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GRAVITATIONAL COLLAPSE OF A TURBULENT VORTEX

WITH APPLICATION TO STAR FORMATION

by Robert G. Deissler
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The gravitational collapse of a rotating cloud or vortex is analyzed
Ln by expanding the dependent variables in the equations of motion in two-
co

dimensional Taylor series in the space variables. It is shown that the

gravitation and rotation terms in the equations are of first order in the

space variables, the pressure gradient terms are of second order, Euid

the turbulent viscosity term is of third order. The presence of a tur-

bulent viscosity insures that the initial rotation is solid-body-like near the

origin. The effect of pressure on the collapse process is found to depend

on the shape of the initial density disturbance at the origin. Dimension-

less collapse times, as well as the evolution of density and velocity,

are calculated by solving numerically the system of nonlinear ordinary

differential equations resulting from the series expansions. The axial

inflow plays an important role and allows collapse to occur even when

the rotation is large. An approximate solution of the governing partial

differential equations is also given, in order to study the spacial distri-

butions of the density and velocity.
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I. INTRODUCTION

Gravitational instabilities appear to play a dominant role in the for-

mation of stars and other astronomical objects, and calculations of the

gravitational collapse of clouds (protostFrs) have been carried out by

a number of authors (e. g. Larson 1969, 1972, 1973; Disney et al. 1969;

Penston 1971; Tscharnuter 1975). Most of these have been numerical

solutions of the governing partial differential equations, where, except

in recent work such as that of Larson (1972) and of Tscharnuter (1975),

the effects of rotation have been neglected. But as will be seen, the

effects of rotation are of the same order as those of gravity, and are of

lower order than those of pressure gradients. In the past work boundary

conditions were assumed at a hypothetical outer boundary, where con-

ditions were generally not well known.

The present treatment differs from previous work in that the depen-

dent variables are expanded about the origin in truncated power series

in the space variables. This converts the governing partial differential

equations to ordinary differential equations in time. Aside from the faci

that the resulting ordinary differential equations are much easier to solve

than are the original partial differential equations, this procedure has

the advantage that the various physical processes are conveniently sepa-

rated into first, second, and third order effects. Moreover the introduc-

tion of boundary conditions at an outer boundary is replaced by the natural

assumption that the dependent variables and their lower order derivatives

are finite at the origin. That is, the boundary conditions are applied at

the origin, and we do not have to specify the extent of the gaseous cloud.

However, we still have to specify the size of the initial disturbance.
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The effects of pressure are included and are found to depend on the

amplitude and shape of the initial disturbance. The effects of rotation

and of turbulent viscosity are also included in the analysis. Although

the quantitative effects of turbulent viscosity are only of third order, it

appears that the presence of the turbulent viscosity is important for in-

suring that the velocity and its derivatives are bounded at the center of

contraction and rotation.

Most of the calculations were carried out by using ordinary differen-

tial equations in the independent variable time, as described above.

However, in some of the calculations the radius was also retained as a

variable in order to investigate the spacial variations of density and

velocity.

H. BASIC EQUATIONS

The equations of motion and continuity for an axially symmetric

compressible flow can be written in cylindrical coordinates r, 8 and

z as

au v2-uau -wau - L(P -1 ap	 (1)
at	 r	 ar	 az ar p ar

L
	

av uv - w av - D	 (2)
at
	

ar	 r	 az

aw -wL'-ua""-^.T- 1^k	 (3)
at
	

az	 ar az p az

and

aP = -1 a (rpu) - 
a (

pw)	 (4)
at	 r ar	 az

where the gravitational potential cp is given by the Poisson equation
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o2(p= 1 e (rL +a—^=41rGp
r ar ar	

ez2

and where u, v, and w are the velocity components in the r, 0 and

z directions respectively, t is the time, p is the density, p is the

pressure, G is the gravitational constant, and D is a turbulent or vis-

cous drag term in the 8 direction. Drag terms are not shown in equations

(1) and (3) because those terms have been assumed small compared with

(or included in) the pressure gradient terms. To relate the pressure

to the density, we use the polytropic relation

P = Plp 1 -YpY	 (6)

or

2P 2-- 
7plp1 -YpY-1 ap	 (6a)

ar	 ar

where Y (assumed constant) is the polytropic exponent for the collapse

process. The subscripts one designate ambient values.

The drag term D arises mainly because of the effects of turbulence,

the effect of molecular viscosity usually being comparatively small for

the high Reynolds numbers in astronomical systems. For our present

purposes it should be sufficiently accurate to represent the effects of

turbulence by a uniform turbulent viscosity E as in Deissler and

Perlmutter ( 1960). Thus we write

D  	 avv +2 av _ 	 (7)

IT! ar r r ar r

In Deissler and Perlmutter it is supposed that E is determined by the

shear, and an estimate of its value is given by using a modification of

(5)



von Karman's similarity theory. It is shown there that for v propor-

tional to r
	

(large radial flow)

2
E = K r1v1	 (8)

2

where K is the Karman constant, and r 1 and v 1 are respectively the

radius and tangential velocity at the outer edge of an initial disturbance

to be specified• From the experiments cited in Deissler and Perlmutter,

K2/2 N 1/20	 (9)

In the present case, v lies between values given by an r" 1 and an

r variation, so that E as determined by shear will tend to be lower than

the value given by equation (8), We will retain equation (8) in the present

study as an upper limit for E as determined by shear. Other effects such

as normal strain (Deissler 1968, 1972) and gravitational instabilities will

tend to offset the decrease in E associated with decreased shear, so that

equation (8) may give a reasonable estimate. As will be shown, the

effects of turbulent viscosity are quite small so that the exact value used

for E is not critical.

The set of equations (1) to (9) is determinate, and its solution will

be considered in the next section.

III. SOLUTION BY TAYLOR SERIES

We can expand the dependent variables, u, v, w, p and cp (repre-

sented by X) in two-dimensional Taylor series about r = z = 0, truncated

after terms of third order in r and z, as

X = y,0 + Xrr + Xzz + 1 Xr r2 + Xrzrz + 1 '.
2 r	 2
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+ 1 xrrrr3 +1 Xrrzr2z + 1 zzrz2 + 1
	 d

Xzzz

where

2
Y = (X)r=z' Xr = aX	 , Xrz =(-;ar—aX, etc

=0 	 8r r=z	 z r=z

	

=0	 =0

We take the r and z axes as axes of symmetry, so that the dependent

variables are symmetric or antisymmetric about those aloes. Then

(see Fig. 1)

u(r, -z) = u(r, z) w(r, -z) = -w(r, z)

u(-r, z) = -u(r, z) w(-r, z) = w(r, z)

u(-r, -z) = -u(r, z) w(-r, -z) = -w(r, z)

p(r , -z) = p(r , z) (p(r, -z) = 9(r, z)

p(-r, z) = p(r, z) gyp(-r, z) = cp(r, z)

p(—r, —z) = p(r, z) 9 = (—r, —z) = 9(r, z)

The vortex rotates about z, so that

v(-r, z) = -v(r, z)

v(r, -z) = v(r, z)

v(-r, -z) = -v(r, z)

If we impose these symmetry conditions on equation (10), we get

u = urr + 1 urrr r3 + i urzz rz2	 (11)
6	 2

v = vrr + 1 vrrr r3 + i vrzz rz2	 (12)
6	 2

w = wzz + 1 wrrz r2  + i wzzz z32	 6

P = p0 + 1 prr r2 + i pzz z22	 2

(10)

(13)

(14)



=Orr GpO z	 (19)
az	 3

and

7

(P = (p 0 
+ 2 

Orr r2 + 2 ^Ozz z2
	

(15)

Consider first the gravitational potential 0. Substituting equa-

tions ( 14) and ( 15) in (5) gives, for coefficients of r0

2cprr + cpzz = 4rrGpO	(16)

The relation between cprr and `pzz can be considered as a boundary

condition for 9. For that boundary condition we set (prr = `pzz' that is
we assume spherical symmetry for cp near the origin. Larson (1972)

found that his results were not sensitive to the particular boundary condi-

tions used for cp- Thus equation (16) becomes

4^cprr = cpzz = 3 GpO	(17)

From equations ( 15) and (17),

-Lc = Orr GpOr	 (18)
ar 3

Substituting equations ( 11) to ( 14), (18) and (19) into equations (1) to (9),

and equating the sums of the coefficients of like powers of r and z to

zero gives the following system of nonlinear ordinary differential equations:

du  = V2, - ur - 
4rr 

GpO - yp lp-yp0-2prr	 (20)
dt	 3

dvr = - 2urvr + 

vlrl vrrr
	 (21)

dt	 15

dwz = - wz - 
4a 

Gp O - Yplp-yp0-2pzz	 (22)
dt	 3

,
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dp0
dt

- 2p0ur - p0wz

dprr = 4
- 3 p0urrr - 4prrur ` P6wrrz - prrwz

dP.ZZ = -2p u	 2p u - p w	 3p w•	 dt0 rzz - zz r	 0 zzz - zz z

durrr - 2vrvrrr - 4ururrr - 3y(Y-2)p lp-y Y-3prr
dt

duzz = 2v	 2u- 2ururzz - 2wzur Jz - Y(.Y-2)p1p1Yp0-3prrpzzdt

durrr =
dt	 - 4urvrrr " 2vrurrr

dvrzz _d - - 2urvrzz - 2vrurzz - 2wzvrzz

dw t = _ 2urwrrz - 2w zwrrz - Y(Y-2)p1p1yp0-3prrpzzdt

dwzzz = - 4wzwzzz - 3y(Y- 2)p1p1Yp0 -3pzz	 (31)
dt 

The set of equations (20) to (31) results from retaining terms through

third order in r and z in equations (11) to (14), (18) and (19). That is,

equations (20) to (31) form a third order set of equations. If, on the

other hand, we retain only terms of first order in r and z, we get

the following first-order set:

Lur = - ur + yr- 4v GPO	 (32)
dt	 3

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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Lr=-2urvr
dt

dwz 	 2_4v
dt

wz 3 Gp0

dp0 = - 2pOur - pOwz
dt

If we retain terms through second order in equations (11) to (14),

(18), and (19), we get the following second-order set of equations:

dur = v2 - u2 - 4n Gp - yp p-ypy-2p	 (36)r	 r 3	 0	 1 1 0 rr

dvr = -2urvr 	(37)
dt

dt = _ wz _. 3 Gp0 _ 
yplplyp0-2pzz	 (3£

dt	 3

dp0 = - 2p0ur - pOwz	 (39)
dt

err = - 4pu p w	 (40)
dt	 rr r	 rr z

^Pzz = - 2pzzur - 3pzzwz	 (41)
dt

Several interesting observations can be made by comparison of the first,

second, and third order sets of equations. Examination of the first order

set (eqs. (32) to (35)) shows that gravitational and rotational forces (last

two terms in eq. (32) and last term in (34)) appear when first-order

terms are retained in the series expansions in r and z. The second-

order set (eqs. (36) to 41)) contains in addition, pressure gradient terms

(33)

(34)

(35)
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(last terms in eqs. (36) and (38)). Finally, if third-order terms are

retained in the series expansions (eqs. (20) to (31)), a turbulent vis-

cosity term appears (last term in eq. 21)). Mother way of saying this

is that gravitational and rotational terms appear in the equations when

only first spacial derivatives (ur, vr, and wr) are present at the origin,

pressure gradient effects require, in addition, second spacial deriva-

tives (prr and pzz), and turbulent viscosity effects require the presence

of the third spacial derivative vrrr at the origin.

Before we can solve the set of equations (20) to (31) numerically,

we must set conditions at an initial time, say at t = 0. We set the initial

radial and axial flows equal to zero in the vicinity of the origin, so that

ur - urrr = urzz = wz = wrrz = wzzz " 0 (42)

where the superscripts zero indicate values at t = 0. Also we take the

angular velocity = yr as initially uniform near the origin, so that

yr = WO 	(43)

and

0	 0
urrr - vrzz 0

Finally, we specify the initial density in the vinicity of the origin.

For doing this, we introduce an initial disturbance of radius r 1 such

that for z = 09

n
PO = APO 1 -	

2
+P1(45)

and for r = 0,

(44)
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`n 2
PO = AP0 1- z 1 + P 1	 (46)

rl%

where Ap0 is the magnitude of the initial density fluctuatinn at the origin

and n is an integer 2:2.  This initial density distribution is convenient,

since its shape at the origin can be a1ttred by varying n, and since it

gives the ambient density p 1 at r 1 . Moreover it gives zero density

gradient where the density becomes ambient at r 1, so that the distribution

given by equations (45) and (46) joins smoothly with the uniform ambient

distribution outside of r l . For r = z = 0,

p0 = P00 = Apo + P 1	(47)

and

0pr=0

in agreement with equation (14). Taking the second derivatives of

equations (45) and (46) and setting r = z = 0, we get

p0r = Pxz = - 4 AP
0 

for n = 2	 (48)
P1

and

prr = Pzz = 0 for n > 2	 (49)

IV. NUMERICAL RESULTS AND DISCUSSION

The set of equations (20) to (31) was solved numerically, subject to

the initial conditions at t = 0 given by equations (42) to (49). &-fore

carrying out the solution, the equations and initial conditions were con-

verted to dimensionless form. For example, equation (20) can be

written as
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du;	 *2	 *2 4V* *	 * *y-2

dt*

*

= yr - ur 3 G PO " ^1PO Prr
	 (50)

where

ur = u  yr = v 

W0	 W0

t = WO t, PO = 0
P1

G * 
_ `P1	

*=	
P1

' pl

WO2	 PA wJ2

2
*	 r 1 PPrr	 rr

- 
P1

Similar dimensionlesR equations are obtained from equations (21) to (31)

and the initial conditions. As before, the superscripts zi.;rc indicate values

at t = 0, the subscripts zero indicate values at r = z = 0, and the sub-

scripts one designate constant ambient values. Thus the dimensionless

dependent variables can be written as functions of a dimensionless time,

a gravitational parameter, and a pressure parameter. That is,

u  = f(t
* v

 G
*

9 p	 (51)

Similar equations are obtained for the other dependent variables. Dimer-

sionless quantities other than those in equation (51) can, of course, be

used in their place, so long as the same total number of variables appears

on the right side. For instance by inter multiplying t , G and p i , we get

i
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G1/2p1/2t 
= G*1/2t*

*
P1 _ PI

Gplr2 
G*

cv0	 = 1

G1/2p1/2 G* 1/2

and

so that in place of equation (51) we have

U  = f G1/2p1/2t, 	 W0	 P1	 (52)
w0	 1	 G1/2p 1/2 Gp2r2

	

1	 11

When writ#en this way, we can think of the dependent variables as fun-

tions of a dimensionless time, a rotational parameter, and a pressure

parameter. Note that in equation (52) the rotation is confined to one

parameter, in contrast to equation (51) where, instead, gravity occurs

in only one parameter. In both cases the pressure is confined to one

parameter.

a) Uniform Initial Density Distribution

Consider first the case where the initial disturbance at the origin

4p0 is zero (see eqs. (45) and (46)). That is, the density is initially

uniform as in Larson's (1972) rotating case. However, the present case

differs from that of Larson because he assumed that the radial velocity

remains zero at an outer boundary. For Op0 = 0, equations (48) and

(49) indicate Prr - Pzz - 0 initially, regardless of the value of n in

equations (45) and (46). But if prr and pzZ, as well as the radial veloc-

ity are initially zero near the origin (eq. (42)), equations (20) to (31)

indicate that those quantities will remain zero. Numerical solution of
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the equations confirmed this; small disturbances (round off errors) did

not grow with time. Thus, if the initial density is uniform (Ap 0 = 0)9

the pressure and turbulent viscosity terms in equations (20) to (31) will

be zero at all times, and the equations reduce to the first-order set

given by equations (32) to (35).

Calculated results for an initially uniform density are plotted in

figures 2 to 4. A modified Gear method (Windmarsh 1974) was used for

the numerical computations. In agreement with the preceding discussion

the results are independent of pressure-gradient and turbulent viscosity

effects. This is true regardless of the value of the polytropic exponent y.

The density changes comparatively slowly over a considerable time span

and then begins to change rapidly. For each value of the rotation param-

eter there is a particular dimensionless time, designated the collapse

time, for which the density and other dependent variables at the origin

increase without limit. That is, the rotating cloud or vortex tends to

collapse at that time to form a star. The collapse time increases with

angular velocity w because the centrifugal field produced by the rotation

tends to prevent collapse.

Another effect of the rotation is that for large initial angular veloc-

cities wo, the density at the center p0 can decrease before it increases,

as in figure 2. This is again because of the centrifugal field associated

with the rotation which tends to throw the gas outward, in opposition to

the gravitational field. Figure 4 shows that for the larger dimensionless

angular velocity, the radial flow near the center is outward (u r is posi-

tive) until shortly before the collapse time. On the other hand the flow

near the center in the axial direction (z-direction) is always inward
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(w$ i?a negative) because of gravitational attraction and the absence of

centrifugal effects in the axial direction. This inward axial flow is in
t

fact the main reason that collapse can eventually occur even when the

radial flow is outward for awhile. When the radial flow is outward, the

angular velocity at the origin w decreases with time as in figure 3.

This decreases the centrifugal force field so that the radial flow can

become negative (ur becomes negative), and collapse eventually occurs.

But if it were not for the axial inflow during this time, the gravitational

field would be weakened to such an extent because of the decreased den-

sity, that collapse would not occur. Although figure 2 indicates that the

density at the origin p0 can decrease because of the radial outflow,

that decrease is not nearly as great as is would be if the axial inflow

were absent. Thus, the collapse process for a rotating cloud can be

much more complicated that it is for w = 0.

In order to investigate the spacial variations of the density and veloc-

=t	 ity, and to give somewhat more confidence in the series solution for

r = z = 0 plotted in figures 2 to 4 an approximate numerical solution of

the original partial differential equations was obtained. To reduce the

number of independent spacial variables to one, and thus to hold the re-

quired computation time within reasonable limits, the solution was ob-

tained for z = 0. Then w = 0, and we set

aa N u (aw/az)r=z=o(p w) = p—w-- ^ e-
az	 az r War)r=z=0

in equation (4), where p had been taken outside of the derivative sign

(53)

because, by symmetry, ap/ar = 0 at z = 0. Equation (53) is exact if the
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flow toward or away from the origin is spherically symmetric ((8w/2z)r=z=0

_ (au/ar)r=z=0)• It also gives a consistent result for r = z = 0 for

spherically nonsymmetric flow, since (equation (11)) u/r approaches

au/8r at the origin. Finally it is consistent for no axial flow (8w/az = 0).

For (aw/az)r=z=0 in equation (53) we use equation (34) since, as men-

tioned previously, equation (22) reduces to that equation for uniform initial

density. We take the gravitational potential 4 as spherically symmetric

in order to give results consistent with those for the series solution. (In

the series solution 9 was taken to be spherically symmetric at the

origin (eq. (17)). Again we note that Larson°s (1972) work indicates that

this assumption should give good results. Equation (5) gives, for cp

spherically symmetric,

= 4n G r PQM2dt	 (54)
ar	 r2

0

As in the case of the series solution we apply all of the boundary condi-

tions at the origin. Equations (11) to (14) show that we can use for bound-

ary conditions, u = v = w = a2v/art = ap/ ar = 0, at r = z = 0.

Equations (1), (2), (4), (6) to (9), (34), (53) and (54) were solved

numerically by an improved Euler method with increments for r/r 1 of

0. 01, except near r = 0 where increments of 0.005 were used. To give

results comparable with those for the series solution in figures 2 to 4,

the density and angular velocity were taken as initially uniform, and u

as initially zero. (For the series solution those initial conditions were
0applied only in the vicinity of r = z = 0). Results for w/ (GI/2PII/2)  = it

p l/(Gpir2 ) = 0. 1, and y = 5/3 are plotted against r/r l in figures 5 to 7.
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For comparison with the series solution, densities at r = z = 0 are also

plotted in figure 2. The agreement is satisfactory.

Figure 5 shows that the vortex collapses in a nonhomologous (non-

similar) fashion in agreement with the results of Larson (1972). A

difference between our results and those of Larson is that the latter showed

the formation of a ring of mass for rotating flow, rather than a concen-

tration at the center. (It will be seen later however that our results for

AP  < 0 are somewhat similar to Larson's results.) It is not clear

whether this difference is due to a difference in boundary conditions

(Larson assumed u = 0 at an outer boundary), to the numerical techniques

used, or to the inclusion of turbulent viscosity effects (with v = a2Var2

= 0 at the center) in the present calculations. It is of interest that

Tscharnuter (1975), using conditions similar to those of Larson, but a

numerical technique differing from both that of Larson and the present

paper, obtained a concentration of mass at the center.
s

The density distributions in figure 5 remain flat near the center of

the vortex. This flatness is a carry over from the initially uniform

density distribution. It is in agreement with equations (24), (26), (28)

and (30), which show that for uniform initial p, u, w, and w, p will re-

main uniform near the origin (p rr remains zero), as discussed earlier.

Also figures 6 and 7 show that v and u remain linear near the origin,

as they should if the first-order set of equations (32) to (35) is to give a

description of the collapse process. (As discussed previously, the set

of equations (20) to (31) reduce to the set (32) to (35) in the present case. )

Figures 6 and 7 show that the variations of u and v with r are

nearly linear for a considerable time span (beginning at t = 0). In the
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case of u this is partly because, for a slowly varying density, the

gravitational force is nearly linear in r (eq. (54)). The only other term

in equation (1) which is important at early times is the v2 /r term,

which is also nearly linear in r. Thus for early times with p = pl,

equation (1) integrates to

 (
u = "'02 - 4a Gp l rt	 (55)

3

and equation (2) gives

v = 1 + 4n Gp l - wo 
2 

t2 m0r	 (56)
3

both of which are linear in r. For larger times the variations of u and

v become highly nonlinear and tend to develop peaks, In the case of u

this is evidently because the mass becomes concentrated near the origin

and the gravitational force is nearly proportional to r -2 outside of the

mass concentration. Inside of the mass concentration the density is

uniform so that the gravitational force, and thus u, are still proportional

to r. The peakedness of the v profiles in the vicinity of the peaks of

the u curves is due to the fact th-t for large u, v approaches a ljr

variation (invicid vortex solution).

To determine the effect of turbulent viscosity on the results, curves

for that quantity set equal to zero are plotted dashed in figure 6 for com-

parison with the curves for nonzero turbulent viscosity. The differences

are slight. In particular the good agreement near the origin indicates

that the effect of turbulent viscosity on the angular velocity at the origin

(m = v r ) is zero. This is in agreement with the series solution, where

the turbulent viscosity term drops out for the present case (uniform
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Initial P). For times larger than those shown, the effect of turbulent

viscosity in the vicinity of the peak may become greater, but the effect

on the angular velocity at the origin should still be zero.

The result that the turbulent viscosity has no effect on the angular

velocity at the origin may seem to be contrary to experience. For

instance when the arms of a whirling skater are retracted or extended

they exert a tangential force on the skater's trunk and thus change the

angular velocity of the latter. In that case the tangential force is neces-

sary for changing the angular velocity of the trunk. The difference be-

tween that case and the rotating cloud (where a tangential force or

turbulent viscosity is not necessary) appears to be that in the latter the

radial velocity extends all the way to the center and is zero only at the

center. In order to check a case which was comparable to that of the

skate., u was set equal to zero for rfr l between 0 and 0.1. It was

found that the angular velocity at the center changed with time only when

the turbulent viscosity was nonzero.

Perhaps the most important effect of turbulent viscosity is that it

enables the assumed initial solid-body-like rotation to be realized. In the

absence of a turbulent viscosity the v profile could be arbitrary, and

there would be no assurance that y and its spacial derivatives are finite

at the origin, as required for the series solution. The presence of the

eddy viscosity however provides a tangential stiffness, so that the assumed

wheel flow can be attained, particularly near the origin. Figure 6 and

equation (56) show that once an initial wheel flow is established, it can

remain for a considerable time, even in the presence of small radial

flows.
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b) Nonuniform Initial Density Distributions

Consider first the case where op 0 # 0 and n > 2 in equations (45)

and (46). Then equation (49) shows that prr and pZZ are initially zero,

and equations (20) to (31) show that they will remain zero for the initial

conditions used herein. Thus, as in the case of Apo = 0, the set of third-

order equations (20) to (31) reduces to the first-order set (32) to (35).

The results for this case will therefore be similar to those for uniform

initial density at the origin, although p0 will be different (for the same

ambient density p 1 ). The discussion for uniform initial density applies

to the non-uniform case when n > 2 in equations (45) and (46), at least

to the present order of approximation. Density evolution curves for
Op0/p 1 = 0.1 (pollp, = 1.1) are plotted in figure 8. As expected, these

curves, as well as those for the velocity components (not shown), are

similar to those for Ap o/p l = 0. They are independent of pressure and

the polytropic exponent y.

Dimensionless collapse times for various values of rotation parameter

and Apo/p 1 are plotted in figure 9. We note that the curves for Apo *0

could be obtained by multiplying the ordinates on the latter by

(1 + Ap0/p l) -11 2 and the abscissas by (1 + Ap 0/p l )1/ 2. The collapse

times are of the same order of magnitude as the free-fall times, in

agreement with the results of Larson and others.

To determine the effect of a non-uniform initial density profile on the

profiles at later times, the governing partial differential equations were

solved by the method and approximations used for the uniform initial

density case in figure 5. The results are shown in figure 10, where p1p1

is plotted against rjr l for various dimensionless times, and for n = 4



21

and dp0/p 1 = A.1 in equations (45) and (46). The rest of the parameters

are the same as those in figure 5. Comparison of figures 5 and 10 indi-

cates that the initial density profile can have a large effect on the evolution

of the profiles. In particular the curves for Apo/p 1 = -0.1 (Fig. 10(b))

show the development of a pronounced peak away from r = 0. These

profiles are somewhat similar to those of Larson (1972) for rotating flow

and uniform initial density. In the present case the effect does not seem

to be entirely due to rotation, because when v was set equal to zero, the

curves, although considerably altered, still showed the development of

a peak away from r = 0. This concentration of mass in a ring may break

up into a binary star system (Larson, 1972). For all three cases the values

Of 82p/8r2 at r = 0 remained zero, as they should according to the series

solution for these cases.

We still have to consider the case where n = 2 9 p1 > 0, and Op0 * 0

in equations (45) and (46). This is the only case for which prr and pzz'
according to the present third-order solution, are not equal to zero, so

that we have to consider the full set of equations (20) to (31). The pressure

and the polytropic exponent y, as well as the turbulent viscosity, may

have an effect on quantities at r = z = 0 for this case.

Results for n = 2, p l / (Gp'rii ) = 1, Ap o/p l = A.1, and y=1  and

5/3 are plotted in figure 11. First, second, and third order approximations

for the evolution of densities at the origin are shown. (For the previous

cases where n > 2 or Op0 = 0, the three approximations were of course

identical. ) The fact that the second and third order approximations are

nearly the same, particularly for y = 1 (optically thin case), indicates

that the third order approximation gives quite accurate results. The

dashed curves for the first approximation are also the curves for zero
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pressure (zero temperature for nonzero density) for the three approxi-

mgtions. Results for small pressures were essentially the same as

those for zero pressure, indicating that the results for zero pressure are

stable. The effect of pressure for positive Ap o is to slow up the collapse

process, since the pressure-gradient force is away from the center. (The

pressure gradient is in the same direction as the density gradient, accord-

ing to eq. (6a).) For negative Apo the opposite trend occurs. Increasing

the value of y or of Apo amplifies these effects. Tne turbulent viscosity

term in equation (21), a third-order term, was found to be negligibly small

in most cases.

The solid curve for y = 5/3 in figure 11(a) indicates that contraction

stops after a maximum density is reached. The curves for y = 1, as

well as those for y = 5/3 in figure 11(b), however, show a strong tendency

for collapse to continue. In the latter cases the gravitational force appar-

ently increases faster than the resisting (for positive AP O ) pressure-

gradient force. These trends, except those for y = 5/3 and a negative

Apo in figure 11(b), are in agreement with simplified analyses which

indicate that only for y < 4/3 will collapse occur (e.g. Schatzman 1972).

For a negative Apo the pressure-gradient force can aid, rather than

hinder the collapse process so that it does not seem surprising that there

can be a strong tendency for collapse to occur in that case, even for

y = 5/3. Of course as discussed earlier, for uniform initial density

( AP  = 0), or for n > 2 in equations (45) and (46), that is, if alp/art

at the center is initially zero or negligibly small, our series solution

indicates that collapse can occur regardless of the values of y and of

pressure parameter. Thus if the initial disturbance can be approximated
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by equations (45) and (46) the pressure and y, according to the present

third order analysis, should have an effect on the collapse process at the

origin only for a rather special case, that is, for n = 2 and Ap * 0.

I should like to acknowledge the work of Frank Molls on the

numerical solutions of the differential equations in the present paper.
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