma frequency. With the tech­

niques used in this paper, it is more convenient to deduce phase
 

averaged quantities after the dispersion relation has been derived,
 

since-the phase average (f) 6f any quantity f(re), is clearly
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A 

lye de- 1 
= dy f (- ) (4.9)

Ye
 

We can then re-express all the initial quantities (subscript
 

0) in the dispersion relation in terms of phase-averaged quantities.
 

We now turn to finding Ye' which in general depends upon 

800 We note immediately that 80 = 0 makes dye/d1 an even function 

of Ye and Ye = e Furthermore, if d*e/d1 is even, (Ye) = 0, 

which means the average plasma potential is zero. 

The phase-averaged laboratory frame electron densityis
 

then
 

e8
2 1 2) 2(Ne = noeTOe- - noeAoeY*(I +( . Den 

(4.10) 

Similarly, (Ni> = n01A 1y*. Thus, if we choose n0 i =noe' charge 

neutrality on the average is ensured. 

An entirely similar calculation for the averaged lab frame
 

ion and electron fluxes (Ji) and <Je) respectively yields
 

U

,Je, =e noeC<\e = (newC/o = o'J (4.11) 

Therefore, the choice 8o = 0 which sets the speed of the
 

plasma equal to c/o at T = 0 ensures that the mean speed remains
 

c/B for both species. Note that 8o = 0 implies %oy* = 1, and
 

requires B >1.
 

In the small amplitude limit, I1ei <<I, (4.7) reduces to
 

a harmonic oscillator
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2 2 

d/dPO+ O Do2; +2 (4.12) 

where n0p0 H *and 40 =W pO p 

W ==Y, J20 02(4.*13) 
=0 Y1,Wp+fl 

Since I1el «1, the proper density n0 equals the phase-averaged 

proper density (n), and so w and p correspond to the con­

ventional electron and ion proper plasma frequencies. Equation 

(4.13) therefore represents small amplitude plasma oscillations
 

in the proper frame. In the laboratory frame they are observed
 

to be Doppler-shifted by the factor A0 0
 

In the large amplitude limit I-tRl> the electron and
 

ion terms in (4.7) are identical, and (4.7) reduces to
 

2
lde2 


2(dYA) 2 *2epe9 {t e V iWw Me (4.14)
4rr (N~e24 14 -

where we used (4.10). Inserting (4.14) into (4.8) and inte­

grating leads to the dispersion relation
 

S(rTWpe) 2/;= 4r3(N)ec2/^ 

which is independent of the particles' rest masses. Note that
 

(4.15) does not give the plasma cutoff, (since when -w, ;-0
 

for all finite wave amplitudes), which is obtained from (4.13)
 

Ln the limit 1-­
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Wtf =4TN~ (4.16) 

Thus the plasma cutoff frequency is always the laboratory
 

plasma frequency, regardless of wave amplitude.
 

We did not begin our calculation in the space-independent
 

frame, as did Clemmow (1974), but nonetheless we found a posteriori
 

that choosing a plasma streaming velocity equal to c/o enabled
 

us to find a particular solution for relativi'stic nonlinear
 

plasma oscillations which preserved charge neutrality. A labora­

tory observer would find a plasma number flux Nc/s of each species
 

as well as a relativistic wave. Of course, these observables
 

could be suitably Lorentz-transformed to other reference frames.
 

Suppose we had not chosen 80 = 0. Clearly our small ampli­

tude dispersion relation would have been modified by the Doppler
 

shift factor O. But it is not nearly so evident that the large
 

amplitude result would have changed, for expanding (4.7) assuming
 

e/R6oI >> I leads to (4.14) in first approximation. Is it
 

true then that a relativistic amplitude wave imposes upon the
 

plasma a net speed c/o? The absence of detailed physically
 

sound solutions for 60 O leaves this an interesting speculation,
 

which we confirm more rigorously for a relativistic electro­

magnetic wave in Chapter 7.
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5. Electromagnetic waves in a plasma with M i = Me
 

In Chapters 3 and 4 we showed that the electron and ion
 

contributions to the dispersion relations for circularly polari­

zed electromagnetic waves and longitudinal plasma oscillations
 

become equal when the wave amplitude is relativistically large
 

for both species. Kennel et al. (1973) found exactly the same
 

thing for transverse electromagnetic waves. In their solution,
 

the effective equality of ion and electron masses eliminated
 

the electric field Ex parallel to the direction of wave propa­

gation, which has complicated attempts at solution since the
 

original work of Akhiezer and Polovin (1956).
 

Of course, it is reasonable that the particle inertia be 

determined by the wave amplitude, not by the rest mass in the 

super-relativistic limit. Furthermore, this suggests that assuming 

equal ion and electron masses at the outset can guide us to 

simple equations valid in this limit. Clemmow (1974) has pointed 

out that certain solutions become very simple when M. = Me, 

but we feel that rather than being curiosities, they represent 

the super-relativistic limit well. 

Let us discuss first the conditions under which the electro­

static field Ex can be eliminated. Rewriting (2.17) we find
 

dEx 4rci noUAojU1 /A1 - -cnojojyj/Aj (5.1) 

j .1 

assuming noetOe = 0 Charge neutrality can be preservednoi o. 


in a two-species plasma only if U. = Ue and y, = Ye everywhere.
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Henceforth we will make this assumption. This of course implies
 

that V i = +Ve and Wi = +We. Referring to (2.16ab) we see 

that assuming Vi = - Ve and W i = We excites the field compo­

nents (Ey, Bz), and assuming W i = -We, Vi = Vz excites (Ez, BY). 

Either assumption leads to a one-dimensional potential well, 

and the two waves have identical properties, one being spatially 

rotated with respect to the other. Henceforth we pick Vi = -Ves 

EX = By = EX = 0; EyAO and Bz, Bx AO. Then equations (2.9ad) 

reduce to (5.2) below, where the species index is suppressed
 

dU/dj = VOIZ/A (5.2a) 

dV/d1 = -YVY-Unz +Wnx/A (5.2b) 

dW/d-1 = - VIIx/A (5.2c) 

dy/dl = Vvy/A (5.2d)
 

Finally we have, integrating (2.15) once
 

Oz -*V Y/0 = C1z0 - vIyo/O (5.3) 

x = constant (5.4)
 

Henceforth we will solve our equations in terms of ion quan­
tities (Vyl, Vi, etc). Then, using Ve = Vet equation (2.15a)
 

can be rewritten
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dvy/dnn = dz/dt = - V/(a) (5.5) 

where
 

. 2 (5.6) 

and wpO is the proper plasma frequency at the reference phase
 

denoted by subscript zero.
 

Combining (5.5) with (5.2a) leads to
 

U Vo O (5.7)-+(zO 2 

Combining (5.5) with (5.2d), to
 

2]  Y = Y0 +Y V2- (5.8) 

where henceforth the y subscript on the electric field will
 

be suppressed; and finally (5.5) combined with (5.2c) gives
 

W = W0 - V - V)ox (5.9) 

Squaring equation (5.5) gives us
 

(dv/d) = ( 2 - 1)/A2 (5.10) 

which is the equation of motion we seek. In addition, we impose 

the condition V0 = 0, in other words y2 _U2 -W2 = 1, which is0Y 0
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necessary to preserve our assumption V i = -Ve .
 

Our task is now to express y, U, W, A in terms of v alone.
 

After some algebra we arrive at the following equation for the
 

normalized electric field y = v/V0:
 

(2Z2 dx) 2 =(1 - Y)2[(y - y1)(y - q] + (1 -y)qQ (5.11)-2 

Y[q/2+(yy 3)1y)]2
 

where
 

F UB'1 -vy*WoB 1 2y0 (EU xBY 
= A0 EoyQ 2 Y*AEYo0 


The quantities y1, Y2, y3 are defined by
 

= -1 +2U**Bzo- U*EyO)/Eyo 1 +(2U*Dz)/Ey (5.12)
 

y + 2y B,+*(x - y E (5.13)Y*B U*EVO) 2 

yO 

72 = Y3 - 2y*TJ/Eyo (5.14) 

In the derivation of (5.11)- (5.14) the characteristic 

quantity y*Bzo -U*Ey 0 appears often. It is the z-component 

of the magnetic field in the space-independent frame Xz' and 

we have so indicated in the second forms of (5.12)- (5.14). 

Similarly 1 = (B2 +B 2)1. Since the magnetic field is a con­

stant in this frame, if 15 = 0, there will be no average elec­

tric and magnetic fields in this or any other frame. On the
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other hand, choosing BAO leads to averaged electric and mag­

negic fields in the laboratory frame.
 

If Y1, Y2' Y3 define the averaged electric and magnetic
 

fields, then the parameter q defines the strength of the wave,
 

for
 

q 2Ao0q (2A4)= 24nn Mc2/E2-0 0 

The case q >>I corresponds to the small and the case q <<1 to 

the large amplitude limit. Note that q can be much larger than 

unity if y0 >> 1 and 0 >>1. Then, even if E/4nOMc 2 >> I the 

wave makes a small perturbation on the particle trajectories; 

on the other hand, the large amplitude limit, q<< I, is one 

where the particle motion is determined by the wave. The value 

of the particle rest mass enters (5.11) only through q. Thus, 

when q<<I the rest mass will disappear entirely from the dis­

persion relation in leading order. 

It is illuminating to consider the properties of the non­

linear wave equation (5.11)- (5.14) under the special Lorentz
 

transformations discussed briefly in Chapter 2. For the rela­

tivistic non-linear Alfvgn wave, <11, we arrive at
 



( zo c db 2 

7rnoMTU0 pO dx 

8Tn Mc2u2+ E2 -B2I C E Ux B/y ),] 8mnMc2U2 

(b+')- 8nM82 Mc1) 2 LUzo2z(.5F~~4T=no.u_0+("b, i 82 
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N,­
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We have written in (5.15) in physical quantities for physi­

cal clarity, and the tilde superscript denoting transformed
 

quantities has been dropped. upO is the proper plasma frequency
 

at the phase point zero, and b = FzSzO.,
 

For the relativistic nonlinear extraordinary mode, we find
 



E 0o 1 d. 2Eoie)
7 c,, o8o 71nM c2zB + B - (e<( +ux 9/Y 8Trn+ 0 Mc 2(e 1) 2 i2 0o 2 x B -i 0 0 

rTE
- 2 2 - 2 2 (5.16) 

4Tn n Mc ' 
Eyo 

to­
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where erx/EyO and the tilde or star notation denoting trans­

formation has been suppressed.
 

Comparing (5.15) and (5.16), we see that for <1, the
 

independent variable is time, the dependent variable is the
 

magnetic field, and the electric field is constant. For 0 >1,
 

the independent variable is x, the dependent variable the elec­

tric field, and the magnetic field is constant. The denomi­

2
nators in (5.15) and (5.16) are simply A . The more profound 

differences between (5.15) and (5.16) stem from the differences 

in sign of the derivative terms, and from the fact that a2 can
 

never be zero for a superluminous wave, wh'ile zeros are pos­

sible for a subluminous wave.
 

In Chapters 6- 8 we study special solutions to equations 

(5.11), (5.15) and (5.16). In Chapter 6 we study the relativistic 

subluminous fast mode solitary wave propagating across the mag­

netic field. We find that it breaks, due to the A = 0 singu­

larity, at a relatively small amplitude. In Chapter 7 we specialize 

to the special case of a superluminous plasma wave with zero­

averaged electric and magnetic fields, and in Chapter 8 we con­

sider the relativistic nonlinear extraordinary mode.
 



29
 

6. Relativistic Alfvenic Solitary Wave
 

The effective potential in (5.15) has a double root at 

b = I if (E +Ux B/Y)0 y = 0. Then it may easily be shown that 

the integral for the wave phase becomes singular as b-i, the 

classic condition for a solitary wave (Sagdeev, 1966; Tidman 

and Krall, 1971). Here the amplitude passes reversibly from 

b = I at x-+- to a certain maximum value bmax, to be deter­

mined below, at x = 0 and back to b 1 as x- - . We now rewrite 

(5.15) for the Bx = 0 solitary wave in the standard notation 

used for the non-relativistic solitary wave: 

22 2
 
[d 2 2M2 M -2-7 1Y-b +2 12 (b -I) )2 

2 -(db (6 
(6.1)
y
[Y(b' 


where y. = (i+UW)a is the relativistic Lorentz factor of the 

plasma at x--, and X is a normalized distance, X = wpwx/c where
 

WPM is the proper plasma frequency at x-. M is a relativistic
 

Mach number:
 

2 2 U28rrn.Myc 8nrN0 (Myv)c 2 u2 U2c 2 

- = B2 2 (6.2)
W W A 

where CA is the Alfv~n sjeed at x-0 .
 

2
If y, -1, then M' = (Vx/CA)2, the usual non-relativistic
 

Mach number. When C2/C2 is of order unity or greater, the small
 

amplitude dispersion relation for hydromagnetic waves propagating
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perpendicular to the magnetic field yields
 

Ch2
A C(6.3)
 

where Vph denotes the phase velocity. It is convenient to define
 

an effective Lorentz factor yp, based upon the phase velocity
 

Vph*
 

YE =(1 V2/C2)-1 = 1+C2/2 (6.4) 

In the super-relativistic limit, y >>, U -y and y2 _C/C2 

so that M 2 y!/y. Thus, M in this limit measures the ratio 

of the particle to wave Lorentz factors. 

In the non-relativistic limit, y.-1 and CC2 <<i, (6.1)
 

reduces to the standard form for solitary waves in a relativistic
 

plasma (Sagdeev, 1966; Tidman and Krall, 1971). In fact, the
 

relativistic form (6.1) is identical to the non-relativistic
 

form, so that we need not dwell overlong on the properties of
 

relativistic solitary waves.
 

A nonlinear solution is possible (db/dx)2 >0, if M2 > 1V
 

=since b l. The amplitude rises from b = 1 at x = + to a 

maximum bma x at x = 0 and then returns to b = at x ­

where
 

bmx 2 +Y! - 1 

b 2 -I (6.5) 

is found from the condition d 0.
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The solution is well-behaved so long as the singularity 

in the denominator of (6.1) is avoided. The denominator is 

simply (U(x)/U=) , so the singularity corresponds to U -0 and 

n-c, the equivalent in this case of the condition &-0. Choosing
 

b = bmax, we can solve for the Mach number which sets U = 0
 

= 2(1 .) (6.6) 

Evidently, (6.6) defines the maximum Mach number permissible. 

When y.-l, (6.6) yields M* = 2, the usual result, whereas in 

the relativistic limit, M* = >>2. 

We can solve for b* the largest possible magnetic field
max 

amplitude, based on the limit M =M 

y+ 2 
br = - (6.7)max Y
 

Equation (6.7) reduces to bnax =3 when y. = 1, the usual result.
 

While the relativistic limit permits an apparently much larger
 

range of permissible Mach numbers
 

1<M< 2jT* (6.8) 

than the non-relativistic limit, this whole range corresponds
 

to solitary waves of very small maximum amplitudes:
 

S< b*a < 1 + 2/y, (6.9) 
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Thus, it may be that fast waves propagating perpendicular to
 

the magnetic field are restricted to low amplitudes in the rela­

tivistic limit C/C 2>> I. Since when $ <1, it seems likely
 

that the A = 0 conditions can be satisfied for many nonlinear
 

waves, it appears that superluminous waves may be the only ones
 

that can have the large amplitudes required by pulsar theory.
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7. Transverse Superluminous Waves with Zero Average Field
 

In this chapter we study the special case of zero back­

ground magnetic field, 1 = 0. Then, in (5.11)- (5.14) y1 = Y2 = Y3 = 

and (5.11) reduces to 

- (i y2)[(1 y2)+q 
Sy2)22(7.1)
 

There can be no average electric or magnetic field, since the
 

right hand side of (7.1) is even in y. The dispersion relation
 

correspondi-ng to (7.1) is
 

1 _ V' I K(K'2/2K2 + - 1 -Y2) 

K 217IT* 0 1- Y2)(1 y 2 ).2] 

2ctv 12F(f

(-) 2E(K)-K (7.2)2K-% -.L=y 

where K(2 - KI'2 q K'2 , and F(K) and E(K) are com­

1+q' + 

plete elliptic integrals of the first and second kind.
 

While mathematically complete, (7.2) is physically incomplete,
 

because a involves n. and not the averaged laboratory 'density
 

(N). To get (N) we compute the moment (y/t), since
 

1 + (--0 2 -I)K' 2 F 
_1_(7.3
(N) = no60(-) = n0AoY___ 


A n * 211-K' 2 F 

So that our final form of the dispersion relation is
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2 2E -K1 2 F+( YO2-K1)K2F 

(S 2K = 1 (7.4) 
Y*wpI 

In addition, we compute the flux of each species
 

(UO0 1)K' 2 F 
=Jx cnoA (UA = Nc 1+0 2E-K (7.5) 

Exactly as for electrostatic plasma oscillations, the choice
 

2 = 2
 
U0 = Y is a special one, for then Ay* =YO and (y/4> =i1p 


independent of wave amplitude q. Similarly, Jx = (Nc/a) inde­

pendent of q. But with (7.3)- (7.5) we can study other choices
 

of UO and yo rigorously.
 

First, we touch briefly upon the small amplitude limit 

K20, K'2 - 1. Here we have (y/A) = yo/ and (U/A> = (Uo/o, 

as expected. The dispersion relation is 

2 =2/ 2
 
Y* 2 u pO (7.6) 

which is invariant to choice of plasma streaming velocity, or,
 

equivalently, frame of reference. In the small amplitude limit,
 

the wave has the form of a sine function.
 

In the large amplitude limit, K2 - 1, K'2 -O, we find, using
 

standard expansions for F and E and keeping the first two sig­

nificant terms
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1 2 2 '2 177 

2"00 .K
 4
 
= -4] (7.8) 

(N) =no~o{1 + o K, 

=x (Nf +( 0 i£in}(7.9) 

In the limit K'2 -.0 (7.7) corresponds exactly to the dispersion
 

relation obtained by Kennel et al. (1973). This wave is not
 

a sine wave but a "sawtooth"; dEy/d is virtually constant between
 

= 0 and rj = n and then abruptly changes sign. In addition, 

we see from (7.8)- (7.9) that for sufficiently'large amplitude, 

small K'2 , the choice of initial conditions (A,yoU 0) simply 

dpes not matter. When its amplitude is sufficiently large, 

the wave determines the mean properties of the plasma, and not 

vice versa. The most significant conclusion is that the wave 

imposes upon the plasma a flux of energetic particles (NcOI).
 

It is straightforward but complicated to compute the par­

ticle energy flux, which involves (--). We shall not write
 

the results here, but simply state that as Kennel et al. (1973)
 

noticed, the electromagnetic and particle energy fluxes are
 

equipartitioned in the limit q.>>1.
 

The energy flux F equals the particle energy flux Fp plus 

the Poynting flux Fem, and both equal cEYo/12n5, so that F = cE o/6TB 

We may then rewrite the q >>1 dispersion relation in terms of 
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the particle number flux J and the total energy flux F, a form
 

useful to pulsar physics
 

2 - J-=3 (7.10)I="1 F_7± JMc2 

It is evident that (7.10) is independent of the value of the
 

particle mass, consistent with our assumption of a charged pho­

ton gas in the q <<l limit.
 

All the results of this chapter apply equally well to the
 

relativistic nonlinear ordinary mode propagating perpendicular
 

to the magnetic field, with Ez and (By) non.zero.
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8. 	 Transverse Waves with Non-Zero Average Electric and Magnetic
 

Fields
 

Here we pass immediately to the q-O large amplitude limit
 

of the full set of nonlinear equations (5.11)- (5.14). Our
 

first task is to classify the zeros of the denominator and
 

numerator of (5.11). The zeros of the denominatorcorrespond
 

to points wheie A = 0 and therefore where the proper density
 

would be infinite. Of the four zeros of the numerator, two
 

must be chosen to specify the maximum and minimum electric field
 

so that the singularity at A = 0 is avoided. Having chosen
 

a pair of zeroes of the numerator, we then integrate (5.11)
 

approximately to produce a dispersion relation. Then we com­

pute mean values of the plasma parameters of interest and re­

express our results in terms of them.
 

A= 0 	at the points given by (8.1) below
 

1+Y 3 + 1 32 

218(1yi)+q18 (8.1) 

Since 	q>O, (8.1) indicates that one zero of A occurs for y>1
 

and the other for y<y 3.
 

While (8.1) is valid for arbitrary values of q, we solve
 

for the four zeros of the numerator only in the limit q-O,
 

keeping corrections to order q; the four zeros are given by
 

(8.2ad) below
 

y= 1 	 (8.2a)
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y = 1 + -qQ/(-y)(1 - Y2) (8.2b) 

y = y1 +q(I-Yl +Q)/(1-yl)(y 1 - Y2 (8 .2c) 

y = y 2 - q(- y 2 +Q)/(1 - Y2 (y 2) (8.2d) 

where Q is defined following (5.11).
 

Of the four roots (8.2ad) we must choose two which lie
 

between the two roots of A = 0 given by (8.1). It is clear,
 

from equations (5.15) and (5.16), that yl > Y3 if B/Ey 0 >0 and
 

>Y3 if 1/Ey0 >O. Henceforth we will only consider the case
 

Yl > y , since the case Y2 >y 3 can be treated by exact analogy.
 

A consistent choice is to take the smaller of (8.Zab) and the
 

larger of (8.2cd), which when IVEy0 > 0 is (8.2c), so that the
 

electric field oscillates between the approximate limits y, < y < 1.
 

If y1 = - 1 we recover the case treated in Chapter 7. All other
 

values of yl correspond to non-zero mean fields. If yl < 0 the
 

electric field oscillates between a positive maximum and a nega­

tive minimum; if y1 = 0, the electric field oscillates between
 

a positive maximum and zero minimum and the mean electric field
 

is positive. As y1 - 1, the amplitude of the electric field
 

oscillation approaches zero, whereas the mean electric field
 

approaches Ey0. yl -I corresponds to small amplitude waves.
 

When y1 > 1, no oscillations are possible, since (dy/d) 2 <0
 

for I<y<y
 

Assuming W0 = 0, it is easy to show for superluminous waves
 

that the condition yl 1 also requires IEYO/BzoI > 1, whereas
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Q =0 requires IEyo/BzoI >1 when W0 = 0. Since we may then 

assume Q AO, even though when q <<I the phase integral may very
 

nearly be singular near y = 1, we are certain that it is never
 

truly singular. Only periodic nonlinear waves are possible.
 

In the limit q-O, therefore, we make no significant error
 

in approximating (5.11) by
 

2 OZ2y)~ y)(-
CL 2 2)(yy) 2 (8.3) 

and the dispersion relation by
 

(y-- I~ Y- d 1(*VOr [ 1 i ly y =y (8.4) 

Equations (8.3) and (8.4) have solutions which are independent
 

of the rest mass
 

1= T[( y _ -3 (y1I- Y3)2]/[( -3 y) 2 _ (y1 - Y3)2}(8.5) 

(avolY*n)j(i- y3 )2 - (y, - y (8.6)-2 


The formal solution (8.5) - (8.6) indicates that both oscillatory
 

and mean properties of the plasma are determined solely by the
 

choice of minimum and maximum electric field amplitudes, together
 

with the magnetic field in the space-independent frame and the
 

plasma properties (no u0, yo, W ) at y = 1. However, it is
 

more illuminating physically to describe the plasma and its
 

wave in terms of the mean laboratory frame density, electric
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and magnetic field, and velocity.
 

Let us compute first the mean laboratory frame plasma den­

sity (N)
 

(N) = noAoYI 1 +-IG(r)} (8.7) 

where we have used the definitions (5.12)- (5.14), defined the
 

ratio of roots r
 

Ijy EyoU* z o 
r =Ylfl3 - Z - (8.8) 

and the function G(r) which emerges from the integration of y/A
 

sinh-1 r2 - 1 

G(r) = 2-. (8.9) 

We note that the condition y1 s ensures that r 1. When y1 = -1,
 

G(r)-.0, and (8.7) reduces to the result (7.9) in the limit
 

K 2 . 0.
 

We now compute the average laboratory frame electric and mag­

magnetic field components, again using the definitions (5.11)­

(5.14):
 

Ey> = UB z +y,1G(r) (8.10) 

(B ) = y*'z +U*3G(r) (8.11) 

Equations (8.10) and (8.11) lead to an immediate interpretation
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of the function G. If we choose
 

G = (E ) (R> (8.12) 
y
 

Equations (8.10) and (8.11) reduce to the Lorentz transformation
 

of the mean electric and magnetic fields between the labora­

tory and space-independent frames. We also note that if we
 

choose S = 0 in the space-independent frame, (B) = 0 in the
 

laboratory frame, as it should be, since for 1-.0, r"*1 and
 

G-0. Similarly (Ey) = 0 when V = 0.
 

Finally it is illuminating to compute the mean laboratory
 

frame flux vector J, which involves (Yf), using (8.7)--(8.12)
 

J = N) ( -ex +VE)/( I +VEx/c) (8.13) 

where
 

VE = ( (8.14) 

is the mean ExB plasma drift measured in the space-independent
 

frame. Equation (8.13) is a generalization of our previous
 

results, where there were no mean fields. A superstrong wave
 

imposes upon the plasma a mean drift which is the relativistic
 

addition of the characteristic velocity c/ex and the mean ExB
 

drift in the space-independent frame.
 

Using (5.15)- (5.16) and (8.7)- (8.14), we rewrite par­

tially in terms of mean quantities
 

http:8.7)--(8.12
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2
-1 r _ TTW (8.15)1 +j2r sinh'lr - 11 = y 2-- * 
L VO -00 

where
 

-=e,1132 +S2 and ?i e% Mcw.
 
Mcy-x z z 

when B-0, the left hand side of (8.15) reduces to unity and
 

(8.15) therefore reduces to (7.8) in the limit K1-2 O .
 

In general, (8.15) is a complicated transcendental dis­

persion relation for l, especially since ? , ?[z and r contain 

p. One simple result can be retrieved from (8.15) however;
 

the cutoff frequency at which $ --. Holding all other quantities
 

finite while letting B approach infinity leads to
 

W2 
 2/
 

2 = 1 "c 2o (8.16)
W VO 

'-..e( 2 Bz 2)1
 
where mc - McB ) is the cyclotron frequency based upon
 

the average laboratory frame magnetic field. In addition, .(Ey) -0
 

as 0 -.. A strong magnetic field lowers the cutoff density
 

for a wave of given laboratory frame frequency w.
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9. Summary and Discussion
 

When the wave energy density greatly exceeds the rest mass
 

energy density, electrons and ions behave alike, since their
 

inertia is determined not by their rest masses, but by the kinetic
 

energy they acquire from the wave itself. In other words, if
 

we can neglect the rest mass energy relative to the kinetic,
 

it seems reasonable also to neglect differences in rest mass
 

energy between species. In the two cases where we can easily
 

calculate with different ion and electron masses, namely electro­

static plasma oscillations and circularly polarized electro­

magnetic waves, the dispersion relation does become independent
 

of rest mass in the limit of large amplitudes. This suggests
 

than an "electron-positron" plasma may be a convenient model
 

to describe super-relativistic plasma waves.
 

In an electron-positron plasma, the classic problem posed
 

by Akhiezer and Polovin (1956) has a simple complete solution
 

in terms of elliptic functions. Beyond assuming M i = Me, no
 

other approximations need be made. In this case, the simplifi­

cation stems from the elimination of the electrostatic elec­

tric field component parallel to the direction of wave propa­

gation. The existence of a simple solution ought to facilitate
 

other investigations, such as that of the stability of super­

relativistic waves, or the inclusion of radiation reaction in
 

the equations of motion.
 

When non-zero average electric and magnetic fields are
 

added to the Akhiezer-Polovin (1956) problem, the electron-positron
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model enables us to show that the super-relativistic extraordinary
 

mode satisfies a second-order ordinary differential equation
 

with a first integral in potential form, a fact which would
 

only have emerged after a complex limiting process if we had
 

started with unequal ion and electron masses and a multidimensional
 

potential.
 

From the various investigations reported in this paper
 

we have been able to abstract several apparently general con­

clusions. First, it seems that only 0 >1, superluminous, waves
 

can attain arbitrarily large amplitudes, at least within the
 

present cold two-fluid theory. Subluminous waves, with 0 <1,
 

can encounter a density singularity at finite amplitude. An
 

example of such a case--an Alfvenic soliton propagating per­

pendicular to the magnetic field--was discussed in Chapter 6.
 

Secondly, just as a transformation to the time-independent frame
 

U = yp is useful in treating subluminous waves, the transformation
 

to the space-independent frame U = y/ is useful for superluminous
 

waves, as Clemmow (1974) has recently emphasized. Indeed the
 

averaged electric and magnetic fields naturally expressed them­

selves in this frame in our treatment of the super-relativistic
 

extraordinary mode.
 

Finally, when the wave amplitude is truly large, ql<<I,
 

the wave determines the average properties of the plasma, and
 

not vice versa. This conclusion is most forcefully expressed
 

by our computations of the laboratory frame particle fluxes
 

associated with linearly polarized waves. There, we found that
 

the particle flux is uniquely determined by the wave in the
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large amplitude limit. In general the flux is the relativistic
 

addition of the characteristic flux Nc/B associated with the
 

space-independent frame and the flux associated with the aver­

age ExB drift measured in that frame.
 

As far as pulsar magnetospheres and cosmic ray accelera­

tion are concerned, we have reached the following speculative
 

conclusions. First, only superluminous plasma waves are likely
 

to have the large amplitudes suggested in the original pulsar
 

theories. Second, associated with each superluminous linearly
 

polarized mode is a characteristic cosmic ray number and energy
 

flux. Third, our results do not vitiate the conclusion that, 

due to the 0 - cutoff, the wave solution is restricted to rela­

tively low plasma densities, or equivalently to a small flux
 

of high energy cosmic rays (Kennel et al., 1973; Asseo et al.,
 

1975). Thus the only way a pulsar can deliver a larger number
 

flux to its nebula is through a radial outflow "wind" solution.
 

Finally, since the addition of an average magnetic field lowers
 

the cutoff density, it may not be terribly realistic to think
 

of a mixed "wind-wave" solution, at least involving the extra­

ordinary mode.
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