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ON THE COVER- The area of the heavens around the Orion Constellation,
shown in the cover photograph made through the 120-inch telescope of the Lick 
observatory, is also the region of observations with an rifrared telescope de­
veloped by University of Minnesota astro-physicists. The nfra rd sensory equip­
ment reveals stellar bodies that could not be studied by convent,6nal telescopes,
and it is expected to provide data on the birth of stars. 
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SPACE SCIENCE CENTER
 

THIRD YEAR PROGRESS REPORT
 

July 1975
 

INTRODUCTION
 

This report at the end of the third year of the NASA sponsored remote 

sensing program at the University of Minnesota is organized into separate 

individual reports by the individual researchers. During the second year 

an attempt was made to concentrate efforts on those projects which appeared 

to be achieving results having practical implications and this direction 

has been continued during the third year. In accordance with this objective, 

two programs were phased out during the third year. In the one instance, 

Dr. fower's flood prediction which included as a factor ERTS or LANDSAT 

observations of snow cover, it was felt that while the results permitted 

some improvement in the flood prediction, the benefits were not sufficient 

to warrant continuation of the effort. Dr. Mace's studies on the evaluation 

of water quality by remote sensing techniques have been brought to a 

conclusion. This study produced results on the optimum film-filter combina­

tions for aerial photographic surveys of the subject lake - Minnetonka. 

Any further work along these lines should be carried on under the auspices 

of the State of Minnesota. 

A new group headed by Dr. Matt Walton of the Minnesota Geological
 

Survey, which is an operational unit of the University of Minnesota, received
 

support during this year and has obtained results which the Survey feels
 

will bring a new dimension to its geological mapping of the State of Minnesota.
 

They have been sufficiently encouraged by the results obtained during the
 

past year to feel the desirability of adding an individual trained in the
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use of LANDSAT data to the staff of the Survey. Of particular interest in 

this effort has been the integration of earlier ground truth geology of
 

segments of the Duluth Gabbro into an integrated whole. These observations
 

have important implications for the mineral development and related environ­

mental problems in the Northeast Region of Minnesota. The demonstrated
 

usefulness of LANDSAT data in the geological mapping of this area suggests
 

that better maps can be produced, at much lower cost than has previously
 

been possible. The results have enabled them to pinpoint areas where ground
 

party surveys should be sent in to verify information suggested by the
 

LANDSAT Imagery. A second part of the effort of Dr. Walton's group explored
 

the utility of LANDSAT Imagery in mapping the complex glacial drift over­

burden which is so significant in the surficial geology characteristic of
 

the State of Minnesota. To test this hypothesis, LANDSAT Imagery of the
 

Twin Cities metropolitan area was investigated to compare results obtained
 

with this technique with the rather extensive ground truth data available
 

in an area which has been more completely studied than most of the other
 

parts of the State. The results of this metropolitan study suggest that
 

LANDSAT techniques can be used as a reconnaissance tool for a statewide
 

project.
 

The Lake Superior study program conducted by Professor Sydor has
 

been brought to a stage where the results have found a useful application
 

by the U. S. Army Corps of Engineers in determining on-lake dumping sites
 

for dredgings of Duluth Harbor which would minimize the effects on the water
 

intake of the cities of Duluth, Cloquet and Superior. His work has clarified
 

the effects of erosion of the Wisconsin red clay banks on the turbidity
 

of the lake under various wind conditions. Because the red clay arises from
 

a distributed source, the resulting turbidity is different from that which
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results from turbidity produced by point sources such as the outlets of
 

the Lake Superior Harbor. The combination of these studies led to the
 

recommendations to the U. S. Army Corps of Engineers for more suitable
 

locations for on-lake dumping sites than those used previously. Included
 

with Dr. Sydor's report is the correspondence with the U. S. Army Corps
 

of Engineers relative to the identification of newer dumping sites and the
 

decision to abandon the previous dumping sites which had deleterious
 

effects on the water quality at the intakes of the three cities.
 

Drs. Dwight Brown and Richard Skaggs have incorporated in their
 

report decisions on land use made by the Rice Creek Board of Watershed
 

Managers based on results previously obtained about the Rice Creek water­

shed derived from NASA high altitude aerial photography.
 

As a second effort, Brown and Skaggs have carried on a LAINDSAT
 

based surface water inventory aimed at investigating seasonal changes in
 

visible open water. In order to test the utility of these techniques,
 

they studied the St. Paul-Minneapolis metropolitan area lakes because of
 

the extensive ground truth data available. Their work is of particular
 

interest to the Minnesota Department of Natural Resources whose personnel
 

must deal with permits and enforcement with respect to State regulations
 

about the management of land surrounding lakes and the possible drainage
 

of shallow lakes. These data can also be useful to the Department of
 

Natural Resources in their wildlife management responsibility. The surface
 

water inventory is illustrated by the maps that appear in the appendix.
 

It appears that LANDSAT mapping of this type can provide very significant 

economies as compared to earlier techniques employed by the Minnesota Depart­

ment of Natural Resources. This technique has been accepted and will be 

supported by the State Planning Agency. Drs. Brown and Skaggs have assisted 
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in the transfer of the capability to that Agency which is working in
 

cooperation with the State Regional Development Commissions on its appli­

cation to their planning efforts. During the past year they have also
 

directed a new effort toward the development of techniques for a recon­

naissance survey of Minnesota lake water quality from LAINDSAT data. The
 

objective is to determine whether these techniques will make it possible
 

to identify easily and cheaply those lakes whose water quality has been
 

degraded where remedial action or conservation measures are especially
 

needed. Such information is of interest to the Minnesota Pollution Control
 

Agency. The multi-spectral reflectance data collected by LANDSAT systems
 

suggest that the techniques have promise as a quick, low cost, reconnaissance:
 

tool for investigating lake water quality in Minnesota.
 

During this year Dr. Rust has completed his studies aimed at the
 

identification and delineation of saline soil areas in the Northern Red
 

River Valley area of Minnesota. Earlier studies had suggested that the
 

clearest delineation of these saline soil areas occurred if infrared
 

imagery was obtained at approximately "peak of green" condition for the
 

small grains. The three years of photography has provided imagery of a
 

growing crop on nearly all of the areas studied. This work has resulted
 

in the capability to delineate on the Soil Association map of Kittson
 

County the saline areas. That information will be included as a part
 

of the County soil report of the National Cooperative Soil Survey scheduled
 

for publication in 1977. Such a map can be used to guide the planting
 

decisions of the farmers in the affected areas. It also could be used
 

in the assessment of the value of farm lands in the area.
 

Dr. Rust also has included a preliminary report on the application
 

of color infrared imagery to on-farm surveys in Clay County Minnesota. It
 

is planned that the results will be used to provide guidance to field
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scientists in providing accurate and detailed soil maps which will form
 

the basis for land use and management recommendations by the County
 

technical people to farm operators.
 

Support was also given to projects under the direction of Dr. David W.
 

French and Dr. Merle P. Meyer. Dr. French's project was concerned with
 

the application of remote sensing techniques to the detection of Forest
 

and Urban Tree Disease in order that forest management practices and
 

remedial steps can be planned and implemented to minimize the spread
 

of the diseases. Dr. Meyer's project is more directly aimed at the use
 

of remote sensing techniques for forest land management.
 

A number of circumstances delayed much of the field work planned by
 

these two investigators for the operational season of 1974 with the result
 

that much of it had to be carried over into the operational season of
 

1975 and combined into the work plan for the latter season. The conditions
 

of the 1975 operational season have been unusually favorable and such
 

that field operations have been possible for a much longer period than
 

normal. As a consequence their analysis of their results was postponed
 

and this has delayed their report. Their reports will be submitted as a
 

supplement to those included herein.
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REMOTE SENSING APPLICATIONS TO HYDROLOGY IN MINNESOTA
 

Investigators: Dr. Dwight Brown & Dr. Richard Skaggs
 
Department of Geography
 
University of Minnesota, Minneapolis
 

INTRODUCTION
 

This research effort has been directed toward developing applications
 

of NASA remote sensing products to information needs in Minnesota related
 

to surface water resources. In our last report we described completed
 

projects for the Rice Creek Board of Watershed Managers and the detection
 

of surface water and surface water changes described by Prestin (1974).
 

As a follow-up on Prestin's work, techniques were established to produce
 

low-cost U.S.G.S. quadrangle overlays of LANDSAT verified surface water.
 

In the past year, 45 quadrangles of the St. Paul - Minneapolis Metropolitan
 

Area, designated a high priority study area by the Minnesota Department of
 

Natural Resources, were completed.
 

Evaluation of this project and the initiation of studies of the
 

use of LANDSAT I imagery as a tool for reconnaissance analysis of lake
 

quality comprised the rest of the effort during the past year. In
 

addition, we include a brief review of the decisions made by the Rice Creek
 

Board of Watershed Managers in which data derived from NASA high altitude
 

aerial photography contributed to the deciSion making process.
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RICE CREEK WATERSHED STUDY RESULTS
 

A wide variety of land and water resource decisions have been made
 

by the Rice Creek Board of Watershed Managers using the Rice Creek
 

Watershed land use map based on NASA high altitude photography. Of the
 

15 to 20 actions taken to date, two were selected for illustration here
 

as representative of the types of decisions being made on an ongoing basis.
 

The first example is the decision concerning the development of
 

the low lying southeastern shore of Pike Lake. Figure 1 shows the
 

area involved in the decision. A computer model, with runoff coefficients
 

derived from the Rice Creek Watershed Land Use Map, was used to determine
 

the height of the 100 year flood hazard zone. The flood zone was
 

determined to be 6 feet above the normal lake level and no basement floors
 

may be constructed below this level. These limitations on this tract
 

enabled the developer to plot 20 single family unit lots. Ten lots with
 

lake frontage were necessarily long because of the flood zone restrictions
 

and the need for a construction site above the flood zone. The flood zone
 

determination enabled land development under the final plat shown in Figure 2.
 

The preconstruction value of the land is now placed at $290,000.
 

The second example is a decision by the Board of Watershed Managers
 

to require incorporation of several small wetlands in Arden Hills, MN
 

into the drainage plans as pollutant and nutrient sinks rather than being
 

infilled. This decision was based on the existing land use in the contributing
 

area; as mapped using NASA high altitude aerial photography, and the
 

additional impact that intensive cluster home development would have on the
 

nutrient and pollutant load of the Watershed. Figure 3 shows the location
 

of these preserved wetlands.
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FIGURE 1: The arrow indicates a platted residential area of the Rice Creek
 
Water Shed on Pike Lake. The solid black areas are lots for full development.
 
The diagonal lined area represents lots that encroach on the flood zone
 
designated as six (6)ft. above the 866 ft. lake elevation. The line
 
represents the approximate landward limit of the flood zone.
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FIGURE 2: Detailed final plat of area shown in Figure 1. Note the
 
length of lots necessary to avoid structures in the flood hazard zone.
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cluster home development. 
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RECONNAISSANCE ANALYSIS OF LAKE WATER QUALITY IN THE
 

ST. PAUL - MINNEAPOLIS METROPOLITAN AREA
 

WITH LANDSAT IMAGES
 

Introduction
 

This project is directed toward developing the techniques
 

for a reconnaissance survey of Minnesota lake water quality with
 

LANDSAT data. The St. Paul - Minneapolis Metropolitan Area lakes
 

provide an excellent study area to develop this capability because
 

convenient, low cost, and has a very high density of available
 

ground truth provided by cooperating agencies. The ultimate goal
 

is to provide guidance so that more costly and detailed surface
 

investigations may be directed toward lakes where remedial action
 

or conservation measures are especially needed. Personnel from the
 

Minnesota Pollution Control Agency have expressed interest in this type
 

of data.
 

Indeveloping the technology for use in Minnesota, we plan to
 

use a variety of available equipment and results of similar studies
 

done elsewhere, particularly work at the Environmental Protection Agency
 

by Boland.
 

Preliminary Analysis
 

The first preliminary analysis was carried out using a VP-8 image
 

analyzer to read film densities. The first test employed 9" X 9" black
 

and white LANDSAT MSS bands 4, 5, and 7 transparencies. The density
 

readings from these three bands for June 28, 1974, were used as
 

independent variables along with angle of reflectance, distance from the
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image center, and lake area. These independent variables were used
 

in a step-wise multiple regression analysis to develop models to
 

examine relationships with several dependent variables of water
 

quality. The dependent variables used were total phosphorous, chlorophyl,
 

water quality indexl
 water transparency (secchi disc readings), and a 


used by Eugene Hickock and Associates, the engineering firm that produced
 

the lake quality data used.
 

Based on a sample of 42 lakes or bays for a single date, only two
 

of the dependent variables, secchi disc readings and water quality
 

index, produced strongly encouraging results. Summaries of these
 

results are shown in Table 1. It should be pointed out that although
 

total phosphorous and chlorophyl contents were not strongly related
 

to the independent variables at this time, other dates, possibly later
 

in the summer, may produce better results. The regression equations
 

summarized in Table 1 represent a small number of lakes in a limited
 

area at one time period. However, the quality of results is consistent
 

with those produced by Boland (1974) for a national study using digital
 

tape data and is sufficient to encourage expansion of the study to
 

a larger area and multiple time periods. This will be done using data
 

from the Space Science Center densitometer. Some preliminary data collection
 

has been attempted with this equipment but further modifications in the
 

densitometer are likely to be necessary.
 

During the next year multiple time periods of LANDSAT.data will be
 

analyzed with the densitometer. Computer compatible tapes will also be
 

used for a more selective number of time periods to evaluate the best
 

and lowest cost method of obtaining satisfactory results.
 

I The average of parameters obtained from graphs for secchi disc, orth­
phospate, ammonia, and pH values resulting from ground truth data
 
available for these lakes.
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TABLE 1
 

SUMMAAY OF LAKE WATER QUALITY MULTIPLE REGRESSION ANALYSES
 

Step Variable entered B coefficient Std. error B Multiple r r square 

(constant) 56.4001 6.3665 

k a) 1. Band 5 -. 7451 .0966 .62529 .39098 

M 2. Distance from -.6208 .1140 .80277 .64445 
d rCenter of Image 

3. Band 7 8.1200 .0231 .88586 .78475 

(constant) -1462.3090 670.0596 

1ii1 Band 5 -3.1681 .2204 .67433 .45472 

cd 

- 2. Distance from -3.0500 .2600 .91656 .84007 

'-, Center of Image 

c 3. Band 7 .1772 .0586 .95693 .91572 

4. Afigle of 34.3706 13.0933- .96905 .93905 

Reflectance 



INVENTORY AND SEASONAL CHANGE OF OPEN WATER
 

INTHE ST. PAUL - MINNEAPOLIS METROPOLITAN AREA
 

Introduction
 

The encouraging results obtained by Prestin (1974) in his effort
 

to map small seasonal water features inwest central Minnesota led to
 

the establishment of a LANDSAT - 1 based surface water inventory project.
 

MDNR expressed considerable interest in the project, supplied data
 

format requirements, and designated the St. Paul - Minneapolis Metropolitan
 

Area as a first priority test area.
 

MDNR personnel dealing with permits and enforcement indicated that
 

the updated water inventory maps should be 1:24,000 or 1:62,500 scale
 

topographic map overlays and should show the extent of LANDSAT verified
 

seasonal changes in visible open water. These transparent quad overlays,
 

produced on stable matte acetate, could be used by field personnel and
 

also serve as a locationally accurate data base for a forthcoming
 

statewide water information system.
 

Mapping Procedures
 

Production of LANDSAT verified quadrangle overlays requires three
 

data sources: goodquality topographic base maps and good
 

quality LANDSAT - 1 MSS system corrected color transparencies for both
 

the maximum and minimum extent of visible water. The maximum and minimum
 

extent of water was determined from imagery dates between August, 1972,
 

and June, 1974. The selected images were used to produce 35 mm ektachrome
 

quad-centered slides from back-lighted LANDSAT - 1 transparencies. A
 

single lens reflex camera with a through-the-lens light meter and fitted
 

9
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with a 50 mm lens and extension tubes was used to copy areas 3 to 4 times
 

the quadrangle area in order to reduce optical distortion. The topographic
 

maps were mounted on the wall and the slides were projected with a
 

remote focus, zoom lens slide projector. Two person teams greatly
 

speeded up the slide registration and mapping.
 

The minimum calculated discrepancies between the map and projected
 

image were about .1 inch over a 1:24,000 scale map. With the use
 

of maps other than U.S.G.S. topographic quadrangles, the geometric
 

discrepancies were much greater.
 

After registering the slide onthe wall-mounted topographic map, a
 

stable base drafting acetate, with previously traced U.S.G.S water
 

boundaries was registered over the topographic map. To maximize
 

color contrasts the topographic map was then removed to expose the
 

white wall mounting board.
 

The first image mapped was the maximum water extent followed by the
 

minimum water extent. When the mapping was complete, the acetate was
 

taken to a drafting table and again registered-on the topographic
 

map. The extent and limits of'water were then interpreted and corrected
 

on the topographic map, using LANDSAT verified location of water. This
 

procedure enabled the exercise of judgement and allowed the mapping of
 

water by inference in narrows that are not detectable on LANDSAT images.
 

This procedure also minimized the problem of interpretation of plowed
 

fields or cloud shadows as water, because lakes are restricted to very
 

specific topographic locations. These locations have well-defined
 

geometries on the topographic maps that would have a very low order of
 

possibility of being confused with plowed fields or cloud shadows.
 



In this pilot project the final copies of the 45 quadrangles for
 

the Metropolitan Area were drafted by hand; although for larger projects
 

itmight be desirable to digitize the water outlines and produce the
 

final copy with a continuous line plotter. This procedure has
 

distinct advantages if the data are to be digitized for a water
 

information system. The computer driven plotter offers the flexibility
 

of producing maps at a variety of scales and for quadrangles, political
 

units or even complete lakes.
 

The locations and reduced versions of the topographic quad overlays
 

are shown in the Appendix.
 

Evaluation
 

The products are evaluated in three ways: cost effectiveness,
 

comparative accuracy, and degree to which they meet data needs for
 

surface water inventory of MDNR. We produced the first two evaluations,
 

and the third is provided by MDNR.
 

Table 2 shows the cost of mapping the 45 Metropolitan Area quadrangles
 

and, assuming these are representative for the entire state, projects
 

them for estimated costs to completely map the state. Labor requirements
 

for the Metropolitan Area quads varied from 5.25 to 22.25 man hours
 

depending on the number and complexity of lakes and on the scale. The
 

1:62,500 scale quads took nearly four times as long to complete because
 

they covered four times the area. Incalculating the costs for the state,
 

itcould be assumed that there will be a.slight reduction inthe per unit
 

costs as the area increases. Equipment costs would be under $2,000 for
 

an operation large enough to complete the job inone calendar year.
 

This is particularly significant in view of the more than a decade
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TABLE 2 

MAPPING LAKES FROM NASA/ERTS IMAGERY 

Cost Projections: 
Labor 
Costs Total 

7.5' quads 15' quads Total at Supply Total 

Area (1:24,000) (1:62,500) Man Hours $7Ihr Costs Costs 

1) Metropolitan 33 12 585 $4095 $1000 $5095 

Mpls-St. Paul 

2) State of 1105 134 10625 $74375 $21000 $95375 

Minnesota 
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spent to complete MDNR's Bulletin 25, "An Inventory of Minnesota Lakes."
 

The cost of producing Bulletin 25 was probably in excess of $400,000.
 

These costs should be kept in mind when comparing the LANDSAT-based
 

quad inventories of lakes with Bulletin 25.
 

The ability of interpreters to discriminate surface water features
 

from LANDSAT images is well outlined by Prestin (1974). Table 3
 

summarizes Prestin's results, comparing different CANDSAT (ERTS)
 

products with Bulletin 25 and 1968 high altitude panchronmatic aerial
 

photography. Because the bases of comparison are not compatible in
 

time, they provide only a crude evaluation; however, it is very
 

instructive to look at the total comparative results for various ERTS
 

products.- Single date analysis with color imagery detected 58 water
 

features as opposed to only 34 in Bulletin 25, and an ERTS inventory
 

using seven- periods of time from August 16, 1972, through July 5, 1973
 

detected 177 different water bodies. It should also be noted that Bulletin
 

25 is really an inventory of lake basins which may be partially or
 

entirely dry. It therefore might be considered as a seasonal maximum
 

of water area for basins of ten acres or more.
 

To evaluate the comparative accuracy of quad scale lake mapping 

for the Metropolitan Area, the mapped lakes were examined on an 

individual basis to determine which lakes were not included in Bulletin 

25 and which lakes in Bulletin 25 were dry or had a substantially reduced 

water area. The results are sunmarized in Table 4. It is readily apparent 

that the water status of basins in Bulletin 25 is, at best, poorly known. 

In addition, there is a 13% increase in the number of basins as defined by 

water features for which there are no listed basins. - Many of these 

were either accidentally omitted or considered not to meet the criteria 



TABLE 3 -- NUMBER AND ACREAGE OF HYDROGBAPHIC FEATURES 

OTREY TOWNSHIP 

Size Classes (acres) 

Source 0-4.9 5.0-9.9 10.0-14.9 15.0-19.9 20.0-74.9 75.0-199.9 200.0 Total 

Bulletin #25 Basins Number - - 3 6 17 5 3 34 

Acres - - 38.0 102.0 669.0 472.0 1250.0 2531.0 

'68 High Altitude- Number 7 7 9 5 12 1 2 43 
Water Acres 23.2 52.2 117.6 83,6 634.9 180.8 888.4 1980.7 

ERTS Inventory Water Number 33 66 33 14 28 1 2 177 
Acres 112.9 443.7 405.3 245.2 693.9 166.4 764.3 2831.7 

ERTS 16 Aug. v72 
Color Water 

Number 
Acres 

1 
4.5 

29 
2194 

7 
86.3 

4 
71.0 

14 
534.0 

1 
165.1 

2 
686.7 

58 
1767.0 

ERTS 16 Aug. '72 Number .5 9 8 2 11 1 2 38 

Band 7 - Water Acres 19.7 589 100.0 35.2 383.3 163.2 686.7 1447.0 

IH 
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of a defined basin. On the other hand, some of these are new, man-made
 

basins.
 

The apparent discrepancy between water features mapped with
 

LANDSAT images and Bulletin 25 result from two important factors.
 

First, the production of Bulletin 25 used existing aerial photography
 

which varied in season of coverage from county to county. Second,
 

some of the large-scale stereo photography used is now between
 

21.and 25 years old.
 

Brief evaluation of the degree to which the LANDSAT based quad
 

overlays satisfied data needs was provided by MDNR personnel. In
 

current operations the major benefit of the overlays would be to detect
 

water-filled basins that were dry at the time of aerial photography.
 

If used in this way, it could be used as a means of updating Bulletin
 

25. It was also felt that the greatest value of the overlays might
 

accrue from their use by counties and as a tool in zoning shoreland,
 

- particularly in identifying the amount of setback required for the
 

development of highly fluctuating lake shore. These materials could
 

also be used in shoreline classification in MDNR's Shoreland Management
 

program. Finally, overlays for very old quadrangles provide a good
 

basis for beginning water inventories where existing map information and
 

reality bear no resemblance.
 

On the negative side, the quad overlays fail to show basins (type
 

3 wetlands) that have no open water surface. The fact that lake basin
 

inventory projects are now underway in MDNR is seen as a limitation
 

for the use of LANDSAT materials for this purpose because it would mean
 

a change in the technology in midstream.
 



TABLE 4 -- COMPARISION OF ST. PAUL - MINNEAPOLIS METROPOLITAN AREA MAP 

WITH AN INVENTORY OF MINNESOTA LAKES, BULLETIN 25 

County 

Mapped Lakes 
10 acres not 

in Bulletin 25 

Number of 
Basins in 
Bulletn 25 

Mapped Lakes 10 AcresListed 
in Bulletin 25 as Not Affected 

by Drainage or Dry 
Reduced Empty 

Mapped Lakes 10 Acres Listed in 
Bulletin 25 as Affected by Drainage 

, or Dry 
Total Affected Reduced Empty 

in Size Basins Listed but Wet in Size Basins 

Anoka 15 143 1 6 55 31 7 17 

Carver 30 128 0 1 73 25 5 43 

Dakota 16 83 2 1 8 2 0 6 

Hennepin 32 200 2 12 39 18 3 18 

Ramsey 14 82 4 1 31 6 6 9 

Scott 14 144 0 .6 92 36 3 53 

Washington 5 168 1 6 6 3 1 2 

Metropolitan H 
Area Total 126 948 10 33 304 121 25 148 
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Barriers to the utilization of LANDSAT based materials in ongoing
 

projects appear to be primarily normal resistance to change rather
 

than rejection of materials based on their quality. This appears
 

to be especially true where alternate data sources now exist.
 

SUMMARY
 

Although the three projects included in this report are at
 

different stages of completion, a summary of their findings is offered
 

as a conclusion.
 

1. 	Land use maps of the Rice Creek Watershed have proven useful
 

for a variety of resource allocation decisions, the dollar
 

benefit of which is difficult to assess.
 

2. 	Multispectral reflectance data collected by LANDSAT systems
 

appears to provide some promise as a quick, low-cost reconnaisance
 

level tool for investigating lake water quality in Minnesota.
 

3. 	Quadrangle overlays of surface water, -verified using LANDSAT
 

images, appears to be useful for a variety of purposes by
 

counties and MDNR. However, obstacles to their immediate
 

use in the agency appear to be primarily resistance to change
 

rather than rejection based on the validity of information.
 

Obviously some further work is necessary in the area of water
 

quality applications. We do need a more penetrating review of the
 

quad overlays produced for MDNR than we have been able to elicit to
 

date.
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APPENDIX
 

MAPS OF SEASONAL CHANGES IN OPEN WATER
 

IN THE ST. PAUL -- MINNEAPOLIS
 

METROPOLITAN AREA
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MINNESOTA
 

Images Used 	 ERTS - Color Transparencies ERTS - 1 Flight Line 

1075-16324, October 6, 1972; 

1309-16325 May 28, 1973. 

LOCATION OF STUDY AREA
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TURBIDITY IN EXTREME WESTERN LAKE SUPERIOR 

Investigator: Dr. Michael Sydor
 
Department of Physics
 
University of Minnesota, Duluth
 

The following data was prepared from ERTS images for
 

western Lake Superior for 1972-74. The data was subdivided
 

into categories representing various conditions of lake turbid­

ity depending on the wind history."
 

Examination of the data, Fig. 1, 2, and 3, shows that for
 

easterly winds the turbidity originating along the Wisconsin
 

shore and the resuspension areas is transported northward then
 

out along a N.E. path where it disperses, and often, for large
 

storms, contaminates the Duluth water intake. Contaminants
 

such as dredging fines anywhere along these paths would like­

wise find their way to the intake 'areas in concentrations com­

parable to the relative red clay concentration. The turbidity
 

distribution in Fig. 1 was obtained from correlation of in situ
 

measurements with the ERTS data. The transport paths were ob­

tained from considerations of plume shapes and turbidity con­

centration gradients observed on ERTS images. The resuspension
 

areas were obtained from comparison of turbidities on the lake
 

for various wind conditions and examination of the relative
 

turbidity concentration for easterly storms in comparison to
 

the turbidity for known source areas, Fig. 4.
 

Examination of turbidity for westerly winds following an
 

easterly storm, Fig. 5, indicates how the turbidity on the lake
 

1
 



2 

is flushed out by westerly winds due to the influx of clearer
 

water from the north shore area. This can be seen by super­

position of transparencies for Figs. 5 and 1 (See Figure 5a).
 

westerly winds have a cleaning effect on the lake turbid­

ity in the central area, but produce severe turbidity along the
 

south shore. Fig. 6 shows the turbidity concentrations along
 

the Wisconsin shore. This correlates very well with the rela­

tive erosion data, Fig. 4, based on survey data compiled by
 

Hess. 1 This correlation can be seen by superposition of trans­

parencies for Figs. 6 and 4 (See Figure 6a).
 

The shore erosion constitutes a relatively uniform source
 

of turbidity. It is thus interesting to consider the disper­

sion of the turbidity perpendicular to the shore for variable
 

wind conditionsi Fig. 7.2 Such data gives a measure of the dis­

persion length for fines of a turbidity source comparable to a
 

red clay source, say dredgings from the Superior Entry area.
 

Fig. 8 shows a plot of turbidity with distance from the shore.
 

Dredging fines would normally constitute a point source
 

rather than a line source, thus Fig. 8 would represent an upper
 

1. 	Charles Hess, Study of Shoreline Erosion on the Western Arm
 

of Lake Superior.
 

2. 	Variable winds would result in random dispersion of the
 

fines as against the drift or plume resulting from a steady
 

wind. The resulting dispersion would be the consequence of
 

a concentration gradient away from the shore.
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value for plume dispersion of dredging fines for variable wind
 

considerations (expected dispersion length is nt 2 miles for i/e
 

drop off).
 

The overall transport paths for turbidity, Figs. 2, 9, 10,
 

11, were derived from common features of turbidity plumes ob­

served in ERTS images. Inspection of individual plumes, and in
 

situ measurements3 '4 reveal that a current pattern for any par­

ticular event is rather complex with eddy structure depending on
 

the wind history and the lake shore features. The eddy struc­

ture is important since it is responsible for prolonged periods
 

of turbidity in the extreme western end of the Lake. Aside from
 

effects due to severe storms, the turbidity in the Duluth-


Superior area is generally considerably higher than the average
 

turbidity in western Lake Superior, (3 mg/l suspended solids
 

near Duluth vs. .5 mg/, 5 miles off Rnife River). This results
 

from occurrence of current patterns which tend to keep the rem­

nants of turbidity due to storms and the water from the St. Louis
 

River and Duluth Harbor confined to the extreme western arm of
 

the Lake. This is indicated by the average turbidity distribu­

tion in extreme western Lake Superior shown in Fig. 12. The
 

effect of harbor effluents on the ten mile square of the tip of
 

western Lake Superior is thus quite pronounced, and should be
 

emphasized whenever pollution of the harbor is considered since
 

3. 	M. Sydor, Current Patterns and Turbidity in Extreme Western
 

Lake Superior. DACW 37-74-6-0014.
 

4. 	M. Sydor, Preliminary Evaluation of Red Clay Turbidity
 

Sources for Western Lake Superior. EPA R005175-1.
 



4 

the affected area contains public water intakes, Fig. 13. Con­

centration of pollutants from the harbor area or dredging sites
 

transported thru fines are expected to reach the Duluth water in­

take at roughly 0.2% concentration on the average and roughly
 

2% at the Cloquet intake. The effect of the harbor effluents on
 

people and aquatic life is not known. However, the concern for
 

the effects and extent of pollution in the Duluth-Superior Harbor
 

should be commensurate with the concerns for pollution of Lake
 

Superior itself.
 

With the possibility of resumption of the disposal of dredg­

ings in Lake Superior, we would like to encourage the pursuit
 

by the Corps of studies of effects of dredging on the Lake Supe­

rior environment (inside and outside of the bay areas). We would
 

also suggest that the present deep water disposal sites are un­

suitable in terms of their proximity to water intakes and that
 

alternative sites, at least for experimental purposes, be sought
 

in the area a few miles east of the Superior Entry. The near
 

beach disposal should be accompanied by studies of the effects
 

of dredgings on lake biota, and measurements for the determina­

tion of the extent of the affected areas. Furthermore, a com­

prehensive, long range study of the harbor area including 'the
 

shallower areas away from the shipping channel, would be a sig­

nificant step towards the understanding of the effects of
 

dredging operation, ship traffic, and the effects of pollution
 

abatement on the harbor. Much of the efforts in past studies
 

for these areas were short range, in response to urgent needs
 

for investigation because of impending actions for maintenance
 

or construction. Most of the past data is sparse, insufficient
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to separate the temporal and spatial variations as was exempli­

fied by the recent changes in pollution classification of the
 

harbor. With the possibility of eventual harbor deepening
 

necessitated by economic considerations, and the continual need
 

for dredging and disposal in regular maintenance, a long range
 

study of the harbor would be very fruitful in understanding
 

the environmental problems for decision making purposes per­

taining to maintenance and construction and for the purpose of
 

reclamation of the lower St. Louis River area from its current
 

pitiful condition.
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DEPARTMENT OF THE ARMY
 
ST. PAUL DISTRICT, CORPS OF ENGINEERS
 
1135 U. S, POST OFFICE & CUSTOM HOUSE
 

ST. PAUL. MINNESOTA 55101
 

IN REPLY REFER TO
 

NCSED-ER 6 August 1975
 

Dr. Iichael Sydor 
Professor of Physics 
University of innesota-Duluth
 
Duluth, Minnesota 55812
 

Dear Dr. Sydor:
 

Discussions have taken place during the past month between yourself
 
and representatives of the St. Paul District regarding the
 
Potential .fordesignating a new open-lake disposal site for dredged
 
material from Duluth-Superior harbor. The potential use of such
 
a site would, of course, be applicable only to dredged material which
 
has been classified as suitable for in-lake disposal. Based upon these 
discussions, we are considering tie designation of an area I mile in 
diameter centered at coordinates 46' 42' 55" N, 91° 57' 50" 14 as this 
new disposal site. At the same time, the presently designated open­
wiater disposal sites for the harbor (areas I mile in diameter centereJ 
at 460 46' 30" N, 920 03' 25" Wand 460 44' 25" N, 92* 00' 00" W) 
would be abandoned.
 

Wewould apprefateyour comments on this concept in general and-, based 
upon your knowledge of the water transport system operating in the 
western arm of Lake Superior, an assessment of the effects disposal at
 
this new site could have on the area's water supply intakes. Please 
include a comparison of these effects with those which could be expected
 
from the use of the presently designed disposal sites.
 

Sincerely yours,
 

N. L. GOETZ 
Chief, Construction Operations

Division
 

aW1,
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I UNIVERSITY OF MINNESOTA Department of Physics
 
DULUTH 271 Classroom Laboratory Building
 

- Duluth, Minnesota 55812
 

August 19, 1975 

W. L. Goetz
 

Chief, Construction Operations Division
 

Department of the Army
 

St. Paul District, Corps of Engineers
 

1135 U. S. Post Office & Custom House
 

St. Paul, NN 55101
 

Dear Sir:
 

In reply to your letter of August 6, 1975, please find enclosed
 

a report on transport processes-in-Westera Lake Superior which was
 

determined from ERTS data (NASA contract NGL 24 005 263) and in situ
 

measurements. We have made numerous measurements on currents and 

turBi-dities' im the- propose& disposal site. Also, enclosed is: a-lh4p (A) 

prepared from numerical model on the Lake transports. It corroborates 

the results obtained from the remote sensing data. The former 

dredging disposal sites in the Duluth area would directly affect water
 

quality at all municipal water intakes for easterly wind conditions.
 

The proposed site lies in a more favorable location in comparison to
 

the former sites, because the transport patterns would, for all measured
 

cases, disperse the leechate in the Lake along paths which lie farther
 

away from the Duluth intake.
 

Sincerely,
 

Michael Sydor
 

Professor
 

MS:dh
 

cc: J. Vitale
 
W. Shepherd/
 
R. Berry
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APPLICATIONS OF ERTS IMAGERY
 
TO MAPPINGS SEDIMENTS OF THE
 
TWIN CITIES METROPOLITAN AREA
 

Investigator: 	Mr. J. R. Poppe
 
Minnesota Geological Survey
 
St. Paul, Minnesota
 

The Minnesota Geological Survey initiated a prelimi­

nary study of the applications of E.R.T.S. imagery to geo­

logical investigations in the Twin Cities Metropolitan
 

area. The goal of the project was to compare E.R.T.S.
 

imagery to surficial geologic maps, prepared through tra­

ditional field studies. Lithologic boundaries, bedrock
 

outcrops, bedrock structures and geomorphologic features
 

were examined and compared with E.R.T.S. color-tone
 

changes.
 

E.R.T.S. false-color 9" x 9" transparencies were sup­

plied by the Department of Geography, University of Minne­

sota. These transparencies were converted to 35mm slides
 

and were projected to increase detail. The transparency
 

with the best resolution was produced April 4, 1973, and
 

was selected as the photographic base.
 

Two areas of investigation were identified for use
 

in the Twin Cities Metropolitan area:
 

1. 	an area southeast of the Twin Cities, located
 

chiefly in northern Dakota County, and
 

2. 	the New Brighton 15-minute quadrangle located in
 

portions of Ramsey and Anoka Counties (see Fig. 1).
 

1
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The study procedure included viewing the projected
 

slides and recording all color changes. Bias was elimi­

nated by initially studying E.R.T.S. without referring to
 

the surficial geologic reference maps. The contacts be­

tween different lithologies taken from geologic maps of
 

the Twin Cities Metropolitan area were compared with
 

changes in color tones on E.R.T.S. photos. Finally, the
 

geology of certain areas was field-checked where discrep­

ancies existed between E.R.T.S. color boundaries and map­

ped lithologic contacts. Field work included detailed
 

examination of natural and man-made exposures in roadcuts.
 

The location, color, and type of glacial sediment was
 

noted and samples were collected for later laboratory
 

examination. The color changes in the metropolitan area,
 

noted in the E.R.T.S. imagery, are related to different
 

glacial lithologies, e.g., tills, outwash deposits, river
 

and lake sands, and certain geomorphological features.
 

The visual comparison of geologic maps and E.R.T.S.
 

imagery demonstrated the limitations of this approach to
 

geological investigations. Bedrock outcrops and bedrock
 

structure in the metropolitan area do not appear on E.R.T.S.
 

imagery. However, certain glacial sediments can be identi­

fied and are potentially mappable. In one area, certain
 

geomorphological features were discernable.
 

The Wisconsin Stage surficial deposits of Study Area
 

One (Fig. 2) consist of Superior Lobe red till, Superior
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Lobe red outwash deposits, and Des Moines Lobe buff­

colored till. Four surficial geological reference maps,
 

(Stone, 1965; Gelineau, 1959; Hogberg, 1970; Harms, et al.,
 

1975) were compared with color-tone areas observed on
 

E.R.T.S. imagery. The boundaries of the surficial depos­

its vary in specific localities, from map to map. How­

ever, the principal map used for the study was the re­

gional surficial reconnaissance map prepared by John Stone
 

(1965). For the most part, only minor variations between
 

the boundaries of Stone's mapped lithologies and the
 

E.R.T.S. color tones are apparent, when the map constructed
 

from E.R.T.S. imagery is reduced to the 1:250,000 scale of
 

Stone's map (Fig. 2). There are a few major differences
 

between Stone's map and the map determined by E.R.T.S.
 

imagery. These areas of discrepancy were field-checked
 

and compared with Gelineau's (1959) detailed surficial
 

maps. Gelineau's (1959) map compared favorably with
 

Stone's (1965) map to the south of Grey Cloud Island (Fig.
 

2), Township 115, Range 18 and 19. Dr. H. E. Wright,
 

Department of Geology, University of Minnesota (oral com­

munication), interpreted the geomorphological features of
 

this area as terraces. Field-checking verified the fact
 

that Stone (1965) and Gelineau (1959) were correct in map­

ping the surficial lithology as Superior Lobe outwash. In
 

this area, the map-line determined from E.R.T.S. imagery
 

color changes only depicts the geomorphologic boundary
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between an upper and a lower terrace; it does not coincide
 

with the correct boundary between till and outwash.
 

The second discrepancy between Stone's map and the
 

E.R.T.S. imagery (Fig. 2), Township 28, Range 23; exists
 

in the area of Mendota Heights. However, Gelineau's (1959)
 

map and the E.R.T.S. imagery boundaries compare favorably
 

here. Field checking showed that E.R.T.S. imagery bound­

aries were correct and Stone's interpretation was incor­

rect.
 

A third discrepancy arose in Burnsville (Fig. 2),
 

Township 115, Range 21; where the boundary of Superior
 

Lobe till of E.R.T.S. color-tone imagery extends into the
 

Des Moines Lobe till of Stone's map. R. K. Hogberg (oral
 

communication) notes that in this area, pockets of Superior
 

Lobe till are incorporated with Des Moines Lobe till as
 

indicated onxHogberg'sC(1970) map. These till pockets are
 

responsible for producing the color tones observed on
 

E.R.T.S. imagery. Thus, I extended the boundaries of
 

Superior Lobe red till into the Des Moines Lobe buff-col­

ored till.
 

The E.R.T.S. color-tone imagery boundary, south of
 

Grey Cloud Island, fails to correctly delineate the bound­

aries of lithologic units. For example, the boundary that
 

E.R.T.S. suggests is merely a geomorphic feature. The
 

E.R.T.S. boundary in Mendota Heights is correct; Stone's
 

(1965) map is incorrect. In the area of Burnsville, the
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E.R.T.S. boundary is correct as is shown by the pockets of
 

Superior Lobe red till lying within the boundaries of the
 

Des Moines lobe buff-colored till.
 

A large discrepancy, that can be noted between E.R.T.S.
 

color tone imagery and Stone (1965) is located in Township
 

27, Ranges 23 and 24. This discrepancy involves the loca­

tion of the band of Des Moines Lobe outwash. E.R.T.S.
 

color-tone imagery locates the band in different areas than
 

do other geologic maps (e.g., Gelineau, 1959; Stone, 1965;
 

Harms, et al., 1975). Each of the four maps mentioned
 

above, locates the band in different areas. Moreover, the
 

width of the band varies in each of the maps. The limits
 

of time prevented field-checking of this problem, but the
 

problem is such that a program of extensive field work
 

should be initiated (see Fig. 4).
 

Study- Area 'Two, -in thie -New-brighiton. Quadrangle- (Fig. 

3), consists of lake sands and till deposits. Two geologi­

cal reference maps, the New Brighton 7.5-minute Quadrangle
 

(Stone, 1966), and a corrosion probability map (1974),
 

served as a geological base. Stone's (1966) map was used
 

as the geological base for the corrosion probability map.
 

Extensive geophysical field work in the area showed Stone's
 

(1966) map to be reliable. E.R.T.S. color-tone imagery in
 

area two, showed that only a few areas were in close agree­

ment with Stone's (1966) map. For the most part, the litho­

logic boundaries drawn from E.R.T.S. color tones exhibit
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major deviations from Stone's (1966) map. It is con­

cluded that use of E.R.T.S. imagery in this area has
 

limited usefulness for mapping lithologic units. Color­

tone variations result from the high concentrations of
 

housing developments, factories and highways, all located
 

within the boundaries of this map. By comparison, Study
 

Area One did not exhibit as dense a concentration of build­

ings and highways. The boundary discrepancy noted east
 

and north of Round Lake is due chiefly to color tones pro­

duced by the Twin Cities Army Ammunition Plant and hous­

ing, not to lithologic changes. Similarly, the large
 

boundary discrepancy north of lakes Johanna and Josephine
 

is due to a heavy density of buildings. It appears that
 

where concentrations of buildings occur, the use of E.R.T.S.
 

as a geological mapping tool is not recommended.
 

This pilot project on the uses of E.R.T.S. as a major
 

geological mapping tool has shown that in certain instances
 

it can be helpful for mapping glacial geology, as demon­

strated in Study Area One. It has also shown that there
 

are limitations to the use of E.R.T.S. in areas where there
 

are dense concentrations of buildings, as in Study Area
 

Two. Additional investigations into E.R.T.S. should follow
 

this preliminary study in order to more clearly identify
 

the uses and limitations of E.R.T.S. as applied to geo­

logic mapping. More studies should be initiated in areas
 

of heavy urbanization and in regions where farm land pre­
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dominates. The results of this metropolitan area E.R.T.S.
 

study suggest that the technique might possibly be used
 

as a reconnaissance tool for a state-wide project, but only
 

if it were accompanied by extensive, detailed, field, geo­

logic studies.
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APPLICATIONS OF 	LANDSAT IMAGERY TO GEOLOGICAL RESEARCH
 

IN MINNESOTA
 

Investigators: 	 P. W. Weiblen, G. B. Morey, and M. S. Walton
 
Minnesota Geological Survey
 
St. Paul, Minnesota
 

In addition to the investigation of the applications
 

of LANDSAT imagery to geology in the Twin Cities Metro­

politan-Area, the Minnesota Geological Survey has explored
 

potential applications in other areas in Minnesota. Special
 

attention has been paid to LANDSAT imagery coveting a large
 

part of northeastern Minnesota north of Lake Superior. The
 

bedrock geology of this area has been a subject of long­

standing scientific study, but it has recently excited new
 

interest because it has been shown to expose a sequence of
 

rocks which formed in an intercontinental rift about one
 

billion years ago (fig. 1). In addition, the area is now
 

under active exploration and preliminary development for
 

large, low-grade copper-nickel deposits associated with the
 

Duluth Complex, one of the major mafic igneous rock bodies
 

of the United States (Appendix I). Consequently some of
 

the major environmental issues involving land-use conflicts
 

and pollution from mining operations affecting Minnesota
 

are concentrated in this area. Geologic mapping of bedrock
 

and surficial geology provides the basic data for a variety
 

of federal and state studies now underway or proposed which
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pertain to these issues. At present only a small fraction
 

of the copper-nickel target area has been mapped by the
 

Minnesota Geological Survey (Appendix I, fig. 5, p. 91).
 

Northeastern Minnesota is heavily wooded, much of it
 

is wilderness, and access to large areas is difficult.
 

Mapping by conventional methods is both time-consuming and
 

expensive. One quadrangle represents a minimum of one
 

man-year of work and a cost of approximately $45,000, ex­

cluding publication. The completed mapping (Appendix I,
 

fig. 5, p. 91) covers areas of relatively abundant expos­

ures, but outcrops are still sporadic and interrupted by
 

swamps, glacial deposits and lakes. Therefore the maps
 

are based on considerable interpretation and extrapolation.
 

We have found that by using LANDSAT imagery in conjunction
 

with the available field data, it is possible to develop
 

a much higher level of continuity and structural resolu­

tion in our interpretations of the bedrock geology. For
 

example, Figure 2 shows the generalized geology of north­

eastern Minnesota as it was interpreted in January, 1975.
 

It can be seen from Figures 3 and 4 that there is some
 

correlation of linear and tonal features apparent on the
 

LANDSAT imagery with the mapped geology (particularly the
 

basal contact of the mineralized Duluth Complex). In other
 

areas there is only a poor correlation between the present­

ly mapped geology and the LANDSAT imagery. However, be­

cause of the extensive interpretation and extrapolation
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inherent in this geology, the LANDSAT imagery provides sig­

nificantly new insights into critical target areas for
 

further mapping and additional constraints on the inter­

pretive aspects of the geology. For example, an analysis
 

of the imagery (fig. 4) has revealed an area of structural
 

complexity west of Grand Marais (fig. 2) which had not been
 

detected by reconnaissance surface mapping. As discussed
 

below, this is a critical area with regard to the overall
 

genesis of the Duluth Complex rocks, and a field party is
 

now investigating the area.
 

The preliminary results of our analysis of the correla­

tion of the LANDSAT imagery with the surficial geology indi­

cates that it is possible to distinguish various surficial
 

morphological features such as the Vermilion and Highland
 

moraines, the Toimi drumlin field, and an unnamed drumlin
 

field apparently associated with the Highland moraine .(fig.
 

5). The work suggests that major morphological features can
 

be extrapolated from known areas into unknown areas by using
 

the LANDSAT imagery. A knowledge of the overall distribution
 

of these major morphological features is needed to aid in the
 

detailed studies related to the various environmental impact
 

statements being prepared by federal and state agencies and
 

mining companies in the area of copper-nickel development.
 

The preliminary results of our analysis of the correla­

tion of the LANDSAT imagery with the bedrock geology have
 

significant consequences both in terms of evaluating the
 

potential for copper-nickel resources in northeastern Minne­
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sota and in understanding fundamental crustal processes
 

(Appendix I, p. 83; Appendix II). This is true because
 

the Duluth Complex is the surface manifestation of one of
 

the major geological features of the North American conti­

nent, the so-called Midcontinent Gravity and Magnetic High
 

(fig. 1). This feature, which extends in the subsurface
 

from Lake Superior to southern Kansas, represents incipient
 

rifting of the North American continent 1.1 billion years
 

ago (fig. 1). Rifting was accompanied by the upwelling of
 

vast quantities of mantle-derived magma capable of generat­

ing ore deposits (fig. 6), somewhat similar to the process­

es now going on along the mid-oceanic rifts (fig. 6; Appen­

dix II). A better understanding of this rifting process,
 

which is associated with the movement of major crustal
 

plates, represents one of the most exciting and far-reach­

ing advances in geologic thought in the last hundred years
 

(Appendix II). An exceptional record of the processes
 

associated with intracontinental rifting is recorded in
 

the 1.1 billion year old rocks of northeastern Minnesota.
 

Based on our present knowledge of these rocks, Weiblen and
 

Morey (Appendix I) have developed a tectonic-petrologic
 

model to account for the observed distribution of the
 

Duluth Complex and associated rocks in a rift system. An
 

integral part of their model is the recognition of the im­

portance of faulting in the structural evolution of the
 

area. the presently known copper-nickel resources are res­
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tricted to the basal contact zone of the Duluth Complex,
 

and Weiblen and Morey (Appendix I) have shown that the
 

mineralization is related at least in part to faults and
 

fractures which transect both the older rocks and the
 

Duluth Complex. The LANDSAT imagery in conjunction with
 

other forms of imagery provide a means of better delineat­

ing the position of both the basal contact and the presence
 

of faults and fractures (figs. 3 and 4). These data pro­

vide vdluable coflstz&ihtt on selecting potential target
 

sites for further economic evaluation (Appendix I, p. 84).
 

Weiblen and Morey also have pointed out that mineralization
 

need not be restricted to the base of the Complex but could
 

occur throughout the rift system where the structural-mag­

matic setting of the basal zone might be repeated. For
 

example, a copper-nickel deposit of economic importance
 

has been found and is being developed in Canada seven kilo­

meters north of the International boundary. This deposit
 

is in an area where minor tabular bodies similar to the
 

basal zone of the Duluth Complex occur, isolated from the
 

complex proper. Similar occurrences have been prospected
 

in Minnesota northeast of Grand Marais (fig. 2). Here,
 

reconnaissance mapping has revealed only isolated exposures
 

of potentially-mineralized rocks. The LANDSAT imagery, how­

ever, suggests that there may be a high density of rocks
 

favorable for copper-nickel mineralization in the area.
 

The LANDSAT imagery thus has delineated a specific area
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for detailed mapping that might otherwise have been ig­

nored.
 

With regard to overall crustal processes we are now
 

in the process of formulating a new concept of the funda­

mental crustal structure in Minnesota, and we have been
 

aided by application of satellite imagery. Some of the
 

results already have been embodied in five papers, cited
 

below, which have been presented at recent scientific meet­

ings and are now published or in press. We believe this
 

work has important implications in better understanding
 

global tectonic processes and also practical applications
 

in defining targets for subsurface mineral exploration in
 

the extensively drift-covered areas of the state.
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iRYprofile A - A' (fig. 3) is also shown. 
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Figure 1. The Midcontinent rift from Chase and Gilmer (1973). 
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I 
Figure 3a. LANDSAT imagery. Color reproduction of band 5 
imagery of northeastern Minnesota reduced from an appros-

Imately 1:250,000 print. 
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INTRODUCTION 

The Duluth Complex, a large body of dominantly 
mafic igneous rocks of Late Precambrian (Keweena-
wan) age, is exposed sporadically along an arcuate 
belt extending from Duluth north toward Ely, and 
from there, east-northeast toward Hovland, Minne-
sota (Fig. 1). The complex is underlain to the west 
and north by older Precambrian rocks. The contact 
separating the older rocks from those of the Duluth 
Complex is generally sharp and well defined, and 
its position on various maps has not changed sub-
stantially as mapping has become more detailed 
(fig. 2). Because of a regional dip to the southeast, 

an extensive section of Keweenawan rocks > 15 
km thick, if a 12* dip is assumed) is exposed between 
the basal contact of the Duluth Complex and LakeG 
Superior. The section contains in addition to the 

graphic relbtionships within and between individual
rock units of the complex; (2) a two-stage model of 

the igneous history of the complex based on the in­
terpretation of the above data, in conjunction with 
additional data on the associated hypabyssal and 
extrusive rocks; (3) a systematic review of evidence 
for faulting in the complex; and (4) a tectonic model 
compatible with rifting processes which can account 
for the emplacement and present distribution of re­
cognizable rock units within the Duluth Complex. An 
alphabetically arranged bibliography of all refer­
ences to the Duluth Complex known to us at present 
is included at the end of this report. Additional gen­
eral references cited are included in a separate bib­
liography. 

GENERAL GEOLOGY 

The Duluth Complex has been subdivided into 
coarse-to fine-grained rocks of the complex proper,\ a number of mappable units on the basis of textural 
medium- to fine-grained, hypabyssal dikes and sills, 
and fine-grained, extrusive rocks of the North Shore 
Volcanic Group. This sectlon represents a unique 
and rather complete exposure of a total magmatic 
system. Because the rock types in the upper part of 
the section are more or less gradational, the "upper" 
contact of the complex is an arbitrary boundary and 
its position on various maps has been continuously 
revised (fig. 2).

Although the Keweenawan rocks in northeastern 
Minnesota provide a dramatic view of a more or 
less complete magmatic system, they are only a small 
part of a much larger terrane that extends as a nar-
row linear belt as far south as southern Kansas. This 
structural feature, referred to as the Midcontinent 
Gravity High because of a large positive gravity 
signature, is interpretable within a framework of 
pre-Keweenawan tectonics (Weiblen and others, 1972-
a), and Keweenawan rifting processes (Chase and 
Gilmer, 1973). Consequently, the petrogenetic and 
structural history of the complex must be considered 
within the constraints imposed by petrogenetic and 
tectonic processes in a rifting or tensional environ-
ment. As an initial attempt to view the available 
data on the Duluth Complex within these constraints, 
we present: (1) a summary of available field, petro-
graphic, and petrochemical data pertinent to strati-

* Minnesota Geological Survey, University of Minne-

sota, St. Paul. 

and mineralogic attributes which generally are re­
cognizable in outcrop (Grout, 1918b; Taylor, 1964; 
Phinney, 1969; Nathan, 1969; Weiblen and others, 
1972; Bonnichsen, 1972; Davidson, 1972). Many of 
the distinctive textures that have been recognized are 
attributable to: (1) differences in grain size; (2) dif­
ferences in mineral orientation and particularly in 
the orientation of plagioclase; and (3) the textural 
habit of plagioclase relative to that of other minerals, 
principally olivine, pyroxene, and iron-titanium oxides. 

Differences in grain size, both within and be­
tween various rock units, have been expressed by
various workers in different ways, but the classifica­
tion scheme used by Nathan (1969) appears to be 
generally applicable throughout the Duluth Complex.
Rocks having a grain size generally greater than 
10 mm are referred to as very coarse-grained; 10-4 
mm, coarse-grained; 4-1 mm, medium-grained; 1-0.5 
mm, fine-grained; and less than 0.5 mm, very fine­
grained. On this basis, most of the rocks in the 
Duluth Complex are coarse- or medium-grained. Very 
coarse-grained rocks generally are restricted to peg­
matitic zones which occur as cross-cutting to concord­
ant, cognate lenses within all other rock units. Fine­
grained and very fine-grained rocks, on the other 
hand, are restricted mainly to inclusions of hornfels. 

In most fine-grained rocks, tabular plagioclase 
grains are more or less randomly oriented, giving
the rocks a massive appearance, but in coarser­
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grained rocks the plagioclase commonly has a pre-
ferred planar or linear orientation forming a foliated 
(e.g., Nathan, 1969, p. 33-34) or lineated (e.g., Weib-
len, 1965, p. 89) fabric. Commonly rocks that are 
foliated or lineated are also layered, and the large-
scale layers are defined by distinct differences in 
the relative proportions of various minerals. Such 
layering is presumed to have been formed by vary-
ing degrees of convection and crystal settling during 
crystallization of a magma (Grout, 1819 d and f; 
Wager and Brown, 1967, p. 1-7, Phinney, 1972, p. 
341-342). 

A specialized nomenclature has evolved to de-
scribe the kinds of layering and textures present in 
mafic rocks (e.g., Wager and Wadsworth, 1960; Wa-
ger and Brown, 1967, p. 65). This nomenclature in 
general implies interpretations of mode of origin 
and paragenesis. For example, the adjective "cumu-
lus" is used to describe euhedral to subhedral min-
erals which are believed to have formed early, 
whereas "intercumulus" is used to describe anhedral 
and poikilitic minerals which crystallized late from 
melt interstitial to cumulus minerals, 

In our review of textural descriptions of rocks in 
the Duluth Complex, we find that many rocks are 
described by terms having similar genetic implications 
(e.g., "fluxion structure," Grout, 1918b, p. 446, c;
"primary" minerals, Weiblen, 1965, p. 75; Phinney, 

1969, p. 8; and "cumulus" minerals, Nathan, 1969, 

p. 34). For this report we have attempted to separ-
ate textural descriptions from genetic interpretations. 
In so doing, we have found hat because plagioclase 
is relatively abundant (50-100%) in all rocks of the 
Duluth Complex, except peridotite and granophyre, 
its textural habit relative to that of other minerals 
provides a convenient criterion for classifying rock 
textures. Three broad textural categories have been 
recognized: (1) Tabular grains of plagioclase may 
form a simple framework within which other minerals 
such as olivine, pyroxene, and iron-titanium oxides 
occur as interstitial grains (2) Euhedral to subbedral 
grains of olivine may occur with tabular grains of 
plagioclase to form a more complex framework in 
which the other minerals occur as interstitial grains, 
The relatively simple textural characteristics of this 
and the first category are complicated by the fact 
that the proportion of interstitial material may vary 
considerably from sample to sample within a map-
pable unit. Moreover, the textural attributes of the 
interstitial material vary from situations where ran-
domly oriented grains fill individual void spaces to 
situations where large optically continuous grains 
(oikocrysts) poikilitically enclose early formed, lath-
shaped grains of plagioclase. (3) In certain suites of 
foliated rocks, a succession of textures commonly oc-
curs in a stratigraphic succession which also defines 
the crystallization sequence. In a typical paragenetic 
sequence the textures of these rocks from early to 
late can be characterized by the successive appear-
ance of euhedral to subhedral pyroxene, and iron-
titanium oxides. Ideally the name can be assigned 
without regard to texture, but from a practical point 
of view, mineral abundances and textures are closely 
interrelated For example, most troctolitic rocks fall 
into textural categories 2 and 3. Consequently, 
through loose usage, the rock names themselves have 
taken on petrogenetic connolations. However, it is 
apparent from the various rock types illustrated in 
Figure 3 that texture is the primary attribute and 
controls in part relative mineral abundances. Thus, 

the textures and not the rock names are of primary 
petrogenetic significance. 

Modern geologic mapping of the Duluth Com­
plex using many of the above textural criteria for 
distinguishing rock types started in the late 1950's 
with the work of Taylor (1964) at Duluth. Since 
that time a total of twenty-six 7.5- and 15-minute 
quadrangles and five other miscellaneous maps have 
been prepared (fig. 5). Concurrent laboratory studies 
undertaken principally as graduate research projects 
have provided textural, modal, and analytical (elec­
tron microprobe and bulk chemical) data for the 
further characterization of rock units recognized dur­
ing the mapping. The results of these mapping and 
laboratory studies in the Duluth Complex as well as 
data from mapping of the extrusive rocks along the 
north shore of Lake Superior and their associated 
hypabyssal rocks (Green, 1972) and mapping of the 
older Precambrian rocks and their associated Ke­
weenawan hypabyssal rocks along the north edge 
of the Duluth Complex (Morey, 1972; Mudrey, 1970) 
have been compiled on a common base (fig. 6). This 
compilation highlights n-ajor gaps in the map cover­
age, but it also provides a new view of the spatial 
distribution of various rock types in the Duluth Cam­
plex. The data used for this compilation and the 
available results of laboratory studies are referenced, 
summarized and discussed below in terms of the six 
geographic areas shown in Figure 1. The interested 
reader is referred to the bibliography for more spec­
fic details and to Chapter V in Geology of Minnesota: 
A Centennial Volume (Sims and Morey, 1972) for 
another summary of the data available up to 1972. 

DULUTH and VICINITY 

Using the petrographic criteria discussed above, 
Taylor (1964) distinguished two major rock units at 
Duluth, which he termed "anorthositic gabbro" and 
a "layered" series. He also recognized three other 
rock units of limited areal extent: peridotite, ferro­
granodiorite and granophyre. In as much as equiva­
lents of these units have been found throughout the 
complex (Weiblen, 1965; Phinney, 1969; Davidson, 
1969; Bonnichsen, 1972), we will use the more gen­
eral terms "anorthositic series" and "troctolitic series" 
to refer to Taylor's two major units and the term 
"felsic series" as used by Davidson (1972) for ferro­
granodiorite and granophyre.
 
Anorthositic Series
 

Taylor applied the name anorthositic gabbro to 
rocks having an average of 80 percent (range 50­
100%) plagioclase. The plagioclase, generally of 
labradoritic composition, forms a framework of tab­
ular grains characteristic of textural category 1 as 
defined above. Olivine, augite, and iron-titanium 
oxides occur interstitially to the plagioclase, suggest­
ing that plagioclase was the first major phase to 
crystallize. The anorthositic rocks crop out at Duluth 
in a north-trending belt about one to three km wide. 
They are overlain by lava flows of the North Shore 
Volcanic Group (Green, 1972). Taylor (1964, p 9) 
found only two exposures of the actual contact and 
both reveal complicated contact relations. The flows 
appear to be recrystallized adjacent to the contact, 
implying that they were metamorphosed by the an­
orthositic rocks. However, no unequivocal chilled 
margin was found in the anorthositic rocks, and both 
coarse- and fine-grained rock types occur in the con­
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tact zone. The anorthositic rocks are underlain struc-
turally by rocks of the troctolitic-gabbroic series, 
Again, the actual contact is exposed at only a few 
places, but Taylor, (1964, p. 9) concluded that the 
anorthositic series was older because a chilled mar-
gin was found in the troctolitic-gabbroic series at 
one locality, and because anorthositic rocks occur as 
inclusions in the troctolitic-gabbroic rocks The con-
tact zone between anorthositic and troctolitic-gabbroic 
rocks, as mapped by Taylor, (1964, p. 11), also con-
tains a series of cross-cutting dikes and irregular-
shaped masses of granophyre. 

No regular internal structure has been recogni-
zed in the anorthositic rocks at Duluth (Grout, 1917, 
p. 444; Taylor, 1964, p. 11). Rather, the unit has 
the appearance of an igneous breccia. Blocks with 
a consistent planar orientation of plagioclase and 
ranging in size from meters t6 tens of meters are 
randomly oriented with respect to one another and 
are set in a matrix of less well foliated anorthositic 
gabbro. 

Neither Grout nor Taylor studied the anorthositic 
rocks in detail sufficient to establish'the possible pre-
sence of systematic variations in mineralogy or min-
eral chemistry. The available compositional data 
are summarized and referenced in Tables 1 and 2, 
and Figure3 7 and 8. 

Troctolitic-Gabbroic Series 

Troctolite, olivine gabbro, gabbro, and oxide gab-
bra (figs. 4 a, b and 7) comprise more than two-thirds 
of the exposures at Duluth. In these rocks olivine, 
plagioclase, pyroxene, and iron-titanium oxides all 
occur as euhedral to subhedral grains with textural 
attributes similar to those characteristic of textural 
categories 2 and 3 defined above. Plagioclase gen-
erally is less abundant than in the anorthositic rocks, 
ranging from 17 to 81 percent (Taylor, 1964, p. 16). 

Rocks assigned to the troctolitic-gabbroic series 
at Duluth are restricted to a 9.6 km wide north-trend-
ing unit sandwiched between an underlying sequence 
of lava flows and the overlying anorthositic rocks, 
The upper contact of the troctolitic-gabbroic with the 
anorthositic series has been described above. The 
lower contact of the troctolitic-gabbroic series with 
underlying lava flows is exposed only locally near 
Ely's Peak at the southwest end of the Duluth Coin-
plex (Taylor, 1964, p. 14). Here approximately 100 
meters of magnetically reversed basaltic lava flows 
of the North Shore Volcanic Group (Kilburg, 1972) 
and about 500 meters of the tractolitic-gabbroic 
rocks are exposed in a one kilometer wide belt of 
nearly continuous outcrops along railcuts (Taylor, 
1964, p. 11). The basaltic lava flows are re-crystal-
lized (Kilburg, 1972, p. 73-87), but the precise loca-
tion and nature of the contact remains poorly under-
stood because of the presence of several other rock 
types in the contact zone. These include: (1) A 100 
meter-wide zone of coarse-grained poikilitic, anortho­
sitic troctolite which occurs immediately adjacent to 
the flows; (2) Isolated exposures of fine-grained mafic 
rocks which may be blocks of recrystallized basalt, 
chilled margin of the troctolitic-gabbroic series or 
possibly mafic dikes; (3) Dike-like masses, all less 
than a few tens of meters wide, of medium- to coarse-
grained peridotite containing euhedral olivine, poi-
kilitic pyroxene and interstitial ilmenite (Taylor, 1964, 
p. 29); and (4) A 50 meter-wide zone of coarse-grain-
ed anorthositic gabbro having interstitial augite al-
tered to actinalite in immediate contact with the tro­
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ctolitic-gabbroic series rocks. These contrasting rock 
types separate the lava flows from rocks definitely 
assignable to the troctolitic-gabbroic series by a dis­
tance of about 800 meters but none can be mapped
along strike for more than a few kilometers and all 
have uncertain contact relationships with one another. 

Taylor (1964) used the term "layered series" for 
the troctolitic-gabbroic rocks because locally mm to 
cm scale layers ayre found which are defined by rhy­
thmic variations in the proportions of olivine, plagio­
close, pyroxene, and oxide minerals (Taylor, 1964, 
p. 21, fig. 5). Planar orientation of elongate olivine 
and tabular grains of the latter three minerals im­
parts a foliation to these rocks which is parallel to 
the layering (Taylor, 1964, p. 22, fig. 6). The layer­
ing and foliation define a general north-northeast 
strike with dips ranging from 10 to 35 degrees to 
the east-southeast, but Taylor, (1964, p. 15) could 
not trace individual layers from one outcrop to an­
other. 

To look for systematic variations in mineral as­
semblages and compositions Taylor (1964, p. 15-28) 
examined in some detail a sequence of 20 samples 
along a transect parallel to the general dip direction. 
Three important characteristics of the troctolitic-gob­
broic rocks can be deduced from his observations. 
First, the crystallization sequence in the layered series 
from earliest to latest is olivine, plagioclase, augite, 
and magnetite-ilmenite. Second, the various miner­
als exhibit a range in chemical compositions that 
can be correlated in a general way with differentia­
tion of a magma by crystal fractionation (figs. 7 and 
8; tables I and 2). Third, the chemical composition 
of the minerals does not vary systematically with 
stratigraphic position in the troctolitic-gabbroic ser­
ies (Taylor, 1964, p. 23-25). The latter characteristic 
and the discontinuous nature of the layering support 
the view that the troctolitic-gabbroic rocks at Duluth 
did not form in a well developed, stable magma 
chamber under quiescent conditions like that inferred 
for many other layered intrusions. In the Skaerguard
intrusion in Greenland for example, the systematic 
variations in mineral assemblages and compositions 
can be ascribed to a single stage of magma emplace­
ment in a funnel-shaped magma chamber with loss 
of heat predominantly through the roof of the in­
trusion (Wager and Brown, 1969, p. 204 and 212). 
At Duluth, however, the geometry of the magma 
chamber, style of magma emplacement, and loca­
tion of the cooling surfaces remain obscure. Un­
doubtedly, this is due in part to a lack of detailed 
data but it also is due to the complex nature of the 
upper and lower contacts and to ambiguities inherent 
in interpreting the structural significance of layering 
formed under turbulent conditions. The overall com­
plexities presently recognized in the troctolitic-gabbro­
ic series at Duluth are what might be expected if 
magma emplacement and cooling took place in a 
tectonically unstable environment. 

Peridotlte
 

Several isolated occurrences of peridotite were 
noted by Grout (1918e) and briefly described by 
Taylor (1964, p. 29) The best occurrence is that of 
a lens about 15 meters wide exposed in the contact 
zone between troctolitic-gabbroic rocks and basaltic 
lava flows at Ely's Peak (Taylor, 1964, Plate 1). Al­
though the contact relations there and elsewhere are 
obscure, it appears that the peridotite extends along 



strike for about 1 kilometer. Much of the peridotite 
is highly altered to serpentine, chlorite, andJalc, but 
samples of fresh rock contain euhedral olivine en-
closed in a matrix of poikilitic augite and interstitial 
magnetite-ilmenite. Both chemical and mineral analy-
ses are listed in Tables I and 2 respectively, 

Felsic Series 

Based on modal mineralogy, Taylor, (1964, p. 33-
42) distinguished four intermediate to felsic rock types 
at Duluth These include ferrogranodiorite, adame-
lite, syneodiorite, and granophyre. All are character-
ized by significant amounts of quartz, potassium 
feldspar, iron-rich monoclinic pyraxene, amphibole 
(primarily hornblende) and titaniferous magnetite 
(Tables 1 and 2). The felsic rocks occur principally as 
irregular-shaped masses in the upper part of the 
anorthositic series, but several small bodies have 
been mapped along the contact between the anortho-
sitic series and the troctolitic-gabbroic series (Taylor, 
1964, Plate I). Contacts between the felsic and 
anorthositic rocks as well as internal structures in 
the felsic rocks - as defined by changes in grain 
size, mineral proportions and textural attributes of 
the late formed minerals - may be either gradation-
al or sharp. The origin of intermediate rock types 
having gradational contacts has been interpreted in 
two ways: (1) As an intermediate rock type formed 
during continuous differentiation of mafic to felsic 
rocks (Taylor, 1964, p. 9); or (2) as the product of a 
reaction between gronophyre and older anorthositic 
or troctolitic rocks (Taylor, 1964, p 50). This appar-
ent ambiguity is discussed further below (see also, 
Nathan, 1969, p. 152-155, 184; and Babcock, 1959). 

Extrusive, Hypabyssal and Xenolithic Rocks 
Extrusive Rocks: Stratigraphic and combined chemical 
and petrographic studies of the Keweenawan extru-
sive rocks by Green (1972) and Kilburg (1972) have 
provided critical data necessary for new petrogenetic 
interpretations of the Duluth Complex. These data 
will not be summarized here except to emphasize 
that there are important differences between the 
lava flows which underlie the Duluth Complex and 
those which overlie it (fig. 6). Rocks underlying the 
complex consist dominantly of a sequence of subae-
ral basalts having pyroxene phenocrysts and rever-
sed remnant magnetic polarity, whereas, the over-
lying flows consist of plagioclase phenocryst-bearing 
basalt flows which are complexly intercalated with 
flows having rhyolitic to intermediate compositions 
and with interflow sedimentary rocks. The latter 
sequence consistently has a normal remnant magne-
tic polarity. Further, whole-rock chemical analyses 
(Green, 1972) summarized in Table 3 show that the 
two flow sequences have distinctly different major 
element compositions. The significance of these dif­
ferences to the petrogenesis of the Duluth Complex 
is discussed further below, but the overall differences 
together with the stratigraphic relations suggest that 
the upper flows could be part of a magmatic episode 
which is distinct and later than that responsible for 
the lower flows, 

Hypabyssl Rocks: Hypabyssal dike rocks at Duluth 
range in thickness from a few meters to several tens 
of meters, and in grain size from basalt to diabase 
(microgabbro). All of the dikes trend generally north-
ward, but the dikes cutting pyroxene phenecryst-
bearing lava flows at Ely's peak trend east of north, 

whereas those dikes cutting anorthositic series rocks 
and plagioclase phenocryst-bearing lava flows trend 
west of north. Strotigraphic and compositional varia­
tions in most of these have not been studied in detail, 
but several dikes that have been analyzed have a 
whole rock chemical composition similar to that ofthe Logan intrusions, which intrude the Rove and 
Gunflint Formations in the Gunflint Corridor of CookCounty (fig. 5). 

Several sill-like bodies of hypabyssal rocks also 
are exposed at Duluth. The largest of these, the so­
called "Endion Sill" has been studied in greatest de­
tail (Schwartz and Sandberg, 1940; Ernst, 1960; Tay­
lor, 1964, p. 11). It is a north-trending, kilometer­
wide body of differentiated micro-gabbro that in­
trudes rocks of the anorthositic series, felsic series 
and the North Shore Volcanic Group in the eastern 
part of Duluth (fig. 4). Although the sill has been 
referred to as "olivine gabbro" by Green (1972), it 
contains only minor amounts of olivine andappears 
to have a Logan composition (Ernst, 1960, Table 3). 

Xenoliths: The recognition of xenolithic inclusions in 
different units of the Duluth Complex is somewhat 
subjective because of incomplete exposures and be­
cause we do not know the entire spectrum of modal 
and textural attributes associated with either the 
xenoliths or with the rock units described above. In 
general, two kinds of xen6liths are recognized: (1) 
feldspar-rich rocks having textural and modal char­
acteristics similar to those of anorthositic series rocks; 
and (2) a variety of fine-grained gabbroic rocks hav­
ing hornfelsic or granoblastic textures. The anortho­
sitic xenoliths occur more or less randomly in the tro­
ctolitic-gabbroic series where they range in size from 
several millimeters to 500 meters (Taylor, 1964, plate
11). Judged from their textural and mineralogical 
attributes, these xenoliths were derived from rocks 
of anorthositic series. 

Xenoliths of fine-grained hornfels exhibit a 
range of sizes similar to that of the feldspathic xeno­
liths, but their spatial distribution differs in that 
they tend to be concentrated near the margins of 
the troctolitic-gabbroic series. Many of these xeno­
liths may be contact metamorphosed basalt flows 
as suggested by Schwartz (1949, p. 90), but other 
xenoliths may be fragments of chilled margin facies 
of the coarse-grained rocks (Taylor, 1964, p. 13) or 
fragments of hypabyssal rocks which were intruded 
in the anorthositic series rocks and which subsequent­
ly were broken up when parts of this series were 
incorporated in the troctolitic-gabbroic magma. The 
range of contrasting chemical compositions has not 
been studied in detail, but Goldich (1971) has shown 
that one possible xenolith at Duluth has a composi­
tlion very similar to that of a lunar mare basalt 
(Table 1). 

DULUTH TO HOYT LAKES AREA 
Bonnichsen (1971) has prepared a compilation 

osknown exposures between Duluth and the 
of the 
Hoyt Lakes area (fig. 1) based on previous data and 
one field season of reconnaissance mapping. The 
exposures are isolated and all are less than a kilo­
meter in size. Consequently, our knowledge of the 
Duluth Complex in this area depends largely on geo­
physical data supplemented by drilling. The complex 
throughout much of the area dips toward the east 
and is bounded on the west by Middle Precambrian 
strata and locally by basaltic hornfels too small to 
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be shown on Figure 6. The complex is bounded to 

the east by magnetically normal lava flows of the 

North Shore Volcanic Group and associated dikes 
ort ssreenarnd sills (Green, 1972), 

Both anorthositic and troctolitic-gabbroic rocks 
have been recognized,like those exposed at Duluth 

and as at Duluth, the troctolitic-gabbroic rocks form 
belt which appears to be a north-northeast-trending 

the ex-overlain by the anorthositic rocks. However, 
are too limited to extrapolate with certaintyposures 

or texturalthe thickness and continuity of each series 

and compositional variations within each series, 
briefly described a tabu-Bonnichsen (1972) has 


lar or lens-shaped body of peridotite about 400 

was dis-and 200 meters thick whichmeters long 


covered by drilling in an area about 30 km north of 


Basal rocks consist of olivine, pyroxene, and
Duluth. 
ilmenite, they grade upward into plagioclase-beoring 
peridotite and gabbro. The peridotite dips steeply 
to the east and overlies a basaltic hornfels which is 

compositionally similar to the pyroxene phenocryst-
bearing flows at Duluth. (Bonnichsen, 1972, p. 387). 
Bonnichsen (1972, p. 373) reports that the peridotite 
is overlain by olivine gabbro. Textures (fig. 3), 
whole-rock, and mineral compositions (figs. 7, 8, 
Tables I and 2)' are similar to those in the peridotite
exposed at Duluth and in the Water Hen Creek in-trusion. , *flow 

The Water Hen Creek intrusion has been describ-
ed from drill core by Mainwaring and Naldrett (1974, 
1975). It is a relatively small body that has the 

shape of a moderately-to steeply-dipping, somewhat 
flattened cylinder with a very thin lip forming the 
westernmost extremity. It is in contact to the west 
with Middle Precambrian metasedimentary rocks 

and to the east with rocks of the troctolitic-gabbroic 
series. Dunite (Pa = 65-55%) occurs as a basal unit 
and is overlain by repetitive layers of peridotite, fl-
menite peridotite, troctolite, and minor anorthosite. 
Marginal facies are complicated; they are rich in in-
clusions and there is little evidence of chilling or 
recrystallization. Abundant interstitial sulfides oc-

cur in the dunites, whereas they are virtually absent 
in the more feldspathic rocks, 

Although the peridotitic rocks are not well ex-
posed or delineated, it appears that they occur as 

small, discontinuous bodies aligned more or less 
parallel to the basal contact of the Duluth Complex. 
Because the bedrock is mantled by a thick cover of 

the of peridotitePleistocene materials, actual extent 
is unknown, but it could conceivably be much greater 
than presently recognized. The significance of these 
peridotite bodies is discussed below in connection 
with the petrogenetic model that will be outlined, 

Isolated exposures of hornfels and felsic series 
rocks occur within the Duluth Complex well away 
from the basal zone, completing in this area the 
same spectrum of rock types as found at Duluth. 

HOYT LAKES--KAWISHIWI AREA 

Detailed mapping by Green and others (1966) 
and associated petrographic studies by Phinney (1969) 
and Weiblen (1965) in the Gabbro Lake quadrangle 
at the east end of the Hoyt Lakes-Kawishiwi areas 
(figs. 1, 5, and 6) has documented the presence of 
anorthositic and troctolitic-gabbroic rocks similar to 
those exposed at Duluth. However, in this area, sev-
eral varieties of anorthositic rocks may be distin-
guished on the basis of subtle differences in mineral-

ogy and texture. They include poikilitic gabbroic an­
anor­orthosite, noritic anorthosite, and oxide-rich 

thosite (Phinney, 1969, p. 6-10). Although the dif­
ferenthnsvrlklmtrcnatvarieties can be traced over rdistances greaterau n r 

and ir­than several kilometers. contacts are vague 

regular. As at Duluth, the orientations of the plagio­

close lamination is not consistent over distances great­
of and the different er than severdl tens meters, 

varieties are found as blocks a few meters across in 

other units, making Taylor's term "igneous breccia" 

an apt descriptor of the anorthositic series in this 

area. 
toRocks texturally and mineralogically similar 

occur as threethe troctolitic-gabbroic series at Duluth 

distinct intrusive units in the Gabbro Lake quadrangle. 

These includet 
(1) The Bald Eagle intrusion, a three by ten km, 

funnel-shaped body consisting of two distinct rock 
types, an outer zone of troctolite and an inner core 
of olivine gabbro. The intrusion has well definied 

intrusive contacts where it cuts rocks of the anortho­
sitic series (see Figure 1, Weiblen and Perry, in prep. 
and Weiblen, 1965). Mineral layering and lamina­
tion are well developed and the intrusion also ex­
hibits systematic variations in mineral compositions
 

(fig. 8). A conspicuous lack of interstitial material,

similar to that illustrated in Figure 3, indicates that

p.edomiated over gravity segregation in the 

development of the layering in these rocks: 
(2) A second troctolitic-gabbroic unit, the South 

Kawishiwi intrusion, occurs at the base of the Duluth 
Complex in the southwest part of the Gabbro Lake 
quadrangle. It is in contact to the north and west 
with older Precambrian rocks, and to the east it 
either intrudes or is in fault contact with rocks of the 

anorthositic series. The southern or upper contact is 
obscured by glacial drift. The possible southwest­
ward extension of this intrusion across the entire Hoyt 
Lakes-Kawishiwi area is discussed below. 

The South Kawishiwi intrusion is divisible into 
at least three units on the basis of differences in min­
eralogy and texture. They are, from bottom to top: 

(1) a contact zone, (2) an augite-bearing troctolite 
unit, and (3) an upper troctolite unit. Layering due 
to gravity segregation of ofivine and plagioclase is 
well-developed in the upper unit, less well-developed 
in the augite-troctoite unit, and absent in the basal 
contact zone. Inclusions are found in much greater' 
variety in the South Kawishiwi intrusion than are re­
cognized in the troctolztic-gabbroic rocks at Duluth. 
They include mappable units of several kinds of an­

orthositic rocks, iron-formation, metasedimentary and 
basalt hornfels The inclusions are most abundant 
in the contact zone, but they also are present in the 
ougite troctolite. Sulfide mineralization of importance 
in this part of the Duluth Complex is restricted to the 
contact zone. This aspect of the intrusion is the sub­
ject of an accompanying report in this volume by
Weiblen and Perry. 

(3) The Bald Eagle and the South Kawishiwi in­
trusions appear to be connected by a dike-like intru­

sion of troctolitic-gabbroic rock that is approximately 
one-half kilometer wide and three kilometers long 
(Phinney, 1969, p 13-14). This intrusion consists of 
an outer zone of interlayered troctolite and olivine 
gabbro and an inner zone of pegmatitic gabbro 
having plagioclase and pyroxene crystals as much 
as 10 cm long. It also includes several kinds of horn­
fels inclusions. The relationships of the different rock 
types in this intrusion have not been studied in any 



detail, but it has been proposed that the Bald EagJe viding the best geologic control on stratigraphic and 
intrusion was a feeder for the troctolitic-gabbroic 
rocks to the southwest and that this dike-like intrusion 
is a part of the feeder system (Weiblen, 1965; Phin-
ney, 1972-. 

No bodies of peridotite have beerr found in the 
Gabbro Lake quadrangle, but other minor intrusions 
include several possible extensions of the Bald Eagle 
intrusion between it and the South Kawishiwi in­
trusion (Green and others, 1969) and a few small 
exposures of granophyre. The latter occur as dike­likemosesgenralylss hana mterwid, aongThe
like masses, generally less than a meter wide, along 
north-northeast trending cataclastic zones that cut 
both the anorthositic and troctolitic rocks However, 
the known occurrences of granophyre are restricted 
to cataclastic zones in anorthositic rocks. These oc-currences of granophyre imply that igneous activity 

and tectonism were at least partly contemporaneous, 

The tectonic significance of the cataclastic zones is 

discussed further below in conjunction with evidence

of faulting in the Duluth Complex.Detailed and reconnaissance mapping by Bonni-
chsen (1972) in the Greenwood Lake, Kangas Bay, 
Babbitt, Babbitt N.E., Babbitt S.E., Babbitt S.W. and 
Allen quadrangles has extended the known .mts of 
troctolitic-gabbrolc rocks similar to those of the South 
Kowshlwi intrusion across the entre Hoyt Lakes-Ko-
Kwishiwi irusioan rmed et ce ofaco the 
wisniwi area, and has confirmed the presenc ofebe 
complex contact zone rocks along the base of the 
complex throughout the area Bonnichsen's mapping 
also has confirmed the presence of anorthositic series 
inclusions throughout the troctolitic-gabbroic series, 
The three-fold stratigraphic succession recognized in 
the South Kawishiwi intrusion has not been traced 
into the quadrangles mapped by Bonnichsen, and it 
appears that the troctolitic-gabbroic rocks are inter-
rupted by north-northeast trending belts of anorth­
ositic rocks (fig 6). Thus, it is not entirely clear that 
the troctolitic-gabbroic series rocks in the Hoyt Lakes-
Kawishiwi area are all part of one intrusion. 

Isolated exposures of an oxide-rich gabbro occur 
in the south half of the Greenwood Lake quadrangle 
The texture and mineral composition of these rocks 
are similar to those expected for further differen-
tates of the Bld Eagle itruson (Weiblen, 1965; Ban-

nichsen, 1972). Significant masses of granophyre al-
so occur in this part of the Hoyt Lakes-Kawishiwi 
area (fig- 6). 

BOUNDARY WATERS CANOE AREA 

Reconnaissance mapping in the Boundary Waters 
Canoe Area (B.W C.A ) (fig. 1) and quadrangle map-
ping in the Gillis Lake quadrangle (fig 5) (Beitsch, 
in prep) indicates a general continuation of the 
rock units and field relationships described in the 
Hoyt Lakes-Kawishiwi area However, the geologic 
relationships are complicated in the southeast part 
of the B.W C A (figs. 1 and 6) by the presence of 
extensive mosses of felsic series rocks and basaltic 
hornfels. 

These rocks, as well as the anorthositic and troc-
tolitic-gabbroic rocks in the Brule River prong, have 
been mopped in thirteen 7 1/2-minute quadrangles 
(fig. 5) by Davidson (1972) This work has led to 
the preliminary characterization of the various horn-
felsic and felsic rocks and has provided information 
on their stratigraphic position Because of excellent 
and extensive exposures, particularly along lake 
shores, this area has the potential of eventually pro-
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structural relations of the late differentiates in the 
complex, as well as a complete spectrum of critical 
samples needed to refine petrogenetic and strtk'tural 
models for the complex as a whole. Representative 
data on analyzed samples from the different rock 
units studied in the B.W.C.A. are included in Tables 
I and 2 and Figures 7 and 8. 

GUNFLINT CORRIDOR 
Gunflint Corridor (fig 1) can conveniently

be divided into three geographic areas, each with 

distinctive geology: (1) the Long Island Lake quad­
rangle, (2) Northern prong, and (3) Brule River prong. 
Recent mapping in the Long Island Lake quadrangle
by Weiblen (Morey and others, 1969) demonstrated 
the presence of a sequence of rocks similar to those 
in the Duluth Complex at Duluth. To the east in the 
Gunflint Lake quadrangle, these rocks truncate an 
older series of interlayered anorthositic and trocto­litic-gabbroic rocks which comprise the so-called 
Northern prong of the Duluth Complex. The inter­
layered anorthositic and troctolitic-gabbroic rocks, ex­
tend eastward across the southern parts of the South 
Lake and Hungry Jack Lake quadrangles (fig. 3), 
where they are truncated by large masses of differen­
tiated felsic series rocks. The layered series rocks 

apdi eai yNta 1'9 n
have been mapped in detail by Nathan (1969) and 
the felsic series rocks have been studied by Babcock 
(1959). The Brule River prong consists of a series of 
east-trending rocks which lie to the south of the rocks 
of the Northern prong and are separated from them 
by lava flows of the North Shore Volcanic Group. 
These rocks have been mapped by Davidson (1972) 
(fig 5). 

Long Island Lake Quadrangle 
Anorthositic Series: Anorthositic rocks having 75-95% 
plagioclase overlie a structurally lower sequence of 
troctoltic-gabbroic series rocks in the Long Island 
Lake quadrangle (Morey and others, 1969) The 
contact trends generally eastward and is concordant 
with layering in the underlying troctolitc-gabbroic
rocks. The contact is marked by isolated masses of 

basaltic horfels and by the presence of sulfide gas­
sens in the troctolhtic-gabbroic rocks However, the 
contact relationships are not straight forward because 
no chilled margin material has been found in the 
troctolitic-gabbroic rocks and because gabbroic anor­
thosite is inter-layered with poikilitic augite troctolite 
immediately adjacent to the contact. The anorthositic 
rocks south of this contact zone are predominantly 
gabbroic anorthosites characterized by a coarse-grain 

- size and randomly oriented plagioclase foliation pat­
terns, this fabric contrasts markedly with the more 
regularly developed foliation in the gabbroic anortho­
site layers in the underlying troctolitic-gabbroic rocks. 
We infer, therefore, that all of the gabbroic anortho­
sites south of the contact are part of the older anor­
thositic series rocks mapped to the west by Phinney 
(1972) and Beitsch (in prep.). 

I In the southwest corner of the Long Island Lake 
quadrangle, the anorthositic rocks are cut by plug­
like intrusions of felsic rocks, having an inner core 
of granophyre and an outer rim of ferrogranodiorite 
and anorthositic rocks are gradational and the origin 
of the intermediate rocks presents the same unresolv­
ed problems as at Duluth. 



Troctolitic-Gabbroic Series: In the Long Island Lake to the granoblastic gabbro. Consequently, the grano­
quadrangle, a sequence of troctolitic-gabbroic rocks blastic rocks most likely are large inclusions. 
similar to those found elsewhere in the complex ap- Felsic Rock Units Associated with the Tuscarora In­
pears in the following succession away from the trusion: Ferrogranodionte and granophyre have in­
base: (1) fine-grained poikilitic augite troctolite, (2) truded rocks of the anorthositic series in the south­
fine-grained granoblastic gabbro (hornfels), (3) fine- west corner of the Long Island Lake quadrangle (fig. 
to medium-grained troctolite, (4) medium- to coarse- 6). The ferrogranodiorite grades into and is cut by
groined troctolite, and (5) inter-layered troctolite and fine- to medium-grained granophyre. The granophyre

Thceaugitshve oen referredtconsists of quartz, plagioclase, potassium feldspar,
These units have been referred to collectively asgranophyric 

-erernge 
the Tuscarora intrusion (Weiblen and others, 1972). to mantiTe is graop-hrin
The Tuscarora intrusion consists dominantly of unit to granitoid. The ferrogranodiorste is medium-grain­
4, having 65 to 70 percent plagioclase and 10 to 15 ed and contains 50 to 60 percent plagioclase, 10 to 
percent olivine. The relative amounts of other min- 15 percent amphibole, minor clinopyroxene, and vari­
erals such as poikilitic augite and iron-titanium oxides able amounts of quartz, potassium feldspar, and 
vary locally. Orthopyroxene mantles oivine and oc- magnetite. 
curs in symplectic intergrowth with plagioclase. Bia- It is not clear from the field relations if thesetite is associated with the iron-titanium oxides. The rocks are related genetically to the troctolitic-gabbro­

plagioclase exhibits a planar orientation and modal- ic series, to the anorthositic series, or to either of 
- mineral layering is locally well developed and mutual- them. Further study is needed to clarify the strati­

ly concordant as in the South Kawishiwi intrusion, graphic relationships. 
The medium- to coarse-grained troctolite of unit Layered Series of Nathan: Nathan (1969) mapped in 

4 becomes finer-grained toward the base, the grain the Gunflint Lake, South Lake, and Hungry Jack Lake 
size being roughly half of that of the overlying med- quadrangles (fig. 5 and 6), a series of sheet-like in­
ium- to coarse-grained troctolite. This lower unit trusions which comprise the central part of the Nor­
contains augite and copper-nickel sulfides which as- them prong of the Duluth Complex (fig. 1). To the 
say up to five-tenths of a percent copper plus nickel west, this layered series is truncated by the Tuscaro­
(Johnson, 1970). • ra intrusion and its associated rocks; the contact is 

The medium- to coarse-grained troctolite grades marked by an irregular, but generally northwest­
upward into a unit consisting of troctolite interlayered trending lineament (fig. 9). To the east the layered
poikilitic augite troctolite. The troctolite within the series is truncated by rocks of the felsic series discuss­
interlayered interval is similar to that in unit 4 where- ed below. 
as the poikilitic augite troctolite contains about 70 The layered series consists of a sequence of con­
percent plagioclase, 15 to 20 percent augite, and 5 formable sheets having a regional dip of 15-25 ° to 
to 10 percent ilmenite; it is medium- to coarse-grained the south. The sheets thicken to the west and are 
and has well developed augite olkocrysts as much as locally interrupted by minor cross-cutting stock- and 
2 to 3 cm across. Contacts between layers are gen- dike-like bodies. On the east side of the Hungry Jack 
erally sharp and conFormable to layering in the Lake quadrangle near Poplar Lake, a northwest­
medium- to coarse-grained troctolite. The layering is trending fault offsets the series with an unknown 
nearly flat-lying on a large scale, but is undulatory amount of displacement, but as much as 140 feet 
on a small scale. IndiVidual folds have wave lengths of vertical displacement of the northeast side is in­
of 3 to 10 meters and amplitudes of one to three ferred (fig. 6). 
meters. .-. Nathan (1969) recognized 27 different units. For 

Gabbroic anorthosite layers as described above the most part, they consist of troctolitic, gabbroic, 
are developed in the upper part of this unit, and we and associated felsic rocks, but several of the major
consider them to be part of the Tuscarora intrusion units represent occurrences unique in terms of abund­

Fine-grained poikilitic augite troctolite occurs be- ance of oxide-rich gabbro and two-pyroxene gabbro.
neath the fine- to medium-grained troctolite (unit 1) Generally, fine-grained rocks do not represent the 
(fig. 9). This unit contains 60 to 70 percent plaglo- chilled margins of large bodies, but occur as separate 
clase, 5 to 10 percent olivine, 15 to 20 percent poiki- intrusions or inclusions of mappable size. Planar 
litic augite, 5 to 10 percent iron-titanium oxide, and orientation of minerals is common, indicating flow 
minor amounts of orthopyroxene-plagioclase sym- or crystal settling. Differentiation resulting from 
plectite. The contact between this unit and the sul- these processes can be demonstrated within some 
fide-bearing zone in unit 4 troctolite is not exposed units, but the layered series as a whole does not 
and it is not clear from surface mapping if it is a form a regular stratigraphic sequence. 
separate intrusion or the basal part of unit 4. John- Intrusive relationships between different units 
son (1970, p. 76) concluded from drill core data that were established using cross-cutting structures, fine­
it is a separate intrusion. , - grained margins, inclusions, and thermal effects, the 

Granoblastic gabbro (unit 2) occurs in several latter being principally a development of dark-cloud­
kilometer size exposures as topographic highs which ed plagioclase near intrusive contacts (Nathan, 1969, 
cap the fine- to medium-grained and medium- to p. 99). On the basis of field relationships, mineral­
coarse-grained troctolite in the Long Island Lake ogy and composition, Nathan concluded that the 27 
quadrangle (Morey and others, 1969). This rock con- units could be combined into eight cogenetic groups.
sists of 50-60 percent short, tabular plagioclase, 30- Two summaries of Nathan's studies are avail­
40 percent rounded augite, and minor amounts of able, Phinney, (1972) and Weiblen and others (1972).
subhedral iron-titanium oxides, olivine, and biotite. Mineral compositional variations are summarized in 
These rocks have a horizontal foliation and minor Figure 8. 
mineral layering. They may be remnants of metamor­
phosed flows which once roofed the troctolite, but Rocks of the Felsic Series at the East End of the 
the troctolite is not noticeably finer-grained adjacent Northern Prong: Intrusions of several kinds of felsic 
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rocks (Babcock, 1959, Phinney, 1972) truncate the rock which intrudes lava flows of the North Shore 
east end of Nathan's layered series (fig. 6). The Volcanic Group. This intrusion, named the Sonju 
genetic relationship of these rocks to units of the Lake intrusion, is characterized by well-developed 
layered series is not clear but Nathan (1969) attri- plagioclase foliation, and igneous layering. The in­
butes the extensive occurrence of interstitial grano- trusion consists of several mappable units which-in­
phyre, the development of hornblende, and the seri- dude from base to top: picrite, troctote, gabbro, 
citization of plagioclase in the layered rocks to al- ferrogabbra, granodiorite, and adamellite. As such 
teration by a younger differentiated magma, the Sonju Lake intrusion is the best exposed and 

No detailed mapping has been done in the east- most completely and systematically differentiated in­
ern end of the Northern prong, but samples from trusion in the troctolitic-gabbroic series (Tables 1 and 
four traverses were described by Babcock (1959, 2, figs. 7 and 8) 
1960). Te recognized two distinctly different units- South of Finland, near Beaver Bay on the shore 
(1) a lower unit of undivided gabbroic rocks having of Lake Superior, a sequence of layered iron-rich 
variable amounts of interstitial gronophyre, and (2) gabbroic and diabasic rocks also intrudes the flows 
an' upper felsic unit consisting essentially of grano- of the North Shore Volcanic Group. These rocks, re­

phyre with inclusions of gabbro and intermediate ferred to as the Beaver Bay Complex (Gehman, 1956), 

rock. Babcock concluded that the two units were exhibit a differentiation trend similar to that obser­
genetically related. He envisioned that the gabbroic ved in the Sonju Lake intrusion. The main unit at 

rocks formed by the early crystallization and accu- Beaver Bay is a sill-like body of medium- to coarse­

mulation of plagioclse and pyroxene in the lower grained olivine gabbro. Elliptical plugs of ferrogab­

part of a magma chamber, and that the interstitial bro, one to two km in diameter cut this main unit. 

felsic material was entrapped as crystallization pro- The ferrogabbros* have a well-developed mineral 

ceeded. He considered the upper unit of predomin- foliation. Interstitial granophyre is a locally signifi­

antly felsic rocks to be the product of continued dif- cant component of both the oilvine gabbro and the 

ferentiation. ferrogabbro, and intrusions of various kinds of 

Cumulus plogioclase cores are more sodic (An45- granophyric rock occur throughout the area. 

55) than those of typical gabbroic rocks (AnS0-70) Aside from their location (fig. 6), there is no 

in other parts of the complex (fig. 8) This suggests compelling reason to exclude from the Duluth Com­
as­that the initial magma was relatively differentiated plex either the Sonju Lake intrusion or the rocks 

at the time it was emplaced.. This could account for signed to the Beaver Bay Complex. In addition to 

the extensive occurrence of interstitial granophyre the coarse-grained Sonju Lake and Beaver Bay rocks, 

in the lower unit and the large volume of grano- the lava flows in this area are cut by numerous north­

phyre in the upper unit. More detailed studies are and northeast-trending hypabyssal diabase dikes and 
sills. Most consist of ophitic olivine diabase havingneeded to establish the genetic relationship between 

of the felsic series and the rare plagioclase phenocrysts (Green, 1972). Sporaticthe differentiated rocks 
mapped units of the anorthositic and troctolitic-gob- occurrences of granophyre are associated with these 

broic series rocks. hypabyssal rocks, and many of the larger hypabys­
sal intrusions contain large inclusions of anorthasite, 

Brule River Prong: Reconnaissance mapping by Grout as much as several kilometers across The plagioclase 
and others (1959) and Davidson (1972 and in prep.) in these inclusions is compositionally similar to that 
in the Sawbill Camp, Brule Lake, Eagle Mountain, found in the anorthositic and troctolitic rocks of the 
Lima Mountain, Pine Mountain and Northern Light Duluth Complex (Table 2, figs 7 and 8), but it is 
Lake quadrangles (fig. 5) indicates that there is a coarse-grained (5-10 cm long crystals are common) 
general similarity in rock types at the east end of and somewhat granulated. In addition, fresh sam­
the Northern prong and in the Brule River prong pIes of this anorthosite have a distinctive greenish 
(fig. 6). The Brule River prong consists dominantly hue compared to the blue-gray color of other anor­
of a lower olivine gabbra unit bund an upper felsic thositic rocks in the Duluth Complex The host racks 
unit. This simple picture is complicated by discontin- commonly intrude the anorthosite, but the blocks are, 
uities in the general eastward-trend of the contact thought to have been rafted upward from some deep 
between the two units and by variations in mineral- source (Grout and Schwartz, 1939). The origin of 
ogy and textures within the units As in the Northern these inclusions is an important but as yet unresolved 
prong, it is not clear from field observations and pet- petrologic problem (Phinney, 1968).
 
rographic and chemical data (Davidson, 1972) wheth­
er or not the olivine gabbro is an extension of the
 

the Long Island Lake DISCUSSION ­troctohtic-gabbroic series in 
quadrangle, a repetition of some of Nathan's layered The geologic relationship summarized above and 
series units or a separate intrusion , Both gradational portrayed in Figure 6 shows that in broad terms the 
and sharp contact relationships occur between felsic Duluth Complex consists of a central cap of anor­
rocks and the clivine gabbro; and thus the felsic rocks thositic series rocks underlain and surrounded by troc­
present the same problem as elsewhere in the cam- tolitic-gabbroic rocks. Minor peridotlite bodies are 
plex. Because the rocks of the Brule River prong are found at the base of the complex and irregular 
a more or less self-contained entity within the North masses of felsic rocks sporadically intrude the an-
Shore Volcanic Group, they are a prime target for orthositic and troctolitic-gabbroic rocks, particularly 
additional field, petrographic, and chemical studies along a north-northeast-trendlng linear zone in the 
to evaluate the petrogenetic and tectonic models of upper part of the complex (fig. 6). 
the complex developed in this report. For the reasons cited- above, we conclude that' 

rocks of the anorthositic series are older than rocks 
FINLAND-BEAVER BAY AREA of the troctolitic-gobbroic series. The age of the 

Recent mapping in the Finland area (Stevenson, peridotite and the granophyre relative to that of 

1973) has delineated a body of troctolitic-gabbroic the two major series is uncertain. Grout (1918f) con­
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cluded that all of these rocks at Duluth could have 
formed at about the same time by a unique corn-
bination of processes involving differentiation by 
crystal fractionation of a single magma. 

Taylor (1964) concluded that the two major rock 
series at Duluth formed by different processes of dif 
ferentiation. He did not relate the peridotite to either 
of the major series, but he implied that at least some 
of the rocks of the felsic series are a part of the dif-
ferentiated units of the troctolitic-gabbroic series. 

Phinney (1970) made a preliminary attempt at 
identifying a parental magma type for rocks of the 
Duluth Complex. He showed that the compositions 
of some of the more magnesium-rich flows of the 
North Shore Volcanic Group lie along a differentia-
tion trend which could be produced by the removal 
of plagioclase from a high, Al-magma type (Table 
1, analysis 15). Because he considered only A 20 3 

and CaO in his analysis, it is not possible to relate 
uniquely the origin of either the anorthositic series 
orthelytheoiginoetrthhic series
to magma.or the troctolitic-gabbroic series tothismagma.flowsthis 

There are several physical and chemical con-
straints which must be considered to establish the 

validity of general petrogenetic models, such as those 
proposed above, Specifically, in any attempt to re-
late a group of apparently cogenetc rocks to a com-
mon parental magma, one constraint is'the chemical 

icl 
mass balance of all the major elements. In our mass 
balance calculations we are using a linear program-
ming and least squares method (Wright and Doherty, 
1970) which provides a convenient means of mani-
pulating these large amounts of data. Three para-
meters are involved in mass calculations- (1) the ori-
ginal bulk chemical composition of the proposed 
parental magma; (2) the relative volumes of each 
of the rock units; and (3) the bulk chemical composi-
tions of the different units. In layered intrusions the 
first parameter can- be- obtained from analyses of 
chilled margin material and the latter two estimated 
from structural, stratigraphic, and mineral composi-
tional data. In many cases the bulk composition can-
not be determined, but the latter two parameters 
can be estimated and balance calculations can be 
used to assign specific rock types to proposed paren-
tial magma compositions. The results must be eval-
uated in terms of crystallization sequences and rela-
tive mineral abundances determined from either ex-
perimental data, or from textures and relative vol-
umes of different rock units used in the calculations, 

The conspicuous absense of chilled margin mat-
erial always has been considered a stumbling block 
in similar interpretive studies of the petrogenetic re-
lationships in the Duluth Complex. However, extru-
sive and hypabyssal rocks, thought to be cogenetic 
with the Duluth Complex provide a suite of composi-
tions which might reflect directly that of parental 
magmas or might define compositional trends re-
suiting from the formation of layered rocks by crystal 
fractionation in magma chambers at depth. 

Continuing the work of Phinney (1970) we are 
using mass balance calculations to determine prob-
able parent magma types and to relate them to 
specific rock units in the Duluth Complex. Represen-
tative data from lava flows of the North Shore Vol-
conic Group (Green, 1972), Keweenawanhypabyssal 
rocks (Weiblen and Morey, 1972, Geul, 1970), and 
mineral compositional data (Table 2) from different 
rock units in the Duluth Complex are listed in Table 
3. The preliminary studies have produced several 

surprising results. First, Mudrey (1973) has shown 
that the chilled margin of a sill on Pigeon Point has 
the composition of a high alumina-basalt similar in 
major element chemistry to that of the Skaergaard 
intrusion (Table 1, analysis 15). Mass balance cal­
culations indicate that the troctolitic-gabbroic series 

rocks in the Duluth Complex could have been de­
rived from a parental magma having a similar 
composition (Table 3, fag. 10). Mudrey also investi­
gated the possibility that other Keweenawan hypa­
byssal rocks in northern Minnesota could be geneti­
cally related to this magma composition. He found 
that the Logan intrusions in the Gunflint Corridor 
(Weiblen and Morey, 1972) although lower in magne­

slum ( < 4%) could not be derived by any reasonable 

differentiation scheme from the high-alumina basalt 
magma. Mudrey discovered, however, that the corn­
position of the Logan intrusions resembles the liquid 

composition (bulk composition minus phenocryst corn­

position) of the magnetically reversed, lowermost 
of the North Shore Volcanic Group (Table 1,nlss1) h ukcmoiin(nldn lvn
 

analysis 14). The bulk composition (including olivine 
and pyroxene phenocrysts) of these flows resembles 
the low-alumina basalt type "komatlite" recently re­

cognized in lower Precambrian greenstone terranes. 
These observations led us to consider this lava com­

position as a possible parental magma for some units 
of the Duluth Complex. Subsequent analysis has ow that roluntsSsiilar n mposi he 
shown that rock units similar in composition to the
 

perildotite at Duluth, the anorthositic series rocks, 
and granophyre can be derived from this low-alumi­
na magma composition in the approximate propor­
tions of 65, 25, 10 weight percent (Table 3, fig. 10). 

I The above results are significant from a petro­
genetic point of view in thqt they show that; all the 
rock types in the Duluth Complex can be related to 
two parental magma compositions. The troctolitic­
gabbroic units and the Skaergaard intrusion both 
exhibit well defined differentiation sequence (fig. 8) 
and both have a similar parental magma composi­
tion - that of high alumina basalt. The three hereto­
fore unrelated rock units in the Duluth Complex (per­
idotite, anorthositic series rocks, and felsic series 
rocks) may 'now be genetically related to a common 
low-alumnia basalt magma. These results suggest 
that the bulk of the felsic series rocks formed from 
the low-alumnia magma type. Specific details re­
garding the differentiation process leading to the 
contrasting rock types which we have assigned to 
the low-alumnia magma remain an interesting but 
unresolved problem. In terms of the "normal" dif­
ferentiation of basalt to felsite, Grout recognized a 
relative paucity of intermediate rocks at Duluth. He 
suggested that the felsic series rocks may have been 
formed by the separation of an immiscible silicate 
liquid during crystallization (Grout 1918f, p. 657). 
Subsequently, this process was discounted by most 
petrologists studying similar rocks, but the recent 
recognition of late-stage immiscibility in lunar basalts 
(Roeder and Weiblen, 1970, 1971; Rutherford and 
others, 1974) along with new evidence of immisci­
bility in terrestrial rocks (Philpotts, 1970) and the 
experimental confirmation of immiscibility in the 
Skaergoard magma (McBirney, 1975) implies that 
this process must be reconsidered in interpreting the 
genesis of the felsic series rocks in the Duluth Com­
plex.
 

The two-magma petrogenetic model outlined 
above also is consistent with the observed Keweena­
wan stratigraphic relationships. That is, the lower, 
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magnetically reversed lava flows of the North Shore 
Volcanic Group and the Logan intrusions appear to 
be genetically related to older anorthositic series in 
the Duluth Complex, whereas the younger, magne-
tically normal lava flows and other olivine diabase 
dikes and sills appear to be genetically related to 
the younger troctolitic-gabbroic seiies (fig 10). 

STRUCTURE 

The Keweenawan rocks in northeastern Minne­
sota are an integral part of the geologic structure 
generally referred to as the Midcontinent Gravity 
High (Thiel, 1956). The gravity high is due to a 
succession of mafic rocks which occur as a semicon-
tinuous series of fault-bounded blocks forming a long, 
narrow belt that cuts across the pre-Keweenawan 
rocks of Michigan, Wisconsin, Minnesota, Iowa, Neb-
raska, and Kansas. The overall geometry of the 
structure and the distribution of rock types within it 
have many features analogous to those associated 
with known rift systems in other parts of the world 
(King and Zietz, 1971; Morey, 1972; Chase and Gil-
mer, 1973). Because faulting is the dominant geo-
logic process in rift systems, it may be inferred that 
this process played a key role in the evolution of 
the Keweenawan terrane. Morey (1972) has shown 
that sedimentation and tectonism were contemporan-
eous processes and that the observed stratigraphic 
succession and distribution of sedimentary rocks in 
east-central and southeastern Minnesota were con-
trolled largely by the faulting. Our review of the 
geologic relationships in the Duluth Complex, indi-

cates that faulting must have been an important pro­
cess in the evolution of the Keweenawan igneous 

rocks of northeastern Minnesota as well.
 

Unfortunately, to date very few faults have 

been documented by on-the-ground mapping in the 

Duluth Complex. Faults have been recognized where 

contacts between different rock types are displaced 

or where the rocks have been cataclosized. Because 

layering is nat well developed in the anorthositic 

series and appears to be discontinuous along strike 

in the troctolitic-gabbroic series (Taylor, 1964, p. 15), 

unambiguous offset contacts are difficult to docu-

ment, and cataclastic zones have not been looked 

for in detail. The presence of faults may be inferred 

indirectly from other data. For example, the distri-

bution of rock types as inferred from geophysical 

anomalies has been used to define possible fault 

patterns, but this approach has only limited value
 
in any detailed structural study where bedrock ex-

posures are insufficient to adequately constrain the
 
physical interpretations. Linear topographic lows may 

be bedrock controlled, and in the Duluth Complex, 

the coincidence of these lineaments with cataclastic 

zones or displaced contacts implies that some are 

fault controlled. A preliminary photogeologic-photo-

geomorphic interpretation utilizing topographic maps, 

high-level aerial photographs, and various kinds of 

ERTS imagery has shown the existence of numerous 

aT umrs 
lineaments in the Duluth Complex. Studies are cur-rently underway to document and describe the vari-
ous kind of lineamnents present in the Duluth Corn-

-

plex and to evaluate them in terms of their tectonic 
significance Although these studies are incomplete 
we conclude that faulting may be much more ex­
tensive than can be implied from on-the-ground ob-

servations 
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We summarize below for each of the areas 
shown in Figure 1 the presently available on-the­
ground and imagery-derived data used to prepare 
Figure 11, which is a generalized structural interpre­
tation of the Duluth Complex. These data in con­
junction with the structural history of other parts of 
the Midcontinent Gravity High and the structural his­
tory of other known rift systems will serve as a basis 
for evaluating the structural history of the Duluth 
Complex. 

Duluth and Vicinity 

No definitive evidence for faulting at Duluth 
was documented by Grout (1918) or Taylor (1964). 
However, several recent observations may be con­
strued as evidence that faulting occurred. On the 
basis of displaced lava flow contacts, Kilburg (1972, 
p. 42, fig. 5) mapped a north-trending apparently 
near vertical, east side-up fault in the magnetically 
reversed lava flows of the North Shore Volcanic 
Group. In addition, Kilburg (1972, p. 11) described 
from near Ely's Peak, a north-trending brecciated 
zone between the lava flows and the troctolitic-gab­
broic series of the Duluth Complex. No well defined, 
chilled margin material of the troctolitic-gabbroic 
series has been found in this zone; only coarse-grain­
ad anorthositic series rocks and peridotite are pre­
sent, and these rocks could have been faulted to 
their present stratigraphic level. Lastly, most of the 
diabasic dikes in this area occupy north-trending frac­
ture zones which more-or-less parallel the faults de­
scribed above (Taylor, 1964, map). 

Duluth to Hoyt Lakes Area 

Two west-northwest-trending faults have been 
mapped in the Water Hen Creek intrusion south of 
Hoyt Lakes (J. W Mainwaring, in Bonnichsen, 1972, 
fig. v-51) on the basis of displaced contacts. The 
faults appear to delineate a west-northwest-trending 
horst about 700 meters wide. No other definitive 
evidence for faulting has been recognized in this 
drift-covered area of sparse exposures, but abund­
ant north-northeast-trending lineaments are apparent 
on ERTS photographs. These lineaments may be geo­
morphic features formed during Pleistocene time, but 
their extensive development over rocks of the Duluth 
Complex implies that their orientation has been con­
trolled by bedrock structures. 

Hoyt Lakes-Kawishiwi Area 

Phinney and Weiblen did not document any 
faults in their mapping of the Gobbro Lake 1uadron­
gle (Green and others, 1972). Bonnichsen (1 970a) 

wever, mapped several northeast- to north-north­
east-trending faults that offset the basal contact of 
the complex in the Babbitt area. To judge From his 

are small with the northwestmap, displacements
side of each fault up thrown. Similarly, Sims (1974)
noted several apparent offsets in the basal contact 
of the Duluth Complex between Babbitt and Gbbro o h uuhCmlxbtenBbitadGb 
Lake. These offsets are coincident with well develop­
ed north-northeast-trending topographic lineaments 
in the Duluth Complex. Consequently, he interpreted 
these lineaments to be the negative topographic ex­

pressions associated with faulted rock. Both the in­ferred faults and other lineaments have trends para1 ­
lel to that of known faults in the immediately adla-' 

cent Lower Precambrian terrane suggesting that Low­



er Precambrian faults were reactivated during Ke-
weenawan time The actual sense of motion along
these faults is unknown but the geometry of the dis-
placed contacts implies northwest side-up movement. 

A preliminary analysis of high level 1:24,000 
aerial photographs by Cooper (1975) indicates that 
north-northeast-trending lineaments are extensively 
developed in an area bounded on the north by the 
base of the complex and on the south by the Ver-
milion moraine (Wright, 1972, p. 521, fig. VII-2) a 
distance of about 16 kilometers. Additional mapping 
in the Gabbro Lake quadrangle by R. Beltrame, R. 
Cooper, and J. Dunlavey during the 1974 field sea-
son indicates that joints are well developed in proxi-
mity to many of the lineaments and that in some 
places rocks within the lineaments are cataclasized. 
Thus, it appears that many of the lineaments in this 
area are developed over fracture zones in the bed-
rock. 

The contact between the troctolitic-gabbrorc and 
anorthositic series in this area trends generally in an 
east-northeast direction (fig. 11), but it is broken by 
a number of north-northeast-trending extensions of 
troctolitic-gabbroic rocks into the anorthositic series 
rocks (fig. 11). These dike-like extensions more-or-
less parallel many of the lineaments described above, 
As at Duluth, no evidence of a chilled margin has 
been found along these contacts. The general direc-
tions and possible locations of some faults which 
may be inferred from these observationsin Figure 11. are shown 

i i 1exposures 
Werdor. 

Boundary Waters Canoe Area 

No faults have been mapped in the Boundary
Waters Canoe Area (Phinney, 1972, p. 335, V-26).
Here again irregular offsets of the basal contact 
along a northerly direction, dike-like extensions of 
troctolitic-gabbroic series rocks into anorthositic series 
rocks, and the general alignment of isolated expo-
sures of felsic series rocks along north-northeast-
trending zones are interpreted as indications of 
faults whose directions are consistent with those re-
cognize'd and postulated in the Hoyt Lakes-Kawishi-
wi area. 

Gunflint Corridor 

Numerous faults displacing rocks of Keweenowan 
age have been recognized in the Gunflint Corridor. 
Morey (1965), Morey and others (1969) and Mothez 
(1971) have mapped a number north-northwest-
trending faults in the South Lake, Long Island Lake, 
and Hungry Jack Lake quadrangles. All have small 
amounts of vertical displacement in which the south-
west sides are up thrown. Morey (1965), Morey and 
others (1969) and Mathez (1971) also recognized 
several small magnitude, west-northwest-trending, 
south side-up faults. The west-northwest-trending 
faults displace only the Logan intrusions and older 
rocks; and their age, relative to that of the Duluth 
Complex, is unknown. However, the north-northwest-
trending faults appear to be both younger and older 
than the Duluth Complex. The faults mapped by
Mathez (1971) appear to offset rocks of Nathan's 
layered series, whereas those that project toward the 
Tuscarora intrusion in the Long Island Lake quad-
rangle do not displace the basal contact. 

Nathan (1969) recognized one north-northwest-
trending fault on the basis of displace contacts in his 

layered series. The relative magnitudes of vertical 
and horizontal displacement are unknown, but the 
vertical displacement is east side-up. Nathan also 
discussed the possible presence of other more-or-less 
parallel faults, but he was unable to document their 
presence with certainty. 

The rocks of Nathan's layered series are truncat­
ed to the west by the somewhat younger Tuscarora 
intrusion, and the two units are apparently juxta­
posed along a north-trending topographic lineament 
(fig. 9). Again, however, there is no evidence of a 
chilled margin in the troctolitic-gabbroic rocks. 

Lastly, isolated masses of felsic series rocks have 
a strikingly linear distribution along a zone which 
extends northward from Lake Superior to the vicinity 
of the International boundary near Gunflint Lake, a 
distance of over 100 kilometers. The coincidence of 
felsic rocks within cataclatized zones in other parts 
of the Duluth Complex implies that the linear dis­
tribution of these felsic rocks reflects a fundamental 
structural discontinuity. 

Finland-Beaver Bay Area 
Stevenson (1974) delineated several north-north­

east-trending, left-lateral or southeast side-up faults 
in the troctolitic-gabbroic Sonju Lake intrusion north 
of Finland. These faults more-or-less coincide with 
the east edge of the Beaver Bay Complex and as­
sociated differentiated rocks of the troctolitic-gabbro­
ic series and are parallel to the direction defined by

of felsic series rocks in the Gunflint Corrl-
The Beaver Bay Complex and associated trocto­

litic-gabbroic rocks occur as dike-like extensions of 
plutonic and hypabyssal rocks into lava flows of the 
North Shore Volcanic Group. These dike-like bodies 
are parallel to similar dike-like bodies previously 
described in the Hoyt Lakes Kawishiwi area. 

The rocks and faults of the Finland-Beaver Bay 
area also are part of a major structural discontinuity 
that separates the Keweenawan rocks into two ter­
ranes each having distinctly different geological,
geophysical, and ERTS imagery attributes. 
Discussion 

The structural observations on the Duluth Cam­
plex summarized above and compiled in Figure 11 
are typified by a number of general characteristics:
(1) The fault trends are inferred from lineaments and 
displaced contacts, but they are also coincident with 
catoclastic zones and linear occurrences of grano­
phyre. (2) The faults have three general trends; north­
northeast, north-northwest and west-northwest. (3)
In the Hoyt Lakes- Kawishiwi area the fault direc­
tions recognized are sub-parallel to faults formed 
during early Precambrian time. (4) In the Gunflint 
Corridor there is a record of successive periods of 
faulting within the complex during Keweenawan 
time. (5) The spatial and stratigraphic distribution 
of various rock units wiflin the complex is probably 
fault controlled. 

These structural fectures were unknown to early 
workers who because of the general dip of 150-250 
to the southeast considered the Keweenawan rocks 
of northern Minnesota to be a simple sheet-like mass 
which defined the north limb of the so-called "Lake 
Superior syncline" (for summary, see Craddock, 1972 
p. 289). White (1966) suggested major modifications 
to this simple structural interpretation He recognized
three distinct stages in the tectonic evolution of the 
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Keweenawan rocks in the western Lake Superior 
region. These include: (1) The accumulation during 
Middle Keweenawan time of a thick series of lava 
flows and mafic intrusions in two basins separated 
by a north-northeast-trending high extending from 
near the Bayfield peninsula an the south shore of 
Lake Superior toward Beaver Bay in Minnesota; (2) 
The development during Late Keweenawan time of 
the east-northeast-trending "Lake Superior syncline;" 
and (3) The development of late faults such as the 
Keweenawan fault in Michigan, and the Douglas 
and Lake 'Owens faults in Wisconsin. White based 
his interpretation primarily on gravity and magnetic 
data from the western part of Lake Superior supple-
mented by geologic data pertaining principally to 
Keweenawan lava flows. Wieblen and others (1 972a) 
integrated parts of White's model into a general 
structural model for northeastern Minnesota. They 
suggested that the axis of the Middle Keweenawan 
positive area extended into Minnesota and served as 
a locus for tectonism which produced void spaces 
into which the Logan intrusions were passively em-
placed. Subsequently, Wieblen and others (1972b) 
expanded that interpretation and postulated that the 
early period of arching north-northeast was followed 
by a second period of faulting parallel to the arch 
and to the axis of the "Lake Superior syncline." Weib-
fen and others (1972) later correlated distinct magma 
types with these two tectonic stages. They postulated 
that a parent magma for the anorthositic series and 
associated rocks was related to the early stage of 
tectonism, whereas the parent magma of the trocto-
litic-gabbroic series rocks was related to the second 
stage. 

All of the above interpretations serve to estab-
lish a rational sequence of events during Keweena-
wan time, but they do not provide a mechanistic 
explanation for the emplacement of the Duluth Com-
plex and associated rocks. In this report we propose 
to use current concepts regarding oceanic rifting pro-
cesses (Rea, 1975) to evaluate the significance of the 
structural characteristics enumerated above. The an-
alysis that follows must be considered exploratory be-
cause analogies between continental and oceanic 
rifting processes may not be entirely appropriate, 

Some of the salient structural elements associated 
with oceanic rift systems are illustrated in Figure 12. 
These include: (1) vertical faults at the surface which 
decrease in dip toward the spreading axis at depth, 
(2) fault-bounded axial blocks having a keystone 
geometry, (3) faults having either normal or reverse 
motion depending on their location relative to that 
of the spreading center. We suggest however that 
rifting in a continental environment may be more 
complicated than that shown in Figure 12 because 
of inherent structural inhomogenities in axial blocks 
composed of continental materials, variable density 
contrasts between foundered continental blocks and 
rising magmas in the rift system, and asymmetric 
spreading in which only one side of the rift system 
actively moves 

Our petrogenetic analysis has led to the conclu-
sion that the Duluth Complex may be viewed as a 
series of older rock units (peridotite, anorthositic 
series rocks, and granophyre) derived from a low-Al 
magma and a younger troctolitic-gabbroic series 
derived from a high-Ai magma. The peridotite oc-
curs as part of the basement intruded by the high-Al 
magma and the anorthositic series rocks and grano-
phyre occur as inclusions and roof rocks for the tro-

ctolitic-gabbroic series rocks. The fact that the differ­
ent rock units of the complex can be assigned to 
mantle-derived magma types suggests that assimila­
tion of crustal material probably did not play an im-' 
portant role in their emplacement. Separation of 
older crustal rocks by rifting (fig. 12) provdes a 
mechanism for developing void space for the magma 
chambers. The contrasting rock types in the different 
units of each magma series requires magma chain­
bers isolated from their magma sources so that cry­
stal fractionation could occur on a scale large enough 
to separate the observed volumes of plagioclase of 
relatively uniform composition (fig. 8) from perido­
tilte in the low-A magma series rocks and to develop 
the differentiated unit found in the troctolitic-gabbro­
ic rocks. Foundering of axial blocks provides a con­
venient mechanism for separating magma from its 
source to develop the cooling conditions required by 
the observed fractionation (fig. 12). The rate of 
spreading, the rate of magma generation, relative 
super-heat and viscosity of a magma, density con­
trasts between magmas and axial blocks, structural 
and density inhomogeneties in the axial blocks will 
all affect the shape and size of magma chambers 
and the cooling history. 

The extensive fractionation required to produce 
the different units in the low-Al magma series rocks 
suggests foundering of axial blocks followed by 
relatively long periods of tectonic quiescence. On 
the other hand, the multiple fractionation and the 
discontinuous nature of the resulting layering in the 
troctolitic-gabbroic series rocks suggests more episo­
dic tectonism. A two-stage model of magmatism and 
tectonism is suggested, finally, because the rocks of 
the older low-Al magma series are involved in the 
emplacement of the younger high-Al series rocks. 

To illustrate these concepts, we have prepared 
a cross section extending from the Kawishiwi River 
to Lake Superior north of Beaver Bay (fig. 13). The 
shape and relative motions of the postulated fault 
are presumed to coincide with the general relation­
ships illustrated in Figure 12. We have assumed 
that a total separation of 24 kilometers occurred 
along this section. This is the amount of separation 
implied by Chase and Gilmer (1973) in their rifting 
model. A sequence of cross sections illustrates the 
development of void spaces (fig. 13a-d), foundering 
of axial blocks (fig. 13b-d), and the involvement of 
the low-Al magma series rocks in the emplacement 
of the high Al-magma series rocks (fig. 13d). This 
succession of events followed by erosion leads to 
the observed geologic relationships illustrated in 
Figure 13e The geologic relationships at depth pos­
tulated in this cross section are consistent with a 
qualitative interpretation of available geophysical 
data to the extent that gravity maxima occur over the 
Bald Eagle and Sonju Lake intrusions (Ikola, 1970). 

In detail, we suggest the following sequence of 
events leading to geologic relationships observed 
along the line of section. (1) Initial separation along 
a north-northeast-trending direction resulted in the 
emplacement of hypabyssal rocks and magnetically 
reversed lava flows of the North Shore Volcanic 
Group. (2) As separation continued, a volcanic edi­
fice and associated magma chambers formed over 
a width of approximately 25 kilometers Approxi­
mately 8 kilometers of actual separation and a found­
ered axial block 18 kilometers in width appear to 
be adequate to produce a magma chamber of this 
size. We infer that after the low-Al magma was em­
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placed and during a period of relative tectonic que-

scence, peridotite segregated from the anorthositic 
rocks and late granophyre at depth beneath a roof 
of magnetically reversed lava flows and hypabyssal 
sills. Although we illustrate a structurally simple 
axial block in Figure 1 3c, extensive fragmentation of 
this block may have occurred along vertical faults 
giving rise to the same amount of anorthositic series 
rocks by a more complex process. The auto-brecciat-
ed nature of the anorthositic rocks may have devel-
aped in part by fragmentation at this stage. (3) 
After the low-Al magma segregated into the variousAfte th Io-AImagmseregtedintothevarous 

differentiates of the anorthositic series rocks as cry-
stal mushes, but probably before complete solidifica-
tion occurred, renewed separation disrupted the ini-
tial volcanic edifice and created new magma chain-
bers which, at this stage, were filled by a high-Al 
magma, Again, the foundering of axial blocks pro-

duced isolated magma chambers in which troctolitic 
and gabbroic rocks formed. Both the Bald Eagle 
and Sonju Lake intrusions occur along the edges of 
the axial blocks and we envision them to be major 
feeder systems for the troctolitic-gabbroic series rocks. 
We explain the asymmetry of the Bald Eagle intru-
sion with steep contacts on the east and shallow and 
disrupted contacts on the west by tilting of an axial 
block as shown 'in Figure 13d. That fragmentation 
of the older volcanic edifice occurred at this stage is 
indicated by the presence of kilometer-sized inclu-
sions of anorthdsitic series rocks in the Kawishiwi 
intrusion. Tilting of an axial block in the vicinity 
of the Kawishiwi River during this stage could have 
resulted in the penecontemporaneous erosion of older 
magnetically reversed flows; consequently, their pre-
servation in this area would be restricted to down-
thrown blocks which now occur as hornfels inclusions 
in the troctolitic-gabbroic series rocks. (4) Although 
we infer that faulting occurred dominantly during 
emplacement of the igneous rocks, there is no reason 
to assume that motion along these faults ceased en­
tirely with the cessatioii of magmatic activity in 

Middle Keweenawan time. Many of the faults as-

sociated with the Midcontinent Gravity High in south-

eastern Minnesota were periodically active during 

Cambro-Ordeovician time (Morey and Rensink, 1969), 
and perhaps during Pleistocene time (Hogberg, 1975). 
removed much of the volcanic edifice and lead to 

the exposure of plutonic, hypabyssal and extrusive 

rockexosuow inuFigr e amanuscript 

rocks shown in Figure 13e. 


IMPLICATIONS OF THE MODEL 

The general petrogenetic-tectonic model outlined 
above and summarized in Figure 14 has many geo-
logic implications. In this report however, we will 
touch on only those relevant to the exploration and 
development of the copper-nickel mineralization. 
Briefly, the model suggests several new insights into 
the general problem of the distribution of sulfide-
bearing rocks in the complex: 

(1) Surface mapping and diamond drilling in-
dicate that the copper-nickel mineralization is re-
stricted dominantly to basal units of the troctolitic-
gabbroic series (Bonnichsen, 1972; Wager and others, 
1969). This suggests that areas underlain by anor-
thositic series rocks, where reliably mapped, can be 
excluded from consideration as potential sites for 
copper-nickel mineralization. However, our model 
suggests that areas of sparse exposures in the central 
part of the complex presently mapped as anorthositic 
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(fig. 13d, e and fig. 14). Consequently, basal rocks 
like those present on the Kawashwi intrusion might 
be repeated in other areas. Geophysical methods 
would have to be used to evaluate this implication. 

(2) If the introduction of sulfur into the troctoli­
tic-gabbroic series magma played a role in the origin 
of the copper-nickel deposits as suggested by Weiblen 
and Perry (in prep.), the postulated faults most likely 
served as channel ways along which a sulfur-bear­

phase migrated the Further, if linea­inclusionsing gas into the adjacentfrommagma. country rocks or 
ints nt these falinea­
ments and cataclastic zones reflect these faults at 
depth, they are likely targets for exploration. 

(3) Our petrogenetic and tectonic model places 
no constraints on the size of'any given rock unit, 
either with regard to'its persistence along strike or 
extension at depth. One might view the entire Ka­
wishiwi-Hoyt Lakes area as being underlain by a 
single intrusion of troctolitic-gabbroic series rocks fed 
through the Bald Eagle intrusion. Conversely, rocks 
fed through the Bald Eagle intrusion might be local­
ized essentially to the confines of the Gabbro Lake 
quadrangle. This uncertainty results from the fact 
that the north-northeast-trendlng faults shown in Fig­
ure 11 must be bounded along transform or strike­
slip faults trending in a general easterly direction. 
The north-northwest-trending faults cutting the Water-
Hen Creek intrusion in the Duluth-Hoyt Lakes area 
may be examples of such faults, but at present there 
are no constraints on the distribution of similar faults. 

A better understanding of the distribution of rocks 
in the Hoyt Lakes-Kawishiwi area might be greatly 
facilitated by the careful search for additional faults 
of this type. 
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Figure 1. 	 Location maf.of the Duluth Complex 
Boundaries of the complex are from Sims (1970). 

For purposes of presentation and discussion of geol­
oin this repo 
oeyort, this. the complex has been divided intothe six geographic areas shown. These subdivisions 
are not entirely arbitrary because the access, nature 
of the exposures, and the geology are somewhat dis­
tinct in each. Moreover, the subdivisions more-or-less 
delineate terranes mapped by different individuals 
at different times. 
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Figure 2. 	 Changes in the generalized contacts of the 
Duluth Complex from 1900 to 1970. 

Superposition of the generalized contacts of the 

Duluth Complex as drawn on three successive state 
maps shows that the lower contact has not been re­
vised significantly, whereas each new interpretation 
of available data on upper contactthe has resulted 
in drastic changes. See text for further discussion. 

a 

Figure 3. Diagrammatic sketches of typical textures 
in rocks of the Duluth Complex.. -

The bar scale in each diagram is approximately 
2 mm in length. Q, quartz; P1, plagioclase; Mt, mag­
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netite; g, myrmekitic intergrowths of quartz and feld-
spar; 01, olivine; ILM, ilmenite; CPX, clinopyroxene; 
s, symplectite; BIO, biotite; PO, pyrhotite; Pr, pentland-
ite; and Cp + Cb, chalcopyrite-bornite intergrowths. 
a, Felsic series granophyre. Radiating intergrowths 
of quartz and feldspar (albite and/or potassium feld-
spar, right side of figure) produce a myrmekitic tex-
ture in some granophyre (Taylor, 1964, p. 39). This 
texture commonly is disrupted by granular inter-
growths of quartz and feldspar shown on the left side 
of the figure (Taylor, 1964, p. 38). Combination of 
these two textures define a granophyric texture. b 
Anorihositic series rocks. Tabular plagioclase grains 
form a framework within which olivine, pyroxene, 
and/or iron-titanium oxides occur as interstitial grans. 
In some samples individual interstitial grains may be 

randomly oriented or optically continuous from one 
void to the next forming olkocrysts and a poikilitic 
texture (Weiblen, 1965, p. 77, fig. b; Phinney, 1972, 
p. 342, fig. V-28D). Further textural complexities may 

include hypersthene overgrowths on olivine (Phinney,
 
1972, p. 342, fig. V-28C). symplectic intergrowths of 

hypersthene and plagioclase (s) (Phinney, 1972, p. 

344, fig. V-30C) or late interstitial intergrowths of
 
iron-titanium oxides with biotite and/or granophyre
 
(Phinney, 1972, p. 344, fig. V-30B and D). c,Perido-

tite. Euhedral to subhedral olivine is enclosed within 

oikocrysts of clinopyroxene. Ilmenite fills voids be­
tween clinopyroxene grains. d-f, Troctolitic-gabbroic 
series having textures formed by processes in which 

over flow. d, Layeredgravity settling predominated 
troctolite. Euhedral to subhedral olivine is intergrown 
with tabular subparallel grains of plagioclose (Phin-
ney, 1972, p. 329, fig. V-29A). Variations in olivine 
content gives the rock a layered fabric. Clinopyro-
xene, ilmenite-biotite intergrowths, and plagioclase-
hyperthese symplectite fill spaces between plagioclase 
and olivine as described' for textural type b. This 
textural type occurs in the upper parts of troctolitic-
gabbroic intrusions. e,Augite-troctolite. Euhedral to 
subhedral olivine is intergrown with randomly orient­
ed, tabular grains of plagioclase. Clinopyroxene, il­
menite, and biotite have a similar textural occurrence 
to that in d above, but are more abundant. This tex­
tural type occurs in border zones of troctolitic-gabbro­

ic intrusions (Phinney, 1969, p. 15). f, Mineralized 

This textural type is similar to e


augite-troctolite. 
are
above except that copper-nickel sulfide minerals 

included in and intergrown with the interstitial sili­
cate minerals. Sulfides also occur as inclusions in 
the borders of plagioclase grains. This textural type 
occurs at the base of some troctolitic-gabbroic intru­
sions (Bonnichsen, 1972, p. 388-393). g-i, Troctolitic­
gabbroic rocks having tMxtures formed by processes 
in which flow predominated over gravity settling. 
These textural types occur in stratigraphic successions 
in which the crystallization sequence is defined by 
the successive appearance of subhedral to euhedral 
minerals. They also are characterized by a paucity 
of late interstitial material compared with textural 
types and d through f above (Weiblen, 1965, p. 82-
97, and 126; Beitsch, inprep). g, Oxide gabbro. Mag-
netite-ilmenite, clinopyroxene, and plagioclase occur 
as subhedral to euhedral grains. Tabular pyroxene 
and plagioclase commonly define a foliated or line-
ated fabric. Apatite may occur as an important in-
terstitial or subhedral to euhedral constituent in this 
textural type (Weiblen, 1965, p. 96, fig. C). H, Gab-
bro. Olivine-gabbro similar to textural type g above 
except that the magnetite-ilmenite occurs as inter-
stitial grains (Weiblen, 1965, p. 92-95). i, Troctolite, 
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similar to textural type g and h above except that 
clinopyroxene is interstitial; magnetite-ilmenite is a 
minor interstitial phase. This textural type is com­
manly modified by serpentination of the olivine which 
results in irregular fractures in olivine and radiatings 
fractures in the plagioclase (Weiblen, 1965, p. 82-87). 
Textural types c, h, and g define the crystallization 
sequence: olivine, plagloclase, clinopyroxene, magne­
tite-ilmenite, apatite in troctolitic-gabbroic series in­
trusions. 
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Figure 4. 	 Classification schemes used to name vari­
ous rock types in the Duluth Complex. 

Top, Davidson (1969, a, b, p. 2, fig. 2); Bottom, 
Phinney, (1972, p. 334, fig. V-25). In both classifica­
tion schemes the root name, such as troctolite, is 
determined by the relative abundances of the essen­
tial minerals named at the corners of the tetrahed­
rons. Compound names such as augite-troctolite or 
oxide-gabbro indicate the presence of non-essential 
minerals in relatively appreciable quantities (gener­
ally greater than 10%). Textural terms such as "poi­
kilitic" also have been used as modifiers of the root 
name (Phinney, 1969). 
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Figure 5. Index map showing quadrangles where 
the Duluth Complex has been mapped in 
some detail. 

(1) Duluth and vicinity (Taylor, 1963); (2) Allen°. 
quadrangle (Bonnichsen, 1970, open-file map); (3) 
Babbitt S W. quadrangle (Bonnichsen, 1970, open-file 
map); (4) Babbitt S.E. quadrangle (Bonnichsen, 1970, 
open-file map); (5) Babbitt quadrangle (Bonnichsen, 

N.E. quadrangle1970, open-file map); (6) Babbitt 
(Bonnichsen, 1970, open-file map); (7) Kangas Bay 

(8)quadrangle (Bonnichsen, 1970, open-file map); 

Gabbro Lake quadrangle (Green and others, 1966); 

(9) Gillis Lake quadrangle (Beitch, in prep); (10) Long 
Island Lake quadrangle (Morey and others, 1969,
open-file map); (11) Gunflint Lake quadrangle (Na-

(12) South Lake quadrangle (Nathan,
than, 1969); 

1969); (13) Hungry Jack Lake quadrangle (Nathan,
(Babcock,Lake quadrangleCrocodile1969); (14) 
1959); (15) Alice Lake quadrangle (Davidson, in press); 

in press); (17)(16) Lake Polly quadrangle (Davidson, 
Kelso Mountain quadrangle (Davidson, in press); (18) 

Lake quadrangle (Davidson, in press); (19)Cherokee 

Brule Lake quadrangle (Davidson, in press); (20)
 

Eagle Mountain quadrangle (Davidson, in press); (21)
 
quadrangle (Davidson, in press); (22)Lima Mountain 

in press); (23)Pine Mountain quadrangle (Davidson, 
Perent Lake quadrangle (Davidson, 1969b); (24) Ka­

wishiwi Lake quadrangle (Davidson, 1969a); (25) Beth 
quadrangle (Davidson, in press); (26) SawbillLake 

Camp quadrangle (Davidson, in press); (27) Terit 
in press). 	 In addition,Lake quadrangle (Davidson, 


an outcrop of the southern part of the Duluth Com­

plex from Duluth to Hoyt Lakes has been published 

by Bonnichsen (1970c). .
 -
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Figure 6. 	 Generalized bedrock geologic map of the 
Duluth Complex and associated rocks. 

This map has been compiled from quadrangle­
sourcesscale maps referenced in Figure 5 and from 

only major rockdiscussed in the text. Note that 

units are shown. See references cited in the biblio­
graphy and Chapter V in Geology of Minnesota: A
icentennial volume (Sims and Morey, 1972) for speci-
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Figure 7. 	 Plot of mineral abundance data For anor­
thositic and troctolitic-gabbroic series 

rocks from the Duluth Complex. 

Modal data on plagioclase (PI), olivine (01), and 

other mafic minerals (Om), including clinopyroxene, 

orthopyroxene, and magnetite-ilmenite have been 
The fieldsnormalized to 100% on this diagram. 
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shown define a possible rock nomenclature. Fields II 
through V may be subdivided by a line perpendicular 
to the OI-Om side of the triangle resulting in fields 
for olivine-rich rocks (troctolites) on the O1-PI side (a) 
and pyroxene-oxide-rich rocks (gabbro and oxide 
gabbro) on the Om-P1 side (b). I, Anorthosite; Ila, 
Troctolitic anorthosite; l1b, Gabbroic anorthosite; Ilia, 
Anorthositic troctolite; 1116, Anorthositic gabbro; IVa, 
Troctolite; IVb, Gabbro; Va, Picrite; Vb, Melagabbra; 
and VI, Peridotite. The last field may be subdivided 
into feldspathic peridotite and peridotite at a level 
of 10% plagioclase content and into pyroxenite-peri- 
dotite at a level of 30% of pyroxene content. The 
data are from Taylor, 1964, p. 11 and 16; Phinney, 
1972, p. 336 and 337; and Davidson, 1972, p. 356. 
Individual data points represent averages of many 
samples in most cases (see refs.). Thus, the spread of 
mineral composition is greater than shown. The dis-
tribution of compositions plotted, however, illustrate 
the general observation that orthe average the an-
orthositic series rocks (closed triangles contain more 
plagioclase than the troctolitic-gabbroic series rocks 
(open circles). The plot illustrates the problem of 
rock nomenclature for the Complex. For example, 
with the nomenclature used for this plot, four samples 
from -the troctolitic-gabbroic series plot as troctolitic-
gabbroic anorthosites and seven others as anorthosi-
tic troctolites. The latter two terms have been used 
extensively in the part to refer to rocks of the anor-
thositic series. 
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Figure 8. Pyroxene, plagioclase and olivine composi-

tional data from the Skaergaard intrusion 

and various units in the Duluth Complex. 


Closed circles refer to data from troctoli(ic-gab-

bric series rocksgopen circles refer to pyroxene data 

from differentiated rocks of the felsic series at Du-

luth; open triangles refer to data from anorthostic 
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series rocks; pluses refer to data from rocks from the 
Gunflint Corridor studied by Nathan. Di-diopside, 
En-enstatite, Fs-wollastonite, An-anorthosite, and Fo­
forestite. Dashed line in the pyroxene quadilateral 
and solid line in the plagioclose-olivine diagram in 
Figures C-I indicate the trend of the Sonju Lake intru­
sion (fig. B). Dark and light shaded areas indicate 
units Ago and Agu respectively mapped in the Gab­
bra Lake quadrangle in the anorthositic series by 
Phinney (1969). The diagrams illustrate the restricted 
differentiation trend recognized in the Duluth Com­
plex compared to the Skaergaard intrusion (A) with 
the exception of the Sonju Lake intrusion (B). Trends 
on the An-Fo diagram reflect the unique fractionation 
and equilibration styles in different intrusions (Weib­
len and others, 1975). The available data on the 
anorthositic series suggests equilibration of large 
volumes of rock to a common temperature without 
significant successive fractionation whereas the data 
on the troctolitic-gabbroic rocks approaches (B) the 
extensive fractionation observed in the Skaergaard 
intrusion (A). Data from: A, Wager and Brown, 1967, 
p. 34 & 39; B, Stevenson, 1974, p. 105 & 107; C, 
selected data from Weiblen, 1965, p. 123, 134-148; 
D, Taylor, 1964, p. 17 & 27; E, Hardyman, 1969, 
p. 34, 41-42; F, Phinney, 1969, p. 9; G, Beitsch, in 
prep; H, selected data from Nathan, 1969 and Phin­
ney, 1972, p. 349; I, Davidson, 1972, p. 356. Aver­
age values have been plotted for ranges of composi­
tions. Except for the detailed analyses by Hardyman 
(1969) and Stevenson (1974) the distribution of data
in. these plots provide only a qualitative indication of
 
compositional trends­

--- I-
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Figure 9. Structural block diagrams showing the in­
part of the unflint Corridor.
ferred geologic relationships of rock units 

(A) Long Island Lake quadrangle (Morey and
 

1969); (B) Gunflint Lake qua~drangle (Nathan, 
.1969). medium-
Id, Logan intrusions; tp,,fine- to 


grained augite trctolite; tH:, fine-grained trctolite; 
tin, medium-grainedl trctolite; tta, interlayered poi­

-kiltc
ugte gobbro and Iroctohte; th, hornfels; ag,
 

anorthositic gabbro; fg, ferrogranodiorite; gr, grano­
phyre; rod, metadiabase; kmv, Keweenawan meta­volcanic rocks; dadm,various units of Nathan's lay­
ered series. See text and references cited therein for
 
discussion. Note that a north-trendng topographic
 

lineament separates Nathan's layered series and
 
somewhat younger troctolit ic-gabbraic rocks. This 
lineament isparallel to the inferred, general north­
east fault trends shown in Figure o. 



text.
 

structural elements 
text, with rift systems. 

erthe Figure Diagrammatic ofFigure 10. Schematic diagram summarizing results ef 12. salient sections showingassociatedsome 

These calculations (Table 3) show that all the rock Wedge-shaped void spaces develop by lateral 
type intheDulth cn b reate totwo separation faults are near theompex atong which vertical 

tpes nt mDgmaty ple an e l agma andt surfacewh flatten fromdepth. Such voids heollAIfilled and mama at below or sedimentmayfrom 

asomewhat younger high-Al magma. The calcula- above. Fudrn fahnigwl rkytn 
tions also are consistent with observed Keweenawan F u drn f a h n i g w l r k ytn 
stratigraphic trelationshipsr oblock,in that the lower lava block will dependcontrastson structural inhomogenities between block margin,density and in the 

perlgciigcauans dicuse dicusin 
Logan intrusions ore related to the anorthositic series 
rocks, whereas the upper lava flows and other olivine provides a method for separating magma from its 

groiaseies rocks, See Figrested 13 ad 1 faults having either normal or reverse motions de­diaasediksnd ill ar rlatd t th toctlitc- source. The keystone block is bounded by curved 
igaru cemtrocs.deFiagrsu13mandzpending on their locations relative to that of the 

spreading center, See Rca, 1975 and text for further 

' + +" - le 

text w i smord types l dier magdm a nparnt a rama anru o ngA - file wit ma m r m beo r s di e t f o 

ed bys northesttedals and resttethlsae trco-fiuresof 13.in Genterie tructuorrevsemtionsthe lusrain 
Caol Thesecalcuaion) shoow tt al t er- We vd s + s ­and 1 byninnothas 

tren~~~speding See text 9. inheDlhConn 
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faults. for furtherdicsinadmadmgatsRa 
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IJUT 04 3 4 + N + I 
FiguremasoteeDtis13. Generalized +th+e structure in 

stratiaCompl exatio sh win knthe faualt i nfertrae eton betwen margn,that and 
Loanintrunsm are elaft tu the ios csies prov is a nd for sar+m+in tae fumut s 

reo lgye tgerals ed rom Figes a6l G -neThe p. bloc+is bousnd a cured 

stages in the voluon of the Keweenawan ­

terrane, northwest-southeast. 
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The sections are drawn along a northwest-south-
east line 13 km east of Ely (left) and 20 km northwest 
of Beaver Bay (right) (fig. 1). Section e crosses the 
Bald Eagle intrusion (Weiblen, 1965) at symbol (t) 
and the Sonju Lake intrusion (Stevenson, 1974) just 
to the left of the symbol (nsvn). a, incipient faulting. 
b, emplacement of hypabyssal sills and dikes of 
Logan composition, and extrusion of magnetically 
reversed lava flows of the North Shore Volcanic 
Group (nsvr). c, separation with emplacement of low-
Al magma in void spaces where it segregates into 
anorthositic series rocks (a), peridotite (p), and felsic 
series rocks (f). d, continued separation with em-
placement of high-Al magma in void spaces where 
it differentiates into various rock units of the troctoli­
tic-gabbroic series (t). Hypabyssal bodies of olivine 
diabase (od) also ore emplaced during this stage are 
magnetically normal lava flows of North Shore Vol-
canic Group (nsvn). e, post-erosion and present sub-
crop distribution of rock types along the section. Seetext for additional discussion. 

)I 

f ' everse" flows (nsvr) 

M", 

I. '* , 
.ies 

"Normal" flows (nsvn) 
f nsvr 	 ... 

"	 , 
-

|4 Si7k t 	
" 


.74, ' , 


- " 
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Figure 14. Diagrammatic sections summarizing the 
petrogenetic-tectonic modef outlined in this 
report. . 

Top diagram ilustrtes an 	 T i isaincipient fracture .ys-
tern through crustal rocks of unspecified thickness and 
inhomogenehy. The middle diagram schematically. 
illustrates the development of funnel-shaped void 
space by lateral displacement and subsequent filling 
by a magma which produced magnetically reversed 
lavas, (nsvr), minor hypabyssal dikes and sills (black 
heavy lines), and a series of gravity segregated rocks 
- peridotite (P), anorthositic rocks (a), and -fblsic 
rocks (f). Emplacement and cooling in this magmatic 
system was affected by foundering of a keystone 
block as shown. The lower diagram schematically 
shows further development of the same processes as 
described above, except that the rocks of the earlier 
magma series were involved in the tectonism as 
shown. The second periods of magma emplacement 
produced a series of magnetically normal lavas (nsv-

-94­

n), a chemically and tectonically distinct suite of hy­
pabyssal rocks (not shown), and a troctolitic-gabbroic 
series of layered rocks (t). Note the foundering of 
the axial block during the second stage of magma 
emplacement tilts the rocks formed during the first 
stage. This process could hove been continuous or 
intermittent during both stages. Furthermore, ig­
neous rocks could have been emplaced along right 
hand side of the keystone blocks as shown in Figure
13. 
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Table 1. Chemical analyses of selected rocks from 
the Duluth Complex and possible parent 

magma compositions. 

NOTES - TABLE 1 	 -' 

Anorthositic Series 

1. Probably from an inclusion of anorthositic ser­
rocks in the troctolitic-gabbroic rocks at Duluth. 

Sec. 19, T. 50N., R.]14W., north of Proctor, Grout 1919f, 
p. 646. --	 ­

Troctolitic-gabb'oic Series 
2. Layered tractolite M 4634 at Bardons Peak, Du­

luth, S.W. 1/4 Sec. 34, T.6-N., R. 15W., Taylor 1964, 
p.29. 

3. Serpentinized troctolite M6933, Bald Eagle In­
trusion, new analysis, N.E. .4,Sec. 10, T.61N., R.10W. 

" 4. Olivine gabbro, M6505, Bald Eagle Intrusion, 
new analysis, S.E. /4 Sec. 11, T.61N, R.1OW. 
. 5. Oxide gabbro, M6971, Bald Eagle Intrusion, 

new analysis S.E., 1 Sec. 29, T.59N., R.i0W. 
6. Anorthositic troctolite, M6150, South Kawishiwi 

Intrusion, new analysis N E. ,A, Sec. 13, T.61N., R.I1W. 
Analysis 3-6 made by instrumental and wet 

chemical methods by Kikumatsu Ohta, Director - Tok­yo Coal and Mineral Laboratory, Tokyo, Japan. 

Felsic Series 	 - ­

7. Granophyre, M6865, Greenwood Lake,: new 
analysis, N W. 14 Sec. 25, T.SBN., R. 1W. 

8. Granophyre, M4628, Bardons Peak, Sec. 27, 
T.49N., R.15W. 

9. Granophyric, aplitic granite, M3787 Duluth, 
N W. Sec. 27, T.50N., R 14W., Taylor, 1964, p. 42 

10. Granophyre, M3764, Duluth, Sec. 32, T.50N., 
R.14W., Taylor, 1964, p. 42. 

11. Ferrogranodiorite, M4624 Duluth N.W. /.Sec.­
28, T5ON, R.4W., Taylor, 1964, p. 32. 

. - ­

.... 
12. Peridotite, Duluth, S.W. 4, Sec. 34, T.49N.,. 

R.15W, Grout 1918f, p. 646. 



Hornfels 	 Location 
13. Basalt hornfels, M3763, Duluth, northwest of S.E. 1/4 	 Sec. 10, T.64N., R.5W. 

57th Ave. Quarry, Taylor, 1964, p. 13. S.E. Sec. 8, T.64N., R.5W. 
Possible Parent Magma Compositions S W. Sec. 23, T.64N., R.5W. 

14. Augite, porphyritic basalt flow A, N.W. 1/4, S.W. Sec. 34, T.49N., R.15W. 
Sec. 20, T.49N, R.15W., K:lburg, 1972, table 3, p. 25 S.E. 1/4 Sec. 34, T.65N., R.5W. 

15. 	 Chilled margin, Pigeon Point Sill, PP-219-3, S.E. Sec 32, T.65N., R.5W.
 
Sec. 3, T.64N., R.5W.
N.W. 1/, Sec. 28, T.64N., R.7E., Mudrey, 1973, p. 129. S.E. 

16. Basaltic komatiite Barberton type #3, Viljoen N.E. 1/ Sec. 32, T.65N., R.5W. 
R.SW.and Viljoen, 1969, p. 80, table 5. 	 N.W. Sec. 11, T.64N., 

17. Chilled margin, Skoergaard Intrusion, EG. 
4507, Wager and Brown, 1967, p. 152. 

* 2t*t 2t 25224* 0m .. .t 5. 2 * 2224 

t3. 1t.11.°;%O )11 . e t •t1 t 

f- " .t • -- "t ' 1• Il 11 .2 	 2l papos2 202 52 2 for22itions 

I'll 1 .n...-. .. -	 5. 

tt	 difrn unit in the Duut Complex. 

................. 	 .. .. a 3 Smary f mass balance ( t &
 

composf °itionst. he anlye of uts or minrs used2o..... . . . .................. 	 dieren t hesi Th resulseof.
at the of table.D 

.. calcrlations aregt.bulatedvat the btom.sts e tex 
2 1o.. ... ..IIt: ....1i,55. .. ... . .. .. .. ...for discuission 

SAG$S ~~t ~ tt~ =] 0~ z ~~ ?P 1970 for th* men compiios~ ls a ~ o.°.1N; z ,, ~~~Dhry$I °, Therrac e agma t s co mIt; .23 ,,° °, o• ,,0, o ac1. rs ifor 	 arto-ae ag 

°withi. ... ... ......... . ...... ... ... ... ... ... aThanalyses 
o, o0 oin e conceerati in th e r.io -©* ,,°o1.1 °0 00, o0g._ coaoos,the analo es r t 

Table..... Seetd rla ..................s fro different..... et a gmaea wolds sb uareure forssb ettner fWigt.m n ly 
units.... f. ..h ..D . ... .. ... .. . .... 2.ery The er0 or i the fitm f omth s ilction are ­

;"-" ": -" " -- " - "all within the analytical error of the individual anale 

NOTES: All analyses are averages of triplicate elec- yses. 
tron microprobe point analyses made in general on
the centers of grans. Analyzing conditions: 20 K.V., 

0.03 microamperes, 5-10 micrometer diameter elec­tron beam. X-ray intensity data was corrected for 

background and reduced with analyzed mineral 
standards All analyses were made on the M.A.C. 
Model 400 electron microprobe in the Department of 
Geology and Geophysics, University of Minnesota, 
Analyses from Beitsch (in prep). 

Analyses Sample#
1, 3, & 5 312 
2, 4, & 6 222 

7 303 
8, 9, & 10 DC-211, 16, 21, 26, & 28 	 124 

12, 17, 22, 27, & 29 156 
13, 18, & 23
14, 19, & 24 	

so
180 

15, 20, & 25 	 321
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Table 2. ORIGINAL PAGE 	IS 
OF POoR QUAUXY 

fZ'. 1 2 3 4 5 6 7 B 9 10 11 17 13 14 IL 
I, 
!*U'iIT 7.:y-Tv-o:r1C sr anz 	 1KRTD0?? Ts3VT0'.T.C-PP0P22C SU'IrS 

11!t'CLhn Plaryloclac Clivrox~c~e, flncrtte lotite Cen uA Oliv rlaqtoclaa 

51.10 52.01 52.)3
SO2 53.31 51.74 50.30 50.55 A.21 0.25 35.70 51.70 0.10 35.10 51.50 	 51.34 


2.09 0.10 0.05 22.60 2).43 31.50 30.30 29.67
A!203 30.27 29.16 3.0; 1.54 0.07 0.45 11.70 


FeD 0.2; 0.44 11.40 14.29 46.10 49.31 25.30 10.)) 45.70 38.40 1.03 0.34 1.27 1.9
 

.%, 0.05 - 10.90 11.16 0.50 0.14 6.23 14.70 2.43 26.30 - - - D.0 0.10
 

CaO 11.29 12.24 20.50 20.51 0.03 0.16 0.05 19.50 0.10 0.16 11.71 11.59 12.0 13.02 12.;1 

Na20 5.29 4.32 - - .- 0.45 0.23 - - 3.D1 3.96 4 22 3.43 2,71 

1:20 0.33 0.3a - - - - 9.13 - - - 0.41 0.35 0.35 0.20 0.30 

TiO 0.04 0.03 0.31 0.4' 50.50 47.31 10.11 1.32 50.20 0.11 0.10 . 0.11 0.00 0.10 0.16 
2 


0.34 0.46 0.54 0.07 0.19 0.54 0,32 	 o.ho 0.00 ­pna 0.01 - 0.35 

0.05 - 0.13 0.01 0.04 *0.24 0.37 	 0.12 0.00 0.00 - - " 0.01 -Cr203 

?:,a - - 0.03 0.04 - - - 0.025 - 0.092 - - -


Total 101.4 90.31 96.;o 90.91 98.00 98.27 90.75 100,295 99.54 100.657 99.27 100.12 100.O2 101.99 97.73 
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1.915 0.002 0.014 0.031 0.011 0.013 0.021
Ti . 0.005 0.004 0.009 0.014 1.959 I.a00 1.213 0.037 
6.452
Al G.303 6.31 0.141 0.070 0.004 0.02B 2.203 0.091 - - 6.464 6.316 6,22 C.404 


Cr - - 0.006 0.000 0.004 0.001 0.015 D.003 - ­

0.039 	 0,00 0.370 0.461 1.900 2.144 3.377 0.321 1.939 D.903 0.202 0.051 0.192 0.290 

0.10G 0.023 0.00a . - 0.012 0.011 0.020 0.020 0,00D0.002 
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2,327 2,501 2,490- Ca 2.164 2.427 0.653 0.048 0.002 0.009 0.00S 0.776 - 0.005 2.309 2.261 

S - - 0.001 0.001 - - - - 0.001 - 0.002 . . 

- Na 1.835 1.550 - - 0.140 0.017 - - 1.399 0.700 1.431 1.192 0.971 

0.096 0.042 0.031 0.064 0.077- - 1.-60 --	 ­0.075 0.09J 


Zota1 20.142 20.074 3.963 4.00 4.0 A 4.081 15.936 3.998 4.077 3.010 20.039 19.292 20.19 19.958 19.661 

19 20 21 22 23 24 25 26 27 28 23
16I 17 10 


UT TocLtC-6p23?3TC SEnLS

Odivine 	 Clironyroxc0c OrtLol-,toS.'f 11rtitoflti RAt 

S!02 35.19 35.75 35.21 35,50 36.25 49.28 52.64 51.11 .50.31 52.05 51.05 55.51 0,09 0.17
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Minerals and Plate Tectonics: A Conceptual Revolution
 

Drastically higher prices for oil and de-
clining U.S production have drawn atten-
tion to supplies of other key industrial ma-
terials, especially minerals Although im-
mediate shortages do not appear likely, 
some authorities have expressed concern 
about the extent of U.S. dependence on 
other countries for supplies of chromium, 
manganese, and other metals. Moreover, 
depletion of high grade ores and environ-
mental regulations affecting mining and 
ore processing are expected to increasingly 
constrain the availability of minerals. 

Fortunately, renewed interest in miner-
als comes at a time of excitement and 
sweeping new ideas in the study of mineral 
deposits. The new ideas reflect the impact 
on economic geology of plate tectonic 
models for the evolution of the earth's 
crust. Many ore deposits, for example, are 
now known to occur at present or past 
boundaries of the huge crustal plates 
whose movements have shaped and re-
shaped the earth's surface. What ores are 
formed and where they are placed in the 
crust, it is proposed, depend principally on 
the tectonic history of a particular region; 
several models of the processes involved 
have been put forward. Similarly, it is pro-
posed that the interaction of seawater with 
cooling volcanic rock is the principal 
means by which many metals are extracted 
and concentrated into economically valu-
able ore bodies; thus hydrothermal rather 
than magmatic processes are the key to un-
derstanding the geochemistry ofore depos-
its. These proposals and others have stimu-
lated a host of more detailed investiga-
tions. Many geologists believe that these 
developments portend a fundamentally 
new understanding of the origin of miner-
als and are laying the scientific foundation 
for a new era in mineral exploration, 

Not all mineraldeposits fit the new con-
ceptual framework, but many major 
classes of metal ores are explicable in its 
terms. The evolving theoretical models 
provide detailed if still controversial ex-

planations for the chemistry, mineralogy,, 
and stratigraphic location of these deposits. 
and thus a host of clues with which to look 
for still undiscovered mineral deposits, 
some of which are finding tentative use in 
the mineral industry. They also have impli­
cations for the evolution of the earth's 
crust; similarities between recent and more 
ancient ore bodies are seen by some re-

searchers as evidence that tectonic process-
es not unlike those of the present geologic 
era occurred throughout most of geologic 

history. 
Many metallic ores are now widely re-

ognized to be of volcanic origin in the sense 
that they occur in volcanic or igneous 

5 SEPTEMBER 1975 

rocks and were formed at the sAme time as 
those rocks. According to plate tectonic 
theory, volcanism occurs in several cir-
cumstances at diverging plate boundaries 
(mid-ocean ridges or other centers of sea-
floor spreading), here mantle material 
rises to form new oceanic crust: at con-
verging boundaries, where crustal plates 
descend into themantle in a process known 
as subduction, leading to volcanism that 
forms chains of mountains or oceanic is-
land arcs; and, less frequently, over hot 
spots caused by ascending plumes of 
mantle material (Fig. 1). Each of these 
processes, except possibly the last, is now 
thought to give riseto a characteristic type 
ortypesof ore deposits. -

One of the clearest examples-and one 
which has had major impact on the think-
ing of economic geologists-is found on 
the Mediterranean island ofCyprus, long a 
rich source of copper. The copper sulfide 
ore occurs in the Troodos area of Cyprus 
in adistinctive sequence of rocks on top, 
sediments of a type formed on the ocean 
floor beneath tie sediments, pillow lavas 
formed when molten volcanic material 
erupts into seawater, farther down, vertical 
sheets or dikes ofbasaltic rocks formed as 
rifts or cracks in the ocean floor are filled 
from below with volcanic material, and on 
the bottom, ultramafic rocks(rich in maj-
nesium and iron) that are believed to be 
characteristic of the earth's mantle. This 
progression of rock types is known to geol-
ogists as an ophiolitic sequence. About the 
time that econ6mic geologists recognized 
copper sulfide deposits as an integral part 
of these rocks on Cyprus, other geologists 
recognized the ophiolitic sequence as ex-
actly that which should be formed at a 
mid-ocean ridge. Thus the Troodos area is 
now thought to be a largely unaltered piece 
of oceanic crust thrust up when Cyprus 
was formed, and the mineral deposits it 
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contains are thought to be characteristic of 
those formed at mid-ocean ridges. 

The minerals include sulfides of copper. 
iron, and sometimes zinc embedded in the 
pillow lavas, small masses or **pods" of 
chromium ore near the top of the 
ultramafic layer, and asbestos deposits 
also in the ultramafic rock. Although not 
present on Cyprus. lateritic nickel deposits 
are sometimes found in sections of oceanic 
crust where ultramafic rock (which is rch 
in nickel) has been exposed and weathered. 
Mineral deposits of the Troodos type are 
found in many parts of the world, includ­
ing the northeastern United States and 
eastern Canada. They range in age from 
the geologically young deposits of Cyprus 
to older deposits that originated as many 
as 600 million years ago. 

A second major type of mineral depos­
its-large bodies of low grade ores known 

" as porphyry coppers-are commonly asso­
ciated with converging plate boundaries. A 
prime example is the extensive copper de­
posits in the Andes, where the eastward­
moving oceanic crust of the Pacific plunges 
under the lighter material of the westward­
moving South American continent. Partial 
melting of the downward-moving oceanic 
plate is believed to generate magmas that 
rise through the overlying continental 
rocks, sometimes reaching the surface to 
form volcanoes. The upper portions of the 
pipehke stalks or cores of these magmatic 
intrusions into the surrounding continental 
rock often contain copper and molybde­
num, and sometimes gold and silver as 
well. Several investigators" have studied 
this process, including Richard Sillitoe, 
formerly of the Instituto de Investiga­
ciones Geoldgicas, Santiago, Chile, and 
now at Imperial College, London: P. W. 
Guild of the U.S. Geological Survey, Res­
ton, Virginia; Andrew Mitchell of Oxford 
University;, and M. S. Garson of the Insti-
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Fig. I. Schematic showing three different ore-forming environments and the plate-tectonic phenome­
napostulated to give rise to them. (A)a mid-ocean ridge or rism (B)a subducnon zone underLin ga 

continental margin: and (C) a subduction zone underlyingan island arc. Arrows indicate direction of 
motion of the plates­
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rule of Geological Sciences. London They tally by the movement of the plate, and 
propose that formation of porphyry ore then released as the do'vnward-moving 
deposits is a normal facet of the processes plate is heated . 

that generate the igneous rocks in which Porphyry copper deposits account for 
the) occur. Sillitoe, for example, suggests more than half the world's supply of that 
that the metals of the porphyry ores were metal. In addition to the porphyry deposits 
initially incorporated in oceanic crust at in the Andes, there are deposits in western 
the mid-ocean ridge, transported horizon- North America, in parts of the Alpine belt 

Plate Tectonics: How Far Back? 
The impact of plate tectonics on mineral geology is rapidly becoming a two-

v ay relationship. Direct evidence from the sea floor for plate motions and re-
lated tectonic mechanisms exists only for the last 200 million years of the geo-
logic record, but metallogenic and other geologic data support the idea that 
these phenomena extend back at least 600 million years. Thus mineral deposits 
indicative of crustal formation at mid-ocean ridges and of subduction of crustal 
material into the mantle to form volcanic island arcs and continental mountain 
belts are found throughout that period. The key question is what happened be-
fore 600 million years ago. in the Precambrian era that includes 80 percent of 
the earth's history. 

Among the oldest rocks of Precambrian continental areas are the mineral-
rich greenstone belts, which contain volcanic rocks resembling those of modem 
island arcs in both chemical composition and physical properties. Greenstone 
belts are found in Canada, Australia, South Africa, and other areas of very old 
crust. According to A. M. Goodwin of the University of Toronto, the propor-
tions of basalt, andesite, and rhyolite in these ancient volcanic belts are similar 
to those in recent island arcs-about 60 percent basalt, 30 percent andesite, and 
10 percent rhyolite. In both geologic settings the volcanic piles show a common 
stratigraphy-basaltic rocks on the bottom, andesite above them, and rhyolite 
on top. The Precambrian rocks also show evidence, he finds, of explosive vol-
canism, a characteristic of island arc volcanoes, 

Mineral deposits in greenstone belts and in island arcs are quite similar too, 
especially those knoun as massive sulfide deposits (including copper, lead, and 
zinc ores) and the precious metal deposits that occur with them. These ores are 
widely believed to be of submarine volcanic origin in both Precambrian deposits 
and island arcs. The massive sulfide deposits are typically found embedded in 
rhyolitic rocks near the top of the volcanic pile, while gold, some observers be-
lieve, is commonly found lower in the volcanic sequence. 

In view of these similarities, some researchers have proposed that Pre-
cambrian greenstone belts represent ancient island arcs. If correct, this view 
would imply that plate tectonic activity existed well back into the earth's early 
geologic history and that the formation of island arcs and their accretion to con-
tinents has continued for perhaps 3 billion years. -

There are some substantial dissenting views, however. R. H. Ridler of the Ge-
ological Survey of Canada finds no evidence for large-scale horizontal move-
mets of crust in the early Precambrian. He also points out that island arcs are 
typically asymmetric, reflecting their tectonic origin (with an oceanic trench on 
one side and a shallow basin on the other); greenstone belts, on the other hand, 
show a symmetry that he believes is'more characteristic of development in a ba-
sin. R. W. Hutchinson of Western Ontario University distinguishes three types 
of massive sulfide mineral ores-two modem types and one characteristic of the 
ancient ores. In his view the ores are similar, but differ in ways that suggest an 
evolution ofore types. This reflects a corresponding evolution in tectonic mech-
anisms, aa) from some predecessor mechanism to plate tectonics, which 
formed the modem island arcs. In contrast, Andrew Mitchell and J. D Bell of 
Oxford University believe the evidence suggests that "ore-forming processes in 
[island] arcs have changed little during the last 2 x 109 years." 

The debate is still wide open. But it is apparent that evidence from ancient 
mineral ores and the rocks in which they occur will play a central role It is a de-
bate that investigators interested in the evolution of the earth's crust will watch 
with interest.-A.L.H. 

of Europe, and in Iran and Pakistan. Al­
though normally associated with continen­
tal rocks, porphyry deposits are also found 
insomeofthelargervolcanicislandsofthe 
southwest Pacific. Most of these deposits 
are geologically youthful, less than 200 
million years in age. Highly eroded re­
mains of older deposits have been found, 
however, in northeast North America. 
Even in the richest porphyry ores, howe%er, 
copper rarely exceeds I percent, and 0 5 
percent is more common, so mining con­
sequently involves extracting and process­
ing large tonnages of ore. The association 
of porphyry deposits with the subduction 
of oceanic crust into the mantle and the 
concomitant magmatic activity is so strong 
that it has been the basis for exploration 
efforts. A major exception, however, may 
be the porphyry deposits in Arizona, uhich 
according to J. David Lowell of the Uni­
versity of Arizona do not show evidence of 
a subduction zone. In recent years new 
porphyry deposits have been found in Oki­
nawa, Panama, and British Columbia. 

Deposits of a third distinctive type, 
known as massive sulfides because they of­
ten occur as large, nearly pure lenses of" 
high grade ore, are found in modern island 
arcs and some geologially older island arc 
materials that are now -incorporated in 
continental margins These deposits, like 
the porphyry coppers, are associated with 
theconvergence of two crustal plates. They 
are typically polymetallic, containing cop­
per, zinc, lead, gold, and silver. -

The prototype deposits for investigators 
unraveling the origin of these massive sul­
fides have been those in northeast Japan. 
This black "Kuroko" ore is thought to 
have been formed by submarine volcanic 
processes and deposited in shallow, near-­
shore environments late in the evolution­
ary history of a volcanic island chain. The 
volcanic rocks associated with these depos­
its are correspondingly highly evolved and 
often include fragments from explosive 
eruptions. Marine sediments are also often 
found with such deposits. I 

A second variety of massive sulfide 
ores-those of the Besshi type-are also 
found in island arcs. Besshi copper and 
iron sulfide ores (named after a deposit on 
Shikoku Island, Japan) are, like the Ku­
roko ores, commonly thought to be sub­
marine volcanic emissions, but deposited 
on the underwater slopes of volcanoes 
early in their evolution. Still other classes 
or subclasses of island arc mineral depos­
its, corresponding to additional stages in 
the evolution of these fragments of land, 
can be distinguished. In fact, a model of 
the process proposed by Mitchell and J. D. 
Bell, also of Oxford University. describes 
seven such stages They give the timing and 
accompanying rock types for the forma-
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tion of Besshi and Kuroko massive sul-
fides, porphyry coppers, and exogenous 
mineral deposits (those not formed at the 
same time as the surrounding volcanic 
rocks) found in island arcs. 

As the plates move, island arcs may be 
swept into and incorporated in continental 
masses. And because continents collide, it 
is not surprising that island arc fragments 
have been identified in what are now conti-
nental interiors. This is significant because 
a second and major source of massive sul-
fide and precious metal deposits is the so-
called greenstone belts found in ancient 
Precambrian areas of continents. These 
belts have historically been the source of 
much of the world's mineral wealth, with 
rich deposits ranging from iron ores, im-
portant gold deposits, copper and zinc to 
lead and silver ores. 

The Precambrian mineral ores, like 
younger massive sulfide deposits, are be-
lieved to result from submarine volcanic 
processes. The volcanic rocks associated 
with these ancient mineral deposits also 
show chemical and mineralogical sim-
ilarities to those of island arcs. Hence 
some geologists believe that greenstone 
belts represent ancient island arcs. Since 
some of the Canadian belts date back at 
least 3 billion years, this would imply the 
existence of tectonic mechanisms similar 
to those that create modern island arcs 
throughout much of the earth's history, a 
conclusion that is still controversial (see 
box). If crustal plates did exist in the Pre-
cambrian era, 600 million years ago and 
earlier, they were apparently much smaller 
but possibly more numerous; the green-
stone belts tend to be hundreds of kilome-
ters in length, not thousands of kilometers 
like modern island arcs. In any case, the 
similarities and differences between old 
and young ore types may be important for 
exploration-rocks, presumably ancient, 
that underlie the up er portions of the con-
tinents are largely unexplored. 

A final class of mineral deposits, whose 
tectonic derivation is much more specula-
tive, are those ores thought to be formed 
within a crustal plate, rather than at its 
boundary. Here the proposed mechanism 
is penetration of mantle material up 
through the crust to form a hot spot, possi-
bly as a result of the mantle plumes which 
have been hypothesized as a driving forpe 
for the motion of the crustal plates Hot 
spots, investigators are suggesting. may 
have heated the crustal rock, mobilizing 
metals from sedimentary or crustal mate-
rials and concentrating and depositing 
them nearer the surface. Guild, for ex-
ample, proposes that the rich lead-zinc 
ores of the Mississippi Valley may have 
originated in this fashion Similar propos-
als have been made for lead-zinc deposits 
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in northwest Africa. In some ilstances, 
Guild believes, the minerals themselves 
have come from the mantle, propelled up 
through the crust by the heat of the plume 
Diamonds, niobium, and some rare-earth 
deposits, for example, are associated with 
the explosive eruption of mantle materials 
to the surface and may be attributable to a 
plume mechanism. Heat from the mantle, 
perhaps rising near subduction zones, may 
also provide the energy to mobilize metals 
present in lower crustal rocks and concen-
trate them into ore deposits in some cir-
cumstances. This mechanism has been pro-
posed to explain the eastward shift from 
dominantly copper to dominantly lead-
silver ores in western North America, and 
the repeated emplacement of tin ores in 
only a few areas of the earth-

Newfoundland Mineral Deposits 

A striking illustration of the new models 
of mineral formation is their application to 
Newfoundland by David F. Strong and his 
colleagues of the Memorial University, St. 
John's. Before the opening of the Atlantic 
Ocean and the separation of North Ameri-
ca from Eurasia about 200 million years 
ago, according to plate tectonic theory, the 
Appalachian mountains of eastern North 
America and the Caledonian range in Brit-
ala and Norway formed a continuous 
mountain belt. Although the details of how 
this ancient mountain range was formed 
are still a matter of debate, the blisic pro-
cess is thought to have been the opening and 
eventually the closing of a predecessor or 
"proto Atlantic" Ocean between about 
600 and 450 million years ago. Since New-
foundland sits astride the Appalachian-
Caledonian range, it is in many ways an 
ideal laboratory for exploring how a cc-
toniccyclethatinvolvedtheformation and 
then destruction of large amounts of 
oceanic crust affected the formation of 
metallic ores, 

The Newfoundland investigators find 
that most mineral deposits on the island 
can be classified in terms of specific plate 
tectonic origins. They include Troodos-
type ores in ophiolitic rock assemblages. 
Kuroko-type ores in volcanic rocks typical 
of island arcs, porphyry copper deposits in 
igneous rocks, and Mississippi Valley-type 
lead-zinc ores. 

The geology of Newfoundland is com-
plex and the ore deposits are distributed in 
both age and location The eastern and 
western parts of the island are composed 
primarily of ancient Precambrian rock 
(older than 600 million years), while the 
center part of the island is of more recent 
origin, formed during the proto-Atlantic 
event and sandwiched in between the older 
crust as the ocean basin disappeared. 
Along the western margins of the island 

are limestones and dolomites, some of 
which contain Mississippi Valley-type 
lead-zinc ores These rocks were ap­
patently deposited in shallow waters dur­
ing the early part of the prote-Atlantic era. 
Also on the western shores are ophiolites 
with Troodos-type ores, representing 
blocks of oceanic crust thrust up onto the 
limestones and Precambrian rocks. Belts 
of ore-bearing ophiolites are also found in 
the central section of Newfoundland. as 
are volcanic rocks that contain Kuroko­
type polymetallic ores. In the eastern 
part of the island are porphyry ores, ap­
parently emplaced somewhat later in New­
foundland's history as oceanic crust was 
subducted beneath continental crust in the 
final closing of the ancient ocean. The pat­
tern, as the investigators see it, is lead-zinc 
deposits in the west, then copper and iron 
ores, then overlapping bands of copper, 
lead, zinc, gold, and silver deposits, and fi­
nally occurrences of copper, molybdenum. 
and tin deposits in the east. 

According to Strong this pattern of 
mineral deposits with identifiable plate 
tectonic origins may well be common to 
the entire Appalachian-Caledonian chain. 
Limestones bearing lead and zinc are 
found from Norway to Alabama, alwas 
on the westernmost edge of the mountain 
chains. Also extending along the length of 
the chain are ophiolites with, in many 
places, Troodos-type copper and iron sul­
fides Known occurrences of polymetallic 
island arc deposits are more scattered, ac­
cording to Strong, but appear to lie in the 
central and eastern portions of the Appala­
chians. Tin occurs in Alabama and Virgin­
ia still farther east. The mineral patterns 
constrain tectonic models for the Appala­
chians. especially by implying the existence 
of a southeastward-dipping subduction 
zone during the formation of the mountain 
belt, according to Strong. They also have 
implications for mineral exploration, he 
believes, since discoveries in Norway could 
lead to similar finds in Newfoundland and 
Tennessee or vice versa. Exploration of 
Newfoundland and eastern Canada has, in 
fact, acceleratedinthepastseveral ears. 

The new models of ore formation are far 
from complete and are still some distance 
from being completely accepted. Still new­
er ideas concerning the geochemical pro­
cesses involved and the role ofseawater are 
being proposed, and these will be the sub­
ject of a second article But perhaps the 
most significant aspect of the emerging 
synthesis betveen platetectonictheorD and 
metallogeny is the prospect that, in a re­
source-hungry world, mineral exploration 
can increasingly be guided by a detailed 
understanding of how. and perhaps where, 
ores are formed and deposited. 

-ALLEN L HAMxioND 
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IDENTIFICATION AND DELINEATION OF SALINE
 
SOIL AREAS 

Investigator: Dr. Richard H. Rust 
Department of Soil Science 
University of Minnesota, St. Paul 

During this third year (FY 75) of study of soils in
 

the northern Red River Valley area in Minnesota color in­

fra-red imagery was obtained in early August '74 at approx­

imately the "peak of green" condition in the small grains
 

(wheat, barley, oats). Approximately 75 percent of fields
 

along the study transects (see IARSL Research Report 74-2)
 

were planted, mostly to small grains, although some acre­

age was planted to sugar beets, potatoes, and alfalfa.
 

This was a higher percentage planted to small grains than
 

in either '72 or '73 an& was likely related to higher grain
 

prices and changing government programs.
 

The coverage of three years' photography and, more 

particularly, the past two-yeara, was -sufficientto provide ­

imagery of a growing crop on nearly all areas along the 

transect. Since the bare ground imagery provided very 

little identification of a saline soil condition as com­

pared to the green crop, it was necessary to acquire a mini­

mum of two years' imagery to interpret most of the studied 

landscape, Figs. 1A and lB. 

On fourteen selected areas along the Clow and Davis
 

transects (see IARSL Research Report 74-2) the color in­

fra-red imagery was density-sliced at the same scale, or
 

1
 



2 

larger, to provide reference imagery for ground truth ob­

servations on the affected crops, Figs. 2A and 2B. Field
 

conservationists were asked to identify and verify extent
 

of saline effect. Soil samples were taken in areas of
 

good, poor and no wheat growth and conductivity values
 

determined, Table 1.
 

The purpose of determining Na, Cl, and S04 ions was
 

to ascertain the constituents contributing to salinity.
 

Sodium and Cl ions increase by factors of 2 to 4 in ex­

tremely saline areas.
 

As a result of field observations, air photo inter­

pretations, and laboratory data taken in the course of the
 

detailed soil survey of Kittson County over a period of
 

four years (1971-1974), the areas of saline-affected soils
 

are delineated (Fig. 3). This information will be included
 

as a part of the county soil report (National Cooperative
 

Soil Survey, scheduled publication, 1977).
 

The delineated saline areas are defined as those
 

areas that show the effect of a saline condition on the
 

growing crop, or are observed in the soil itself. The
 

occurrence within the delineated area is so complex that,
 

at this scale, it is not possible to separate the n6rmal
 

soils from the saline. However, it is concluded, on the
 

basis of air photo interpretation of the transect studies,
 

that about 60 percent of the soils within the delineated
 

area are saline-affected.
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A further conclusion is that, to use color infra-red
 

imagery for detection of saline soil areas in other agri­

cultural areas of the Red River Valley, would require at
 

least two successive years' of photography to provide small
 

grain signature of any soil area.
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Table 1. Chemical tests made on some Kittson County soils in
 
areas of varying quality of wheat growth. (1972­
1974). 

Good Wheat Growth
1 

Conduct-
Soils and Soil ivity 
Locations depth mmhos. pH Carbonate Na Cl SO4 

(inches) % me--/l ppm ppm 

Northcote 0-6 4.0 7.1 4 8 570 54 
4.5 miles 6-12 5.8 7.5 4 22 820 113 
SE of 12-24 13.4 7.5 14 49 1320 540 
Kennedy 24-36 14.0 7.7 10 53 2220 698 

* 
Augsburg 0-8 3.2 8.0 N.D. N.D. N.D. N.D. 
Sec. 7 8-11 4.9 8.3 
T.159N R 47 W 11-18 6.5 8.4 

18-33 8.1 8.4 
33-62 8.1 7.9 

Northcote 0-6 4.2 7.4 N.D. N.D. N.D. N.D. 
Sec. 29 6-12 10+ 7.7 
T.159N R 48W 

Poor Wheat Growth
2 

Northcote 0-6 10+ 7.1 5 66 3960 383 
4.5 miles 6-12 10+ 7.2 6 65 3960 270 
SE of 12-24 10+ 7.6 11 65 3000 675 
Kennedy 24-36 10+ 7.5 14 62 2760 216 

No Wheat Growth 

Saline Hegne 0-7 10+ 7.4 3028 
Sec. 8 7-9 10+ 7.7 1372 
T.162N R 49W 9-13 10+ 7.8 4773 

Saline Augsburg 0-7 10+ 7.6 155 
Sec. 17 7-11 8.0 8.1 3095 
T.159N R 47W 11-16 7.0 8.1 1535 

16-27 10+ 7.9 2947 

Saline Northcote 0-7 10+ 7.0 N.D. 
Sec. 29 7-12 10+ 7.0 N.D. 
T.159N R 48W 12-18 10+ 7.1 N.D. 

1. Good--no apparent diminution of stand or quality of grain.
 

2. Poor--less than 50 percent stand, premature lodging.
 

N.D. - not determined.
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Fig. IA. Color infrared imagery of Section 5, Davis township, Kittson county
 
showing 400 of 640 acres in small grain (August '74). Uneven stand, 
particularly inNortheast quarter, related to saline condition.
 
Conductivity greater than 10 mmhoslcm in areas of no growth. 

Fig. 1B. 	Color infrared imagery of same area as in Figure IA taken in August 
'73. About 160 of 640 acres was in small grain. Uneven growth in 
southwest quarter due to severe saline condition. Conductivity 
greater than 15 nmmhos/cm in areas of no growth. Diagonal light area 
from southeast corner to northwest related to constructed drainageway. 



6 

Fig. 2A. Color infrared imagery of Section 9, Davis township, Kittson county 
(portion along south side of section not included). North half 
planted to small grain; southwest quarter, planted to mustard; 
southeast quarter, fallow. Lighter shaded areas in fallow related 
to greater residue of previous year's small grain. Darker areas 
relate to lighter (or absence of) residue and indicative of saline 
condition. August '74. 

Fig. 2B. 	Six-level color density slice of northwest quarter of northeast
 
quarter of Section 9 shown in 2A. This 40 acre area planted to
 
barley. Areas of red have no growth; areas of blue and some cyan
 
are of prematuring grain (and poorer quality); areas of yellow and
 
orange are of most nearly normal barley.
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SOIL ASSOCIATIONS 

MAP OF 

KITTSON COUNTY 

MINNESOTA 



Fig. 3. 	 Soil association map of Kittson county, Minnesota showing occurrence of 
saline areas as delineated by field observations and air photo inter­
pretation. About 200 of 1124 square miles in the county are included lit 
the 	saline area, mostly in the western portion and mostly on fine to 
medium textured soils (Associations 1, .2, 3, 4, 5, and 6, prizarily).. 

LEGEND FOR SOIL ASSOCIATIONS OF KITTSON COUNTY, MINNESOTA 

1. 	 Northcote Association: Poorly 7. Cormant-Poppleton-Redby Associa­
drained, 	nearly level clayey tionz Moderately well-drained
 
soils formed in lake-laid 	 and poorly drained, nearly level 
clays. 	 noncalcareous soils formed in
deep 	 laoe-laid sands. * 

Association:
2. 	 Bearden-Fargo 

Moderately well-drained to 8. Enstrom-Grygla Association: Mod­
poorly drained, nearly level erately well and poorly drained, 
and 	gentle sloping soils, nearly level noncalcareous soils
 
formed in lake-laid silts 	 formed in lake-laid sands over 
and 	clays. loamy glacial till. 

3. 	 Hegne-Northcote Associations 9. Dune Land-Lohnes Association: 
Poorly drained, nearly level Excessively to well-drained,
 
clayey soils with a micro- nearly level to sloping soils
 
relief condition, formed in windblown sands or
 

gravelly 	beach ridges. 
4. 	Wheatville-Augsburg Associa-I
 

tion: Moderately well and 10. Percy-Fram Association: Moderate­
poorly drained, nearly level 	 ly well and poorly drained, nearly 
soils formed in very fine 	 level loamy soils formed in glacial 
sands over clay or deep fine 	 till.
 
sands.	 11. Mavie-Foxhome Association: Moder­

5. 	 Rockwell-Grimstad Associa- ately well and poorly drained, 
tion: Moderately well and nearly level soils formed in loamy 
poorly drained, nearly 	 material over glacial till with an
 
level soils formed in fine 	 intervening gravelly layer. 
sands over glacial till.
 

12. 	 Deerwood-Cathro-Markey Association: 
Nearly level, slightly depression­6. 	 Arveson-Ulen Association: 

Nearly level, poorly and al, very poorly drained soils form­
moderately well-drained cal- sd in organic material or organic
 
careous soils formed in fine material over loamy till or sands.
 
lake-laid sands.
 

Saline Areas: Refer to saline section for further explanation. 
1 0 1 2 3 4 5 6 78 910 

1/200,000 SCALE 	 Miles 

Adapted from map to be published in Kittson County soil report (1977). 

DIGhAL PAGE IS 



I 

opt70);64Ml 91LA T 

I. *., f .. u -,I ' 

V7I!*11 
* 7! 

I'FI 

I.K~k Alwal 211 A aOPP 
r Ail 



APPLICATION OF 	COLOR INFRARED IMAGERY
 
TO ON-FARM SOIL SURVEYS IN CLAY
 
COUNTY, MINNESOTA
 

Investigator: 	 Dr. Richard H. Rust
 
Department of Soil Science
 
University of Minnesota, St. Paul
 

In Clay county (about 100 miles south of Kittson
 

County and mostly in the Glacial Lake Agassiz plain) we ob­

tained (in June '74) color infra-red imagery at a scale of
 

1:38,000 of some 20 sections along an east-west transect in
 

the area where the field party was initiating the detailed
 

survey. From experience in adjoining Norman County with
 

NASA RB-57 CIR imagery (June '72) Odenyo and Rust (1975)
 

concluded that more accurate delineation of soil landscapes
 

is possible than with the customary panchromatic film.
 

The field experience in Clay County in July-October
 

'74 suggested that the scale (1:38,000) was not the most
 

appropriate to 	use in the preparation of 1:20,000 scale maps;
 

also that an earlier date of photography seemed desirable to
 

maximize a bare ground condition.
 

Accordingly, in May '75 additional CIR imagery in Clay
 

County at a scale of 1:20,000 was obtained in a series of
 

east-west transects in order to cover a maximum variation in
 

soil and plant cover conditions. About 100 mi2 coverage was
 

obtained. The field scientists will be provided (in July,
 

'75) color transparencies and a portable "skylight" table.
 

They will also be provided black and white internegative
 

prints on which to do field delineations. In this study sig­

9 
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nificant cooperation is being provided by the technical
 

service personnel of the Soil Conservation Service.
 

A practical application of this effort is primarily
 

the production of more accurate soil maps which form the
 

basis for land use and management recommendations by the
 

county technical people to farm operators. In Clay County,
 

for example, the occurrence of highly calcareous soils poses
 

some real problems in fertilizer recommendations and manage­

ment for micronutrient response in many crops. Various
 

dollar figures could be assigned to possible benefits or
 

costs depending on the crop, prices, etc. The location of
 

contract sugar beet acreage is also affected.
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