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NOTATION

resultant force coefficient in the crossflow plane,
Cp = —(Cy2 + ézzf

axial-force coefficient (along xB), 2(axial force)/
pVZS

side-force coefficient in the aerodynamic axis system,
(along y), 2(side force)/pV3S

normal-force coefficient in the aerodynamic axis
system (along z), 2(normal force)/pV2S

side-force and normal-force coefficients in the body

axis system; along YpZp? respectively

rolling-moment coefficient in the aerodynamic axis
system (along xB), 2L/pV2sZ

pitching-moment coefficient in the aerodynamic axis
system (along y), 2M/pV2SZ

side-moment coefficient in the aerodynamic axis
system (along z), 2N/pV2Sl

rolling, pitching, and yawing-moment coefficients in
the body axis system; along Xps Yp» Zps respectively

local loading coefficient (pressure coefficient on
lower surface minus pressure coefficient on upper
surface), Fig. 8

of a time-

functional notation: wvalue at

E=t
dependent function which depends on all values taken

by the five argument functions ¢&(&), (&), i(g),

q(g), r(g) over the time interval 0 < § < t
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Fig. 13

moment along an axis normal to the plane of the
resultant angle of attack (along y), Fig. 1

moment along an axis in the plane of the resultant
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respectively, Eq. (5)

components of angular velocity along the vy, z axes,
respectively, Eq. (6)

reference area

time

components of flight velocity along x z axes,

B’ 7B’ “B
respectively, Fig. 1

magnitude of flight velocity vector

body-fixed axes, origin at mass-center, Xp coincident
with a longitudinal axis of the body, Fig. 1

aerodynamic axes, origin at mass-center, Xp> z 1in the
plane of the resultant angle of attack, y, z in the

crossflow plane normal to the resultant angle-of-

attack plane, Fig. 1
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ON THE FORMULATION OF THE AERODYNAMIC CHARACTERISTICS IN

AIRCRAFT DYNAMICS*

Murray Tobak and Lewis B. Schiff

Ames Research Center

1. INTRODUCTION

As aircraft design has evolved toward more slender planforms in
response to the demand for higher speeds, aerodynamic phenomena (e.g.,
shock waves and concentrated vortex flows) have appeared that earlier
were associated more with the flight of projectiles than with that of
aircraft. The appearance of these flows has altered the aircraft's
aerodynamic behavior, and consequently its dynamical behavior, in ways
that often are not predictable on the basis of Linearized formulations
of the aerodynamic force and moment system. It is generally agreed
that consistently successful predictions of dynamical behavior under
the new conditions hinge on incorporating an adequate nonlinear depiction
of the aerodynamic force and moment system within the equations of
motion.

A number of fundamental questions are raised by the necessity of
replacing the linear aerodynamic formulation with a nonlinear one.
Concepts such as stability derivatives, indicial functions, and super-
position, which were the main working tools in the analysis and
prediction of dynamical motions, are all based implicitly on a linearity

assumption. Are these concepts at all viable when the linearity

*Presented as a contribution to a course of lectures on "Aircraft
Stability and Control'" at the Von Karman Institute for Fluid Dynamics,
Brussels, Belgium, May 12-16, 1975.



assumption is removed, or must they be abandoned? How are time-history
effects to be treated? For nonplanar motions, how are coupling effects,
which could be neglected under the linearity assumption, to be treated?
What about experiments? How are their requirements and their interpre-
tation changed with the adoption of a nonlinear aerodynamic formulation?

About ten years ago, the idea was introduced of using functional
analysis as the vehicle for extending the linear formulation into the
nonlinear domain [1,2]. The adoption of Volterra's original conception
of a functional [3] enabled the construction (without invoking a
linearity assumption) of an integral form for the aerodynamic response
that included the most general linear formulation as a special case.
A framework was thereby established of sufficient breadth to enable
answering some of the questions just posed. Initially, only planar
motions were studied with a view toward answering the questions about
the adaptability of the linear concepts and the treatment of time-history
effects [1,2]. Later efforts focused on nonplanar motions, first of
bodies of revolution [4-6], then of more general bodies [7,8], aimed at
answering the question about coupling effects, Within the past few
years, effort has been directed toward making the formulation more
applicable to the treatment of dynamical motions of aircraft within the
stall and post-stall regimes [9].

The occasion of this course provides the authors with a welcome
opportunity to present a connected account of the theory's main lines
of development since its inception ten years ago. The paper begins with
a brief review of the most general linear integral representation of the

aerodynamic response for a planar motion involving two variables. An
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examination of the principal failing of the linear integral forms leads
naturally to the idea of replacing the indicial functions within the
integrals by functionals, themselves dependent on the past motion. The
formal (and rigorous) nature of this replacement is stressed to make
clear that the treatment of more complicated motions involving any
number of variables follows merely by an application of the same
formalism. Then, simplifying approximations are introduced, aimed at
reasonably specifying the degree to which the indicial responses can be
cognizant of the past motion. The degree of cognizance allowed is shown
largely to determine the generality of aerodynamic phenomena whose
effects can be acknowledged within the scope of the resulting formulation.
A simple specification leads to nonlinear forms of the aerodynamic
response that can be recognized as practicable generalizations of the
linear superposition and stability derivative formulations. Next,
nonplanar motions are taken up and the question of coupling addressed.
Simplification of the general formulation (allowing the indicial
responses to have the same degree of cognizance of the past motion as
before) yields a form for the total moment due to an arbitrary motion
that can be compounded of the moment contributions from a limited

number of well-defined characteristic motions. It is here that the
particular importance of coning motion emerges as a motion characterizing
the coupling problem. The characteristic motions in principle being
reproducible in the wind tunnel, the result also provides the setting
for a discussion of the kinds of wind-tunnel tests that, according to
the formulation, may be required to enable consistently successful

predictions of dynamical behavior.



2. COORDINATE SYSTEMS
Three coordinate systems will be used. They have a common origin

at the body's mass-center and a common axis Xp alined with a longi-

tudinal axis of the body.

Axes Xps Yg» Zp are body-fixed axes (Fig. 1). The flight

velocity vector of magnitude V has components Ups Vgs Wp resolved

along XB’ yB, Zgs respectively. Thus,
_ 2 2 2

\ JuB + vt + Wy ey
Y, G, M
i

- Y
Y|
z,r,N

3 Zg: '

(a) CROSSFLOW PLANE (b) RESULTANT ANGLE-OF-ATTACK PLANE

Fig. 1. Axes, angles, and velocity components in the crossflow and

resultant angle-of-attack planes.

Resultant angle of attack o¢ 1is defined by the flight velocity vector

and the X axis., The plane formed by Yg* Zp is called the crossflow



plane, illustrated in Fig., 1l(a). The projection of a unit vector in the
flight velocity direction onto the crossflow plane is a vector with
magnitude §&; it will be called the (dimensionless) crossflow velocity

vector. Reference to Fig., 1(b) gives

sin ¢

[#2]
=
< |w<:
~—%

+
< ’ws:
~%

i

7

)
Y=5 = cos ¢ >(2)

tan ¢

[u)
1
<o
1

/

The components of the body's angular velocity relative to inertial space,
resolved along Xgs Yp» ZB’ are Pps qB, Ias respectively.

A second axis system Xps §, z is nonrolling with respect to
inertial space. Specifically, the Xps §, z axes have an angular
velocity with respect to inertial space whose component resolved along
the Xg axis is zero, while the components resolved along y, z are
4, T, respectively. The angle ¢ through which the body axes have

rolled at any time t can be defined relative to the nonrolling axis

system as

~ t
b= ppae (3)
0

The angular inclination A of the crossflow velocity vector & is

measured relative to the nonrolling axis system, while ¢ is the



angular inclination of the body axes from the crossflow velocity vector.

With the aid of Fig. 1(a), the body roll rate is seen to be

Py = Ak Y (4)

The components Pgps &, r of the body's angular velocity vector resolved
in the nonrolling axis system are related to those in the body axis

system Py» dps Ty through

~

q+if = Mgy + iry) (5)

Finally, an axis system Xps ¥s 2 will be called the aerodynamic

axis system. Axis z lies in the crossflow plane and is alined with

the direction of §; axis y lies in the crossflow plane alined with

a direction normal to the direction of &. The components of the body's

angular veloci%y resolved in the aerodynamic axis system Pgs 4, T are

related to those resolved in the body axis system through
q + ir = e™(q, + ir ) (6)
B B

It will be noted (cf. Fig. 1(b)) that § and ¢ are no more than the
polar coordinates of the dimensionless velocities WB/V and VB/V in
the body axis system. Let wB/V be called the angle-of-attack

parameter o and VB/V the angle-of-sideslip parameter 8; o and B

are related to the standard NASA definitions of angle of attack a

and
angle of sideslip B through
tan a = wB/uB = ofy
. (7)
sin B = VB/V =8

. e

»
<. e




T T

and to § and Y through

e

i b 2

G+ if =6 eV (8)

r

The components of the aerodynamic force coefficient resolved along

the body axes Xps Yp» Zp are CX’ CY’ CZ’ respectively, while the

Lo @ WO&;‘-’# g,q;dgag;,ﬁ_m

corresponding components of the aerodynamic moment coefficient (about

~ ~ A

the mass-center) are CZ’ Cm, Cn’ respectively. Analogously, the
components of the force and moment coefficients resolved along the

aerodynamic axes Xps ¥, 2 are C C C and CZ’ c, C,

X Y "2 m n

respectively. Components of the aerodynamic moment coefficient resolved
in the aerodynamic axis system are related to those resolved in the body

axis system through

¢, =¢
(9

¢ +ic = e +ic)
m n m n

Corresponding relations between the components of the aerodynamic force
coefficient are obtained by replacing I, m, n by X, Y, Z, respectively
in Eq. (9).

To completely describe the state of a six-degree-of-freedom motion
of a rigid body, it is necessary to specify the velocity and angular
velocity vectors of the body. These may be expressed in terms of their
scalar components resolved in the body-fixed axes Ups Vps Wps Pps dps Tps
or equivalently by &, B, V, Pgs Gs Ig- Analogously, in the aerodynamic
axis system the motion is specified by the scalar variables &, Yy, V, Py»

q, ry, or by 6, ¢y, V, i, q, ¥, since Py is related to i and A



through Eq. (4). These are the principal variables on which the
aerodynamic force and moment formulation must depend in general,

although, as will be seen, certain simplifications are possible in special

cases.

3. DEVELOPMENT OF INTEGRAL FORMS

For simplicity, the following (removable) conditions are imposed in
all of the work to follow: (1) the aircraft is considered to be a rigid
body which, prior to time zero, has been in steady flight for a long
time; (2) at time zero, the aircraft begins a maneuver in which altitude
changes are sufficiently small that atmospheric density and kinematic
viscosity along the flight path remain essentially comstant; (3) the
aircraft's velocity along the flight path also is specified to remain
constant. Hence, dynamic pressure, Mach number, and Reynolds number as
measured along the flight path remain fixed throughout the motion. Under
these restrictions, a general motion referred to the body axis system is
described by the variables &, é, Pgs dp» rps referred to the aerodynamic
axis system, the motion is described by the variables §, ¥, i, g, T.
The development of an integral form for the linear aerodynamic pitching-
moment response to two of the variables will serve as a review of

aerodynamic indicial functions and superposition.

3.1 Linear Aerodynamic Pitching-Moment Response

Let the aircraft begin a maneuver at time zero involving only two
of the five flight variables on which the aerodynamic response depends
(the others being fixed at zero). To fix ideas, the angle-of-attack

parameter § and the pitching velocity ¢q in the aerodynamic axis




system are chosen, so that the motion is planar. The extension to a
more general motion involving all five motion variables will be obvious.
For brevity, attention is focused solely on the aerodynamic pitching
moment. All that is said, however, will hold as well for any other of
the force or moment components that may exist merely on the substitution
of that component for Cm.

Consider the aerodynamic pitching-moment response to the variations
in § and q. It is usually admissible to break the variations into a

large number of small step changes (cf. Fig. 2). In response to typical

3 (1) A q (T
. 77
e
1 J 1 J
o] T t 0] T t
ACq ACm
AS gl
V A(T)Jz
0 T t 0 T 1

Fig. 2. Summation of incremental responses.

step changes A8 and A(ql/V) at time T, there is an incremental
change in pitching moment ACm; it is measured at a fixed time t
subsequent to 1. The assumption of linearity is now invoked, having,

in the context of this report, the following meaning: ACm is said to



be independent of &(t), q(T), and the past values of these variables.

This enables writing ACm in the form

ACm(t - 1) ACm(t - T)
AC_(t) = — 5 A8 +—m— A(ql/V) (10)

The form implies that ACm/AG and ACm/A(qZ/V) are derivable from
linear differential equations, That they depend on elapsed time t ~ T,
rather than on t and 71 separately implies that the coefficients of
the differential equations are independent of time. It is important to
note the following distinction: the significance of the linearity
assumption does not rest on the assertion that ACm is linearly
dependent on A8 and A(ql/V), or that the contributions to ACm from
the two increments are linearly additive. Both of these assertions are
always justified whenever A8 and A(ql/V) are so small that terms of
0((A8)2, (Aql/V)2, (ASAQL/V)) can be neglected. The significance of the
assumption lies in saying that the two ratios are independent of 3§

and q. Thus, no matter how large the values of § and q at the
origins of the steps, the response functions ACm/Aé and ACm/A(qZ/V)
are said to be the same functions, dependent only on t - 1. The limits

of these functions as AS and A(ql/V) approach zero

13 Acm(t - 1)
Aéfo AS = Cpg(t = 1)
(11)
1i ACm(t - 1)
im _m___ " _ _
A(qL/V)~0 A(qZ/V) Cmq(t T)

are called the indicial pitching-moment responses per unit step changes
in & and ql/V, respectively. Every pair of steps in & and ql/V

10
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beginning at a value of t less than t has a corresponding incremental
pitching-moment response of the form Eq. (10) that contributes to the
pitching moment at time t. The summation of these incremental responses
to the steps that occur over the range of T from zero to t then gives
the aerodynamic pitching-moment response at time t to the variations

in 8 and q. As the indicial responses depend only on the time
difference t - 1, in the limit the summations take the form of the
familiar convolution integral. The sum of the two contributions and the

initial value of Cm then give the total pitching moment at time t

cC (£) =C (0 + ft c. (£t - 1) 4 §(t)dr +i ft C_ (t - 1) - q(r)drt
m m A mg dt A 0 mq dt
(12)

For constant V and within the assumption of linearity, Eq. (12) is
exact., Since all values of § and q figure within the limits of the

integrals, Cm at time t depends on the whole past of ¢§ and q.

3.2 Definition of a Functional

The description of Cm(t) as a function that depends on all of the
past values of the argument functions ¢§ and q corresponds mathemati-
cally to Volterra's description of a functional [3]. If Volterra's
square-bracket notation is adopted, the assertion that Cm(t) is a

functional is indicated thus,

c,(t) = G[8(8),aq(8)] (13)

where it is understood that & 1s a running variable in time, ranging

over the interval zero to t.

11



In brief, just as an ordinary function f£(x) assigns a number to
each x for which it is defiﬁed, a functional F[y(£)] assigns a
number to each function vy(£) of the set of functions (all of which
are defined in some interval a <EX< b) for which the functional is
defined. Thus, Eq. (13) may be interpreted as follows: given any pair
of functions §&(&),q(¢) out of the collection of all such pairs defined
in the interval O < £ < t, the functional G assigns a number to
Cm(t). It is the idea of a functional, with its formal recognition of
the influence of past events on present behavior, that provides the key

to generalizing the linear integral form.

3.3 DNonlinear Aerodynamic Pitching-Moment Response

An heuristic argument will show how the most general linear form
for the aerodynamic response Cm(t) to two of the flight variables
(Eq. 12) can be freed of the linearity assumption. A more rigorous
mathematical development yielding the same result is available in Ref. 1.

Attention is directed to the incremental form for ACm(t), Eq. (10),
where the principal limitation imposed by the linearity assumption first
appears., As already noted, this limitation does not hinge on the
assertion that ACm(t) is linearly dependent on A8 and A(ql/V), or
that the two incremental contributions are linearly additive. Both of
these assertions remain in force in the more general development. The
limitation is simply that the indicial responses are said to be independ-
ent of the past values of ¢ and q. Now, as described more precisely
below, an indicial response to a step change in a motion is formed by
taking a difference between the responses to two motions whose histories

differ only by the step imposed on the second motion. Hence, the motions

12
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prior to the step are identical. When the difference is taken in the
linear case, the influence of this identical past cancels identically.
In the absence of linearity, exact cancellation of the past influence is
not to be expected, so that some remnant of that influence must be
evidenced in the behavior of the indicial response. That is to say, the
indicial response must be a functional., The way to eliminate the
limitation of the linearity assumption in Eq. (10) thus becomes clear:
replace the indicial functions by functionals, themselves dependent on
values of § and q prior to the origin of the steps. That this
replacement can be rigorously justified is, in fact, the principal result
of the mathematical development in Ref. 1.

If the notation already introduced for a functional is followed, the

designation of the indicial responses as functionals is indicated thus,

ACm(t,T)
lGimO _—_A(S— = Cm(s [(S (E)sq(g);tsT]
A S
(14)
ACm(t,T)
A(qﬁt\?)—»o 2@ " Cmglé(8).a(8)se,T

where, as before, t 1is the time at which the increment ACm is
measured, T 1is the time at which the steps originate, and £ 1is a
running variable in time over the interval zero to 7t; that is, over the
past for steps beginning at & = T.

Although the replacement of the indicial functions by functionals
appears to be largely a matter of notation, the change is far-reaching
and, for example, requires a more precise description of the formation

of indicial responses than was necessary in the linear case. Two motions

13



3(&)

3, q
q ()

1 . J_E

Crm ACp (1)
| R I | .
o] T t ¢ 0] T 1€

Fig. 3. Formation of indicial responses.

have to be considered (cf. Fig. 3): first, beginning at & = 0, the
. , ) q(g)l
aircraft is made to execute the motion under study 6&(£&), -5
At a certain time T, the motion is constrained such that the values
. . . . . q(t)l
of the flight variables existent at time 1, that is, 5(T),———v———
remain constant thereafter. The pitching moment corresponding to this
maneuver is measured at a time t, subsequent to T. Second, the aircraft
is made to execute precisely the same motion, beginning at & = 0 and
constrained in the same way at & = T, except that at the latter time,

one of the variables & or ql/V is given an incremental step AS or

A(ql/V) over its value at £ = 1. Hence, if it is & that is given an
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increment A8, the values of the flight variables for all times
subsequent to T are &(t) + AG,—ES%lE. The pitching moment
corresponding to this maneuver is again measured at time t. The
difference between the two measurements is divided by the incremental
step A8 or A(ql/V); the limit of this ratio as the magnitude of

the step approaches zero is called the indicial pitching-moment response
at time t per unit step at time 1t of one of the two flight variables
8§ or ql/V. As indicated in Fig. 3, since the two motions prior to

£ = 1 are identical, the ratio must be identically zero for all £ < T.
At & = T, a discontinuity in the ratio is permissible, reflecting the
discontinuous change in one of the motion variables. For all values

of & > 1, the ratio must be continuous.

Formed as described above and as defined in Eq. (14), the indicial
responses are suitably generalized to be free of dependence on a linear-
ity assumption. With Eq. (14) replacing Eq. (11) in Eq. (10), the
summation of incremental responses to yield an integral form for Cm(t)

follows as before. The resulting generalization of Eq. (12) is

€u(® = ¢, @ + [T apg[80),a()ie,7] g8
0

t
+%_/(; Cmq[é(a),q(a);t,r] d‘d} q(t)dt (15)

Equation (15), applicable to a planar motion involving arbitrary varia-

tions in § and ¢q, is believed to be of sufficient generality to

15



provide a framework for the study of a wide variety of nonlinear
aerodynamic problems. Derivation of the integral forms corresponding

to motions involving more than two variables follows simply by an
application of the same formalism. 1In the next section, simplifying
approximations are introduced into Eq. (15) which make the form more
practicable at the price of narrowing the classes of aerodynamic behavior

that can be acknowledged within its scope.

4. LIMITATIONS AND SIMPLIFICATION OF THE NONLINEAR INTEGRAL .FORM
Conditions that flight-path properties remain constant during the
motion and that the aircraft be a rigid body have been imposed at the
outset. Imposing constant flight-path properties excludes from
consideration the influence on motions of very large accelerations or
variations in atmospheric density, such as might occur, for example,
during atmospheric reentry. Omitting structural variables rules out the
possibility of treating the buffeting problem, which involves interactions
between the elastic airframe and random aerodynamic fluctuations [10],
However, the presence of fluctuations themselves can be acknowledged
within the framework already established by adopting the notion of
ensemble averaging (cf. Ref. 9). The remaining assumptions are of two
main classes: first, fundamental assumptions associated with the use of
functional analysis to develop the general integral form for the
aerodynamic response; second, simplifying assumptions associated with

the reduction of the general integral form to more practicable forms.
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4,1 Fundamental Assumptions

Despite their generality, the nonlinear indicial responses defined
by Eq. (14), and hence the corresponding integral form for the aero-
dynamic pitching moment, Eq. (15), already contain implicit assumptions
that limit their applicability. These are principally that the indicial
responses must exist for all values of their arguments (for & > T) and
must be unique. Evidence for the existence of indicial responses is
necessarily inferential, since it is doubtful whether they will ever be
measured directly. However, the nonexistence of indicial responses
follows from the nonexistence of their steady-state values, which are,
of course, more amenable to measurement. 1In this respect, assuming the
existence of the indicial responses for all values of their arguments
(with £ > 1) strictly speaking implies the exclusion of cases where the
variation of steady-state pitching moment with ¢ (e.g., at q = 0)
becomes discontinuous either in its magnitude or slope at certain
isolated values of §, since 1lim ff%%jz will not exist at these

AS->0

points. Such cases are known to characterize certain types of stall
behavior (cf., for example, Ref. 11). Although these cases can be
treated by an appropriate addition of jump conditions at the isolated
points, for simplicity they will be excluded from further consideration
here. Assuming uniqueness implies the exclusion of cases where more
than one steady-state response to the same maneuver is possible; more

precisely, cases must be excluded where the steady-state responses

to repetitions of the same maneuver can be multivalued and probabilistic.
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An example of aerodynamic behavior that must be excluded on this basis
is the steady asymmetric vortex flow above a body of revolution at
large ¢ when it is a matter of chance whether the vortices form a
left-hand or a right-hand pattern. Given these fundamental limitations
on the applicability of the general integral form for Cm(t), Eq. (15),
simplifying assumptions still need to be attached in order to reduce it

to more usable forms.

4,2 Simplifying Assumptions

In the form Eq. (15) the indicial responses within the integrals
are themselves functionals, depending in general on the whole past
history of the motion 6(&),q(£). This makes the further use of the
form exceedingly difficult, since the history of the motion normally is
not known in advance but rather is desired as the solution of the
equations of motion. Thus, when the past history is unspecified, the
functionals also are unknown beforehand. Simplification of Eq. (15)
hinges on replacing the functionals by appropriate functions whose
dependence on the past is denoted by a limited number of parameters
rather than by continuous functions. If 6(£),q(&) can be considered
analytic functions in a neighborhood of & = 1 (corresponding to the
most recent past for an indicial response with origin at £ = 1), in
principle their histories can be reconstructed from a knowledge of all
of the coefficients of their Taylor series expansions about § = 1.
Thus, since 6(&),q(8) are equally represented by the coefficients of
their expansions, the functional, with its dependence on §8(&),q(&),

can be replaced without approximation by a function with a dependence
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on all of the coefficients of the expansions of §&(£),q(§) about £ = T.

The indicial response CmG’ for example, can be expressed as

Cn, [6(6,a(8)5 6,71 = Cag(£,138(0,8(0), .+« a(0,4@. .+ o) @A6)

(The reversal in the order of the dependencies anticipates the diminished
role played by § and q 1in the succeeding analysis.) Now physical
reasoning suggests that the indicial response should have "forgotten"
long-past events and thus should depend mainly on events in the most
recent past. If this is assumed to be true, then so far as the effect

of the past on the indicial response is concerned, the form of the past
motion just prior to the origin of the step might just as well have
existed for all earlier times. Hence, at most only the first few
coefficients of the expansions of §&(£),q(£) need be retained to charac-
terize correctly the most recent past, which is all the indicial response
remembers. Retaining the first two coefficients of &§(£), for example,
implies matching the true past history of § din magnitude and slope at
the origin of the step, thereby approximating d&(&) by a linear function
of time 6(&) =~ &6(1) - é(T)(T - £). With an approximation of this order
in force for both &(&) and q(£) in the indicial responses, the integral

form replacing Eq. (15) becomes

t . .
c (v) = Cm(O) +[ Cm6<t,T;<3(T),6(T),q(T),q(T)> ;—T §(t)dt

t . .
+%_[ Cng (£5758 (12,81, 0(1),3(D) 4= a(r)dr an

This form, while considerably more tractable than Eq. (15), is still

sufficiently general to allow the treatment of motions involving
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hysteresis effects. Retaining a dependence on é(T), for example, allows
assigning different indicial responses to a step at a single pair of
values 6(t),q(t), depending on the magnitude and sign of §(t). It is
permissible, for example, to distinguish between indicial responses

where § was increasing or decreasing prior to the step. This will be
valid when physical reasoning suggests that the particular response
attached to a step is a deterministic result of the past history rather
than the probabilistic result of an interaction with a random fluctuation.
Although implications of the use of Eq. (17) will not be explored further
in this study, the equation is believed to be both tractable enough and
of sufficient scope to provide a framework for the study of rapidly
varying maneuvers (for example, the rapid pull-up), where hysteresis
effects governed by rate-dependent flow phenomena are known to be

present in the aerodynamic response.

When deterministic hysteresis effects are absent, and if, addition-
ally, the assumption of a slowly varying motion is introduced, then the
dependence of the indicial responses on é(r),d(r) will not be signifi-
cant (cf. Fig. 4). So far as the indicial responses are concerned,
omitting these dependencies in Eq. (17) implies that the motion prior to

the origin of the steps is being approximated by the time-invariant

8(8) q(€)

Fig. 4. Slowly varying motions.
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motion &8(E) ~ 8(t),q(E) =~ q(t). The indicial responses at any value
of elapsed time, now dependent only on the magnitudes of § and ¢
just prior to the steps, must not only be continuous functions of
8(t),q(1), but henceforward also single-valued functions of &(t),q(T).
Further, with a given time-invariant past motion and with the already
assumed constant flight-path properties, clearly an indicial response
must have the same value after a given time has elapsed subsequent to
the origin of a step no matter when the step occurs. That is, just as
in the linear case, the indicial response must be a function of elapsed
time t - Tt rather than of t and <t separately. Finally, then, for
slowly varying motions and within the additional restriction on the
indicial responses of single-valuedness with respect to 6(t),q(t), and
t - 1t > 0, a much more specific form of Eq. (15) may be written, still

capable of embracing a fairly broad range of nonlinear aerodynamic

problems. It is

t
c_(£) = c_(0) + [ Cg (= T38(1),a(D)) == 8()dr

7 t d
+—V-_0/ Cmg (£ = T38(0),a(0) 47 a0 18)

Although the form of Eq. (18) represents a great simplification over
that of Eq. (15), the equation still includes the full linear form
(Eq. (12)) as a special case. Equation (18) is the basic integral form

underlying the subsequent simplified formulations.
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5. APPLICATION OF THE SIMPLIFIED NONLINEAR INTEGRAL FORM TO PLANAR
DYNAMIC STABILITY STUDIES
Equation (18) is now applied to the study of aircraft dynamic
stability. The rigid-body motions of aircraft are normally oscillatory,
and moreover, the oscillations are generally of very low frequency.
Several analytical benefits accrue from the latter fact. First, since
the motions are slowly varying, the assumptions underlying Eq. (18) are
particularly well grounded in this application. Second, Eq. (18) can
be further simplified. The simplification, which in effect reduces
Eq. (18) to an equation correct to the first order in frequency, parallels
that realized in the linear case in the application of Eq. (12) to

stability studies [12].

5.1 Stability Coefficient Formulation

The reduction of Eq. (18) to first order in frequency is carried
out in detail so that, later, the analogous reduction of the more lengthy
equations for nonplanar motions will need only to be indicated in passing.
Equation (18) is first rearranged to give a more convenient form. From
physical considerations, the indicial responses must approach steady-
state values with increasing values of the argument t - 1. To indicate
this, the following notation is introduced (the notation parallels that

of Ref. 12):

Cm5<t - T;G(T),q(r)> Cm6<°°;6(‘r),q(1)) - F3<t - T;G(T),q(T))

(19)

Cng(t = ©38(0,a(0)) = Gpg(=38(0),a(0)) - Byt - 138(0),a(0)
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where

Cm5<w;6(1),q(T» rate of change with &6 of the pitching-moment
coefficient that would be measured in a steady
flow, evaluated at the instantaneous value of
8§(t) with q fixed at the instantaneous value

q(t),

Cqu%S(T),q(T» rate of change with q of the pitching-moment
coefficient that would be measured in a steady
flow, evaluated at the instantaneous value q(Tt)

with & fixed at the instantaneous value &(T).

The functions F3 and Fq are termed deficiency functions; they tend
to vanish with increasing values of the argument t - 1. When Eqs. (19)
are inserted in Eq. (18), the terms involving the steady-state parameters

form a perfect differential which can be immediately integrated.

Equation (18) becomes

Cm(t) = Cm<°°;6(t),q(t)> - /t Fg (t - T;G('r),q('r)) % §(t)dt

0
L F (e - nsm.am) & ama (20)
Vf N > s q T quT T
0
where
Cm<m;6(t),q(t» total pitching-moment coefficient that would be

measured in a steady flow with ¢§ fixed at the
instantaneous value §(t) and q fixed at the

instantaneous value q(t).
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Equation (20) is a form of Eq. (18) particularly amenable to
approximation. Let it be assumed for illustration that the angle-of-
attack parameter ¢ 1is essentially a harmonic function about a constant

q) is a purely harmonic function.

mean while the angle of pitch ¢ (6

That is [

m
(21)

Then clearly, since q = é, q itself will be of first order in
frequency w. Hence ¢q will be small for all values of time, and powers
of q higher than the first will be of second and higher orders in fre-
quency. Therefore, for any given values of t or T, it is permissible
to expand the terms in Eq. (20) in a Taylor series about q = 0 and to
discard terms containing powers of q higher than the first. Terms in

q and éq likewise may be discarded as they will be of second order in

frequency. The result of the expansion is

0, (8 = € (=36(6),0) + a(t) < L g (= ;6(£),0)

t
f (e - ©36(0),0) S 6(n)ar (22)
0
Definitions of Cm(»;S(t),Q> and Cmq<W;6(t),0> follow from those given
earlier with the substitution of q(t) = 0. The first two terms are
clearly the nonlinear counterparts of the terms 6Cm6(w) and (qZ/V)Cmq(W)

that appear in linear analyses based on the stability derivative concept.

Therefore, the integral, when also reduced to the first order in frequency,
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is anticipated to be the nonlinear counterpart of the term (éZ/V)Cmé .
This reduction is taken up next.

With the change in variable t - T = 7;, the integral becomes

£ iw(t-Tl)
I= ./- Fa(rl;é(t - Tl),0>iw60 e dTl (23)
0
which may be rewritten
. t —inl
I=5(t) ./0' F3<T1;6(t - Tl),0>e dr, (24)

Practically speaking, the deficiency function essentially vanishes after
a relatively short period of time has elapsed. Let the value of T, at
which F3 essentially vanishes be ta’ and consider events at a time ¢t
sufficiently removed from the start of the motion that ¢t > ta. Then
the upper limit in Eq. (24) may be replaced by ta’ whereupon, with =

1

bounded and ®w small, the harmonic function may be expanded in powers

of w. Since & 1is itself of first order in w, however, only the first
term in the expansion, unity, contributes within the order of the
approximation. Moreover, with respect to the parameter &(t - Tl), a

further simplification can be realized when the condition ¢t > ta is

invoked, for then 6(t - Tl) ~ 8(t). The integral reduces to

R t
_8(e)l v a .
=20 7/ Fy(r138(8),0)dr, (25)
0

where, as anticipated, the integral term within parentheses may be

identified with -Cpg .
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Hence, just as in the linear case [12], to the first order in
frequency Cmé is proportional to the area of the deficiency function,
now, however, evaluated at and dependent on the particular value of the
angle-of—-attack parameter &(t) under consideration. The nonlinear

counterpart of the linear stability derivative formulation thus becomes
c (t) =¢C (°°'6(t) 0) + q(t)—Z C (w-a(t) 0) + <§(t)—Z C -(G(t)> (26)
m m ’ s v mq 5 ’ v m5

where

=<

t
a
Cmé<6(t)> - - / Fy(r,58(0),0)dr, (27)
0
5.2 Interpretation of Czé

In Egqs. (26) and (27), just as in the linear theory, C the term

mg
that accounts for the past, appears as an integral of the deficiency

function. A physical argument will show why the term, or more directly,
the analogous normal-force coefficient ng, continues to appear in this

way. In Fig. 5, the aircraft on the left has been sinking, without

pitching, for a long time at a constant rate. A force P must be

v
L TIME tq oV

Fig. 5. Interpretation of Czé .
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applied to maintain the constant rate. The work done by the applied

force over an arbitrarily large time interval zero to ta is

t
a a
Wk, = vsof Pdt = sz/ [W + Z(=36,) 1dt (28)
0

where W 1is the weight of the aircraft and -Z(m;so) is the steady-state
normal force due to the constant angle of attack. Now, as shown on the
right side of Fig. 5, let the same aircraft experience a step change in

8§ at time zero and then undergo the same motion as in the first case.
The work done over the same time interval by the force applied to

maintain a constant rate is

t

a
Wky = vsof W+ Z(t38p) 1dt (29)
0
The difference in work done is
t
a
Wk, - Wk, = V8§, f [Z(°°;<SO) - Z(138,) ]dt (30)
0

After identifying ta with the time required for Z(t;8,) to reach
steady state, one sees that the integral is the area enclosed by the
indicial normal-force response curve and its steady-state value. That
is to say, it is the area of the normal-force deficiency function, and
it is therefore proportional to ng . The energy of the aircraft is
the same in both cases, since it undergoes the same motion. The energy
expended by the applied force is different in the two cases. The

balance of energy, which is Eq. (30), therefore must have been given to
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or taken from the fluid., The term Czé is a measure of the energy given
to or taken from the fluid whenever the angle of attack changes from one
level to another. Because this assertion holds regardless of the
magnitude of the angle of attack, it is reasonable that Czé (and Cmé)

should continue to appear as an integral of a deficiency function, even

in the nonlinear analysis.

5.3 Theoretical Evaluation of Stability Coefficients

Of the three coefficients in Eq. (26), the first is the familiar
static pitching-moment coefficient due to angle of attack. Since it is
of fundamental importance in aircraft design, it has been studied
extensively; a large body of both theoretical and experimental results
may be called on to define it in particular cases. No such body of
information exists for the remaining two coefficients. The specific
problems which must be solved for these two coefficients are character-
ized by the motions illustrated in Fig. 6. Just as for the first term,

solutions for Cmq may be derived from a steady-state equation.

8 =CONSTANT
l

$= CONSTANT / BT = CONSTANT -0
A8—0 :
sin 'S 6
v
SSFLIGHT

__ s  PATH sin”'s
sin (8 +AS) \/ Y \
v FLIGHT

re
/ 1" PATH

(@) MOTION FOR Cmé(S) (b) MOTION FOR Cmq(w :8,0)

Fig. 6. Definitive motions for calculation of stability coefficients.
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In fact, the theoretical problems for Cmq and for the static pitching-
moment coefficient due to angle of attack differ little in principle;

the computational methods that have been devised for the numerical
solution of the latter problem should be largely transferable to the
solution of the former. Solutions for Cmé’ on the other hand, must be
derived from a time-dependent equation. Except for those cases where

one of the three space coordinates can be omitted or where a similarity
condition holds (e.g., two—dimensional flow, conical flow), the necessity
of treating an essentially four-dimensional problem apparently places it
beyond the capacities of even present-day automatic computing machines.
At any rate, the authors are unaware of any attempts to treat the problem
for Cmé with an allowance for the nonlinear dependence on ¢§. 1In view
of this, some of the physical features of the indicial response and of
the integral form for Cmé will be brought out that might assist in
making at least order-of-magnitude estimates of Cmé .

The two-dimensional wing is chosen for demonstration purposes since
the important features of sound-wave propagation are most easily illus-
trated in this case. A subsonic flight speed is specified because here
many of the results from the linear theory do not require modification
in principle and thus can be adapted to guide the drawing of a physical
picture of the indicial response. By means of these adaptations, the
results may have more general bearing. Consider the boundary conditions
corresponding to the motion illustrated in Fig. 6(a), where the flight
speed V is subsonic. Let the wing move away from a coordinate system
that is fixed in space at the position of the mass-center at time <1, =0

1

where the step change in the boundary conditions occurs (cf. Fig. 7).
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Fig. 7. Boundary conditions for indicial loading.

The distance traveled by the mass-center along the flight path is
measured by a coordinate Sq- Since the mass~center moves at constant
speed, the trace of its path plotted against time T, is a straight
line. This is shown in Fig. 7, where the maximum projections of the
leading and trailing edges are also shown, parallel to the trace of the
mass—center. For T, < 0, the angle-of-attack parameter ¢§ 1is constant
at &8(t). A step change in & occurs at T, = 0, so that for T, 2 0,
the angle-of-attack parameter is §&(t) + AS. Due to the impulsive
change in ¢, the loading on the wing at T, = 0 also undergoes a
sudden change. The physical situation at this instant corresponds
essentially to that described by piston theory (cf., for example,

Ref. 13), which should give a reasonably accurate estimate of the initial
change in loading. Reflecting the lZocal character of the instantaneous

response, the initial change in loading is essentially constant across

the chord, so that the corresponding center of pressure is located very
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near the mid-chord. Also at 1, = 0, the sudden change in flow conditions
causes disturbances to be propagated from every point on the chord line.
Of particular importance are those from the leading and trailing edges.
Each disturbance is propagated at the local speed of sound, so that, on
a plot such as shown in Fig. 7, the zone of its influence is bounded by
projections of an approximately conic surface whose origin is the point
of the disturbance. As shown on Fig. 7, traces of the waves from the
edges divide the wing into a number of distinct regions. Points in
region (1) have not yet been made aware of the changed conditions at the
leading and trailing edges by the arrival of the sound waves, and hence
the loading in this region remains essentially unchanged from that
existent at T, = 0 (cf. Fig. 8). This loading gradually disappears as
the propagation of the two sound waves announces the new conditions to
increasing portions of the wing, and it disappears completely at

T, = tb. Points in region (2) have been made aware of new conditions

4’ ACp

CENTER OF PRESSURE
LOCATION

Fig. 8. 1Indicial loading on two-dimensional wing at subsonic speed.
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at the leading edge but are as yet unaware of changed conditions at the
trailing edge. The reverse is true for points in region (3). Points

in region (4) have become aware of changes at both the leading and
trailing edges, whereas points in region (5) in addition have become
aware of the reflection from the trailing edge of the initial wave from
the leading edge. Not long after the first reflection, the loading on
the wing has essentially assumed the form of its ultimate steady-state
loading (Fig. 8) and only its amplitude increases thereafter with
increasing 7t;, asymptotically approaching the steady-state amplitude.
Therefore, as shown in Fig. 8, the center of pressure has essentially
reached its steady-state position while the loading is still increasing
in amplitude. The above behavior suggests breaking the indicial
pitching-moment function into two separate contributions as shown in
Fig. 9. The first variation represents the pitching-moment contribution
of the integrated loading in region (1). Accordingly, it begins with
the value Cm6<0;6(t),0) and vanishes at T, < tb' The second variation
reflects the lumped contributions of the integrated loadings in the

remaining regions; in conformity with the loading, its initial wvalue

Cen. (113 8(1),0)

8 A
Crm . (0:8(H,0)

® Crm, (03 8(h, 0) fi(7); (1)

Cms(w;S(T),o)
Cm8 (0; 8(1), 0) f5 (1;;3(1)
L T,
0] th tq

Fig. 9. Breakdown of indicial response.
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is zero while its end value, essentially attained at T, = ta’ is

Cma(“56(t)’0>' The sum of the two contributions is the indicial

pitching-moment function Cm6<T1;6(t),0>. The end values of the two
contributions are evidenced explicitly by introducing the normalized
functions f1 and f2 as shown in the figure. This enables writing

the indicial response in the form

Cmg (7138 (£,0) = s (036 (£, 0)¢, (7, 36(e))

+ Ong (=38 (£),0)£, (7,36 (©) (31)

where f1 and f2 vary within the limits zero and unity. Then the

deficiency function F3 is

F3<T1;6(t),0> = Cm6<°°;6(t),0)[l - f2<r1;6(t)>]

- G (058¢0),0)¢, (7158(0)) (32)

so that the integral for Cmg takes the form

t
L ogy(s(0) = cma(o;a(c),o>[0 ’ £, (3800 )dr,

t
_ Cm6<°°;6(t),0)f : [1 - f2<T1;6(t)>]dTl
0

(33)

Equation (33) clearly shows the strong dependence of Cmé on the
steady-state parameter CmS(W;G(t),O>. Further, the sign relation

evidenced in Eq. (33) should be noted. Since the integral involving f2
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normally will be positive, the equation indicates that as Cma(w;é(t),O)
becomes more negative (i.e., statically more stable), Cmé becomes more
positive (i.e., dynamically more unstable).

Since f1 and f2 are normalized functions, cases are anticipated
where their dependence on ¢ will not be significant. For example, the
process of arriving at the form Eq. (33) suggests that it might be
reasonably accurate to use the linear theory as a basis for estimating
f1 and f2 in which case they would not show a dependence on §. In
such cases, the integrals in Eq. (33) become constants. When it can be
further assumed that Cm6<0;6(t),0> is also independent of 6, the

expression for Cmé takes the simple form

Cag (5(0)) = & + BCmG(oo;S(t),0> (34)

Despite differences in detail in the formation of the individual
indicial responses, the representations of Cmé given in Eqs. (33)
and (34) should find applications to other more general categories of

wings and bodies.

5.4 Experimental Evaluation of Stability Coefficients

Experimental evaluation of Cmq requires a true simulation of the
pitching motion illustrated in Fig. 6(b); attempts to simulate this
motion have proven so difficult as to be impracticable. On the other
hand, an experimental determination of the indicial pitching-moment
response, and thus Cmé’ from the motion illustrated in Fig. 6(a)
requires instrumentation having such rapid response characteristics as
to be impracticable. The interpretation of CZé given previously might

provide a basis for an experimental determination of that coefficient
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by means of appropriate energy measurements. However, difficulties
remain in simulating the required motion, and in any case the interpre-
tation does not suggest a basis for an analogous measurement of the
more important coefficient Cpjg .

Rather than undertake these very difficult separate experiments,
it can be argued that only one need be undertaken involving a combination
of the terms Cmq and Cmé’ since they usually appear together in the
equations of motion., While this need not be true in general, it is
certainly the case when the aircraft is assumed to follow an essentially
rectilinear flight path, i.e., when q = 5. This is easily seen from

Eq. (26), which can be rewritten in the form
Ca(®) = Co(#362),0) + 5(6) = [emg (=36(62,0) + voms ((0))]
+ [a(®) = $(8) ] Gy (=36(6),0) (35)

The last term vanishes identically when the flight path is precisely
rectilinear, and so may be neglected when departures from a rectilinear
flight path are small. Hence, only a single measurement is required of
the term Cmq + ché: which is recognized as the damping-in-pitch
coefficient. Clearly, a measurement of the coefficient that is in
conformity with the way the term was derived requires a rectilinear
flight path (q = &) and a motion involving small pitching oscillations
in ¢ about a fixed o0 equal to the instantaneous value of ¢ wunder

consideration.

35



6. NONPLANAR MOTIONS

The treatment of nonplanar motions raises the question of the role
played by coupling in a nonlinear formulation. By coupling is meant the
following: in the analysis of, for example, a combined pitching and yaw-
ing motion, the linearity assumption (i.e., indicial responses independent
of the past motion) allows the vector decomposition of the nonplanar motion
into two orthogonal planar motions, the treatment of each planar motion as
though the other were absent, and finally superposition of the separate
results. In the nonlinear regime, where the indicial responses depend on
all the variables of the past motion, the aerodynamic response to motion in
one plane clearly will be influenced by the presence of the other motion.
That influence is what is meant by coupling; the role assigned to it by the
nonlinear formulation is studied in the sections to follow.

For simplicity, flight-path properties, including flight velocity,
are again assumed to remain constant throughout the motion, so that a
general motion involves five independent variables, These are taken
to be the components of the aircraft's flight velocity and angular
velocity resolved either in the aerodynamic axis system (6, ¥, i, q, )
or in the body axis system (&, é, pB, dp» rB). Having established the
general integral form for the aerodynamic response to a motion involving
two variables (Eq. 15), extending it to five variables is formal and
requires no additional explanation. The general integral forms are
assumed to have been derived and simplified in accordance with the same
simplification invoked in the analysis of the planar motions; namely,
that the indicial responses within the integrals, initially functionals,

have been replaced by functions dependent only on the magnitude of the
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past motion just prior to the origin of the steps. The analysis begins,
then, with simplified integral forms analogous to the form applicable to

planar motion, Eq. (18).

6.1 Approximate Formulation in the Aerodynamic Axis System
As noted above, the aerodynamic force and moment components
resolved in the aerodynamic axis system are assumed to depend on the

five variables 6, Y, A, q, r. For example, the pitching-moment

coefficient Cm(t) is specified as a functional of the form

c_(£) = G[§(E),¥(E),A(E),q(E),x(£)] (36)

The simplified integral form analogous to that of Eq. (18) thus contains
five integrals, one for each variable. The indicial functions within
the integrals depend on t - T and the magnitudes of the five variables
just prior to the origin of the steps. Just as in the planar case, the
integrals can be further simplified by reducing them to forms correct

to the first order in frequency, assuming that § and Y may be large
but that the angular rates i, q, ¥ remain small. If the procedure
illustrated for the planar case (Egqs. 19—27) is followed, an expansion
of the integrals about i =0, q=0, r =0 yields, to first order in
the rates, a sum of stability coefficients. The result is

Ca(®) = C (=38 (2D, w(D)) +AL Cmj (36 (£, ()

+ 3 g (=380),0(0)) +EF Cp(=55(0),0(0)

+ & epp(s(0),0(0) +4E cny(8ce),u0) 37

<l&
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where, as before, the infinity symbol indicates steady flow. For brevity
the zeros belonging to X, q, r have been omitted. Analogous expres-
sions for CZ and Cn and the axial, side and normal-force coefficients

C, are obtained by substituting these coefficients wherever Cm

Cxs Cy» €y

appears in Eq. (37).

6.2 Simplification of the Formulation in the Aerodynamic Axis System

Just as in the planar case (Eq. (35)), an additional simplification

of Eq. (37) can be achieved by invoking the conditions of an almost
rectilinear flight path. The conditions require, as before, q/u&, and,
in addition, r ~ €A . Adding and subtracting the terms (5Z/V)Cmq and

e(iZ/V)Cmr and rewriting Eq. (37) yields

6y (0) = G (=38 (©),0(0)) + ¥ s (8(6),0(0)

e [ fessconnc) + song (560,60

+2 %Ercmi (=36 (&), (8) + 6y, (w;6<t>,w<t))]
+ @@= 9 5 Gy (=38(6),0(0))
+(r - ed) % Cang (w;.ﬁ(t),w(t)> (38)

The last two terms vanish identically when the flight path is precisely
rectilinear, and so may be neglected when departures from a rectilinear
flight path are small., The remaining terms are identified by comparing

them with those obtained when the flight path is precisely rectilinear,

where exactly, q = o, r = 5$, A= Y$, and é is the coning rate of the

longitudinal axis around the flight velocity vector. The result is
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(@]
il

m Cmq + YCpg
(39)

Cmj = YCnj + 8Cm_

Each of the terms in Eq. (38) is associated with a particular motion
from which it may be evaluated. The term Cm(w;S(t),w(t» is the
pitching-moment coefficient that would be measured in a steady planar
motion with 6 and ¢ at the fiied inclinations & = const, y = const.
The term Cm¢ is a damping-in-roll coefficient that would be measured
from small oscillations in ¢ about ¢ = const with & fixed at
§ = const and $ fixed at zero. The term Cm& is, as before, the
damping-in-pitch coefficient for planar pitching oscillations about an
axis normal to the plane of o, measured now, however, with both §
and ¢ at the fixed inclinations § = const, y = const. The term C*
is the rate of change with &Z/V, evaluated at $ = 0, of the pitching-
moment coefficient that would be measured in a steady coning motion,
§ = const, Yy = const, é = const. Thus, coning motion emerges as omne
of the characteristic motions required in constructing the response to
an arbitrary nonplanar motion.

In summary, with terms multiplied by (q - &) and (r - ei) neglected,

the aerodynamic force and moment system takes the form

€ (6) = C(=38(0),0(®)) +4E cps (50, 0(0)
+ﬂ%% Ck&<6(t),¢(t)> +-%%~% Ck$<w;6(t),¢(t)>; k = {?:i:i (40)

Equation (40) suggests that, for nearly rectilinear flight paths, the

forces and moments due to an arbitrary motion may be compounded of the
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contributions from four simple motions: steady resultant angle of
attack, oscillations in roll and pitch at constant resultant angle of
attack, and coning at constant resultant angle of attack, all at a
constant inclination of the body axes from the crossflow velocity

vector. The motions are illustrated schematically in Fig. 10.

é
ROLL OSCILLATIONS CONING

Fig. 10. Characteristic motions in the aerodynamic axis system.

Linear dependence on angular rates.

6.3 Approximate Formulation in the Body Axis System
The aerodynamic force and moment components resolved in the body
axis system are assumed to depend on the five variables &, é, Pgs dp>

Toe For example, the pitching-moment coefficient Cm(t) is said to be

a functional of the form

C_(t) = H[a(E),B(E),py(8),q,(8),T5(E)] (41)

The reductions of the integral form based on Eq. (41) parallel those

of the preceding sections. Expanded about Pp = o, 9g = o, rp = 0, the

integral form for am(t) yields, to first order in the rates
40



C_(t) = &m(w;&(t),é(t)) + p—si émpB(w;&(t),é(t))

+_E%E équ<m;&(t),é(t)) + rsl émrB<w;&(t),é(t)>

Cn (30, B(0)) + L ea(3(0,8®) (42)

Qe
<|&

+

where the zeros belonging to Pps> dps Tp have been omitted. Analogous
expressions for éz and én and the axial, side, and normal-force

A A ~

coefficients CX’ CY’ CZ are obtained by substituting these coefficients
wherever ém appears in Eq. (42).

That Eqs. (37) and (42) yield compatible forms may be verified by
transferring ém and én to the aerodynamic axis system by the use of
Eq. (9) and then replacing the variables é,é, Pps dps Ty by variables
in the aerodynamic axis system through the use of Eqs. (4), (6), and (8).
It will be found that each coefficient in Cm(t) and Cn(t) can be
matched with a combination of coefficients in ﬁm(t) and én(t) having

the same multiplying variable. The matches for the coefficients in

Cm(t) yield:

. \

€ (=5a,8)cos ¥ - C_(=;3,B)sin ¢

Cm(w;é,w)

Cns 236:9) = Gy (=38, B)c0s ¥ = G (=33,B)sin ¥ > o
3

s = ¢ wen & 2 A 0. d BYadn?2
Cmq( 36,1 Cqu( ;a,B)cos” Y + Can( ;a,B)sin” y

‘l?an(”;&,é) + amrB(W;&,é)]cos Y sin y

*Eq. (43) continued on following page
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Cp, (*368,¥) = émrB(”;&,é)cos2 V- éan(oo;&,é)sin2 "
+ [?qu(”;&,é) - éan(w;&,é)]cos Y sin ¢
Cmé(és,w) = CAIm(';‘(c'J\L,é)cos2 Y - ané(&,é)sinz "

+ [t @b - ol @B) [eos ¥ sin ¢ (43)

Cmi(asw) = émPB(w;&,é)cos Y - éan(w;&,é)sin V]

+ Gémé(&,é)cosz v+ 56né(&,é)sin2 v
- 6[§mé(&,3) + ané(&,é)]cos Y sin Y

The analogous matches for the coefficients in Cn(t) may be obtained
from Eq. (43) by replacing Cp; with Cny and Cpg with ~Cpg - The
matches for the damping-in-pitch coefficient Cm& and the side-moment
coefficients Cné and (Cn$ - YCn¢> are of particular interest.

Equations (39) and (43) yield

Cmé (S,9) Cmq + ché

A o ox 2 J - vC.~\gin2
<cqu + YCma)cos v+ (can YCnB>51n ¥

- [Kéan + Yéné) + (émrB - Yémé>]cos Y sin (44)
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Cn&)(m;ﬁ,w) = YCnj + 8Cn
= Y(Can cos Y + émPB sin q?

+ 8|cC 2y +¢C in2
[an cos< ¢ qu sin® ¢
+ (6an + ﬁmrB)cos Y sin é] (45)

Cn$ - chi = 6{(Cqu + YCmé>sin2 P

+ <6an - Yané)cosz v

~ A e

+ [<6an + YCné> + (6mrB - ché)] cos ¥ sin w} (46)

Combining Eqs. (44) and (46) yields the following interesting equality:

Cny = YCpj + 8Cng = 5[((“:qu + yémé) + (éan - yénéﬂ (47)

The term (équ + Yﬁmé> is recognized as being the planar damping-in-pitch
coefficient measured along Y for small oscillations in a about

& = const with B held fixed at 8 = const. Similarly, <6an - yéné>
is the damping-in-yaw coefficient measured along zg for small
oscillations in B about @B = const, with a held fixed at 6 = const.
Thus, a measurement of (Cné - nd¢> would be equivalent to a measure of

a combination of the three damping coefficients. The identity is shown

schematically in Fig. 11. Equation (47) generalizes to the nonlinear

case and to arbitrary bodies the relationship between (Cn° - YCn¢>

¢
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A ~ ~ ~
(Cmagyena) = (En,Eng) = Cms

Fig. 11. Schematic representation of the equality between

<Cn$ - YCn¢>/6 and the three damping coefficients.

and the damping coefficients that was pointed out and verified for
bodies of revolution in the linear case in Ref. 5. It is noted that
(Cn$ - YCn&) equals 6(6qu + yémé) when & = 0 and equals

5<6nr - yané> when é = 0, Under conditions where a linear formulation
of the moment system can be assumed to hold (e.g., when o > 0, B »~0)
it is consistent to assume that the couplings between motions in a

and B will be negligibly small. Under these conditions, the measure-
ment of (Cné - YCn¢> at o =0 and again at B =0 is all that is

required to yield measures of the damping coefficients characteristic

of the two uncoupled modes.

6.4 Simplification of the Formulation in the Body Axis System
When the assumption of a nearly rectilinear flight path is justi-

fied, Eq. (42) can be simplified to yield a form analogous to that of
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Eq. (38) in the aerodynamic axis system. The approximate expressions

for 95 and Tps consistent with q = &, r = ei, are

o~ 2 8
B= Y TPy
. (48)
~ B, 8
rB~ Y + PB -
Substituting in Eq. (42) gives
~ ~ A A l pBZ ~ A A AA A A
Cm(t) = Cm(m;a’s) +',; _V— YCmpB(w;G'QB) + BCqu(oo;a’B)
b ol (30,8 | + 2 2R (w35,8)
Trg Y V| ™
+ yCp~ (a,B) _18t Co (238,8) = Y3 (3,B) (49)
ma ’ Y rB s Y B 3

Again, each of the terms in Eq. (49) is associated with a particular
motion from which it can be evaluated. The first term is the pitching-
moment coefficient along I that would be measured in steady planar
motion with a and g at the fixed inclinations a = const, B = const.
The combination of terms multiplied by pBZ/VY can be shown (from

Eq. (45)) to be the rate of change with ¢1/V, evaluated at é = 0, of
the pitching-moment coefficient along Vg that would be measured in a
steady coning motion a = const, R = const, $ = const. The third term
has already been defined as the damping-in-pitch coefficient measured
along Vg for small oscillations in & about o = const with f held
fixed at B = const. The term (@mrB - Yﬁmé> is a cross~coupling term

resulting from the oscillatory motion in the £ plane required for the
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evaluation of the damping-in-yaw coefficient. This term and the
analogous term in én(t), (éan + Yané) are the nonlinear interaction
terms that are normally excluded in the classical treatment and are
missed by attempts to generalize from linear formulations based on the
principle of superposition.

In summary, for nearly rectilinear flight paths, the aerodynamic

force and moment system in body axes take the form

A -
e APRE L 1 E e .
Ck(t) = Ck( °°,C!,,B) +',?T Cké(“’,a,ﬁ) + Y Vv [Ck_qB( ,O.,B) + YCk&(OL,B)]
182 [~ o~ oa Aeon oA _ (X,Y,Z
YV [CkrB( 5a,B) - YCké(a,B)] ; ko= {Z,m,n (50)

In the body axis system, the four characteristic motions are steady
angle of attack and sideslip, coning at constant angle of attack and
sideslip, and the oscillations in pitch and in yaw at constant angles
of attack and sideslip. The oscillations-in-roll motion that was
required in the aerodynamic axis system is, in effect, incorporated in
the oscillations in pitch and yaw motions in the body axis system. An
oscillation in & with £ held fixed, for example, will be seen to
involve an oscillation in Y. The four motions are illustrated

schematically in Fig. 12.

STEADY ANGLE OF ATTACK
AND SIDESLIP

Fig. 12. Characteristic motions in the body axis system.
Linear dependence on angular rates.
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6.5 Body of Revolution

Symmetry considerations in the body axis system can be used to
further specify the form of the aerodynamic coefficients. The arguments
will be carried out for the body of revolution, since they can be carried
farthest in this case and will indicate the form of the interaction
terms.

Consider an arbitrary motion in a and B with Py = 0. The most
general form that can be written for the pitching moment that is of

third order in the angles and first order in the rates is

Cm(t) =a, + ala + aya?-+ a3&3 + aqé + azB2 + asé3 + ajaf + a8&2§ + agoB2

+—\-l(- (bg + b1a + ba2 + b3p + byB2 + bgaB)

<I'E‘> . <I&>-

(cp + c1& + 02&2 + Cgé + Cqéz + Csaé) (51)

+
<

The requirement that ﬁm be an odd function of & and an even function

~

of B reduces Eq. (51) to

1al

" _ - 2 4 2082y 4
Cm(t) a(a; + azo agB<) YV

(bg + bya2 + b,B2) +%—i,LZ (csaB)
(52)
The requirement that én be equal to -6m when & and R are inter-

changed gives for an(t)

/A

o> »

~C_(£) = B(ay + a3h? + aqgd?) +

< |
<|

(by + bB82 + bya?) +%°“,—Z (c508)

(53)
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Finally, the requirement that the total moment in the crossflow plane

be normal to the direction of & when the motion is planar b = 0)

gives
a3 = ag
(54)
bq = bz = Cg
so that
~ 1 &Z g 1 éz . AA
C (t) = a(a + a362) +77 (bo + b252 - C582) +77 (C50LB)
- - 1 81 o 1 al P
_Cn(t) = B(al + 3362) +—_; 'V— (bo + b262 - cSaz) +—Y-—V— (CsGB) (55)

Matching coefficients in Eq. (50) yields

& (=34,B) = a(a; + a3z8?)

équ + Yamé = (bg + by62 - c5B?) (56a)
émrB - yémé = —cgaB

én(w;&,é> = -B(a; + a36?)
éan - Yéné = (bp + b82 - c5a2) (56b)

Ch, *+ ndé = —csaé

For the body of revolution, the interaction terms are equal and their

form to second order is a product of a and B. Equation (56) can be
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used to find the analogous terms in the aerodynamic axis system.

Equations (43) — (47) yield

Cm(“;st) §(a; + 3352)

(bo + b252) > (57a)

Cag (859)

Cmé - ch¢ =0

/
Cn(“;ﬁ,w) =0
Cng (8,¥) = 0 > (57b)
Cné - chi = G(bo + b262 - 0562)

As required, the coefficients in the aerodynamic axis system are
functions only of §. Note that Cmé equals (6qu + yémé> only

when B = 0 and equals (6an - Yané> only when o = 0. That this must
be true may be verified by inspection of Fig. 11. The relationship
between Cm& and (Cné - YCn¢>/6 is of particular interest. Equa-
tion (57) indicates that to first order in 6 (i.e., small & where a
linearized theory can be expected to hold), the two terms must be equal;
but this requirement does not hold for larger values of & where terms
of 0(62) must be retained. The consequences of the breakdown of the
equality have been discussed several times (cf., for example, Refs. 6
and 14). Briefly, breakdown of the equality is proof that the linear

stability derivative formulation cannot be extrapolated into the

nonlinear regime simply by allowing the coefficients that appear as
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identical constants in the linear formulation to become identical
functions of &8. A formulation incorporating this erroneous assumption
can be shown to yield misleading results when used in a program for
extracting nonlinear aerodynamic coefficients from free-flight data [6].
The significant aspects of the relationship between - and
(Cné - ndi)/S have been confirmed by the results of two recent
experiments. The first involved spinning and coning motions of a slender
cone at a supersonic speed [5]. The results, obtained with an apparatus
that allows investigation of separate or combined spinning and coning
motions, are important in two respects: first, experiments with a
purely spinning cone at constant ¢ (i.e., the classical Magnus experi-
ment § = const, & = const, é = 0, which, for bodies of revolution, can
be used to replace the oscillations-in-roll experiment required to
measure Cn¢ for nonaxisymmetric bodies) failed to reveal a measurable
Magnus moment coefficient Cni; and second, the results confirmed that,

with C negligibly small, the equality that should exist for small

nj
§ 1is an equality between the side-moment coefficient due to coning

Cn$/6 and Cps . The main results are shown in Fig. 13. Measured
values of Cné are seen to be in excellent agreement at small ¢§ with
the straight-line variation acmé obtained from a linear potential
theory [15]. The breakdown of the equality at larger § has been
confirmed by the results of a second experiment carried out by

Iyengar [16]. This was a careful oscillations—in-pitch experiment for

Cm& over a large range of § with both model and wind-tunnel conditions

the same as those used in the coning experiment. The results, also

shown in Fig. 13, clearly confirm that the equality does not hold at
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Fig. 13. Variation of GCmé and Cné with &3

Mach number = 2.0, ch/Z = 0.61.

large 6. Equation (57) shows that the source of the inequality between
Cg and <Cn$ - YCn¢)/6 lies in the term c¢s5, the coefficient of the
cross—coupling terms (émrB - Yémé> and (6an + yéné>. The experimental
results indicate that |ecs5| > |by|, where b, is the coefficient of the
nonlinear contribution to Cm& . That is, the cross—coupling terms are
at least of the same order of magnitude as the nonlinear part of the
principal damping coefficient, and so must be retained for consistency
whenever nonlinearities are admitted into the principal terms of the
aerodynamic formulation. Why the cross-coupling terms must exist when
a and é become sufficiently large is indicated below.

Consider a body of revolution in uniform sinking and sideslipping

~

motion & = const, B = const, with Pg» dp» Ty = 0. The motion is
illustrated in Fig. 14. The resultant normal-force coefficient

aR(m;&,é) initially is alined with the resultant angle-of-attack vector.

At time zero, the body is given a step change in a with é held fixed.
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TIME O -

/\
TIME t ¢y, ¥ ‘
a+ ad
2., ¢
B Cz
Cr(w; @ + 23, B
5
TIME — Yg - ‘
Q+ AQ

Fig. 1l4. Maneuver showing origin of cross~coupling term ﬁYé .

This is the experiment that would yield the indicial normal-force
response aza(t;a,é) to which the term ézé is related by an integral.
As shown in Fig. 14, subsequent to the change in o the resultant
normal-force coefficient éR(t;& + A&,é), in addition to growing, must
rotate in order that it be alined with the resultant angle of attack
again after a steady state has been established. Clearly, a step change
in & will induce a time-dependent side force in the interval during
which the resultant normal force rotates to its new position. The
induced time-dependent side force is related by an integral to the
cross—coupling term 6Yé that appears in the expression for éY(t).

Such a term must exist whenever a maneuver in a occurs in the presence

of a nonzero 8.
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6.6 Aircraft Spin Motions

The emergence of coning motion as a characteristic motion in both
the aerodynamic and body axis systems emphasizes its importance in the
nonlinear formulation. With Py = 0, coning motion is equivalently the
simultaneous periodic variation of two orthogonal planar motions; in
thus enabling two planar motions to interact, coning motion can be said
to characterize the coupling problem.

Further evidence of its important is the obvious similarity between
coning motion and the steady spin of an aircraft, suggesting that a
moment formulation based on either Eq. (40) or Eq. (50) will properly
describe the aerodynamic responses of spinning aircraft. This view is
encouraged by the success achieved in two attempts to reproduce aircraft
or model spin motions by calculations based on aerodynamic formulations
bearing a similarity to those proposed here. In the first [17], the
actual spins of an F-100 aircraft were reproduced by calculations based
on an aerodynamic formulation that called principally for wind-tunnel
measurements of the conventional static forces and moments. In the
second [18], the spins of a delta-wing model in a spin tunnel were
reproduced by calculations based on an aerodynamic formulation that
called principally for wind-tunnel measurements of the forces and moments
on a model in coning motion. The formulations based on Eqs. (40) and
(50) in effect include these motions within the four characteristic
motions whose force and moment contributions are required to build up
the response to an arbitrary motion. It is known, however, that in the
establishment of a spin the large asymmetric regions of separated flow

on the wings of the aircraft may cause the aerodynamic responses to be
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nonlinear functions of the spin rate, even at low spin rates. This
contradicts the assumption underlying the development of Eqs. (40) and
(50) that the aerodynamic responses be linear functions of the rates.
The authors have shown recently [9] how the formulations can be general-
ized to allow a nonlinear dependence on the coning rate, which should
make them more fully applicable to the analysis of spin motions. The
restriction imposed previously on the degree of cognizance of the past
motion allowed the indicial response remains in force, however, so that
aerodynamic hysteresis effects still cannot be acknowledged within the

scope of the otherwise extended formulations. The main results are

indicated below.

6.6.1 Aerodynamic Axis System: The generalized formulation paral-
leling that of Eq. (40) (again assuming a nearly rectilinear flight path)

+ivé ck;p<6(t),w(t),%(t)>; k= z,m’le (58)

That Eq. (58) reverts to Eq. (40) when the linearity condition on coning
rate is reimposed can be seen by expanding the terms in Eq. (58) to first
order about i/y = 0, The first term in Eq. (58) is the coefficient that
would be measured in a steady coning motion § = const, y = const,

é = i/y = const. As before, the term Ck& is the damping-in-pitch

coefficient that would be measured from small oscillations in ¢ about

o = const with  fixed at ¢ = const but now, in addition, in the
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presence of a steady coning motion é = A/y = conmst. Similarly, thb is
the damping-in-roll coefficient that would be measured from small oscil-
lations in ¢ about y = const with 6 fixed at & = const and in the
presence of a steady coning motion $ = X/Y = const. The indicated
functional dependence on §, v, i/y must be interpreted as follows:

for flight with given values of §, vy, i, q, r at a particular instant,
the aerodynamic coefficients that are to be associated with that instant
are those evaluated around a coning motion having constant values of §
and Yy equal to the instantaneous flight values and a constant value

of coning rate equal to the instantaneous value of i/y.

Thus, the four contributions required in Eq. (40) to build up the
response to an arbitrary motion reduce to three when a nonlinear
dependence on coning rate is admitted. This is because the first term
in Eq. (58) Ck(w;G,w,i/Y) is the general term which, it now appears,
replaces two terms in Eq. (40) representing the expansion of
Ck(w;é,w,i/y) around A/y = O to first order in A/Y. The more important
change, however, at least from the experimental standpoint, is that
retaining a nonlinear dependence on coning rate requires for consistency
that the oscillatory experiments be carried out in the presence of coning

motion. The three motions are illustrated schematically in Fig. 15.

b Sl S |
PITCH OSCILLATIONS ROLL OSCILLATIONS.
AND CONING AND CONING

CONING

Fig. 15. Characteristic motions in the aerodynamic axis system.
Nonlinear dependence on coning rate.
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6.6.2 Body Axis System: The generalized formulation paralleling

that of Eq. (50) takes the form

N A - 1 azl- a o o o~ oA
C (t) =C, ”;G,B,PB/Y) +77[quB(°°;a,B,pB/Y) + YCk&(d,B,PB/Y)]

~

1 82l . A _ _ §x,Y,2

Equation (59) reverts to Eq. (50) upon expanding the terms in Eq. (59)
to first order about pB/Y = 0., The first term in Eq. (59) is the
coefficient that would be measured in a steady coning motion

$ = pB/y = const with o and é at the fixed inclinations & = const,

const. The second term is the damping-in~pitch coefficient that

0>
i

would be measured from small oscillations in & about & = const with

B fixed at B = const and in the presence of a steady coning motion

-

= pB/Y = const. The third term results from small oscillations in

about £ = const with o fixed at & = const and in the presence

0>

of a steady coning motion é = pB/Y. It should be noted that the coning
rate é = pB/Y on which the terms depend in Eq. (59) is not equal in
magnitude to the coning rate ¢ = i/y in Eq. (58). The rates differ

by ¢/Y- Thus, in the body axis system, the appropriate constant value
of the coning rate for the aerodynamic coefficients that are to be
associated with an instantaneous flight condition is that formed from

the instantaneous value of pB/Y. The three motions required in the

body axis system are illustrated schematically in Fig. 16.
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PITCH OSCILLATIONS AND CONING  YAW OSCILLATIONS ANDICH

Fig. 16. Characteristic motions in the body axis system.

Nonlinear dependence on coning rate.

6.6.3 Spin Radius: Equations (58) and (59) were derived on the
assumption of a nearly rectilinear flight path, which would apparently
restrict their application to spin motions having essentially zero spin
radius. It can be shown, however, that the results will apply as well
to spin motions having constant spin radius. Motions having a constant
spin radius can be characterized by the existence of a point other than
the mass—center about which the body rotates. This point, which lies on

the body x axis, is itself in essentially rectilinear motion. The

B

existence of such a point usually will guarantee fulfillment of the
conditions under which Egqs. (58) and (59) apply, namely, q - g =0,
r - el ™ 0. The principal restriction is that |ax/V|, |rx/V| << 1,
where x 1is the distance along Xp between the mass-center and the

point in nearly rectilinear motion. Variations in spin radius x sin o

also can be tolerated under the additional restriction [x/V| << 1.
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6.7 Requirements for Experiments

Within the assumption of a linear dependence of the moment on coning

rate, the analysis suggests that the moment contributions resulting from

four characteristic motions are required to completely specify the

nonlinear moment system for arbitrary motions about nearly rectilinear

flight paths (Figs. 10 and 12). For wind-tunnel tests in the aerodynamic

axis system, two kinds of apparatus would appear to be necessary:

&Y)

(2)

A coning and spinning apparatus similar to the one described
in Ref. 5. (For nonaxisymmetric bodies, the spin motor that
reproduced the constant spin rate & would have to be replaced
by a device reproducing small oscillations in Y about

¥ = const.) Such an apparatus should be capable of measuring
the moment contributions due to steady resultant angle of
attack, coning at constant resultant angle of attack, and
oscillations in roll at constant resultant angle of attack.
An oscillations-in-pitch apparatus for measuring the moments
due to small oscillations in o about a fixed o with the
axis of rotation oriented normal to the ¢ plane. It is
emphasized that for nonaxisymmetric bodies, the oscillations-
in-pitch apparatus must be capable of measuring not only the

pitching moment but also the induced side and rolling moments.

Wind-tunnel tests in the body axis system require the same coning

experiment as in the aerodynamic axis system and, in addition, separate

oscillations-in-pitch and oscillations~in-yaw experiments. The

oscillations-in-pitch device must be capable of simultaneously measuring

all three moment components due to small oscillations in o about a
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fixed o with B held fixed. The same device can be used in the
oscillations—-in-yaw experiment, in which the roles of & and B are
reversed. Hence, experiments carried out in the body axis system,
requiring only a single oscillatory device, would appear to have an
advantage over those in the aerodynamic axis system from the standpoint
of economics. It is essential, however, that the oscillatory experiments
in the body axis system enable the measurement of the nonlinear inter-
action terms even for bodies of revolution. Recently, the successful
development of a device capable of measuring these interaction terms has
been reported [19].

In programs designed to extract the nonlinear aerodynamic
coefficients from free—-flight data, of course it is recommended that a
form for the aerodynamic moment system based on Eq. (40) or Eq. (50) be
incorporated. It has already been noted [6] that procedures not allowing
for the presence of interaction terms in the representation of the moment
system can assign erroneous weights to the remaining terms.

Eliminating the assumption of a linear dependence of the moment on
coning rate reduces the number of characteristic motions required from
four to three: 1in either axis system, a coning motion and two
oscillatory motions in the presence of coning (Figs. 15 and 16). Experi-
ments designed to reproduce the motions in the wind tunnel again require
the coning apparatus and the types of oscillatory devices just described.
The significant additional requirement that each of the oscillatory
experiments be carried out in the presence of coning means, of course,
that now the oscillatory devices must be incorporated in the coning

apparatus. These obviously difficult experiments, involving oscillatory
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and coning motions in combination, are required only where the moment
contribution due to steady coning shows a significant nonlinear depend-
ence on coning rate., Otherwise, the experiments may be conducted
separately as described above. Useful surveys of the needs and
capabilities for carrying out experiments in the wind tunnel involving
oscillatory, rotary, and combined motions at high angles of attack are

available in Refs. 20 and 21.

7. CONCLUDING REMARKS

A study aimed at extending the notions of aerodynamic indicial
functions and superposition integrals into the nonlinear regime has shown
that replacing the indicial functions within the integrals by functionals,
themselves dependent on the past motion, achieves the desired objective.
A simple specification of the degree to which the reformulated indicial
responses are cognizant of the past motion led to practicable nonlinear
generalizations of the linear superposition and stability derivative
formulations of the aerodynamic response to arbitrary motions. Applied
to arbitrary nonplanar motions, the generalization yielded a form for
the aerodynamic response built up of the contributions from a limited
number of well-defined characteristic motions, in principle reproducible
in the wind tunnel. Further generalizations, enabling the acknowledg-
ment of more general categories of aerodynamic phenomena within the
scope of the formulation, are possible. The characteristic feature of

hysteresis, multivalued aerodynamic responses, could be acknowledged,
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for example, by extending the degree to which the indicial responses are
cognizant of the past motion one step beyond that specified in this

study.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, May 1975
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