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THE PLANAR DYNAMICS OF AIRSHIPS

Frank J. Regan*

ABSTRACT: This paper will consider the forces and moments
act.ng upon a LTA vehicle in order to develop parameters
describing planar motion. Similar expressions for HTA
vehicles will be given to emphasize the greater complexity
of aerodynamic effects when buoyancy effects cannot be
neglected. A brief summary is also given of the use of
virtual mass coefficients to calculate loads on airships.

SYMBOLS

Cp Drag coefficient
Cn Pitching moment coefficient, My/QS:
Cnq 3 Cm/a (qzézwz
%c’; a Cm/3 (§2°/2v°)
Goa 3 Cm/3a

a 3 Cm/3d (di/2V)
C, Normal force coefficient, Fz/QS
Gq 2 Cz/3 ‘q"ézv)z
cn-! 3 Cz/3 (§41°/72v°)
CGa 3 Cz/3a
Caa 3 Cz/3 (ar/2v)
D Drag force
g Gravitational acceleration
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g g (1 -1/8)

Iy Transverse moment of inertia
Ky Transverse radius of gyration, /Iy/ulz
L Body length
[} Reference length, body length
My Pitching moment
m Body mass
Q Dynamic pressure, l/ZpVo2
s Reference area, Vz/3
8 Airship density to medium density, Pb/0o
Vo Airship speed
v Airship volume
Xe,Ye,%e Inertial axes
X,Y,2 Body axes
z Normal force
a Angle of attack
] Angle of pitch
é Velocity potential
p Density

INTRODUCTION

In studies of the dynamics of Heavier Than Air (HTA) vehicles, effects
due to buoyancy are almost invariably neglected. Sustaining force is
the result of relative motion existing between the HTA vehicle (or at
least some portion of the vehicle) and the aurrounding air mass. In
short, the lift or sustaining force associated with HTA craft is
entirely dynamic.

A somewhat reverse situation exists in the case of Lighter Than Air
(LTA) craft. The principal sustaining force comes from buoyancy, with
perhaps a small additional force (about 10 percent) available under
some conditions from dynamic lift. To put the comparison between LTA
and HTA craft oun at least a semiquantitative basis, it is convenient
to define a relative density parameter, s, as

S'ﬁ (1)

It may be seen that 8 is os O (1) for a LTA vehicle, while for a HTA
s is no less than 0 (10*¢) and for most cases O (10%4),

In addition to buoyancy playing an essential role in LTA dynamics,
there are in addition dynamic effects which for convenience might be
lumped in the terms virtual mass. Such dynamic effects are tiken to
maan forces and moments arising from (and hopefully linear with)
angular rate or linear acveleration. These virtual mass effects are
essentially reactive forces and moments caused by imparting an angular
velocity and a linear and angular acceleration to the surrounding air.
Like buoyancy these virtual effects are usually neglected for HTA
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craft; for LTA vehicles, however, sucl effects form an essential part
of the loads acting on the craft. Thus such effects enter prominently
inte any considerations of stability.

No originality is claimed in the following development of either the
mathematical model of planar dynamics or the subsequent load calcula-

tion methods. The equations of planar motion originated witn ballisticians
such as Murphy (l). "However, because of the negligible effect of

buoyancy, great simplifications are possible in the aeroballistic
formulation. As will be shown, the airship equations are far more

complex. The load calculation technique? follow from Bryson(2)origi-

nally and have been presented by Nielson 3), Again these methods are
applied to LTA vehicles rather than the HTA missiles which were the .
original motivation for Bryson's work. .
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DYNAMICS OF PLANAR MOTION

(4
Consider an airship undergoing planar motion as illustrated in Flawv.e s :
(1) below i :

FIG. 1 FORCES AND MOMENTS ACTING ON AIRSHIP ,

The axes Xe,Ye,Ze are the inertial axes, while X,Y,2 are body-fired
axes. The equations of planar motion are the forces along axes Xe,2e
ana the moment about axis Ye. Note that because of the definition of
planarity axis Ye is identical to axis Y.

The moment and two force equations may be written as

mVCos(e-o)= Fx Goso 2D (2a)
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mig‘ F} CO!DQ"' FxS\09+m3 ("’ _'S) (2b)
I6 =My (2c)

where s is the relative density parameter of equation (1). 1In addition
to the three load equations above, figure (1) also provides the follow-
ing kinematic relationship:

/ Ze =~V Sin(e-o) (3)
; , which gives upon differentiation

-%e“'\.me (6-) "V'Cos(e-d)[.é"&] (3b)

" y Under the assumptic. that the X axis does not greatly vary from the

‘ horizontal, Xe, it is possible to restric: 6 and a to small angles.
Kecit Subject to such small angle restrictions equations (2) and (3) become:
. V “-D=F ' (4a)
‘ m Ze = Fz ~F, e xmg (1~ s) (4b)
T o’ o - I"? (4C)
- Ze = =\ e-oo (4a)
. 1.3 * ]
£ Le ™ _\j(e-.“)-\l (6-c) (de)
’ A first step might be the substitution of equation (4e) into eguation

‘
.

(4b) to give:

..m[\',(g-.()ﬁ»v(é-&)' - Fx°+m90'%) ‘5)

4 Eguation (4a) may now be used to eliminate V in the above expression
= resulting in:

D(e-e)-mV(6- &) = Fx +De+ma(1I- 5) (g

The above expression may be altered by introducing the fcllowing non-
dimensional force coefficients

Co= D(3p V."S)-‘ Cy~ F;('::.PV:S).‘ (7
The coefficient C, may be expanded in a Taylor series as
Ca=Cg, +C‘;.o<+q,d( )+ (X!)q. ({F{‘) (8
Equation (6) may now be written in terms ot C; and g |
(Pu)co(o-«) @I) ( ) [C* +C*;( *'Ci'a 'V W,
o [ Cop (B)+ Gy @)+ G0+ 90~ 5

It is now possible to simpli!y equation (%) lomowhat by the following
redefinitions:

C: - Cl-&%") > °' C'(’%l&n{-).’ j‘ 3(‘-3) (10)
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Equation (10) now allows equation (9) to be rewritten and ther rearranged

(/.'Zx'ﬁci’;+ (}V()[H-q]‘ (%)D-q‘]—d(cg’+(;:)-gf. j Qvian

Equation (4c), the moment equation, may be written as:

; SAVY (_!," .?I) /me*
g ( Y )in = I)(zm (I,)Cm (12)
where M, has been replaced by C (pszvz/z). Again replacing C_ by a

Taylor Y series in a, &4, q, and” § and using the starred quantTLies
gives for equation (12):

a

e -a_u«* 2 2
(Xrl‘)[' Kgc‘i]- @;f)kg 2 (a)k; Cm\-“\%cwﬂtucm. (13)
Equations (11) and (13) are now the basic equations of planar motion.
The final goal remains to eliminate one of the variables between thece
simultanecus eguations. For the present purposes the varia™le g will
be eliminated and a single differential equation of motion in o will
be written. As might be expected, this single equation is quite com-
plicated. Before presenting thir dynamic equation in a tractable form,
an outline of the procedure will be gitven. A fairly straightforward
approach is to eliminate 4 between equations (11) and (13). The
resulting equation containing q, «, and & is then differentiated to
give an expression in ¢, a, &, and 8. Returning to equationg {1l1) and
(13), eliminating this time g between them now provides a second
expression 4, a, &, and &. Elimination of § between these equations
gives the single dynamic equation in a, 4, and 4. 1In carrying out
the above manipulation it is necessary to perform the differentiation
of (J/V). This operation may be written as,

t%‘.‘(é') 'jé-tvq--%#.-.ﬁé %‘?—V)l- Co* (14)

The single equation in a that will represent dynamic planar motion
will he written eas:

ol +H, (‘}‘)&-M‘ (2!):@. R, (‘!)'.}. G, (15)

where

H,= .[l-k'z.“%r)[c:*'cr:h (l;g)ﬁ'ﬁz +(-GGGL+ g ,:LC:‘J (16a)
"

K?;C:t(‘na -(\‘Ca,‘.“*.‘i '\G (16b)

ST GG b+ RCR - G+ NG e
M | ”ﬂhqc‘q C.g-cc:l--éﬁm-k 3 |

[ UGG R D -GOTTIGh GOH G - GG
A, i 9& k‘i'-c ¥ - G-CF - sz-]——‘t—l-,_
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K{ Comg Cog - -GG 10- €] (16a)

Before attempting to simplify equations (16) it is necessary to reduce
equation (15) to an equation with constant coefficients as the presence
of (V/2) introduces time into the coefficients. This may be accomplished

by writing J J J J

. ¥ _ dudx o do Ldx 'O{)

= I = = (7 (17a) :

dt dxdt  dEp)Ldt -

where differentiation has been changed from time, t, to a non-dimen- A
siona' arc length, (X/4). 1In a similar fashion & may be written in et
terms of (X/t) as . \ ~

AN WU A A el

= \g)X- (@)% ¥ (17b) ‘
By replacing time derivatives by arc-lengtih derivatives, equation (15) i
now becomes a second order constant co~fficient equation:

' \ /4

o« + (-G¥)ol - M= A+ 6, (5 (18)
Admittedly, equations (16) are quite complex; for certain applications
such as aeroballistics, great simplifications may be made.
However, before considering this aspect of the problem, the conditions
for stability of motion will be examined.

STABILITY CONSIDERATIONS

Equation (18) may be rewritten as

‘i L

] \ z ) * A k) & (19) :

ol ¥ 2Nl + Wpo! = Wy &+ Wpotd 5

where %
x = H_,] - Cb* (20a) 5 :

(20b) i

w: == Ml ;

A A (20¢) |

= = |

) .

The term, A, is the damping factor of the airship,the term, wn, i3 the
undamped natural frequency. Only for small values of X does the

body oscillate at this frequency; in the presence of a significant
amount of damping the planar oscillatory frequency, wq, is less than
the undamped frequency, w,. The damped planar frequency, wy, can be
expressed in terms of A and w, as

wi =fay-2 = wnf(l - Xwi) (21)

The term af in equation (ZOc& is the trim angle of attack due to aero-
dynamic asymmetries, while a3 in equation (20d) is the trim angle of
ajtack due to gravitational path curvature. With regard to the term
ag, it might be of interest to note that if the airship is neutrally
buoyant, i.e. s = 1, then from equation (10) § = o and hence from
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equation (204), a,g must be zero.

There aré two conditions for oscillatory motion. These are:

A LWy (22a)
and. a

@, >0 (22b)
The former condition allows us to write for the equality ) = xc = 4y

@y = ‘UMD.—' (Ma)] (23a)
where (A/Ac) is often called the damping ratio.

The condition for oscillatory motion given in equation (22b) is that
w,. is real which, in turn, from equation (20b) requires that

n
M, <O (23b)

Under the condition where equa’ions (22b) and (23b) are satisfied,
stability (subsident motion) requires that

¥
2r= [H-CT1>o0 (24a)
wh = -M, >0 (24b)

Thus to assess dynamic and static stability (equations (24a,b) respec-
tively) it is necessary to assign numerical values to the derivatives
contained in equations (16a) and (16b). Numerical values for these
terms are contained in Table I. While these values may vary with
airship dimensions, they have been computed for the airship shown in

Figure (2) below. An outline of the computational technique is given
subseguently.

2x = [(H-cH)

[ CaglIC+CL] (4 CRIGTCX+ (- CRIGTA + K G G,
TR @A

- CD*

Ingerting values from Table I gives,
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i oe, T

[v+2a8]lod4+.049+ (140)(-2.31)+ (1 +2. 30)2.31) +(az36 )~ 1)

(-2.30)(=n4)- (1 + 2.207)(1 +2-98)
-.0437

’ -.234 -, 04371~ =278

Quite obviously the inequality of equation (24a) is not met so the air-
ship is not dymamically stable.

In considering the oscillatory frequency relationship for static
stability (equatlon (24b)) we may write:

ne L GCR NG GE )G GG }C**—(CD-&-Cﬁ)Kgsz-(l-\-C} Ko
| K’i‘C C;.Z'- (\- C‘;.‘)[\-k%(.‘m

It can readily be shown that since the term in the braces is multiplied
by C* it is rather small. This allows the above expression to be numer-
1ca19y evaluated as

M,= LT3

€
!

Obviously the second condition of equation (24b) is not met.

It might be expected that numerical values of the stability derivatives
would vary from airship to airship. However, it would appear that no
general simplifications may be made in the H; and M; coefficients
except to omit lerms multiplied by C} The results seem to indicate
that for a satisfactory description uf plarar dynamics it is necessary
to calculate the eight stability derivatives of Table I. Drag, as we

have noted, is relatively unimportant for estimating the planar dynamics.

In passing it might be of interest to examine the equivalent expres-
sions for Hy, M1, A}, and G;, vhich are satisfactory for an HTA vehicle.
If quantities such as Cﬁq, C! » C3 ﬁ' and C3s are ignored along with

the product of starred quantitles one, has
-2
M, = \(3 Cm"t (25b)
n '1C (25¢)

(254)

= - K
Quite clearly the crpteria of equations (24) are met when C*_ + C*-
and Ch, are negative for the HTA vehicle. An examination o?qequag?ons
(16a) and (16b) quickly show that dynamic stability cannot depend upon
such sinmple criteria in the case of an LTA vehicle: stability conzsid-
erations are far more complex for the LTA vehicle,
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For a typical airship we have seen that the motion consists of one
exponentially undamped mode and one exponentially damped mode since
from equation (19)

'z\. a-At{ X-wy = ~-AESXM, (26)

and using A = -.139 and M1 = 1.73 we obtain
Al = .479 AZ = - 1.18

As is well known, the fixed-wing HTA vehicle usually evidences two
damped oscillatory modes.

CALCULATION OF AERODYNAMIC LOADS

A fairly straightforward method of calculating static and dynamic loads
on an airship is the method of virtual mass. While this technique has
its origin in the work of nineteenth-century hydrodynamicists, it has
been applied with some success by Bryson to HTA vehicles. Since
space limitations do not permit even an cutline ?f the derivation,
reference should be Ta?e to either Bryson's work‘<4/or the more readable
treatment of Nielson

Through the use cf this virtual mass technique it may be shown that the
derivatives used in the previous expressions for Hj and M] are given as,

G = 2BCY-zA, , 272)
C;.: = —48, (27b)
! C;.S 2 4ﬁ"(x/f)b : (27¢)
C;f = 4C, (27d)
Cm‘* =-2C,C¥+2 &)\, Ry +28B, (27e)
Cay = 4G | (27£)
Cm% « -4 (3) R - 1€, (279)

« =-4D, (27h)

Ay = TawW/S (28a)

for body-alone and that

a J
R, = 1S() [L— .%%gr %_] (28b)

for the body in the presence of fins. a(x) is the body radius as a
function of body station and s(x) is fin span (center-line to tip) as
a function of body station. In addition Bjj, C31 and D)) are defined

N S Q“ (I '1)

where

(29a)
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5&3’ @)
g(’YJ)u( )H“J ( ) (29¢)

when "n" and "b" refer to nose and base respectively.

The above integrals have been evaluated numerically for the airship
shown in Figure (2)from tabular values of a(x) and s(x). The calcula-
tions of equations (27) were carried out to give the results shown in
Table I.

LENGTH (FT) | DIAMETER (FT) | VOLUME (FT3) | MOM. OF INERTIA (SLUG-FT2)
$17 120 4.4X10% 1.42X 108

FIG. 2 REPRESENTATIVE AIRSHIP

TABLE I
Gu [ G [Gy [Gp [Og [@y |Gy |Gy
03les |-1.458 | \0? |-o7s6!. 7305 |s0756 |+ o756 |- 09%as

Also calculated in the program is the airship volume V = 4.4158 x 10+6
Assuming neutral buoyancy it can be shown that (pSL/2m), equals 1.57,
which together with values in Table I allows the starred derivatives
(equation (10)) to be calculated.

CONCLUSION

This pager has taken a brief look at the hydrodynamic complexities of
Elanar dynamics of airships. It has been shown that the equations of
motion for a LTA vehicle are far more complex than the corresponding
equations of a HTA vehicle. A method has been presented for calcula-
ting all loads (except drag) acting on a moving airship.
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