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ABSTRACT
 

The problem of steady incompressible flow for lifting
 

surfaces is considered. This problem requires the solution
 

of an integral equation relating the values of the potential
 

discontinuity on the lifting surface and its wake to the
 

values of the normal derivative of the potential which are
 

known from the boundary conditions. The lifting surface
 

and the wake are divided into small quadrilateral(hyper­

boloidal) surface elements, Zi. which are described in
 

terms of the Cartesian components of the four corner points.
 

The values of the potential discontinuity and the normal
 

derivative of the potential are assumed to be constant
 

within each lifting surface element and equal to their
 

values at the centroids of the lifting surface elements.
 

This yields a set of linear algebraic equations.
 

An iteration procedure is used to obtain the wake
 

geometry: the velocities at the corner points of the wake
 

elements are calculated and the (originally straight) wake
 

streamlines are aligned to be parallel to the velocity vec­

tor. The procedure is repeated until convergence is attained.
 

Numerical results are in reasonable agreement with exist­

ing ones.
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SECTION I
 

INTRODUCTION
 

1.1 Definition of the Problem
 

This work deals with a nonlinear finite-element analy­

sis of zero thickness wings (lifting surfaces) in steady,
 

incompressible, inviscid, irrotational flow, including the
 

effect of the rolled-up wake. The problem is formulated in
 

terms of the velocity potential. This problem was consi­

dered in Ref. 1 where a zeroth order finite-element (i.e.
 

the potential prescribed at the centroidsof the surface
 

elements) analysis was used, with a straight-vortex-line
 

wake. The present work is an extension of Ref. 1 and in­

cludes the analysis of the wake roll-up as well as the non­

linearities in the evaluation of the pressure (Bernoulli's
 

Theorem). Throughout this work, the potential is assumed
 

to have a constant value over the surfabe element,equal for
 

example with its (unknown) value at the centroid of the
 

element (zeroth order formulation). The first item considered
 

here is the wake roll-up. The rolled-up geometry for the
 

wake is obtained by a process of iteration. The convergence
 

of the iteration scheme is investigated. A second item
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included here is the effect of the rolled-up wake on the
 

pressure distribution overthe lifting-surface, using the
 

nonlinearized Bernoulli equation. The results are compared
 

with the linearized ones.
 

1.2 Lifting-Surface Theory
 

The theoretical investigation of pressure and lift
 

distributions over lifting surfaces of various shapes is
 

'
embodied in many works. An excellent review of the litera­

ture in the field is given in Refs. 2 and 3, together with
 

results for lifting surfaces in steady and oscillatory,
 

subsonic and supersonic flows. It may be worth noting that
 

the integral equation used here is analogous to the one used
 

by Jones (Ref. 4) for .untteady incompressible flow. The
 

classical approach for the numerical solutions of lifting­

surface theories is by expressing the unknown in terms of a
 

series with N unknown coefficients and by imposing that the
 

equation be satisfied at N control points. Recently, however,
 

a new approach (often referred to as the finite-element me­

thod) has been introduced, especially in -connection with
 

complex-configurations aerodynamics. A finite-element ana­

lysis of lifting surfaces is considered for instance in Ref.
 

5, which presents results for the loading of a rectangular
 



-3­

planar zero-thidkness wing using a downwash-velocity poten­

tial formulation. Ref. 1 presents a general finite-element
 

solution of a velocity potential formulation for lifting
 

surfaces of arbitrary shapes in steady subsonic flows.. This
 

work differs from the one of Ref. 5 in that it uses hyper­

boloidal (i.e. warped) quadrilateral elements and is there­

fore applicable to any arbitrary nonplanar shape. Expressions
 

for the velocity at any point are also obtained in Ref. 1.
 

These are suitable for investigating the dynamics of the
 

wake.
 

1.3 Wake Roll-Up
 

The interest in the phenomenon of wake roll-up has been
 

spurred by the introduction, a few years ago, of the wide­

body aircraft. Many papers have since been written about
 

wing-tip vortices: about their formation, their effect on
 

a trailing aircraft, their detection and their disappearance.
 

Excellent descriptions of the phenomenon can be found in Refs.
 

6.and 7. A short illustration of it is also presented here.
 

In a few words, behind every aircraft in flight, a pair of
 

counterrotating wing-tip vortices is formed. See Fig. 1.
 

The diameter of the vortex core has been found by measure­

ments to be approximately 3% of the wingspan. The strength
 

of the vortex seems to increase as the weight of the air­

craft increases. If a four-engine jet airplane flies
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sufficiently high for the contrails to appear, it is ob­

served that the exhausts from the two engines on each wing
 

are gradually pushed towards the wing tips, thus making
 

the wing-tip vortices visible. These vortices are quite
 

stable; vortex life spans of more than 15 minutes have
 

been observed, which, compared with the speed of a modern
 

aircraft, means that the wing-tip vortices might persist
 

for 150 miles behind the generating aircraft. The circum­

ferential velocity of the vortex is large, of the order of
 

30% of the generating aircraft speed. If a small aircraft
 

passes through the wake of a large one, structural damage
 

may occur on the small plane; if the flight path is not suf­

ficiently high, the disturbances induced by the wake of the
 

large aircraft on the velocity field of the small one may
 

lead to loss of lift for the small plane and possibly to
 

its crash. Ref. 7 contains more descriptive and pictorial
 

information about these undesirable occurrences.
 

Numerous wind tunnel and real life measurements of the
 

wake vortices have been performed. See,for example,Refs. 8
 

and 9.
 

Theories dealing with the matter are mainly two-dimen­

sional and generally they do not account for the viscosity
 

effects (Ref. 10). Ref. 11 presents a three-dimensional
 

potential method for the estimation of the wake roll-up
 

geometry for wings with control surfaces. In addition, an
 

"artificial" viscosity coefficient is introduced in the
 



equations describing the velocity field of the vortex sheet
 

to "smoothen" out the singularities inherent in the method.
 

Reference 12 presents another three-dimensional potential
 

model to obtain a rolled-up wake geometry, as well as the
 

wing-jet interaction.
 

Reference 13 integrates in time a set of ordinary differ­

ential equations describing the position of the wake vortices.
 

The finite vortex sheet of which the wake consists is approxi­

mated by a finite number of vortices. An unsatisfactory wake
 

pattern was obtained and the paper contends that the mathema­

tical model used fails at the wing tip.
 

Reference 14 presents a method for the prediction of the
 

aerodynamic loads on thin lifting surfaces. Nonlinearities
 

(Mwake deformation) are considered. The method of Reference
 

14 is conceptually the closest to the one presented in this
 

work.
 

1.4 Formulation of the Problem
 

This subsection presents the basic flow equations which
 

will be used throughout the paper. The fluid considered here
 

is incompressible, inviscid and irrotational. For an in­

compressible fluid, the continuity equation is
 

. • =o (1.1) 
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where V is the velocity vector. Because of the fact that
 

the fluid is irrotational, or
 

V x V = 0 (1.2) 

a velocity potential exists, such that
 

V = 74 (1.3) 

It is convenient to introduce the perturbation velocity
 

potential,4, and defineV as
 

V = u (I +V ) (1.5)
 

+ . 

where 1 is the unit vector along the x-direction.
 

Combining now Eqs. (1.1) and (1.5) the Laplace equation for
 

is obtained:
 

2 0 (1.6) 

The boundary condition to be satistfied is that the flow
 

is tangent to the surface, or
 

V . n= 0 (1.7)
 

From Eqs. (1.5) and (1.7), the boundary condition for the
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perturbation potential results:
 

n -3 n = -n (an x(18
 

As it is well known, on the surfaces of the wing and of
 

the wake the solution is discontinuous (see for instance
 

Ref. 1 and 5). Also, there exists a pressure discontinuity
 

on the surface of the wing, while the surface of the wake is
 

determined by the fact that no pressure discontinuity exists
 

on the wake. Therefore, in order to complete the problem,
 

the condition for the geometry of the wake as well as the
 

expressions for the pressure discontinuity on the wing are
 

obtained here. This can be easily accomplished, starting
 

from the Bernoulli theorem (for steady, incompressible, invis­

cid flows)
 

- 2- - u ) = 0 (1.9) 

If there exists a surface of discontinuity, then, indi­

cating for simplicity with "upper" and "lower" the two sides
 

of the surfaces, one obtains, from Eq. (1.9)
 

Pu-P+ ( u V V = 0 (1.10) 



or
 

PU - PP +2 (Vu + V (V - V )= 0 (1.11) 

Indicating with the velocity of the point on the surface
 

of discontinuity
 

V+ V-
V +vV 2 

(1.12)
Va 
 2
 

(average between the upper and the lower surface) and with
 

AV = Vu - VP (1.13) 

the velocity discontinuity, Eq. (1.11) may be rewritten as
 

Ap = Pu - Pk= a AV (1.14) 

This is the desired expression for the pressure discontinuity.
 

Using Eq. (1.5), Eq. (1.14) may be rewritten as
 

Ap = -pU 2 + V a) V(Af) (1.15) 

or
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Ap- 1 PU2aAsc TAP 2(l+~~ ~ (1.16 

which gives the exact (nonlinear) expression for the pressure
 

distribution on the wing.
 

Equation (1.14) may also be used to obtain the condi­

tion for the geometry of the wake. For, the condition that
 

no pressure discontinuity exists on the wake yields
 

V A V = 0 (1.17) 

It may be noted that if Eq. (1.17) is satisfied, then
 

the no-pressure-discontinuity condition is automatically satis­

fied. Equation (1.17) may be interpreted as saying that the
 

velocity discontinuity on the wake is normal to the velocity
 

of the wake. Also, Eq. (1.17) may be rewritten as
 

(Va. V) A = 0 (1.18) 

i.e. that
 

A = constant along a streamline (1.19)
 

Therefore, the geometry of the wake may be obtained from the
 

streamlines emanating from the trailing edge which have the
 

property of being tangent to V. Equation (1.17) (and hence
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the condition of no-pressure-discontinuity) is then satisfied
 

by imposing that A4 be constant along a streamline (Eq. (1.19)).
 

It may be worth mentioning that Eq. (1.17) is-equivalent to
 

saying that the vortex lines coincide with the streamlines
 

since a surface of velocity discontinuity (with continuous
 

normal component) is equivalent to a layer of vortices with
 

vortex lines parallel to the lines of constant A4 (which,
 

in turn, are normal to the directions of AV)*.
 

It is worth noting that the above formulation is exact,
 

in the sense that no small-perturbation hypothesis has been
 

used. In order to assess the relevance of using the exact
 

formulation, the results obtained with such a formulation
 

will be compared with the ones obtained from a small-pertur­

bation formulation. If the small-perturbation hypothesis
 

L4I = (6) << 1 (1.20-) 

is invoked, Eq. (1.5) yields
 

V = U +O(.) (1.21) 

and therefore Eq. (1.16) may be rewritten as
 

*See for instance Ref. 15
 



Ac• t -2t V(Ap + 0(E) (1.22) 

while the wake may be assumed to be composed of straight
 

vortex lines emanating from the trailing edge. A more con­

venient expression for Acp is
 

= -2 A + 0(e) (1.23)­

where s is the arc length along the lifting surface in the
 

planes y = constant.
 

1.5 Method of Solution
 

In Ref. 1, it is shown that the distribution of the per­

turbation aerodynamic potential around a body of arbitrary
 

shape is given by the following integral expression
 

4En r - dZ (1.24) 

0
 

where
 

E = 0 inside E

0
 

E = 1/2 on E
 

E = 1 outside Z

0 



E° is a surface surrounding the body and its wake, and n
 

is the normal to the surface.
 

If the distance between the upper and lower sides of
 

the body surface goes to zero (zero-thickness body), one
 

obtains a lifting surface formulation:
 

f Dn (D) dE (1.25) 
U 

where Z extends over the lifting surface and its wake,
 

D = 	 -u (1.26)
 

41t
 

and the subscripts u and k stand for upper and lower surfaces,
 

respectively. Equation (1.25) shows that the potential can
 

be represented by a.doublet distribution on the body and on
 

the wake. The value of D is constant along streamlines of
 

the wake and equal to the value at the trailing edge of the
 

wing (Eq. 1.19).
 

The boundary condition, Eq. (1.8), must be satisfied.
 

Using Eq. (1.25), the following integral equation results:
 

'n = [D ( 1 dE 	 (1.27)
3j ae@n an r
 

where 34/an0(the subscript zero denotes the control point)
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is known and given by E. (1.8).
 

The surface of the wake is assumed to be known (say
 

from independent calculations).
 

The numerical solution of Eq. (1.27) will be analyzed
 

in detail in this work.
 

After Eq. (1.27) has been solved for D, the velocity
 

at any point, P, in the field, may be obtained as:
 

ffD"128 
Vp = V rr D a ) 

From Vp, the pressure, as well as a new geometry for the wake
 

is obtained.
 

1.6 Outline of the Work
 

In Ref. 1, the numerical formulation for the integral
 

equation describing the distribution of the perturbation aero­

dynamic potential over a lifting surface has been obtained.
 

Expressions for the velocity vector, V, at any point in the
 

field have also been obtained. In Section II of this work, a
 

summary of Ref. 1 is presented. A description of the itera­

tion scheme used for obtaining a rolled-up wake geometry, as
 

well as the calculation of the nonlinear pressure coefficient
 

are added.
 

Section III presents results obtained with the lifting
 

surface formulation of Ref. 1, shown in comparison with
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existing theoretical and experimental results.
 

The convergence of the solution is illustrated in
 

Appendix A. In Appendix B, the convergence of the itera­

tion scheme is -presented. A flow chart and list of the
 

computer program implementing the theoretical formulation
 

is contained in Appendix C.
 



SECTION II
 

NUMERICAL FORMULATION
 

2.1 Introduction
 

This,section presents the numerical formulation used
 

here, including the wake roll-up iteration procedure and
 

the calculation of the pressure coefficient, using the
 

linearized Bernoulli Equation, as well as the nonlinearized
 

one. This formulation is an extension of the one of Ref. 1,
 

where wake roll-up is not included. For completeness, the
 

formulation of Ref. 1 is summarized here.
 

As mentioned in the previous section, the finite-ele­

ment formulation yields the distribution of the doublet
 

strength at the centroids of the lifting surface elements.
 

Once this is known, the velocity at any point in the field,
 

in particular at the corner points of the wake elements may
 

be obtained. These may be used to obtain the geometry of
 

the wake.
 

In Subsection 2.2, the gradient of Eq. (1.25) is expressed
 

in terms of the values of D at the centroids of the elements;
 

the boundary condition, Eq. (1.8) is satisfied at the centroids
 

of the elements (control points). In Subsection 2.3, a new
 

type of surface element, the hyperboloidal quadrilateral ele­

ment, first introduced in Ref. 16, is briefly presented, to­
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gether with the vector expressions for the velocity induced
 

by an element at a control point. In Subsection 2.4, the
 

iteration scheme used for obtaining the rolled-up wake pat­

tern is presented. The element grid used for performing the
 

numerical calculations is described in Subsection 2.5. In
 

Subsection 2.6, the finite-difference procedure for calcula­

ting the pressure coefficient in terms of the planform
 

geometry is indicated.
 

2.2 Discretization
 

The lifting surface and its wake are divided into small
 

surface elements. See Fig. 2. Assume that the value of D
 

is constant within each element, say it is equal to D (un­

known) at the centroid of the element ak' Then Eq., (1.27)
 

reduces to:
 

n = I Dk 2 dck (2.1) 
a n_0 k = Dk ff a n n 0 a
k
 

where N is the number of surface elements on the wing and L
 

is the number of elements on the wake. Note that D is con­

stant along streamlines of the wake and equal to its value
 

at the trailing edge or approximately equal to D at the
 

centroids of the wing elements in contact with the trailing
 

edge. If we impose that the boundary condition, Eq. (1.8)
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is satisfied at the centroids P. = Ph of the wing surface
 

elements ah' the following system of linear algebraic
 

equations is obtained:
 

[AhkI {Dk} = {BhI (2.2) 

where
 

Ahk = +1 dj (2.3) 
Uk 0Ckl PO = Ph 

and
 

Bh = ( ) (2.4)
 

p =p
 

In addition, according to Eq. (1.28),
 

V h =ZDk Vhk (2.5)
 

where
 

Vhk -da r k (2.6)
 

Note that, by definition,
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'Ahk nh Vhk (2.7)
 

2.3 Hyperboloidal Quadrilateral Element
 

In order to evaluate Eqs. (2.3) and (2.6), a typical
 

quadrilateral surface element is approximated by a portion
 

of a hyperboloidal paraboloid passing through the four cor­

ner points. This type of surface element is called the hyper­

boloidal quadrilateral element, introduced in Ref. 16 and
 

briefly described here.
 

The geometry of a surface element is described in vector
 

form as:
 

P = P ( )(2.8,) 

2 4 

where 1 and 2 are the generalized curvilinear coordinates 

on the surface elements with the base vectors 

+ p 
a1,
 

(2.9)
 

4 aP 
a2 2
 

The unit normal to the surface is­
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a x a 2 (,2.10)la I x a21 

The surface element is (see Fig. 3) 

id1 2 d~1d 2 

do = x aaa = x a 2 da (2.11) 

The 1yperboloidal element approximating the real surface
 

element is described by the expression (see Fig. 4):
 

Pk
 

[1, g , n , l] 1 (2.12) 

P 
2
 

+ 

P

3
 

with
 

-1 < < 1 

(2.13)
 

-l < < l 

where Pk represents the centroid of the element ak' The coor­

dinates of the corners of the element are related to Pk' PI'
 

P2 and P 3 as
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p++ P 

p 1 - 1 -1 P2 

j_+ 1 -1 
 1J P1
 

The vectors Pk' P P and P3 are given by
 

4.4 

1 -1
 

-1=1 . : (2.15) 

2 1 P+ 

3 -1 -


Combining Eqs. (2.6) and (2.12), one obtains for Vhk: (See Ref. 1)
 

hk = @n kFhit 3n ( .)- daik 

Q4 x Q1 " Q4 - Q"4 +Q1I 
 Q1 Q1 Q4,1+
 

k x 621l 4 1211
 
Q 2 + 2 I 

62 x3 212 - 62 * 3 +3 63 - 62 • '3] + 

I62 x 63I. 2 1 31 
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Q
-3 x Q4 Q3 Q3 - Q3 Q4 Q4 Q4 Q3 _ 
2 1 

103 x 041 1 3 14 

where (see Fig. 5):
 

Q1 = P++ - ph
 
Q2 = P-+ - P h 

(2.17)
 

Q3 = P -- -P 

Q4 = P+- - Ph 

2.4 Iteration Scheme for Wake Roll-up
 

As mentioned in Section I, the wake is initially assumed
 

to consist of straight vortex lines starting at the trailing
 

edge of the wing. It was also found that these vortex lines
 

should be tangent to the velocity vector i, and this provides
 

the condition for obtaining the rolled-up wake geometry. The
 

following iteration scheme is used for aligning the initially
 

straight-wake streamlines with the velocity vector: compute
 

the doublet strengtl distribution at the centroids of the
 

elements,.. with the wake influencing only the Ahk terms
 

of the elements, in contact with the trailing edge. Then
 

compute the velocities in the x, y and z directions on the
 

wake,- at the corners of the surface elements. Align'segments
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of the wake streamlines with-the velocity vector evalua­

ted at the upstream segment extremity. (See for example
 

Fig. 6, where the position of the point P is changed
pm
 

according to the velocity at the point P on a typical wake
mm 

surface element). The position of the point P is changed

pm
 

as follows:
 

P =P +AP (2.18)
 
pm mm
 

where
 

= / 1 (2.19) 

and API is the original distance between the points Ppm and 

4-
PMM The doublet strength distribution is calculated again
 

(notice a very small change, due to the new wake geometry),
 

then the wake velocities and geometry are reevaluated. The
 

process repeats itself until the difference between suc­

cessive wake geometries becomes sufficiently small, thus
 

indicating the convergence of the scheme (or the factthat
 

the streamlines are indeed tangent to the velocity vector).
 

The iteration scheme described here is hot the best
 

possible one. A number of improvements are suggested in
 

Appendices A and B.
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2.5 Element Grid
 

The pressure coefficient for the wing is computed by
 

using the finite-difference method. In order to properly
 

illustrate the scheme, a description of the element grid
 

is in order.
 

Let c(y) be the chord and b that span of the wing, x
 

and y the Cartesian coordinates for the wing at zero degrees
 

angle of attack (see Fig. 2). Let
 

x- XL.E.(y) 

= (2.20) 
b
 

Then the parametric form of the wing planform equation is:
 

x= cY + XL.E. 

bi
-

T= 0 for a flat lifting surface (2.21)
 

If, in addition, the wing is atan angle of attack, a,
 

different from zero, the geometry may be rewritten as:
 

x = X Cos a 

y y
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: = -x sin a (2.22) 

Since the potential (doublet strength) varies faster
 

near the leading edges and tips of the wing, it was found
 

convenient to use smaller boxes in these regions and larger
 

ones elsewhere. See also Ref. 15. This is accomplished
 

by the following transformation:
 

2
= y 


= 1 - (U - 0) (2.23) 

The boxes have constant sizes in the plane t and 9, given 

by: 

V= I/NX
 

0 = 1/NY (2.24)
 

where NX and NY are the numbers of boxes along the x direction
 

and along the semispan, respectively.
 

2.6 Pressure Coefficient
 

As shown in Subsection 1.4, the linearized pressure coeffi­

cient Ac is given by
p 

-Ac s (A4) + 0(s) (2.25) 
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where s is the arclength on the wing on the plane's y = 

constant. As mentioned before, by solving Eq. (2.2), the
 

potential distribution is obtained at the centroids of the
 

wing elements. By interpolation, a continuous distribution
 

can be obtained.
 

The wings used here for the numerical examples are all
 

rectangular flat surfaces, for -which s = x. The derivative
 

of the potential in Eq. (2.25) can be written as:
 

9(Ap) = 3(A4) aip ay (2.26). 

At any point xi, on an element borderline along the semispan,
 

the derivative of the potential, by finite - differences, is:
 

1 AAi+/2 - i-1/2 1
 (2.27) 
i X ci+i/2 i-1/2 2V5Ff
 

where i ± 1/2 represents adjacent element centroids on planes
 

y = constant.
 

The non-linearized pressure coefficient is given by Eq.
 

(1.16), reproduced here:
 

1- +4 
2
Ac 2(t Va) • 4 (Aj) (2.28)
 

Denote by a, 3 and k the unit vectors along the x, y, z coor­



-26­

dinates-and by I w, wk the unit vectors along the x,
 

y, z coordinates. One can express the velocity V in terms
 

of the wing coordinates and in terms of the x, y, y coordi­

nates as:
 

V w .V V~1 + w + V3 

=VxI + Vy + VkZ (2.29)
 

and
 

~AA4 (Ak)-t (Atb) -?-V() +w (2.30)-

Sw y 

Therefore, combining Eqs. (2.28), (2.29) and (2.30), the
 

pressure coefficient becomes:
 

Acp =2V1(A) +2v2 a(Af) (2.31) 

On the plane y = 0, a simpler expression may be obtained,
 

since, for the symmetric cases considered here
 

3 M - 0 (2.32) 

Therefore, on y = 0
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Ac =2V 9(A4) (2.33)
 

where V1 is given by
 

V1 = V •i w = Vx cos a - Vz sin a (2.3,4) 

with
 

+ -9
V 

x ax
 

aa
 
V- z (2.35)
 

and ­ are obtained from Eq. (2.5).
Dx 3z
 

Finally,
 

Acp =2[(i + a)cos a _z sin _(2.36,) 

ax - ao E (2.2). 

where 3MAc) is computed according to Eqs. (2.26) and (2.27).
 
aiR
 



SECTION III
 

NUMERICAL RESULTS
 

3.1 Introduction
 

As mentioned in the beginning of Sections I and II,
 

this work is an extension of Ref. 1. The zeroth order for­

mulation described in Section II was implemdnted into a com­

puter code, ILSAWR (acronym from Incompressible Lifting
 

Surface Aerodynamics with Wake Roll-up). ILSAWR performs
 

the iteration routine described in Subsection 2.4. The
 

way the program is set up, the wake geometry is automatically
 

generated, with each row of elements along the -x-direction
 

having equal lengths. The Kutta condition is satisfied by
 

imposing that the first row of wake elements is tangent to
 

the wing. The iteration scheme is performed for the rest
 

of the rows only.
 

All numerical results presented here were obtained for
 

rectangular planar lifting surfaces and all the.graphs show
 

results only for the semispan of the wings.
 

3.2 Parametric Analysis of the Effect of the Angle of Attack
 

A parametric analysis of the effect of the angle of at­

tack on the wake roll-up is presented here. The case consi­

dered is a rectangular wing of aspect ratio AR = 8. This
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value was chosen because of existing results of Ref. 11
 

(see Section 3.3). Results.are presented for three values
 

of the angle of attack: a = 50, 100 and 15*. The case
 

a = 5* is presented in detail. In Figures 7a, b, c, and d,
 

the converged wake pattern for a rectangular planform
 

of aspect ratio AR = 8 at an angle of attack a = 51, with 

an element grid having NX = 4, NY = 10, with the length 

of the wake elements Axw .5c is plotted in great detail 

for 10 chord lengths behind the trailing edge. Figures 

7a and 7b show the rolled-up wake plotted at stations 1 

through 10 chord lengths behind the trailing edge. Figure
 

7c is a side view of the rolled-up wake (the vertical scale
 

is enlarged), showing the vertical displacement of the stream­

lines. The numeration system for the streamlines is also
 

shown, with streamline niunber 1 being at y = 0 and the last
 

streamline starting at the wingtip. Figure 7d shows a top
 

view of the rolled-up wake behind the wing, with the side
 

displacement of the streamlines visible. The streamline
 

numeration system is clearly shown here.
 

It may be noted that the analysis of convergence (pre­

sented in Appendix A) indicates that the solution is close
 

to convergence, although improvements appear to be desirable
 

at the trailing edge, especially near the wingtip.
 

Results for a = 50, 100 and 150 are presented in Figures 

8 and 9, for a rectangular planform of aspect ratio AR = 8, 

with an element grid of NX = 4, NY = 10, Axw = .5c. Figure 8 



-30­

shows the effect of the angle of attack on the wake roll­

up, plotted at 5 chord lengths behind the trailing edge.
 

The wake displacement becomes more pronounced as a increases
 

' 
from 50 to 10 and 150. The effect of the angle of attack
 

is shown also in Figure 9a, b and c, where streamlines
 

1, 10 and 11 are plotted in a side view.
 

The analysis of the convergence of the iteration scheme
 

is presented in Appendix B.
 

3.3 Comparisons with Existing Results
 

In order to assess the validity of the method, a number
 

of comparisons with existing results are presented here.
 

3.3.1 	 Comparison with the Artificial Viscosity Method of
 

Bloom and Jen
 

Figure 10 presents the wake roll-up for a rectangular 

planform of aspect ratio AR = 8 at an angle of attack a = 6.25', 

for an element grid of NX = 4, NY = 10, with the wake elements 

length of Axw = .5c. Converged wake patterns are shown at 

stations 1, 5 and 9 chord lengths behind the trailing edge 

and the results of the present method are compared with the
 

artificial viscosity results of Ref. 11. In Ref. 11, the
 

lift coefficient was CL = 1 and no angle of attack was speci­

fied. Therefore, the lift coefficient per unit angle of
 

attack, CLa , was evaluated with-the present method and the
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angle of attack'was found according to
 

a - 0L 	 (3.1)
CLa
 

The lift c6efficient per unit angle of attack was found to
 

be C = 9.174. For this value of the CLa' the value of the
 

angle of attack which gives a lift coefficient of 1 is a = 6.25'.
 

3.3.2 	 Comparison with the Experimental Results of Chigier
 

and Corsiglia
 

In Ref. 8, the position of the vortex centerline is
 

experimentally determined as the locations where the tangential
 

velocity is zero. The results Of Ref. 8 (Chigier and Corsiglia)
 

have been obtained for a rectangular wing of aspect ratio
 

AR = 6, at an angle of attack of a = 120. For the present
 

method, there is (as yet) no precise way for determining the
 

location of the vortex centerline. The last streamline is
 

taken to represent the vortex centerline for the planform with
 

an element grid of NX = 4, NY = 10 and Axw = .5c. Figure 11 

results obtained with the present method, compared with the 

ones of Chigier and Corsiglia.
 

3.3.3 	Comparison with Results of Shollenberger
 

As mentioned in Section I, Ref. 12 (Shollenberger) uses
 

a three-dimensional potential method and an iteration proce­

dure to obtain the rolled-up wake. The wing planform used
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has an aspect ratio AR = 6 and it is at an angle of attack
 

a = 100. The results obtained with the present method, in
 

comparison with the ones of Ref. 12, are shown in Figure 12.
 

The wake geometries are plotted for 1, 2, 3 and 4 chord
 

lengths behind the trailing edge.
 

3.4 Pressure Coefficient
 

In Subsection 2;6, the finite-difference procedure used
 

in calculating the pressure coefficient was described in de­

tail. The results obtained by using the linearized and non­

linear Bernoulli Equations with and without wake roll-up are
 

presented here. Table I shows the values of Ac at y = 0,
p 

linear and nonlinear, with straight and rolled-up wakes. 

The results are obtained for a rectangular wing with aspect 

ratio AR = 8, atan angle of attack a = 50, with an element 

grid of NX = 7, NY = 7, with Axw = .5c. Figure 13 shows a 

plot of the pressure coefficient presented in Table I. Note 

the negligible effect of the wake roll-up on Ac . However, 

as previously mentioned, the wake r6ll-up is believed to have 

an important effect in the case of wing-tail interaction. 

Finally, Figure 14 presents the potential distribution 

at the trailing edge of the wing, AT.E", for the same plan­

form as the one used in Figure 13. It can be seen from Figure 

14 that at y = 0, a(A4)/3y = 0. The effect of the wake roll­

up is negligible. 
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x/c 
 Linearized Ac Nonlinear Ac
P p
 

Straight Rolled-up Straight Rolled-up
 
Wake Wake Wake Wake
 

.055 .8800 .8706 .8699 .8600
 

.136 .4523 .4530 .4471 .44.70 

.258. .2799 .2860 .2767 .2827 

.421 .1921 .1921 .1899 .1899
 

.624 .1276 .1274 .1261 .1259
 

.868 .0732 .0729 .0723 .0720
 

Table 1. Pressure Coefficient at y = 0, for a rectangular 

wing planform of aspect ratio AR = 8, at angle of attack 

a 50, with element grid of NX = 7, NY = 7 and Ax = .5c.w 



CONCLUDING REMARKS
 

A method for analyzing the wake roll-up has been des­

cribed and numerical results have been presented. At this
 

point, it might be interesting to quote Ashley and Rodden
 

(Ref. 17) from their review on wing-body aerodynamic inter­

;action: "It should be evident from the foregoing all too brief
 

accotint of interaction theory that it is both a complicated
 

subject and one in which computer automation is more nearly
 

in a state of revolution than of evolution. Within a few
 

years, programs should be available that will solve the
 

linear potential equation, with boundary conditions satis­

fied by placing appropriate discrete singularity elements at
 

a close approximation to all the true wing and body surfaces.
 

The following 'nonlinearities' will be included: pressure
 

velocity relations such as" the nonlinear Bernoulli Theorem;
 

"boundary conditions that partially account for x - velocity
 

perturbations...; wakes trailing streamwise from the actual
 

positions of trailing edges; and/or estimates of self-deforma­

tion of wing wakes as they aff&ct aft tail surfaces and the
 

like."
 

All the nonlinearities mentioned above (with the exception
 

of the wing-tail interaction and the zero-thickness limitations
 

of lifting-surface theory) have been included in the present
 

work. The only approximations introduced are numerical ones,
 

and they are negligible, as the convergence analysis
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indicates.
 

Finally, the main innovations and advantages of the mehod
 

are discussed. First, the method is based upon an exact
 

(rather~than discrete) formulation. Only numerical approxi­

mations are introduced (other methods use approximate physical
 

models such as discrete vortices): this implies that the
 

formulation is apt to refinements (first-order finite-element
 

representation for D is now under-investigation). Second,
 

the wake is represented as doublet distribution: this implies
 

that the method may be extended to steady and unsteady, sub­

sonic and supersonic-aerodynamics around complex configura­

tions, in a relatively straightforward method, using the for­

mulation of Ref. 18. Third, the convergence of the solution
 

is exceptionally fast (as is the more general method of Ref.
 

18). Fourth, the method is relatively fast: the results for
 

NX = 4, NY = 7, Nwake = 10 require 3 minutes of C.P.U. time
 

per iteration on the I.B.M. 370/145 computer of Boston
 

-University. Finally, the convergence of the iteration scheme
 

is already good, although considerable improvements can be
 

obtained by using alternative, more sophisticated iteration
 

schemes which are now under investigation.
 

Most of the theoretical results on wake roll-up are of a
 

rather recent origin (from 1973 onward) and comparisons with
 

experimental results show that some refinements of the mathe­

matical model are still in order. Viscosity effects, thickness
 

effects, aerodynamic interaction still remain to be accounted for.
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Figure 1. Formation of the Wing - Tip Vortices. 
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Figure 7a. 	Converged Wake Pattern for a Pectangular W ng Planform
 
of AR = 8, with a = 50, Element Grid with NX = 4, NY = 10,
 
Length of Wake Elements Ax = .5c, Plotted for 10 Chord
 
Lengths Behind the Trailing Edge. Continued on Next Page.
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Figure 8, The Effect ofthe angle of attack, a. on the Wake
 
Rollup for a Rectangular Lifting Surface of
 
AR = 8, Plotted at 5 Chord Lengths Behind the
 
Trailing Edge. The Element Grid has NX = 4, NY = 10
 
and Ax .5c.
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Figure 9a. 	Streamline #1 of a Rectangular Lifting Surface 
of AR = 8, with NX = 4t NY = 10, A& = .5c, 
Plotted for Various Values of the Anwgle of Attack. 
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Figure 9b. 	Streamline #10 for the Planform of Figure
 
9a, Plotted for various Values of a.
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Figure 10. 	Wake Roll-up for a Rectangular Lifting Surface of AR = 8, 
Angle of Attack a = 6.250, EletentGrid with NX = 4, NY = 10, 
Axw = .5c and Comparison with the Results of Ref. 11. 
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Surface of AR = 8, for a = 120, Element Grid with NX = 4, 
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Figure 12. 	Wake Roll-up for a Rectangular Lifting Surface of AR = 8,
 
at a 5-, with NX = 4, NY = 10, Length of Wake Elements
 
Ax = .5c and Comparison with Results of Ref. 12.
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Figure 13, 	Nonlinear Section Pressure Coefficient at y 0, 
for a Rectangular Pl&nform of AR = 8, at a =5, 
with NX = 7, NY = 7, Axw = .5c. 



-57­

.5 

AT .E. 

.4 

.3 

.2 

-i
 

0 t 
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

2y/b 

Figure 14, 	Potential Distribution at the Trailing
 
Edge of a Rectangular Planform of AR = 8,
 
with a = 5', NX = NY = 7 and Axw = .5c.
 



APPENDIX A
 

CONVERGENCE OF SOLUTION
 

In this Appendix, a numerical study is performed on the
 

influence that the parameters NW (the number of wake elements
 

along the x direction), Axw and NY have on the convergence
 

of the solution. The only case presented here is relative to
 

a rectangular wing planform of aspect ratio AR = 8 at a= 50.
 

In Figures Ala, b and c, the effect of the length of
 

the wake elements on the wake roll-up is shown. The element
 

grid for the planform has NX = 4 and NY = 10. The length
 

of the wake elements Axw is allowed to vary from .5c to .75c 

and 1c. Rolled-up wake patterns are plotted for stations 

located at 3, 6 and 9 chord lengths behind the trailing edge. 

Note that, as Axw increases, the wake pattern becomes "larger", 

as it is easy to see from Figure Al. Note also that the 

difference between wake patterns for various values of Ax w 

becomes smaller as the distance from the trailing edge in­

creases. In Figure A2 one might find an explanation to this 

difference, as well as a suggestion for the improvement of 

the numerical model. In this figure, the same rectangular 

planform with an element grid of NX = 4, NY = 10 is used. The 

figure shows streamlines (counted from the line of symmetry of 

the wing, the mid-line included) numbers 1, 10 and 11, plotted 

for values of Ax of .5c, .75c, and 1c, for 10 chord lengths.
w 



;The first streamline shows remarkable closeness (on this
 

enlarged vertical scale) for the various Axw . The difference
 
w
 

increases as we approach the wing-tip streamlines. Note
 

that the streamlines are approximately parallel; the dif­

ference between them is due to the fact that, by imposing
 

the -Rutta condition, the first row of wake elerents lies
 

in the same plane as the wing, and since Ax -vanies, the 

streamlines will start at .5c, .75c, and lc behind the
 

trailing edge. Also, the downwash is larger in the vicini­

ty of the trailing edge and decreases as we move farther
 

behind. Therefore, the wake slopes can be expected to be
 

larger in the vicinity of the trailing edge. Note the
 

sharp jump between the first element and the next in
 

streamline number 11. It may be worth noting that, since
 

the streamline displacement is obviously influenced by the
 

length of the wake elements, we might obtain a smoother pro­

file in the vicinity of the trailing edge by using smaller
 

elements in this region, for one or two chord lengths. This
 

remains to be implemented.
 

Next, consider the influence of NW. If the number of
 

wake elements is increased, it is observed that the newly
 

added rows of elements have no effect whatever on the wake
 

roll-up of the previous ones.
 

The effect of the number of wake strips on the wake roll­

up is shown in Figure A3, for the rectangular wing having
 

an element grid of NX = 4, with NY varying between 7 and l0,.
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AXw = .5c-and NW = 11. All cases are converged and lie prac­

tically on the same line.
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APPENDIX B
 

CONVERGENCE OF ITERATION SCHEME
 

In this.-Appendix, an analysis of the convergence of the 

iteration scheme is presented, for a rectangular wing of AR 

at an angle of attack a = 50, with an element grid having NX = 

4, NY = 10 and Axw = .5c. Figures Bla, b, c, d show the evo­

lution of the rolled-up-wake pattern through successive itera­

tions until convergence is reached. The plots are for stations 

at 1, 2, 5 and 10 chord lengths behind the trailing edge. Fir 

gures B2a, b, c, d show the evolution of the wake streamlines 

numbers 1, 9, 10 and 11 through successive iterations until 

convergence, plotted for 10 chord lengths behind the trailing 

edge. 

A common feature of Figs. B1 and B2 is that the plots
 

of the initial iterations show very large displacements of
 

points on the wake. The largest displacement takes place
 

near the.wing-tip and far behind the trailing edge. Con­

vergence is attained faster near the trailing edge and the
 

rate of convergence decreases as we move from the wing root
 

t6ward the wing-tip.
 

The computation time required to obtain the convergence
 

of the iteration scheme (described in Subsection 2.4) for a
 

wake having 210 elements is of the order of one hour and 20
 

minutes on Boston University's IBM 370/145 computer. A num­

ber of improvements of the present iteration scheme can be
 

tried.
 

First, since the calculated potential distribution on
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the wing-is essentially the same with a straight wake as
 

well as with a rolled-up one, the potential distribution could
 

be computed for the straight wake and then recomputed for
 

instance every fifth iteration. This should lead to some
 

savings in computational time. Second, a much better itera­

tion scheme can be used (suggested by the plots of Fpres
 

BI and B2). This scheme should conver-gemuch faster than
 

the one used in this paper and account for significant time
 

savings. The first iteration should only change the po­

sition of the second row of boxes on the wake; (the first
 

one is kept tangent to the wing plane according to the way
 

the Kutta condition is satisfied) the rest of them will
 

have the same y and z coordinates as the second row. Only
 

the velocities at the influencing corners are calculated.
 

The third row of corners should be realigned according to
 

the velocities at the second row; the rest of the boxes will
 

have the same y and z coordinates as the second row. The
 

process should be repeated until convergence is .reached every­

where.
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Figure Bla, Evolution of the Rolled-up Wake Pattern
 
Through Successive Iterations, at a Station
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Figure Blb, Evolution of the Rolled-up Wake Pattern 
Through Successive Iterations, at a Station
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Figure Blc. Evolution of the Rolledup Wake Pattern
 
Through Successive Iterations, at a Station
 
Situated 5 Chord Lengths Behind the Trailing
 
Edge, for the Wing of Figure RP
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Successive Iterations, for the Planform
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APPENDIX C
 

FLOW CHART AND LIST OF THE COMPUTER
 
PROGRAM ILSAWR
 

-CI. Flow Chart of-Computer Program ILSAWR
 

Define Parameters of the
 
Problem. Evaluate and
 
Store Wing and Straight
 
Wake Geometries.
 

Evaluate Coefficient
 
Matrix and Boundary
 
Conditions on Wing.
 

Evaluate Potential
 
Distribution.
 

Evaluate Velocities.at
 
Corners of Wake Elements.
 

Obtain New Wake Geomer.
 

J 3Printout
 

C STOP
 

http:Velocities.at
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.2, List of-Computer Program TlSAWR
 

IV G LEVEL 21 
 MAIN 	 DATE = 75226 05,/22/L
 

COMMON/ZZZI/NX,NYNZ,NW,RECLEN,SPAN,KSYMMYKSYMMZ,NSYMMY,NSYMZ
 
COMMON/ZZZ2/TAU,ALFATANGLETTANGTE,CHCR-DSNTOTAL,UMACH
 
COMMON/ZZZ8/AA(2500),SOIURCF(250),SINABC ,COS ABC, ALF-ABC
 
COMMON/ZZZII/VHKX(2500),VHKY(2500),VHKZI2500),VKX(250),VKY(250),
 
IVKZ(.250)
 
COMNON/CONTR/NIlTER
 
DIMENSION !TCCNT(100)
 
00 10 1=1,15
 

10 	 ITCONT(I}Y=1
 
ITCONT (1)=2
 
ITCONT( 5)=2
 
ITCONT( 10=2
 
ITCONT( 151=2
 
ITCONT(20)=2
 
ITCONT( 25)=2
 
ITCONT(30)=2
 
ITCONT(35Y=2
 
ITCONT(40)=2
 
ITCONT(45)=2
 
ITCONT(50)=2
 
CALL INITIA(C )
 
CALL PRINTA(5)
 
CALL GEO-MET
 
CALL VECI23
 

C 	 CALL PRTNTA(3)
 
00 i NITER=1,12
 
IF(NITER.EQ.11)ITCONT(N!TER)=2
 
IF(NITER.EQ.12)ITCONT(NITER )=2
 
IF{ITCONT(NITER).NE.2)GO TO 1000
 
CALL COEFF
 

C 	 CALL PRINTB(4)
 
TOL=0.001
 
CALL GELG(SOURCE,AA,N-TO-TAL,1,TOL,I-rRt
 
CALL PRINTO(C)
 

1000 	 CONTINUE
 
CALL VELMM
 

C 	 CALL VELAUX
 
CALL ITER
 
CONTINUE
 
STOP
 
END
 

OF TEE 

IS p)OOR6OLIGNA Pk GE 

I 



V 


C 

C 

C 

C 

C
 
C 

C
 

C
 

C­
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SURROUTINE INITIA(K)
 
COMMON/ZZZI/NX,NY,NZ,NWRFFLFN,SPANKSYMMY,KSYMMZ,NSYMMY,NSYMMZ
 
CLMMON/ZZZ2/TU,ALFATANGLETANGTECHORDNTOTALUMnCH
 
COMMON/ZZZ3/YK(3,11,1I,2)
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250}
 
COMMON/ZZZ7/XP1(250),YPI(250),ZPI(250),XD2(250),YP2(250),
 
IZP2(250),XP3(250),YP3(250),ZP3(250)
 
CflMMON/Z.ZZ/AA(2500),SOURCE(250),SINABC,COSARCALFAr3C
 
C0M fN/ZZZ9/XPP(250),YPP(250),ZPP(250),XPM(250),YPM(250)
 
,,ZPM'(250 XMP('250),YlP(250),ZMPt250),XMM(250),YMM(250)t
 
1ZMM(250),IWAKE(250) 
COMMON/ZZZIO/JNXB(250),NXWAKE,WAKEIN 
*Gf TO'II,2,3,4),K 
CONTINUE 
NX=7
 
NY=7 
N'Z= 1
 
NX-WAK E= II
 
WAKEIN=o5 

NW=1
 

i-I MEANS THE GEOMETRY OF THE PROBLEM IS SYMMETRIC
 
-1 MEANS THE GEEMETRY OP THE PROBLEM IS ANTISYMMETRIC
 
0 MEANS THE GECMETRY OF THE PROBLEM IS NEITHER SYMMETRIC NOR ANTI
 

IF KSYMMZ .NE. 0 ,THEN NZ=I (EXCEPT FCR GROUNO EFFECT)
 

KSYMMY=4-1
 
KSYMMZ=O
 
NTOTAL=NX*NY*NZ*N
 
IF(KSYMMY.EQ.0)NTOTAL=NTCTAL*2
 
NSYMMY=I
 
NSYMMZ=1
 
IF,(KSYMMY.NE.0)NSYm'Y=2
 
IF(KSYMMZ.NE.O)NSYMMZ=2
 
UMACH=0.0
 
REFLEN=l.
 
TAU=.0
 
SPAN=8.
 
ANGLA=O.
 
ANGLB=O.
 
ALFA=5.
 
ALFAR=ALFA*3.14159/80.
 
SINALF=S IN (ALFAR)
 
COSALF=C0S(ALFAR)
 

ALFABC=O.
 
ALFRBC=ALFABC*3.14159/180.
 
SINABC=SIN(ALFRBC)
 
COSABC=COS(ALFRBC)
 

BETA=SQRT(I.-UMACH*UmACH)
 
XLEZ=-I.
 
XTFZ=O.
 
CHORD=XTEZ-XLEZ
 
XLEZ=XLEZ/(REFLEN*BFTA)
 
XTCZ=XTEZ/ (REFLEN*BETA)
 
SPAN=SPAN/REFLEN
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HFSPAN=o5*SPAN
 
XLEP=ANGLA/BETA
 
XTTP=ANGL/fBCTA
 
TAUBAR=TAUt.75*SQRT(3.,},(XTEZ-XLEZ)
 
RETURN
 

2 	 CONTINUE
 
RETURN
 

3 	 CONTINUE
 
nXX=I,/NX
 
DYY=1./NY
 
NXP=NXFI
 
NYP=NY+I
 

DO 33 IX=i,NXP
 
00 33 IY=I,NYP
 
DO 33 IZ=I,NZ
 
XX= IX-i )*OXX 
YY=(IY-I)*OYY
 
CSI=XX*Xx
 

C THIS IS FOR A UNIFCRM Y-MESH 
C ETA=YY 
C THIS IS FOR A NCNUNIFORM Y-MESH 

ETA=I.-(1.-YY)**2
 
Y=HFSPAN*ETA
 

C THIS IS A SEMI-ELLIPTICAL WING PL.ANFORM
 
C XLE=-CHORD*SQgTcIo--(Y*Y)/(HFSPAN*HFSPAN))
 
C THIS IS A RECTANGULAR WING PLANFORM
 

XTE=XTEZ
 
XLE=XLEZ
 
XO=XLE+{XTE-XLE)tCSI
 
IF( IZ.EQ.1)SIGNZ=.+i
 
IF(IZ.EO.2)SIGNz=-1
 

ZO=SIGNZ*TAURAR*XX*(I.-CSI)-kSQRT(1.-ETA**2
 
X=-XO*COSALF ZO*SINALF
 
Z=-XO*SINALF±ZO*CCSALF
 
YK(1, IX, IY,IZ)=X
 
YK(2TIX,IY,IZ)=Y
 
YK{3,IX, IYIZ)=Z
 

33 	 CONTINUE
 
RETURN
 

4 	 CONTINUE 
RETURN
 
ENn
 

isI)OOR

RVOBIGROINDIGvLr rITY OF T 



-80-


SUBROUTINE GECMET
 
c 
C THIS SUBROUTINE IS FOR-QUAIDRILATERAL ELEMENTS
 
C 

COMMON/ZZZI/NXNYNZNWREF:LSNSPANiKSYMMYKSYMMZNSYMMYNSYMMZ
 
COMMON/ZZZ2/TAIJAL7AtTANGLETANGTFtCHORf)?NTnTALUMACFI
 
CC'AMDN/ZZZ3/YK(3tllg1192)
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 
COMMON/ZZZ7/XPI( 5O)tYP1(250)vZPI(250)tXP2(250)tYP2(250'),
 
IZP2(250)gXD3(250)vYP3(250)vZP3(250)
 
COMMON/ZZZ9/XPP(250),YPP(250),ZPP(250),XPM(250)'
YPM(250)

ItZPM(250),XMP(250),YMP(250),ZMP(250),XMM(250),Yt4M(250),
 
IZMM(250),IWAKE(250)
 
CO'IMON/ZZZIO/JNX13(250),NXWAKFWAKEI
hI
 

c 
INDcX(JtJtJX,,JYtJZMWtMWXMWXY)=JW+Mk*(JX-I)#-MWX*(JY-11,+ iWXY*,(JZ-,J)


c 
NWX=NW*NX
 
NWXY=WX*NY
 
NWXYZ---NWXY*NZ
 

c 
CALL INITIA(3)
 

C 
DO 200 IX=1,NX
 
DO 200 TY=1,NY
 
00 200 IZ=INZ
 

c 
C 
c +- ++
 
c 

IW=l
 
INr)=INDFX(IWlXilYIZNWiNWXNWXY)
 
IF(IZ.EQ.2)GC TO 906
 
1V4M= 1X 
IXP,4=IX+l
 
IXPP=IX+l
 
IXMP=TX
 
IYMM=IY
 
IYPM=IY
 
IYPP=IYI-l
 
IYMP=IY+l
 
lzl4m=lz
 
IZPM=TZ
 
IZPP=IZ 
IZMP=IZ
 

C 
C 
c ++ +­
c 

GO TO 999
 
906 CONTINUE
 

ixmm=ix
 
IXMP=IX
 
I XPP= I X 4 I 

IXPM=TXi-1
 
TYMM=TY+l
 
IYMP=IY
 
IYPP=IY
 



999 

C
 

C 

C 
199 


200 


300 

701 

r 
C 

C 


I:YPJM=Y+t
 

IZMM= I Z
 
IZMP=IZ
 
IZPP=IZ
 
IZPM=IZ
 
CONTINUE
 

XPP(IND)=YK(l,IXPP,IYPP,tZPPy
 
YPP(IND)=YK(2,IXPPIYPPIZPP)
 
ZPD (IN)=YK(3,IXPP,IYPP,IZPP)
 
XPMCINO)=YK(IIXPNIYPP,IZPM)
 
YPM( IND)=YK(2,IXD VIYPt , IZPM)
 
ZPM( IND)=YK(3,IXPf, IYP9,IZPM)
 
XMP (IND)=YK(1,IXMP, IYWP,IZMP)
 
YMP(INO)=YK(2,IXPP,IYMPTZMP)
 
ZMP(IND)=YK(3,IXPIYmPIZmP)
 
XMM INO) =YK( III XMV, IYMMI, IZMM)
 
YM(IND)=YK{2 , XMN, IYMM, IZMM)
 
ZMM( IND) =YK( 3, 1MP, IYMM, IZMM)
 
WRITE(6,199)IND,XPP(INO),YPP( INDZPP(IND,),XPM(INO),YPM IN)
 
I,ZPM(IND),XMP'(INO),YMP(TND),ZMP(INO),XMM(TND),Y'IM(TNn),Z"MIND)
 
FORMAT(/'INt= 1 ,12,/'PP'.BX,3PI0.4/'PM',3X,3F1O.4/'MP'
 

13X,3F1O.4/'MM',3Xp3FI0.4)
 
IWAKE(INO)=0
 
IF(rX.EQ.NX)IWAKE(IND)=l
 
CONTINUE
 
IF('KSYMPY.NE.0)GO T 701
 
DO 300 IR=1,NWXYZ
 
IL=ITR-NWXYZ
 
XPP(IL)=XMP(IR)
 
"XMP(IL)=i-XPP(,IR)
 
XPM(ILh=4XMM(IR)
 
XMM( IL)=lXPM( IR)
 
YPP(IL)=-YMP(IR)
 
YMP(IL)=-YPO(IR)
 
YPM(IL)=-YMM(IR)
 
YMM(IL)=-YPM(IR)
 
ZPP(IL)=+ZWP(IR)
 
ZMP(IL)=4ZPP(IR)
 
ZPM(IL)=+ZMM(IR)
 
ZMM(IL)= ZPM(IR)
 
IWAKE(ILI=IWAKE(IR)
 
CONTINUE
 
CONTINUE
 

-POINTS FOR WAKE
 
REPRODUCIBILITY OF THE
 

NWTOT=NXWAKE*NY ORIGINAL PAGE IS POOR
 
DO I IY=I,NY
 
DO I IX=1,NXWAKE
 
JNXW=IX(IY-I)*NXWAKE
 
JNXB(JNXW)=IY*NX
 
CONTINUE
 
00 10 IY=1,NY
 
00 10 IX=1,NXWAKE
 
I1=IY*NX
 
INC=NTOTAL+IX+( IY-1)NXWAKE
 
FACTOR=I.
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IP(TX.FQ.NXWAKP)FACTOR=100.
 
XMM(INO)=XPM(11)+ 4K l 4*(IX-l')
 
X.'MP(I.ND)=XPP(II)+WAK MIN*(IX-1)
 
XPP( MID) =XPP ( Ti )+VAKE I N- I X*PACTOR 
XPM(jND)=XPtl,(11)+ JAKEIN*IX*F4CTOR
 
YMM(INO)=YPM(TI)
 
Zm'A(JND)=ZPM(11)
 
YMP(INO)=YPP(Jl)
 
ZMP(IND,)=ZPP(II)
 
YPP(IND)=YPPHI)
 
ZPPIIND)=ZPP(II)
 
YPM(INO)=YPM(II)
 
ZPM(IND)=ZPM(II)
 
cnNTINUE
 
RETURN
 
END 



SU'BROUTINE VFC123
 
COMMnN/ZZZ I/ NX', NY tNZ, NWREF:LENSPt NKSYMMYKSYMM2,NSYMM-Y, NSYMMZ 
COli-liON/ZZZ2/TAkJ I 4LFA, TANG Lr7i TA NGTEC'40RDN TOTAL, UMACH 
COMMONIZZZ3/YK(3vlltll,2)
 
CO-'4xlONIZZZ6/XPC(25-:)),ypr(250),ZPC(250 )
 
COMMON/ZZZ7/XPI(250),YPI(250),ZPl(250)-,XP2'250),YP2(250),
 
IZP2(250),XP3(250),YP3(250)iZP3(250)
 
COMMON/ZZZ9/XPP(250),YPP(250),ZPP(250),XPM(250),YPM(250)
 
liZPM(250),X,14P(250),YMP(250),ZMP(250),XMM(250),Ym,'4(250),
 
1ZMM(250),IWAKE(250)
 
DO 200 IND=INTOTAL
 
XPC(IND)=(XPP(IND)+XPP(INC) XMP(IND)+X!mki(IN!)))/4.
 
YPC(IND)=(YPII(IND)+YPM(lNC)fYMP(INO)+Y-MM(INP))/4.
 
ZPC( IND)= (ZPP liNn)+Zpv( lt\C),+Zmp(IN.9)+ZMM( INF)) )/4.
 
XPI(IND)=(XPP(IND)+XPM(INC)-XMP(IND)-XMM(IND))/4.
 
YPI(INr))=(YE)P(INO)+YPM(IND)-YMP(INO)-YMM(IND))/4.
 
ZPI(IND)=(ZPP(INf))+ZPM(IN!j)-ZmP(IN9)-,ZM14(IND))/4.
 
XP2(IND)=(XPP(IND)-XPP(Ir\C)+XVP(IND)-XMV(IND))/4.
 
YP2(INL)')=(YPP(INDI-YPM(lNO)i-YMP(IND)-Y MM(IND))/4.
 
ZP2(INO)=(ZPP(IND)-ZPM(INC)+ZMP(IND)-ZMi(IND))/4.
 
XP3(lNn)=(YPP(INO)-XPM(TNO)-XFP(INO)fXVM(INO))/4.
 
YP3(lNr.))=CYPP(INO)-YPM(INC)-YMP(INO)+YMMIINO))/4.
 
ZP3(IND)=(ZPP(IND)-ZPP(IND)-ZPP(IND)i-ZMM(IND))/4.
 

200 	 CONTINUE
 
RETURN
 
END
 



I 
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SUBROUTT'NE PRINTA(KPRINT)
 
COMMONIZZZI/NX,NY,NZ, NW,RELEN,SPAN,KSYMMY,KSYIMZNSYMMY,NSYMMZ
 
COMMON/ZZZ2/TAU,ALFA,TANGLE,TANGTE,CHORO,NTOTAL,UMACH
 
COMMON/ZZZ3/YK(3,11,1I,2)
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC250)
 
COMMON/ZZZ7/XPI(250),YP(250),ZPI{250),XP2(250),yp2250,
 
IZP2(250),XP3(250),YP3 250),ZP3(250)
commnN/ZZZ8/At(25OO),SOURCE(250},SI.NABC,CCSABC,ALFABC
 

COMMON/ZZZ9/XPP(250),YPP(250),ZPP250)XPM(2so),YP(250)
 
IZPM(250),XMD(250),YMP(250),ZMP(250),XNM(250),YM(250),
 

IZMM(250),IWAKE(250)
 
COkIMON/ZZZIO/JNX(250),NXWAKEWAKEIN
 
C0MMON/CfNTR/NITER
 
NTP=,N TOT A L *I
 
NTSW=NTOTAL -NY*NXWAKE
 
NY4=4*(NY-I)
 
GO TO(1,2,3,4,5,6),KPRINT
 
CONTINUE
 
RETURN
 
CONTINUE
 
NXP=NX+1
 
NYP=NY±I
 
0 35 IZ=I,NZ
 
00 35 IY=INYP
 
DO 35 IX=I,NXP
 
00 35 J=l,3
 
WRITF(6,2500)J,IXIY, IZ,YK(JIXIY,UZ)
 
FORMATVIYK(',iil',', 11,' ,I1,',',II,')='E15.6)
 
CONTINUE
 
RETURN
 
CONTINUE
 
WRITF(6,400)
 
FORhiAT(2X,'INO'4X,'XPC',7X,1 YPC',7X,'ZPC',7XIXPI',7X'YPI',7X,
 
IhZPII,7X,;XP2I,7X,'YP2',7X,'ZP2,7X,'XP3t,7X,vYP3,7X'ZP3,)
 

DO 45 I=INTOTAL
 
WRITE(6,500)I 4XPC(1),YPCI ),ZPC(I),XPI!I),YPI(I),ZPI{I )XP2(1),
 
IYP2(I),ZP2(1),XP3(I),YP3(I),ZP3(1)
 
FORMAT(IX,13,l2FIo.5)
 
RETURN
 
CONTINUE
 
RETURN
 
CONTINUE
 
WRITE(6,550.)
 
FORMAT(//2X,$SPECIFICATIONS OF THE PROBLEM'/)
 
WRITE(6,555)NXNYNZNWNTOTALKSYMY,KSYMMZ,RELEN'SPAN, TAU,
 
IALFAALFABC,UMACH,NXWAKE,WAKEIN
 
F0RMAT(2XINX=',I2/2X,'NY=,I2/2X,NAZ=,I2/2X,N=1,,2/
 
12XINTOTAL=I,13//2X,IKSYMMY=u,12/2X,IKSYMMZ=,12//
 
12X,'REFERENCE LENGTH=f,F6.2/2X,'SPAN/REF LENGTH =',F6.2/
 
12X,'THICKNESS=',FS.5//2X,'ALFA=',F7.312X,IALFABC=,F7.3//
 
12X,IMACR NU'3ER =',F7.3//2X,'NXWAKE=',I3,//
 
12X,'WAKEIN=9,FT.3)
 
WRITE(6.556)TANGLE,TANOTE,CHORI)
 
FORMAT(2X,uTANGLE=,rP6.2/2X,'TANGTE=',p6.2//2X,'CHORD=',F6.2//)
 
RETURN
 
CONTINUE
 
RETURN
 
ENn
 



-85-


SUBROUTINF PRTNT9(KPRINT)
 
COMMCN/ZZZI/NX,NY,NZ,NW,REFLFN,SPAN,KSYMMY,KSYMM-Z,NSYMMY,NSYMMZ
 
COMMON/ZZZ2/TAU,ALFA,TANLyF,TANGTE, CHORO,NTOTAL,UMACH
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 
COMNON/Z.ZZ7/XPI(250),YP1(250),ZP1(250),XP2(250),YP2(25


0 ),
 
'IZP2(250),XP3(250),YP3(250),ZP3(250)

COMMON/ZZZ8/AA(2500),SOURCE(250),SINA8CCOSABC,ALFABC
 

NWX=NW*NX
 
NWXY= NWX*NY
 
NWXYZ=NWXY*NZ
 
NY4=4*(NY-1)
 
GO TO(1,2,3,4,5,6,7),KPRINT
 

I CONTINUE
 
WRITE(6,100)
 

100 FORMAT(f//2X,'THE DISTRIBUTION OF THE DOUBLET STRENGTH OH')
 
IN'FIN=0
 
IPRINT=O
 
DO 25 ISYMY=1,2
 
IF(ISYMY.EQ.2.AND.KSYMMYNE.,O)GO 

I={ISYMY.EQ.1)WRITE(6,120)
 

120 	 FORMAT(//5X,'RTGHTHANC SIDE')
 
IFtISYMY.EQo2)WRIT-(-,I40
 

140 	 FORMAT(//5X,'LEFTHAND SIDE')
 
00 25 IZ=I,NZ
 
INDFIN=INOFIN NWXY
 
IPRINT=IPRINT+I
 
IND=NWXY*(IPRINT-l)
 
DO 25 	IX=I,NX
 
WRITE(6,300)
 
00 25 IW=I,NW
 
IWX=IW*IX
 
IND=INOi
 

TO 25
 

WRITE(6,200)(SOURCE(KK),KK=INO, INDrINNWX)
 
25 CONTINUE
 
200 FORMAT(8EI5.5)
 
300 FORMAT(/)
 

RETURN
 
2 CONTINUE
 

RETURN
 
3 CONTINUE
 

RETURN
 
4 CONTINUE
 

WRITE(6,770)
 
770 FORMAT(///'DISTRIBUTION OF AA(I,J)'/)
 

DO 77 I=I,NTOTAL
 
WRITE(6,771)I
 
NI=I
 
N2=NTOTAL*NTOTAL 

771 FORMAT(2X,'IN'OEX=',12) 
IF(NYOLE.4.OR.NY.GE.S)WRITE(6,772)(AA(K),K=NI,N2,NTOTAL) 

772 FORMAT(8E15.6/BEI5.6/8F15.6/8El'5.6/'8ElE.6) 
IF(NY.EQ.5)WRITEC'6,775){AA(K),K=NI,N2NTOTAL) 

775 FORMAT(5E15.6) 
IF(NY.EO.6)WRITE(6,776)(AA(K),K=NI,N2,NTrTAL) 

776 PORMAT(6EI5.6) 
IF(NY.EQ.7)WRITE(6,777)CAACK),K=N1,N2,NTOTAL) 

777 FORmATC7E15.6) 
77 CONTINUE REPRODUCIBILITY OF THE 

ORIGINAL PAGE IS POOR 
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RETURN 
5 	 CONTINUE
 

RETURN
 
6 	 CONTINUF 

WRITE(6,881) 
881 	 FORMAT(/f/2Xl'THE DISTRIBUTION OF SURFACE NORMAL'/) 

NXW=NX*NW 
NXWY=NXW*NY 
DO 883 IX=I,NXW 
WRITE(6,882)(SOURCE(KK),KK=TXNXAIY,.NX.W-) 

882 FORMAT(8E15.6)
 
883 CONTINUE
 

RETURN
 
7 	 CONTINUE
 

R-ETORN
 
END
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SUBROUTINE CFBUG(K)
 
WRITE (6-, i)K
 
FORMAT(2X,',ERROR CODE=',12)
 
'RETURN
 
END
 



C
 

c 
C 

2 

C
 

SUlBRnUTINE )JPLP?'
 
COMMON/ ZZt!NX,NYNZ,NWREFLEN,SPAN,KSYM MY, KSYMMZ,NSYMMY, NSYMM,
 
COMMON/ZZZ2/TAU ALFA, TANGLE, TANGTE, CHORDONTOTAL,UMACH
 
COMMON'/ZZZ6/XPC (250), YPC (250) ,ZPC (250)
 
CIMMON/ZZZ7fXPI(250),YD(5OhZPl(250),XP2(250),YP2(250),
 
17P2 (250) ,XP3( 250) ,YP3A(-250),7P3t.250)
 
CCOMfN/ZZZ/ AA(250)SOURCE (250) ,SIN ABC, COSABC,-ALFABG­
,COMMk'ON/ZZ79/XPP(250),YPP(250) ,ZPP(25OhXPM(250) ,YpM1,'250)) 
1,ZPM(250),XM4P(250),YMP(2501,ZM P(250),XMM(250),YMM1(250), 
tZikMM(250) ,1'AAKE(?50) 
COMM0MON/ ZZZ1O/JNXB (250),tNXWAKEWAKE IN
 
COM4MON/ZZZ I1/VHKX (2500)VHKY(2500),VHKZ(2500)VKX-250)VKYt(1250),
 
1VKZ( 250) 
CO.'AMON/ZZZ2 /VX UAKEX(2S0 VYW AKE(250),jVZWAKEU-2SOJ, 
COMtAON/CONTR/N ITFR 
DOTPRCI(XI,.YI,Z1,X2,Y2,Z2)=X.*X2-Y1*Y2t-Z*Z2
 
PROMTX(XX1,YYIrZZ1,XX2,YY2,2ZZ2,XX3,YY3,7Z31=(-YY2*ZZ3-YY3*ZZ2)*-XXI
 
I-(XX2*Zi,3-XX3*Z72)*YY1+(XX2*YY3-XX\3*YY2 )*ZZJ.
 
NT 25= NTOT AL**2
 

NYP=NY±1-

NWThNX14AKEF*N V
 
NW T P=N T +N XWAKE
 
NTB W= NTOTAL + N'AT
 

DO 2 1=1,250 
'VXWAKE( I)=0.
 
VYWAKF( I)=O.
 
VZWAKE( I) =0.
 
CONTI NUE
 
DO 250 JNXBW=lNT6W
 
D0 250 INXW~1,NWAT'
 
D0 250 ISYMMY=1,NSYMiY
 
nDO 250 r-SYMMZ=l,NSYWJMZ
 
SI;GNY=3.-2*I SYMMY
 
SIGNZ=3.-2*ISYMMJZ
 
JNXW=JNXS V-NTCTAL
 
IF tJNXBW-.LE.NTOTAL )JNX=JNXBW
 
Fi-2(JNXBW.GT.NTOTAL)JNX-=JNXB(IJNXN4)
 

INDEX-NTOTAL+TN'XW~ 
OLX=XPP( JNX'3.NY-XMM( INDEX) 
Q1Y=YPP(JINXBW)-YMM( INOEX)*SIGNY
 
Q1Z=ZPP(JNXB4)-ZI'( TNO.EX-)*SIGNZ
 
02X=XMP(JNXBW)-XUVPINEX)
 
02Y=Y P(JNX3.)-YM/( INDEX)*SIGN Y
 
Q2Z=ZMP(JNXEN)-Z"w(IN 'EX)*SIGNZ
 
Q3 X=XMMCJ NXB WI-XmmU NOEX)
 
Q3Y=YMMi(JNXSA)C-YMM ( INDEX)*S IGNY
 
03Z-=Zlt4JNXBW) -PANW( i<N'-EX *sIGNZ
 
04X=XPM(JNXBl,)-XMP(INOEX)
 
Q4Y=YPM(JNqXBW,)-YMM( INDEX)*SICNY
 
Q4>=ZPt-(JNXRW)-ZYP'( INOEX)*SIGNZ
 
QlQIrODOTPRfl(o1xQlQZ,zCIx,CIVO1z)
 
020> OOTPROC-'Q2X;02YQ22,C2X,Q2Y,02Z-)
 
Q3O3=DOTPRO(Q3X,Q3-Y,Q3Z,Q3XvQ3yQ3L)
 
Q404=OOTPRC(t24X,OAY,Q4Z,0AXQAY,04Z)
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QL02= DOT RRO (QI'X,-(YlY, 0 1 Z, 02X,02Y,02Z) 
QIQ4=DOTPRe(ClXtOlYQlZtC4XPC4Y,04Z)
 
Q2Q3=DOTPRC(02X,02YQ*2Z,93XQ3YQ3Z)
 
Q304=DOTPRO(03XtQ3Y?03ZQ4XtQ4YQ4Z)
 
QI=SQRT(QICI)
 
Q2=SQRT(0202)
 
03=SORT(0303)
 
Q4=SQRTfO4Q4)
 
Q41X=Q4Y*Q1Z-Q47*01Y
 
Q41Y=-(Q4X*Q1-Z-C4Z*ClX)
 
d417=Q4X*QlY-Q4Y--0lX
 
Q41SQ=DOTPR01041X,()41Y,041Z,6zi].XQ41YIQ41Z)
 
012X=QlY*Q2Z-ClZ-,C2Y
 
012Y=-t 0 1X*02Z-O I Z-*-Q2X)
 
0127=Q I X"Q2Y-Q I Y4 02X
 
Q12SQ=DOTPRO(Ql2X,()12YvOl2ZQ12AQ12YtQl2Z)
 
Q23X=Q2Y*03Z-Q2Z'03V
 
Q23Y=-(02X*Q3Z-C2Z*Q3X)
 
Q23Z=Q2X*Q3Y-Q2Y'cQ3X
 
Q23sQ=nnTPRO(C23-X,023YQ23ZQ23XQ23YQ23Z)
 
Q34X=Q3Y*C4Z-C3Z-04Y
 
Q34Y=-(Q3X'O47-Q3Z*Q4X)
 
034Z=03X*Q4Y-Q3Y*04X
 
Q34SO=OOTPRO(Q34X,034YiQ34ZtQ34XQ34Y,034Z')
 

C 
PART1=0.
 
IFIQ41SQ.NE.O.)PARTI=((Q4Q4-QIQ4)/Q4+(Ql-01-0104)/Qi)/041SO.
 
PART2=0.
 
IF(Ql2SO.NE.O.)PART2=((.QICI-QI02)/Ql+(02Q-?-QlQ2)/Q2)/()12SD
 
PART3=0.
 
IF(Q23SO.N5.0.)PART3=((O2C2-Q2Q3)/02i-(Q303-Q2Q3)/03)/023SO
 
PART4=0.
 
IF(934SO.NE.O.)PART4=((Q3C3-Q3Q4)/Q3+(Q4Q4-Q3C4)/C4)/Q34SC
 
VX=Q41X*PARTli-t)l2X*PART2 Q23X IPART34-034X*PART4
 
VY=(Q41Y*PARTl+Ql2Y*PART2+023Y*PART3+034Y*PART4)*SlGhlY
 
VZ=Q41Z*PARTIfQl2Z*PART2+QZ3Z*PART3i-Ql-4Z*PART4
 
VXWAKE(INXW)=VXW4KE(iNxw)+vx*seuRcE(JNX)
 
VYWAKE(INXW)=VYWAKE(INXW)+VY*SOURCE(JNX)
 
VZWAKE(INXW)=VZWAKE(INXW)+VZI SOURCE(JNX)
 

250 	 CONTINUF
 
CALL VELPP
 
DO 4 I=ItNTOTAL
 
VKX(T)=O..
 
VKY(I)=O.
 
VKZ(I)=O.
 

4 	 CONTINUF
 
DO 3 1=1,iNTOTAL
 
DO 3 J=IINTOTAL
 
NNN=I+(J-1)*NTCTAL
 
VKX(I)=VKX(T)+SCURCE(J)*VHKX(NNN)
 OF THEIIEPRODUCIBILITYVKY(I)=VKY(I)i-SCURCF(J)*VHKY(NNN) 
VKZ(I)=VKZ(I)+SCURCE(J)*VHKZ(NNN) ORIGINAL PAGE IS POOR 

3 COTIT I NUF 
IFNITFR.EQ.1)GO TO 753 
IF(NITFR.LE.10)GO TO 2000
 

753 WRITE(6,5)
 
5 rORMAT(/IOXITHIS IS THF X-WING VELOCITY'/)
 

CALL PRTNTV(VI'XrNXNY)
 



-90-


WRITE (6,6)
 
6 FORMAT(/IOX,'THIS IS THE X-WAKE VELOCITY'/)
 

-CALL PRINTV(VXWAKE,NXWAKE,NYP)
 
WRITE(6,7)
 

7 	 FORMAT(/IOX,1 THIS IS TH.E-l-WING VELOCITY'/)
 
CALL PRINTV(VKY,NXNY).
 
WRITE(6,8)
 

8 	 FORMAT(/IOX,?THIS IS THE Y-WAKE VELOCITY"/)
 
CALL PRINTV(VYWAKENXWAKE,NYP)
 
WRITE(6,9f
 

9 	 FORMAT{/IOXITTHI-S IS THE Z-WING V.EL0CIT-Y'Y)
 
CALL PRTNTV(VKZ,NX,NY)
 
WRITE(6,10)
 

10 	 FORMAT(/IOX,'THIS IS THE Z-W4KE VELCCITY'/)
 
CALL PRINTV(VZWAKE,NXWAKE,NYP)
 

2000 	 CONTINUE
 
RETURN
 
END
 



SUBROUTINE PRINTV(VECTOR,NI,N2)
:IMIENSION VECTOR(l) 
WRITE(6,3) 
00 1 IX=I,N1 
WRITF(6,2)(VECTCR(IXxN*(Iy-I.)),IY=IN 
CONTINUE 

2-) 

2 FORMAT(8EI5.6) 
WRITE(6,3) 

3 FORMAT(/) 
RETURN 
END 
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SUBROUTINE COEFF
 
COMMON/ZZZI/NX,NYNZ,NWREFLEN,SPANIKSYMMY,KSYMMZ,NSYMMY,NSYMMZ
 
COMMON/ZZZ2/TAU,ALFA,TANGLE,TANGTF,CHORD,NTOTAL,UMACH
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 
COMMON/ZZZ7/XPI(250),YPI(250),ZPI(250),XD2(2501,YP2(250),
 
lgP2(250),XP3'(250),YP3,(2501,ZP3(250)
 
COMMON/ZZZ8/A.A(2500),SOLRCE(250),SINABC,COSAzC.ALFABC
 
COM'40N/ZZZq/XPP'(250),YPP(250),ZPP(250),XPM[250),YPM(250)
 
1,ZPM(250),XM(250),YMP(250),ZMP(250),XMM(25b)YM(250),
 
LZMM(250)tIWAKE(250)
 
COtAON/ZZZIO/JNXB(250),NXWAKE,WAKEIN
 
COMMON/ZZZ11/VHKX(2500),VHKY(2500),VHKZ(2500),VKX(250),VKY(250),
 

,V,KZ (250)
 
9JMENSION XUNORM(250) ,YUNCRM(250,),ZUNRM(250-)
 
TOTPRO(Xl,YI,Z1,X2,Y2,Z2)=X*X2 Yt*Y2*Z'I*Z2
 
PROMIX(XX1,YYI,ZZ1,XX2,YY2,ZZ2,XX3,YY3,ZZ3)=(YYZ*ZZ3-YY3ZZ2)*XXL
 
t--{XX2*ZZ3-XX3*Z22)*yYI+XX2*YY3-XX3*Y'Y2)*ZZ1
 
NT2S=NTOTAL**2
 

C
 
C
 

DO, 9 NNN=L,NT2S
 
C 	 VHKX(NNN)=O.
 
C 	 VHKY(NNN)=0.
 

VHKZ(NNN)=O.
 
9 	 AA(NNN)=O.
 
C CALCULATION OF THE SURFACE NORMAL
 
C
 

0g 140 JNX=1,NTOTAL
 
C
 

XOI=XPP(JNX)-XP(JNX)
 
YDI=YPP(JNX)-YMM(JNX)
 
ZDI=ZPP(JNX)-ZPN(JNX)
 
XD2=XMP(JNX)-XPW(JNX)
 
Y02=YMP(JNX)-YPWCJNX)
 
ZD2=ZMP(JNX)-ZP"(JNX)
 
CRX=YDI*Z02-ZCI*YD2
 
CRY=-(XO'IZC2-ZlXn2)
 
CRZ=XDIYD2-YOI*XD2
 
ABN=SORT(DOTPRG(CRX,CRYCRZ,CRX,CRYCRZ))
 
XUNORM(JNX)=CRX/'ABN
 
YUNORM(JNX)=CRY/ABN
 
ZLUNORM(JNX)=CRZ/ASN
 

40 	 CONTINUE
 
NTBW=NTOTALfNXWAKF*NY
 
DO 250 JNXBW=1,NTBW
 

C 
no 250 INX=1,NTCTAL rxnr OF THE 

j] [DO 250 ISYMMY=I,NSYMMY ,0D hI ri 
DO 250 ISYMMZ=1,NSYMMZ b 1W 1,GE IS POOR 
S-IGNY=3.-2*ISYMPY 
SIGNZ=3.-2-tISYMVZ 

JNXN=JNXBW-NTOTAL
 

IF(JNXEW.LENITOTAL) JNX=JNXBW
 
IF(JNXRW.GT.NTOTAL)JNX=JNXP4JNXW)
 
NNN=INX-(JNX-1)*NTOTAL
 

QIX=XPP(JNXBW)-XPC([NX)
 



-93-

OIY=YPP(,JNXBW)-YPC(INX)*SIGNY
 
01'Z=ZPP'CJNXB'4)-Z PC ( IN X)*S I GNZ 
Q2X=XMP(JNXW)-XDC(INX)
 
Q'2Y=YMPIJNXBW)-YPC(INX)*STGNY
 
02Z=ZMP(JNXB14)-ZPC(INX)*SIGNZ
 
Q3X=XMm(JNXBW)-XPC(TNX)
 
03Y=YMM(JNXBW)-YPC(INX)'SIGNY
 
Q37=ZMM(,JNX8W)-ZPC(JNX)*SIGNZ
 
Q4X=XPMt JNX8W) -XPC( I NIX) 
Q4Y=YPMIJNXBt-l)-YPC(T-IX)-ISIGNY
 
Q4Z=ZPM(JNXRW)-ZPC(INX)*SIGNZ
 
Q101=00TPRO(QIXQIYQIZ901XQ!YQIZ)
 
0202=r)OTPRO(02X,02Y,02Z,02XQ2Yr)2Z)
 
Q3Q3=DOTPRC!(03XvQ3Y,03ZQ3XQ3Y',0,3Z,)
 
04Q4=DOTPRO(r,14XYQ4Y?04Z,.04XQ4Y-,Q4Z)
 
Q102=DOTDRC(OIXQIYQIZQ2XQ2YQ2Z)
 
QIQ4=Do-rPROIQIXQIYOlZtQ4XQ4Y Q4Z)
 
0203='L)OTPRO(Q2XQ2YiQ2Z,03XQ3Y,03Z)
 
Q3Q4=OOTPRO(C3XC3YQ3ZvQ4XQ4YQ4Z)
 
01=SORT(0101)
 
Q2=SQRT(Q2Q2)
 
Q3=SQRT-(03Q3)
 
Q4=SQRT(Q4Q4)
 
Q41X=Q4Y*QIZ-C4Z*QIY
 
Q41Y=-(04X*QIZ-04Z*QIX)
 
Q41Z=04X*QIY-Q4V*QlX
 
041SG=OOTPRO(C4lXy(.',41YQ4lZQ41X,041YQ41Z)
 
Q12X=Ql-Y*02Z-01Z'02Y
 
Q12Y=-(OIX*Q2Z-QlZ*Q2X)
 
Q12Z=QlX*Q2Y-QlY*Q2X
 
Q12SQ=DOTPRO(Ql2X,012Y,012Z9Ql2XCl2Y,0121)
 
Q23X=Q2Y*Q3Z-Q2Z*Q3Y
 
Q23Y=-(QRX*Q3Z-C2Z*Q3X)
 
023Z=Q2X*Q3Y-02Y*Q3X
 
023SQ=COTPRO(Q23XQ23YQ23ZtQ23X-,Q23Y,023Z)
 
Q34X=03Y'Q4Z-Q3Z"Q4Y
 
Q34Y=-(03X*Q4Z-Q3Z*04X)
 
034 Z=Q3X* Q4Y-Q3Y* Q4X 
Q34SQ=DOTPRO(034XQ34Y,034ZQ34X,034YQ34Z)
 

C 
PARTI=O.
 
IF(Q41SQ.NE.O.)PARTI ((Q4Q4-Q-IQ4)/04+(QlQl-olQ4)/Gi)/Q41SQ
 
PART2=0.
 
IF(Ql2SQ.,NE.O.)PART2=((QlCI-QlQ2)/01+(Q2Q2-QlQ2)/Q2)/012SO
 
PART3=0.
 
IT-(023SQ.NE.O.)PART3=((-02Q2-C2Q3)/Q2+-(Q303-Q2Q3)/Q3)/Q2aSQ
 
PART4=0.
 
IF(034SQ.NE.O.)PART4=((03Q3-07tQ4)/03i-(Q404-Q3Q4)/C4)/Q34SC
 
VX=Q41X*PARTI+Q.12X -PART2+(,123X*D4PT3+Q34X*PART4
 
VY=(041Y*PARTli-Ql2Y*PART2+923Y*PART3i-Q34Y*PART4) -SIGNY
 
VZ=(41Z*PARTI+Ql2Z*PART2f-023Z*PAPT3i-034Z*PART4
 

c VHKX( NNkJ)=VHKX(NNN)+VX
 
C VHKY(NNN)=VHKY(NNN)+VY
 

VHI(Z(NNN)=VHKZ(NNN)+VZ
 
FACTOR=DGTPRf)(VXVYVZXUNORM(INX),YtINORM(INX),ZUNORM(INIX))
 
A A (NNN)= A A (NNJN) +FACTOR 

C 
C THE NEXT FEW LINES ARE A FEW CHECK STATEMENTS
 



C SOURCE(INX)=SOURCE-(INX)+FACTOR
 
250 CONTINUE
 
C .WRITE(6,152)
 
152 FORMAT(20X,'THIS IS THE M4TRIX AA'//)
 
C WRITE(6,151)(AA(I),I=l,NT2S)
 
C WRITE(6,153)
 
153 FORMAT(//2OX,'THIS IS THE MATRI'X SOURCE"//)
 
C 'WRITF(6,l51)(SOURCEtI})=I,NTOTAL)
 
'151 FORMAT(8F15.6)
 

D0 154 T=1,NTOTAL
 
SOURC'E(1)=-(XUNORM(I)*COS.ABC+ZUNORM(I)*SINASC)
 

154 CONTINUE
 
,RETURN
 
ENO
 



C 
c 

c 

C 
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SUBROUTINE VcLPP 
COMMON/ZZZI/NXNYt!ZNLIRFrL NiSPA'4,KSY,4MYKSYvMZNSYMMYNSY IMZ
 
COMM.ON/ZZZ2/TAUALFATANGLETANGTECHORDNTOTALUMACH
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250) 
COMMON/ZZZ7/XPI(250),YP!(250),ZPI(250),XP2(2501,YP2(250),
 
IZP2(250)iXP3(250)iYP3(250)-,ZP3(250)
 
commnN/ZZZ8/AA(2500),SOURCE(250),Sl,AABCCOSABCALFABC
 
COMMON/ZZZ9/XPP(250),YPP(250),ZPPt250),XPPI(25r)),YPM(25zO)
 
IZPM(250),XMP(25(i),Y!'!P(250),ZMP(250)tX 'M(250),YM'1(250)i
 
IZMM(250),IWAKE(250)
 
COMMON/ZZZ10/JNXB(250),NXWAK=-,WAKEIN
 
CO'4MON/ZZZ"1/VHKX(2500),VHKY(2500),VHKZ(2500),VKX(250),VKY(250),
 
IVKZ(250)
 
COMMON/ZZZ12/VXWAKE('250),VYWAKE(250),VZWAKE(250)
 
DOTPRO.(XIYl,-ZliX2,Y2lZ2)=Xl -X24-Yl"cY2+Zl4--Z2
 
PRO ATX(-XXIYYI,7ZIXX2,YY2,ZZ2,XX3,YY3,ZZ3)=(YY2".ZZ3-YY3*7Z2)*XXI
 

1-(X*X2*ZZ3-XX3*ZZ2)*YYI+(XY2--YY3-XX3*YY2)*ZZ1
 
N'T2S=NTOT'AL*'2
 

NWT=NXWAKE*NY
 
NUTPI=NWT+l
 
N.WTP-NWT+NXWAKE
 
NTBW=NTOTAL+NtqT
 

TNITIALIZATION OF THE WAKE VELOCITY AT THE CORNERS
 

DO 250 JNXBW=INTRW
 
DO 250 INXW=NWTP19NWTP
 
DO 250 ISYMMY=19NSYMMY
 
DO 250 ISYMMZ=1,NSYMMZ
 
STG.NY=3.-Z*TSYMMY
 
SIGNZ=3.-2*ISYMMZ
 
JNXW=JNXBW-NTOTAL
 
IF(JNXBW.LE.NTOTAL)JNX=JNXBW
 
I'F(JNXBW.GT.NTOTAL)JNX=JNXB(JNXW)
 

INDEX=NTOT4Li-I.NXW-NX!4AKE
 
QIX=XPPIJNXBWI-XMP(TNDEX)
 
QI-Y,=YPP-(JNXB'W)-YwP( INDEX),-SIGNY 
QlZ=ZPP(JNXBW)-ZMPII,'IDEX)*SIGNZ
 
Q2X=XMP(JNJXPW')-XMP(TN0EX)
 
02Y=YMP(JNXBI,4)-YMP(TNDFX)*SIGNY
 
02Z=ZMP(JNXBW)-ZMP(I'JOEX)*SIGNZ
 
Q3X=XMM(JNXBW)-XmP(TNDEX)
 
03Y=YMM(JNX9W)-YMP(l JOEX)*SIGNY
 
Q3Z=ZMM(JNXBtl)-7MP(INOEX)*SIGNZ
 
Q4X=YPM(JNXgW)-XPP(INDEX)
 
Q4Y=YPM(JNXBW)-YMP(TNOEv )*STGNY
 
04Z=ZPM(JNXBWI-ZMP(TNIP-X)*SIGNZ
 
QIQI=DOTPRO(QlXiQlYiQlZQlxlcLylolz)
 
02Q2=DOTPP,0(02X,02Y,02ZQ2 ,Q2Y,02Z)
 
Q3Q3=DOTPRO(03XQ3Y,03ZC3XQ'IY,03Z)
 
Q4Q4=DOTPRO(04XQ4YsQ4Z,04XQ/iYt.04Z)
 
Q102=DOTPRO(01XQlYQlZQ2XTQ2YQ2Z)
 
0104=DOTPRe(QlXQIYr,)IZ,(,'4X,04Y,04Z)
 
02Q3=DOTPRO(02XQ2YQ2Z,03 ,03Y,03Z)
 
03Q4=OOTPRO(C3X,03YvQ3ZtQ4XvQ4YvQ4Z)
 
01=SQRT(QlQl) 
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Q2=SQRT(Q202)
 
03=SQRT(Q3Q3)
 
04=SQRT(04Q4)
 
041X=Q4Y*QIZ-Q4Z*QIY
 
041Y=-(04X--QIZ-Q4Z*QIX)
 
041Z=Q4X*QIY-C4Y*Cix
 
Q4lSo=nOTPRO(Q4lXtQ41YQ4lZQ41XQ41YQ41Z)
 
012X=QIY*Q2Z-CIZ*QZY
 
012Y=-(()IX--QZ-01Z*Q2X)
 
012Z=01X*Q2Y-(,'IY*Q2x
 
012SQ=nOTPRO(C,12XC12YQ12ZQl2XQ12YQI,2-7,)
 
023X=Q2Y*Q3Z-Q2Z*Q3Y
 
023Y=-(02X'Q3Z-02Z*Q3X)
 
023Z=02X*Q3Y-Q2Y*03X ' 
Q23SO=f)OTPRO(Q23X9Q23YtQ23ZQ23XQ23YIQ23Z)
 
Q34X=Q3Y*04Z-Q37*C4Y
 
Q34Y=-(03X*Q4Z-Q3Z*Q4X)
 
034Z=03X*04Y-Q3Y*Q4X
 
Q34SQ=DOTPRO(C34X,034Y,034ZQ34XC-34YYQ'14Z)
 

c 
PART1=0.
 
IF(Q41SO.NF.O.)PARTI=((Q4Q4-QIQ4)/Q4+(0101-0104)/01)/Q41SQ
 
PART2=0.'
 
IF(012SO.NE.C.)PART2=((QlQI-QI02)/Qli-(Q202 QlQ2)/C,2-),/012SO
 
DART3=0.
 
IF(023SQ.NE.O.)PART3=((Q202-Q2Q3)/Q2f(C3Q3-Q2Q3)103)/Q23SO
 
PART4=0.
 
IF(Q34SO.NF.O.)PAPT4=((('3C3-0304)/03+(04Q4-0304)/Q4)/034SQ
 
VX=Q41X-IPARTI+Q12X,-PART2+Q23X*PART3+Q34X*PART4
 
VY=(Q41Y*PARTI+012Y*PART2+Q23Y*PART3+Q34Y*PART4)*SIGNY
 
VZ=041Z*PART1+012Z*PART2+Q237 -PART3+Q3[tZ*PART4
 
IF(INXW.LE.N!,)T)GO TO 250
 
VXWAKE(INXW)=VXWAKE(INXW)+VX*SCURCE(JNX)
 
VYWAKE(INXW)=VYIAAKEfINIXW)+VY*SCURCE(JNX)
 
VZWAKE(INXW)=VZIIAKF(INXW)f-VZe-SOLIRCE(JNX)
 

250 	 CONTINUE
 
RETURN
 
END
 



C
 
C
 

C
 

C
 

C 

C 
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SU13ROUTINE ITFR 
COMMON/ZZZI/NXNYNZNWRPFLFNSPANKSYMMYKSY IMZNSYM'4Y*,NSYV.MZ
 
C-OMMON/ZZZ2/TAUALFATANGLFTANGT; ,CHORDNTOTALUMACH
 
COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 
COMMON/ZZZ7/XPI(250),YPI(250),ZPI(2,50),XP2(250).,YP2'(250),
 
IZP2(250),XP3(250),YP3(250),ZP-(250)
 
COMAON/ZZ28/AA(900),SOURCE(250),STNABCCdSABCALFABC
 
CO 4-%ION/ZZZ9/XPP(250),YPP(250),ZPP(250),XDM(250),YPP4(2'50)
 
IZPM(250),X iP(250),Y 'AP(250),ZMP(250),XMM(250)tY.M'1(250)i
 
lZMM(250),IWAKE(250)
 
COMMON/ZZZIO/JNXB(250),NXWAKEWAKEIN
 
CO'AMON/ZZZIl/VHKX(900),VHKY(900),VHKZ(900),VKX(250),Vf',Y(250)I
 
IVKZ(250)
 

COMMON/ ZZZ12/VXWAKE (250) VYWA.KE (.2 5D-),,.VZ.W.AK.E,(-250J-
COM14ON/CGNTR/NTTER
 
DIMENSION XXX(250),YYY(250),ZZZ(250)tVXW(250),VYW(250)iVZW(250)
 
DIIIFNSION I.NDICA(100)
 
DOTPRO(XIYlZlX2tY2,Z2)=XI*X2+YI*Y2+ZI*Z2
 

NXWAKP=NXWAKE+l
 
ALFAR=ALFA*3.14159/180.
 
TANALF=TAN(ALFAR)
 
NYP=NYfl
 
00 1 IX=lNXWAKE
 
DO I IY=1,NY
 
IXP=Ixfl
 
IYP=IY-+l 
TELEM=NTOTAL+IX+(IY-I)*NXWAKE
 
INOI)EI=IXP+(IYP-I)*NXWAKP-

INGDE2=IX +(IYP-1)--NXWAKP
 
INODE3=TX +(TY -1)*NXWAKP
 
INODE4=1-XPi-(IY -1)-INXWAKP
 

XXX(INODEI)=XPP(IELEM)
 
YYY(lNOOEI)=YPP(lELEM)
 
ZZZ(INODEI)=ZPP(IELrM)
 

XXX(INOf)E2)=XMP(IELE'A)
 
YYY(INODE2)=YvPtIELEM)
 
ZZZ(INODF2)=ZMP(IELEM)
 

XXX(INOn 3)=Xmy.(IELEM')
 
YYY(INonE3)=YmM(IcL M)
 
ZZZ(INODE3)=ZPM(IELEM)
 

XXX(INOnE4)=XPM(TELEM)
 
YYY(INOnE4)=YPM(IELEM)
 
ZZZ(INODE4)=ZPV(IELEM) 
 3Ro-j)-GcjBlLlTY OF TRB
 
CONTINUE RYT POOP-

DO 50 IX=INXWAKP 

00 50 IY=1,NYP
 
INnICA(TY)=IY*NXWAKP
 
INODE=IX'-(IY-I)*NXW4KP
 
INDEX.I lNeDE-(IY-I)
 
VXW(INnnE)=VXW4KE(INnEXI)+I.
 
VYW(INODE)=VYWAKE(INDEXI)
 

http:IMZNSYM'4Y*,NSYV.MZ


C
C
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VZW(INODE)=V7WAKE(INflEXI)
 
IF(IX.EQ.NAWAKD)VXW(INnDE)=O.
 
IrTIX. EQ.NXWAKP)VYW(INnOE )=O.
 
IF(IX.EQ.NXWAKP)VZW(INODF)=O.
 
IF(IX.EQ.1)VZW(INODE)=-TANALF
 
IF{IX.EQ.1)VYW(INGOE)=O.
 
IF(IX.EQ.I)VXW(INODE)=10
 

50 CONTINUE
 
C
 
C
 
C WRITE(6,51)
 
51 FORMAT(/3X,'PRINTCUT CF THE WAKE X-VELOCITY'1)
 
C CALL PRINTV(VXW,NXWAKP,NyP)
 

WRI-TF(6,52)
 
52 FORMAT(/3X,'DRINTCUT OF THE WAKE Y-VELOCITYf/)
 

CALL PRINTV(VYW,NXWAKP,NYP)
 
MRITE(6,53)
 

53 EORMAT(/3XfPRINTnUT OF THF WAKE Z-VELOCTTY"/)
 
CALL PRINTV(VZW,NXWAKP,NYP)
 
IF(NITERoGT.I)GC TO 1000
 
WRITF(6,100)
 

100 FORMAT(/3X,'PRINTOUT OF THE WAKE CORNER COORDINATES BFFORE')
 
WRITE(6,201)
 

201 FCRMAT(3X,'ITERATION IN THE X-OIRECTTON'/)
 
C-ALL PRINTV(XXX,NXWAKP,NYP)
 
WRITE{ 6,202)
 

202 FORMAT(/3X,'PRINTOJT OF THE WAKE CORNER COORDINATES BEFORE)

1RITF(6,203)
 

203 FORMAT(3X,'ITERATION IN THE Y-OIRECTICN'/)
 
CALL PRINTV(YYY,NXwpAKP,NYP)
 
WRITF(6,204)
 

204 FORMAT(/3X,'PRINTOUT OF THE WAKE CORNER COORDINATES BEFORE')
 
WRITE(6,205)
 

205 FORMAT(3X, 'ITERATION IN THE Z-DIRECTION 'I)
 
CALL PRINTV(ZZZNXWAKP,NYP)
 

1000 CONTINUE
 

DO 3 IX=1,NXWAKP
 
DO 3 IY=INYP
 
INOOE=IX+(IY-1)*.NXWAKP
 
IF(IX.EQ.NXWAKP)GO TO 3
 
R=WAKEIN
 
VELTOT=SQRT(OOTPRC(VXW(INODE),VYW(INODE),VZWCINODE),
 
IVXW-(INOnE),VYW( INODE,VZW(INOlE)))
 
IF(VELTOT.EQ.O.)CALL CEBUG(50)
 
OELX=R*VXW(INODE)/VELTOT
 
DELY=RtVYW(INCPE)/VELTOT
 
DELZ=R*VZW(INODE)/VELTOT
 

C
 
INODPI=INOOE+1
 
IF(INODPl.EQ.INCICA(IY))GC TO 2001
 

C XXX(INO0P1)=XXX(INOOPI)hDELX 
YYY(INOnPI)=YYY(INOnE)+DELY 

C IF(IX.EO.1.ANDo.Y.EQ.NYP)GO TO 2000 
ZZZ(INODP1)=ZZZ(INODE),OELZ 
GO TO 3 

2000 CONTINUE 
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IF(NITER.EQ.1)ZZZINODP1)=ZZZ(INOE)DELz
 
C 	 -. 

C 	 BRING THE WHOLE VCRTEX IN LINE WITH THE LAST Z
 
C
 

INDEXI=INODPI+I
 
INDFX2=NXWAKE+(IY-1 )1NXWAKE
 

C 00 2 IN0EX=TNOEXITNEX2
 
C2 ZZZ(INnEX)=ZZZ(INOOP1)
 
C
 

GO TO 	3
 
2001. 	CONTINUE
 

YYY(JINODP1)=YYY(INOOE)
 
ZZZ(INODO1)=ZZZ(INODE)
 

C
 
3 CONTINUE
 
C
 

DO 4 IX=lNXWAKE.
 
DO 4 IY=1,NY
 
IELEM=NTOTAL+IX+IIY-I)4NXWAKE
 
IXP=IX+1
 
IYP=IY+1
 
INODEI=IXPH(IYP-1)*NXWAKP
 
INODE2=IX 1(IYP-1)*NXWAKP
 
INODE3=IX +(IY -1)*NXWAKP
 
INODE4=IXP+{IY -I)*NXNAKP
 

C
 
XPP(IELEM)=XXX(INODEI)
 
YPP(IELEM)=YYY( INCOEI )-

ZPP(IELEM)=ZZZ(INODE1)
 

C
 
XPM(IELEM)=XXX(INC)E4),
 
YPM(IELEM)=YYY(INOOE4)
 
ZPM(IELEM)=ZZZ(INODE4)
 

C
 
IF(IX.EO.1)GO TC 4
 

C
 
XMM(IELEM)=XXX(INCOE3)
 
YMM(IELEM)=YYY(INODE3)
 
ZMIM(IELE-M)=ZZZ( INODE3)
 

C
 
XMP(IELEM)=XXX(INODE2)
 
YMP(IELEM)=YYY(INOOE2)
 
ZMP(IELEM)=ZZZ(INODE2)
 

C
 
C
 
4 CONTINUE
 

IF(NITER.LF.10)GO TO 738
 
C WRITE(6,400)NITER
 
400 FORMAT(/3X,'AFTER',13,2X,'ITERATIONS, THE X-CORNER l)
 
C WRITE(6,401)
 
401 FORMAT(3X,'COCRDINATES OF THE WAKE ARE'/)
 
C CALL PRINTV(XXX,NXWAKP',NYP)
 

WRITF(6,402)NITER
 
•402 	 FnRMAT(/3X,'AFTERI,13,2X,'ITERATIONS, THE Y-CORNER')
 

WRITE(6,403)
 
403 	 FORMAT(3X,'COPrINATFS OF THE WAKE ARE'/)
 

00 601 IX=1,NXWAKP
 
DO 601 IY=I,NYP
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INODI=IXi-(IY-1)'*NXWAKP
 
YYY(INODEL=(I./(SPAN/2.))*YYY(INOCE)
 

601 CONTINUE
 
CALL PRINTV(YYYNXWAKPNYP)
 
WRITE (6,404)NITER
 

404 =ORMAT(/3X,tAFTEpI,I3,ZX,'ITERATIONS, THE Z-CORNER')
 
WRITE(6,405)
 

405 FORMAT(3X,'COOROINATES OF THE WAKE ARE'/)
 
CALL PRINTV(ZZZ,NXWAKP,NYP)
 

738 CONTINUF
 
RETURN'
 
EN D 
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"-Q3 pryntout of-Computer- Program ILSAWR 

SPECIFICATIONS OF THE PROBLEM
 

NX= 7
 
,NY= 7 
NZ= I 
NOt 1
 
NTOTAL= 49
 

KSYMMY= I
 
KSYMMZ= 0
 

REFERENCE LENGTH= 1.00
 
SPAN/REF LENGTH 8.00
 
THICKNESS= 0.0
 

ALFA= 5.000
 

ALFABC= 0.0
 

MACH NUMBER = 0.0 

NXWAKE= 11
 

WAKEIN= 0.500
 
TIAN GLE--_Ol. 
TANGTE= 0.0
 

CHORD= 1.00
 



PRINTOUT OF THE WAKE CORNER COORDINATES BEFORE
 
ITFRATION IN THF X-nIRECTION 

-0.118756F-06 -0.118756F-06 -0.118756E-n6 -0.118756F-06 -0.118756F-06 -0.118756F-06 -0.118756F-06 -0.111796F-06 
0.500000E 00 0.50000OF 00 0.500000E 00 0.500000E 00 0.500000E 00 0.5OOOOOF 00 0.500009E 00 0.5000002 00 
0.1000002 01. 0.0000OF 01 0.00000P 01 0.100000 01 0.10000r 01 0. 100 000 

= 01 0.100000E 01 0.10000 01. 
0.150000 01 0.150100 01 0.190000E 01 0.5000OF 01 0.19000 = 01 0.15000oFo01 0.1500002 01 0.150000= 0l 
0.200000E 01 0.2no3OOE 01 0.200000E 01 0.200000E 01 0.200000E 01 0.20000F 01 0.20000F 01 0.200000a 01 
O.?50000F 01 0.250000F 01 0.250000E 01 0.250000E 01 0.2500002 01 0.2500002 01 0.250000E 01 0.250000F 01 
0.300000E 01 0.3n00001 Ol 0.300000F 01 0.300000E 01 0. 30000£ 01 0.300000 01 0.300000F 01 0 .3000 00C 01 
0.350000E 01 
0.400000F 01 

0.350000c 01 
0.400000C 01 

0.35000r 01 
0.400000E 01 

0.35000OF 01 
0.400000E 01 

0.3 50000r 01 
0.401000E 01 

0.35000(W 
0.4000002 

01 
01 

0.3900002 01 
0.4000n0101 

0.350000C 01 
0.400000P 01 

0.450000F 01 0.4900002 01 0.450000F 01 0.450000F 01 0.4500002 01 0.45000E 01 0.450000H 01 0.450000F 01 
0.500000F 01 0.5000002 01 0.500000F 01 0.500000C 01 0.500000F 01 0.900000E 01 0.500000E 01 0.500000F 01 
0.59000E n3 0.550000F 03 0.5500COE 03 0.550000E 03 0.550000E 03 0.550000E 03 0.550000F 03 0.550000E 03 

PRINTOUT OF THF WAKE CORNER COnRDINATFS BEFORF 
ITERATION IN THF Z-nIPFCTInN 

0. 10380'E-07 
0.103893r-07 
0.103813SE-07 

0.10389r-07 
0.1n3898F-07 
0.103898F-07 

0.103998F-07 
0.103998F-07 
0.103892F-07 

0.103898E-07 
0. 1038002-07 
0.103808E-07 

0.1038032-07 
0.103898F-07 
0.1038912-07 

0.1038902-07 
0.103898P-07 
0.l038980-07 

0.103899F-07 
0.103899P-07 
0.103698P-07 

O.10389F-07 
0.103098P-07 
0.1038982-07 

0 
m 

0.103898E-07 
0.103Rl8E-07 

0.103q99[-07 
0.1038982-07 

0. 103n082-07 
0.103898r-07 

0.103898E-07 
0.103898V-07 

0.113398F-07 
0.I0380qE-07 

0.103i80F-07 
0.103898E-07 

0.103899"-07 
0.103898F-07 

0.103898F-07 
0.103R98F-07 

0.o 038SF-07 0.103898F-07 0. 103898F-07 0.103898F-07 0.103898e-07 0.103898F-07 0.1033981-07 0.1038082-07 

t 0.103808F-07 
0.103899F-07 

0.103890[-07
0.10389RE-07 

0. 103Q98-07 
0.103898r-07 

0.103898F-07 
0.103898E-07 

0. 103899-07 
0.103898E-07 

0.103082r-07 
0.103898E-07 

0.10389-07 
0.103809-07 

0­
0.1038198F-07 

o 1038982-07 0.038932-07 0.103R98F-07 0.103898E-07 0.103898E-07 0.10388F-07 0.10389RC-07 0.1038982-07 

0.103898-07 
0. 103898F-07 

0.1038098F-07 
0.10389RF-07 

0.103898-07 
0.103898F-07 

0.103898F-07 
0.103898P-07 

0.103898E-07 
0.103898E-07 

0.103898F-07 
0.103898-07 

0.103898F-07 
0.103898P-07 

0.103898P-07 
0.103898E-07 

O 0.103890E-07 0.103898E-07 0.03800F-07 0.103898-07 0.103398E-07 0.103898-07 0 .1 0 3898"07 0.103898O-07 

PRINTOUT OF THE WAK' CL)RNPP COORFIib:ATFS RPORM 
0 ITFRATION IN THC Y-fIRCTION 

St 0.0 0.10612E 01 0.195918E 01 0.269388F 01 0.326531E 01 0.367347E 01 0.391837E 01 0.400Ooo 01 

S 0.0 0.106122F 01 0.195918' 01 0.2693182 01 0.32653' 01 0 .367347f 01 0.391837F 01 0.O000OE 01 
0.0 0. I06 122P 01 0. 195910F 01 0.260180 01 0.3T65319 01 0.367347 r 01 0.V01837 c 01 0.400003t! 01 
0.0 
0.0 

0. 116122p 01 
O.022F 01 

0.195918F 01 
0.195918 01 

0.269388E 01 
0.269388r 01 

0. 3Z6531 
0.365311 

01 
01 

0.367347E 01 
0.367347F 01 

0.331837r 
0.301837E 

01 
O 

0.400000' 01 
0.400000r 01 

0.0 0.1061229 01 0.19591AF 01 0.769388P 01 0.32.6531E 01 0.367347E 01 0.301837E 01 0.400000E O 
0.0 
0.0 

0.106122F 01 
0.106122r 01 

0.19591qt 
0.10 5918F 

01 
01 

0.269388r 01 
0.260308 01 

0.326531F 01 
0.326531F 01 

0.367347F 01 
0.347347C 01 

0.391837F 01 
0.391837P 01 

0.4000001 01 
0.400000F 01 

0.0 
0.0 

0.104122F 01 
0.106122E 01 

0.1.9991* 
0. 195913 

01 
01 

0.2693882 01 
0.269381E 01 

0.316531E D1 
0.3?653l1 01 

0.636Vit7E 01 
0.367347F 01 

0.391837 01 
0.391837r 01 

0.4000009 
0.40100 C 

01 
01 

0.0 
0.0 

0.136122r 01 
0. 1061222 01 

0.1)V91 
0. 19 918E 

01 
01 

0.2693*Ip 
0.269 i88F 

01 
01 

0.2?6531F 01 
0. 32,531 E 01 

0.367347r 01 
0.36t347F 01 

0.391837 c 

0.39184 r 
01 
01 

0.400003r 01 
0.4000002 01 



THF DISTRIBUTION OF THE nOuBLET STRFNGTH DH 

RIOHTHAND SIDE 

-n.39589F-2 -0.38849E-02 -0.37125F-02 -0.34288E-02 -O.3000BE-02 -0.23927E-02 -0.15925F-02 

-0.68218E-02 

-0.97730F-02 

-0.66766E-02 

-0.95619E-02 

-0.63782F-02 

-0.91271E-02 

-0.58863E702 

-0.84065E-02 

-0.51416E-02 

-O.73069E-02 

-0.40764E-02 

-0.57133S-02 

-0.26464E-02 

-0.35749E-02 

3 

0 

-0.1256OF-0 -0.12283E-01 -0.11710E-01 -0.10753E-01 -0.92783E-02 -0.71273ErQZ -0.43533F-02 

-0.15061E-01 -0.14720F-01 -0.14011E-01 -0.12818E-01 -0.10967E-01 -0.82876E-02 -0.49955E-02 

-9.17136E-01 -0.16737F-01 -0.15904!-01 -0.14494E-01 -0.12303E-01 -0.91863E-02 -0.54982E-02 

-0.18558-01 -0.181161-01 -0.17189C-pt -0.15618E-01 -0.13183E-01 -0.97781E-02 -0.58347E-02 



THIS IS THE X-WAKE VFLOCITY 

-0.480406F-02 -0.4774095-0? -0.468118r-02 -0.454247E-02 -0.4,1279E-02 -0.449149E-02 -0.641041E-02 0.3R0451E-02 
-0.16082IF-02 
-0.853070E-03 

-. 161449F-0? 
-0.q47636C-03 

-0.158455F-02 
-0.?1968E-03 

-0.1520602-02 
-0.748443E-03 

-0.13Z058F-02 
-0.5970909-03 

-0.903000F-03 
-0.403298"-03 

-0.440632=-03 
-0. 63791r-3 

-0.2 761482-03 
-0.Z182OtF-03 

-0.532014F-03 -0.524415E-03 -0.405605E-03 -0.432221E-03 -0.336061E-03 -0.240564E-03 -0.17898E-03 -0.158966C-03 
-0,361373E-03 
-0,2585702-03 
-0.191673F-03 

-0.353009E-03 
-0.2505R0C-03 
-0.184665F-03 

-0.325844F-03 
-0.2273599-03 
-n. 165822E-03 

-0.27735P-03 
-0.191435q-03 
-0.139445E-03 

-0.216465E-03 
-0.151761=-03 
-0.112607E-03 

-0.1632722-03 
-0.1192699-03 
-0.91125 IE-04 

-0.130310F-03 
-0.9048332-04 
-0.78568fW-04 

-0.1 1()960F-03 
-0.9300892-04 
-0.743386-O4 

-0.145832F-03 -0.139999E-03 -0.1251 61-03 -0.1057482-03 -0.868635F-04 -0.721506F-04 -0.635738-04 -0.606698r-04 
-0. 113191-03 -,. 108481C-03 -0.969310E-04 -0.824915C-04 -O.6 890OE-04 -0.585701E-04 -0.24171E-04 -0.503959E-04 

Lo -0.894483E-04 
-0.717442E-04 

-0.857113F-04 
-0.688077r-04 

-0.767820F-04
-0.619067F-04 

-0.659464r-04 
-0.536891F-04 

-0.559298E-04 
-0.461758F-04 

-0.483691E-04 
-0.405120F-04 

-0.438477E-04 
-0.371014t-04 

-0.4235702-04., 
-0.199719F-04 

S PRINTOUT OF THE WAKF Y-VELOCITY 

0.0 
0.0 

0.0 
-0 7160?.2E-04 

0.0 
-0. 175023F-03 

0.0 
-0.3554802-03 

:0.0 
-0.643 119-03 

0.0 
-0.932307C-03 

0.0 
-0.994839--03 

0.0 
-0.961138-03 

0.00.0 -0.624721F-04-n.549076r-0o -0.146541F-03-0°[[@2[&Fr-03 -0.264779c-03-0.190576F-03 -0. 38q637F-o3-0.245147£-0"3 -. 45'1964F-03- 0.26 4 ( Ir-03 -o.4500?3F-0-0. 2614213F-01 -0.4407302-03-3.ZET57r9r-03 

S 0.00:0 
0 0 
0.0 

-0.463545C-04-0.379370P-04 
-0o3050OOF-04 
-0.242877F-04 

-0.9347-04-0,722592F-04 
-0.563585F-04 
-0.437568r-04 

-0.137161 -03-0.100491F-03 
-0.74801BE-04 
-0.567539P.-04 

-g.164 44F-03-0. 115661 -03 
-0,846302E-04 
-0.63C0960E-04 

-0.17243F-13 -0.170783F-03-0).119803P-03 -0. 1 89f6IF-03 
-0.870027E-04 -0.866350E- 0 
-0.652968F-04' -0.65697823-04 

"0.169176r-03-0.11-3196F-03 
-0.865576F-04 
-0.65"446F-04 

0.0 -0.191143F-04 -0.337523E-04 -0.430350C-04 -0.471937E-04 -0.479207F-04 -0.475501C-04 -0.475683--04 
0.0 -0.151072f-04 -0.266060E-04 -0.337T19E-04 -0.370468F-04 -0.378746F-n4 -0.379300'E-04 -0.380060F-04 
0.0 -0.121347F-04 -0.211415F-04 -0.267766S-04 -0.29584.-04 -0.305684F-04 '0.30213E-04 -0.309056E-04 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

PRINTOUT OF THE WAKE Z-VELOCITY 

-0.ST4885E-01 -0.874885F-O -0.874585£-01 -O.874885F-01 -0-874135E-01 -0.87485F-01 -0.974S85E-Ot -0.874885-01 
-0.432382F-01 -0.4405902-01 -0.462579F-01 -0.502368E-01 -0.5682302-01 -0.68520$-0l -0.119565F 00 0.112517F.00 
-0.353017E-01 
-0.312620EO 
-0.2887602-01 
-0.273377E-01 

-0.3633202-Ol 
-0.324179F-01 
-0.3011t2E-01 
-0.286259F-01 

-0.3912582-0t 
-0.3554782-01 
-0.334463F-01 
-0.320919F-01 

-0.440521E-01 
-0.4095812-01 
-0.391316F-01 
-0.379440E-01 

-0.517856E-O 
-0.492123F-01 
-0.476605P-O 
-0.466324E-Ol 

-0.645059F-01 
-0.623588r-01 
-0.610232F-01 
-0.601180r-01 

-9.116190F 00 
-0.11430ZE 00 
-0.t103qol 00 
-0.112267r 00 

0.115683F 00 
0.117486E 00 
0.1186482 00 
0.110454a 00 

-0.262872E-01 
-0.255392F-01 

-0.276112F-01 
-0.268866F-Ol 

-0.3116312-Cl 
-0.304969r-01 

-0-3712051-01 
-0.3652452-QI 

-0-45M96E-01 
-0.45li602-01 

-0.5946922-01 
-0.5898482-01 

-0.111665F 
-0.11121I 

00 
00 

0.120042r 00 
0.120485F 00 

-0.24949E-01 -0.263503F-01 -0.300006F-01 -0.360755$-01 -0.449708F-01 -0.586147E-01 -0.110861E 00 0.120029E 00 
-0.245665E-01 
-0.242425E-01 
0.0 

-0.259441r-01 
-0.256287r01 

0.0 

-0.216227F-01 
-0.293274F-01 

0.0 

-0.357309E-01 
-0.3545q5E-01 
0.0 

-0.446567E-01 
-0.4440692-01 
0.0 

-0.583240F-01 
-0.580906E-01 
0.0 

-0.110 84q 00 
'0.110361E 00 
0.0 

0.121102F 00 
0.1213 2P 00 
0.0 



APT5R 12 ITERATTfNS, T1IF Y-CCRNF* 
COORDINATES OF THE WAKE ARS 

0.0 
0.0 
0.0 

0.265106tE 
0.265106F 
0.265304F 

00 
00 
00 

0.4l07qt, 00 
0.48f7q6P 00 
0.4097911 00 

0.673469F 0 0 
O.671469F 00 

0.673462F 00 

q.A163 6r 00 
6.816326E Of) 
0.816316F O0 

0.91R3&7V 00 
0.01W 67C 00 
0.918354P G0 

0.()07592= 00 0.100000C 01 
O.g792PF 00 o. ionnooo 01 
0.979583c 00 0.0Q99956 00 

0.0 f.?&5290r 00 0.489782F 00 0.6734 8P 10 0.81630e O0 0;91904Fl 00 0.948r32? 00 0,993113E 00 
0.0 0.265796F 00 0.459781F 00 0,673"18F 00 0.816621E O0 0.920893' 00 0.998054F 00 1.98569E 00 
0.0 0.Z65 951 00 0.489791P 00 0.673563t 00 0.$t7064E 00 0.92388S OC 0.100617,E 01 0.977684F 00 
0.0 0.265297C 00 0.489812F 00 0.673681' b0 0..177129 00 0.927946E 00 0.101180G 01 0.9710MI 01 
0.0 
0.0 
0.0 
0.0 

0.265301P 00 
0.26'312E O0 
0.269321E 00 
0.265338E 00 

0.4 9845E 00 
0.489988E 00 
0.40q942F'00 
0.490004E G0 

0.673843r 00 
0.674047F 00 
0.6742ag9 O0 
0.674565F 00 

0.81;3561E 00 
0.819605F 00 
0.820839E 00 
0.622255C 00 

0.9330126 00 
0.93qO4F 00 
0.945859F 00 
0.953407E 00 

0.lI(475E 01 
0.101530E 01 
0.1412861 01 
0.101085f Ol 

0.q65665 00 
.61232F 00 

0.9575661' 00 
0.954468E 00 

0.0 0,2653381a 00 0.4900045 00 0.674565s 00 0.622255C 00 0.953407r 00 0.1010 5 01 0.054468E 00 

AFTER 12 ITFRATIONS, THF Z-CCRNvR 
COORDINATES OP THF WAKF ARE 

0.103R9BE-OT 0.10389O1-07 0.10389QE-07 0.103ag78-07 0.1038981-07 0.10389AE-07 0.,0391F-07 0,1038951-07 
-0.435779-01 -0.435778r-0l -0.4AS778F-01 -0.435778F-01 -0.435778E-01 -0.35778E-Q1 -0.435776-01 -0.435773r-01 
-0.65 16F0-01 -0,6957041-01 -0.666694r-0l -0.686542-01 -0.719262C-01 -0.776857F-01 -0.O24291: 00 0.114439F-01 
-0.V27R3&F-0t -0.837079P-0 -0.8619891-01 -o.90g&252r-Ol -0.076425r-01 -O.lOa422F 00 -0.114221P 00 0.371912F-01 
-0.9039391'-0t -0.998934t-01 -0.101939r 00 -0.111024F 00 -0.121968F 0 -0.13572Z0 00 -0.106't55F 00 0.4Q6775-O1 
-0.112814 00 -0.114927F 00 -0.120624; 00 -0.130476F 00 -6.1450682 00 -0.1600425 00 -0.038P76-O01 0.51405F-0t 
-0.126 66F 00 -0,12021>r no -0.1366255 00 -0.1492921 00 0.167490F 00 -0.181624E 00 -0.5 02a8F-0 0.462482E-0L 
-0.1395931 00 -0.14M!09ZE 00 -0.152121' 00 -0.167647E 00 -0.180ZT1 00 -0.00448E 00 -0.159777e-01 0.3715731'-01 
-0.152344E 00 -0.156419r 00 -0.167333l 00 -0.185653F 00 ,-0.210503e 00 -0.214201 00 0.20609qF-O 0.262983'-01 
-0.164817E 00 -0.160565F 00 -0.192254E 00 -0.703371C 00 -0.231220F 00 -0.2 0352 00 0.55651S2-01 0.1469132-0t 
"-0.177079E 00 -0.182505F 00 -0.196972F 00 -0.220852F 00 -0.251465E 00 -0.236203E 00 0.878766F-0l 0.265461E-02 
-0.177079F 00 -0.182505E 00 -0.196971 00 -0.220852F 00 -0.2514655C 00 -0.236203' 00 0.878766E-01 0.265461E-02 


