
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

C	 K. S. Gregg

Cki ^Vo^	 rn
November 1975 d ^

AWTELEDYNE
BROWN SNEERING

Can~ Research Pack* HuntsviNe, Alabama 35807

p!
i
i

TABLE OF CONTENTS

Page

1.	 INTRODUCTION		 1-1

2.	 SYSTEM DESCRIPTION	 2-1

2.1	 AMTRAN Software Structure	 2-1

2.2	 AM;RAN Statement Flow Description	 2-1

2.3	 Example 1:	 Assignment Statement 		 2-4

2.4	 Example 2:	 Name Console Program 		 2-5

3.	 SYSTEM MODIFICATIONS AND CAPABILITY EXTENSIONS	 3-1

3.1	 Input/Output Enhancements	 3-2

3.2	 Additional Capabilities and Modifications	 3-3

ii

s
A number of new software extensions and modifications to the

AMTRAN system have been completed in accordance with the specifications

-	 of contract No. NAS8-30779. These modifications include input/output

:.	 alterations, one-dimensional and two-dimensional array im;rovements, and

disk storage of data enhancements. In order to promote a better under-

standing of the AMTRAK system software structure, a general description

of the AMTRAK modules and their interrelationships has been provided.

A few sample statements have also been traced through the compila:.ion

and execution stages in order to illustrate the flow of system logic.

In addition, all extent documentation has been updated to reflect these

modifications.

Approved:

R. R. Parker,/Ph.D.
Manager
Data Systems Projects

.2„ R. S. McCarter
Sr. Vice President

iii

i

4	 s

s

1. INTRODUCTION

This final report describes in detail the work performed d:: -ng

the period September 16, 1974 through November 21, 1975 and is submitted

in accordance with the requirements of Contract No. NAS8-30779.

In the following text, Teledyne Brown Engineeting presents a very

general description of A.MMN modules and their relationships to other

modules in order to promote a better understanding of the FORTRAN components

of the AMTRAN system and their functions. In addition, a few sample state-

ments have been traced through the compilation and execution stages to

illustrate the system logic flow. A discussion of the new software exten-

sions and modifications to the AMTRAN system has also been included.

=i

e

1-1

r	 1

2. SYSTEM DESCRIPTION

	2.1	 AMMAN SOFTWARE STRUCTURE

AMTRAN is a conversational programming system intended primarily

for non-computer oriented users. The system includes powerful features

for numerical calculation and matrix manipulation as well as significant

graphics capabilities. Statements entered by the user are executed

interpretively in either a conversational mode or a stored program mode.

In the conversational mode, each statement is executed as it is entered

into the system. In the stored program mode, the user may enter a number

of statements for later processing as a program unit.

The AMTRAN system consists of a main program named AMTRAK, 15

primary subroutines, and various secondary service subroutines. Figure 1

depicts the structure of the system with the service subroutines not

shown. With the exception of AMTRAN, each box in the figure represents

a primary subroutlue. These primary subroutines are partitio:led into the

following five subsystems:

• Compiler - statement encodin g , parsing, and translation into

interpretive cbject code

• Mathematical Execution - performance of all mathematical
operations (e.g., +, /) and intrinsic functions (e.g., SIN,

ABS)

• Input/Output - writing of data/programs onto disk, reading
of data, listing of programs, and graphics

• System Initialization - initialization of system data areas
associated with a user at sign-on time

• Program/Function Linkage - maintain pointers and parameters
for system control and data transfer purposes.

These subsystems are delineated by heavy black lines in Figure 1. It

should be noted that each subroutine is envoked only by the main program

named XMIRAN even though control may seem to flow directly from one to

another.

s

2-1

i

i

2.2	 A:`l'I'l:r^;^ tiT,1 f'G`;i:::1' FLOW Df.SCRI i TION
	 i

4

In general, when a character string representing a statement is

entered into the AMTRAN system, the string is first converted to internal

charac.rPr codes. 17he string then is examined and each symbol is com-

pared with entires in the current symbol tables to determine if the

symbol is a system symbol, a previously defined variable name, or a new

variable name. New variable names are entered in the table. Next in-

ternal codes are generated for commands, variable names and constants.

Executable statements (as opposed to system commands) are parsed and

converted to object code for interpretive execution. During execution,

system commands are processed by the appropriate sub_outines. Executable

statements are prccessed one object code element at a time by A`ITRAN

execution modules.

Figure 2 shows the overall logical flow of AMTRAN statements

through the appropriate primary surtware modules. The main program,

AMTRAK, is not shown but it is implied that all control passing from one

module to the next is via the main program. Also implied is the return to

the read line module, RDLL, after the performance of all the functions

envoked by the previous statement. To illustrate the processing which takes

place the following representative examples of AMTRAK statements are traced

through the appropriate modules.

2-2

2-3

LULU0V
)

RW

uc

:3c
C

)

L
L

u
i

u
i15V
)

C
14

L
U

O
R

IG
IN

A
L

 P
A

G
E

 IS

O
F

 P
O

O
R

 Q
U

A
L

IT
Y

2.3	 EXAMPLE 1: ASSIGNMENT STATEMENT

A = (ABS(X) +)/C.

The above statement is read by subroutine RDLL, where checks are

made regarding the syntax. RDLL also converts the characters to the

corresponding internal AIMTRAN character codes for further processing so

that the statement appears in an array as follows: 	 End of
A =	 (A B S	 (X)	 +	 2)	 /	 C	 Statement
11 42 43 11 12 29 43 34 44 39	 2 44 38 13 45 50.

Upon encountering the end of the statement, control is returned to the

main program and the scanner, SCA, is envoked. The module SCA scans the

statement and builds a symbol table of variables (A, C, and X) and also

recognizes AMTRAN operators (ABS). These labels and names in the state-

ment are then replaced by their corresponding numerical codes. The operators,

constants, and other characters are also encoded in a manner to facilitate

subsequent parsing. This encoded statement is as follows: 	
End of

A =	 (ABS	 (X) + 2)	 /	 C	 Statement

403 264 265 236 265 401 266 250 388 266 249 402 268 99.
Upon return to the main program, control is passed to the stacker/

coder. module, CDR. In CDR, the encoded statement is parsed and appropriate

interpretive executable object code is generated. For the assignment state-

ment above, the object code and its corresponding meaning are as follows:

• 236	 401	 load absolute value of X into accumulator
• 250	 388	 add 2
• 249	 402	 divide by C
• 216	 403	 store contents of accumulator in A.

This object code is interpretively executed one instruction at a time by

the main program, AMTRAK. That is, for each of the above four instructions,

AMTRAK calls the module necessary to execute that instruction. The

modules called according to the four instructions are as follows:

• TRG
• LSG
• LSG
• LSG.

Upon completion of these instructions, AMTRAN calls RDLL to read the next

line (conversational mode).

2- 5

2.4	 ESC IPLE 2: NAME CONSOLE PROGRAM

NAME CALC.
The system command NAME enters a user program name (CALC in this

example) into the console program name table and stores tl%e program on

disk for future execution. Tue statement is read by RDLL and converted

to AMTRAN character codes in the same manner as illustrated in Example 1.

This character string is then scanned by SCA as before, however, the

nature of the statement eliminates the need of causing executable: code

to be generated by CDR. Instead, control is transferred from SCA to the

.lfproptiate execution module (i.e., via the main program). In this case,

there are two modules required to execute the statement -- NAM and RST.

First, NAM is executed where checks are made to insure that all

variables in the console program are allocated and defined. In addition,

the table containing one entry per console program is checked against the

name CALC to see if it is already there and add it if it is not. After

such checks and table manipulation have been performed the progran is stored

on the disk and RST is envoked.

RST resets system pointers such as those related to the symbol

table or variable allocations and also resets the statement number count.

-	 The parameters which are reinitialized in RST place AMTRAN back into the

conversational mode. Control then proceeds to RDLL for the processing of

the next statement.

r

E

F	 ^^

r

3, SYSTEM MODIFICATIONS AND CAPABILITY EXTENSIONS

The primary co"corn was focused oq the upgrading of AMTRAN capa-

bilities by modifying the AM!TRAN system software. For convenience, the

changes may be divided into the following three task categories:

• Input/Output Enhancements
• Additional Capabilities and Modifications
• System /Software Documentation.

One of the input /output enhancements involves the extension of the
capability of entering numbers in E format to all AMTRAN statements in

which the use of numerical constants is permitted. Another modification

included in this category allows increased output flexibility by allowing

the one-parameter TYPEOUT command to accommodate data variables and to

output numbers in floating decimal format with trailing zeroes suppressed.

In the second category, the one-dimensional array logic was

altered so that a one-dimensional array is actually treated as a two-

dimenstional array with one row. Provision was also made for the

initialization of new arrays b subscripting. In addition, the disk

storage of data capabilities have been extended by permitting the CREATE,

RENAME, and DELETE commands to become storable in user programs and by

providing a means of creating and accessing data files with names which

are to be determined by execution time. Other changes belonging to this

category are providing a null variable, correcting the READSC operator,

and substituting the shift operation for the rotate operation.

The third cate gory involves updating current system software

documentation to reflect all modifications that result from the previously

described extensions ar,'_ "dditions. A general description of AMTRAK

modules and their relationships to one another has also been included.

The following sections de;;cribe the approach used in order to

implement the required changes. A , difications which affect either the

interaction of users or the AMTRAN system software are given attention

at appropriate points in the discussion.

3-1

3.1	 INPUT/OU'T'PUT E-MIANCEMMS

In order to maintain convenience and flexibility of programming

in AMTRAN, a number of input/output capabilities were extended. One of

these changes extended the capability of entering; numbers in E format to

any AMTRAN statement in which numerical constants are valid elements. To

incorpore.te this extension, the scanner module was modifiad to test for

the character E immediately following a numerical character. If this

situation is encountered, the nonblank characters following the E are

checked. This character string may vary in length from one to three

elements, and it must end with a numerical character. The first character,

however, may be a number, a plus (+), or a minus (-) character. During

the scanning process, the character string which comprises the character-

istic is ' • terpreted and validated, and the numerical constant which has

already been computed is modified as indicated by the format specification.

Another extension to AMTRAN output features involved extending

the one-parameter TYPEOUT command to accommodate data variables in

addition to alphanumeric information. If one of the variables is an

array, all alphanumeric information is repeated on a new line as each

element of data is printed in a vertical, tabular fashion. Should other

data array variables that are of different lengths occur in the same TYPEOUT

statement, the numerical output for shorter arrays ceases after the last

element has been printed. Numerical output occurs in floating decimal

format with suppression of trailing zeros; each number occupies twenty

print positions.

Extensive changes to the scanner module, stacker/coder module,

ar. ,4 Drincipal output module were required in order to implement this new

feature. New syntax checking logic was added to the scanner module to

interpret and validate the statement elements. In addition, the stacker/

coder module was modified to generate the proper sequence of operator-

operand pairs. Internally, this sequence is equivalent to a RLPE:1T :;trite-

ment in which the operator-operand codes for printing; the nur :

3-Z

of the variables and the specified alphanumeric information compose the

section of the statement that is to be iterated. A new internal operator

code for typing data variable values was established. Whenev_r this

new instruction is interpreted and executed, the logic in the primary

output module calls a new assembly language routine, which contains logic

taken from FORTRAN IV formatting routines, to convert floating point

numbers to their decimal representation. Elements of the new form of the

number are checked and trailing zeros are suppressed for output purposes.

Finally, all alphanumeric information and the decimal representation of

the floating point numbers will be placed in a buffer and transferred

to the new user terminal using the new time-sharing handler. In this

manner, the automatic carriage control and line feed characteristics of

rh•: nne-parameter TYPEOUT will be eliminated because FORTRAN WRITE state-

ri l ,?o f .s will be circumvented.

3.2	 ADDITIONAL CAPABILITIES AND MODIFICATIONS

Modifications to the AMTRAK system that comprise the second

category may be further subdivided into the following groups for more

detailed discussion:

One-dimensional and two-dimensional array improvements
• Miscellaneous modifications
• Disk storage of data enhancements.

In order to make the programming of AMTRAN r.,er programs and the

programming of the FORTRAN programs which comprise AMTRAN more consistent,

the one-dimensional array FORTRAN logic has b •.!en eliminated so that a

one-dimensional array or vector is handled in the same manner as a two-

dimensional array containing one row. Current syntax rules for one-

dimensional arrays remain valid for user convenience. The ability to

subscript one-row arrays with two subscripts, provided that the first

subscript is equal to one, has also been implemented. Functional opera-

tions which are valid for one dimensional arrays are also valid for two-

dimensional references with the following exceptions, which do not

permit the use of arrays containing more than one row.

• RE U)SC
• INTRP
• SEQ.

3-3

For arrays containing more than one row, the ARRAY, PLOTS, SHIFT,

and SUM operaturs are :wiclionally equivalent to corresponding previous

operators which utilized only one-dimensional arrays. Implementation of

these capabilities necessitated extensive modification of several execu-

tion modules. Logic which tests construction and accessing of two-

dimenstional arrays was altered so that user instructions referencing

one-row arrays are now accepted. Changes were made in die modules which

perform execution of the ARRAY, PLOTS, SHIFT, and SUM operators to permit

these commands to operate on elements of a t:ao-dimensional array in a

manner equivalent to the way in which they previously operated on one-

dimensional array elements:

Another enhancement that was implemented deals with the extension

of arrays by subscripting. The FORTRAN module which _ :,ipports this feature

was modified so that when an array is automatically expanded by reference

to a subscript(s) beyond its current length, each newly created element is

set to zero. This element initialization, however, does not include the

element referenced by the subscript(s).

The symbol //, which is involved in the construction and output of

arrays containing more than one row, was changed to the symbol &&. During

array construction this symbol represents the binary operator augment by

row, and it indicates the end of a row during output of an array. T?-.is

replacement involved making alterations in the scanner module and the

primary output module.

The ability to define a null variable with zero dimension has

been added to the AMTRAN system. A new system label NULL was added for

use in standard arithmetic assignment statement; the label NULL must

follow a valid variable name and an equal sign, respectively. The scanner

module was altered to recognize the new label and to respond by placing a

zero in the third column of the data table. Thus, the third column is

interrogated when the variable is referenced to determine whether the

variable is null. As for the execution phase, the module which performs

exe(ion of the load, store, and concatenation operations was modified

to detect this situation and to bypass normal data linkage processin

Logic in other execution modules which reference variable ar;;^.:

3-4

j

also changed to test for the ioill variable, and if it is detected, the

logic which ordinarily referenct:s the data table was modified to compen-

sate for this situation in the element-by-element execution of each

AMTRAN statement.

The rotate operation, which was originally implemented in AMTRAN,

has been replaced by a shift operation. This new operator retains the

language syntax of its predecessor, however, it will shift elements a

designated number of positions in either a left or right direction

depending on the sign value of the first parameter. The zero element is

introduced at the opposite end of the array as each element is shifted

out. In order to incorporate this change, the FORTRA.'N module which

executes the SHIFT operator was modified so that as each element of the

array is shifted one position to either the right or left, the element at

the opposite end of the array is set equal to zero.

One of the disk storage of data enhancements to the AMTRAN system

is that alterations were made to allow the CREATE, RENAME, and DELETE

commands to become storable interpreter instructions. No new language

syntax is required for valid use of this new feature. The scanner

routine, stacker/coder routine and main program required modifications in

order to implement this addition to the system. New internal operator

codes have been assigned to the three commands for use during the com-

pilation stage. In addition, specific syntax tests that are associated

with these commands were deleted from the scanner module and were placed,

after necessary alternations were completed, in the section of the

scanner module which performs syntax checks on storable commands. Logic

in the stacker/coder module was changed to cause proper reordering of

statement elements in the stacker and to convert this postfix Polish

stack for these statements into executable instructions. In the ma;r.

program, a table of internal operators and its associated index t-hlP .were

changed to ensure that the proper execution module is called when the

instructions are executed. Changes were also made in the AMTRAN module

which supports these operators. The logic associated with execution of

the CREATE, RENAME, and DELETE operators was transferred from subsystem

one to subsystem four and the coding was expanded to perform interpreta-

tion of the operator-operand codes, since the code in :subsystem one only

permitted nonstorable commands. 	
3-5

V

The second addiLlo n to the disk ;tora;; ,! of data features permits

the user to create and access data files with unique names that are

determined during; the execution phase. This is accomplished by using the

FILE intrinsic in conjunction with the CREATE or READ commands. An

additional variable is required in the parameter string of either operator;

this variable must precede all other variables. It is combined with the

character strinb 'FIL' rind user program file identification to form the

program file name. Since this addition involved a modification in iang uage

syntax it was necessary to alter the syntax checking logic for these

operators contained in the scanner module. :,hen a CRETE command is being

processed, the scanner module has been altered to place the internal code

for the character string ';:IL' into the first word of the three-word data

file name if the FILE operator immediately follows it. If the value of

the first parameter is greater than or equal to 1 and is less than or

equal to 143, the value is placed in the second word. Otherwise, an

appropriate error message is output. The third word contains user program

file identification. The same actions are performed by the scanner module

during a READ command, except the second word is left blank. The FORTRAN

module which supports execution of the READ intrinsic was altered to

evaluate the value of the first variable in the parameter string. If this

value is within the range of 1 to 143 it is then placed in the second word

of the data file name.

3-6

	GeneralDisclaimer.pdf
	0009A02.pdf
	0009A03.pdf
	0009A04.pdf
	0009A05.pdf
	0009A06.pdf
	0009A07.pdf
	0009A08.pdf
	0009A09.pdf
	0009A10.pdf
	0009A11.pdf
	0009A12.pdf
	0009A13.pdf
	0009A14.pdf
	0009B01.pdf
	0009B02.pdf
	0009B03.pdf

