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SUMMARY

Subsonic and transonic forced oscillation tests of a 0.0165-scale model of a modified
089B shuttle orbiter have been made in the Langley 8-foot transonic pressure tunnel for
several configurations over a Mach number range from 0.3 to 1.2,

The pitch, roll, and yaw damping were measured as well as normal force due to pitch
rate and the cross derivatives yawing moment due to roll rate and rolling moment due to
yaw rate. Static tests were also conducted for the same configurations and test conditions
and these data are presented herein for comparison with the in-phase dynamic test results.
The measured dynamic data and three-degrees-of-freedom longitudinal and lateral motion
equations were utilized to compute the period and damping of the basic unaugmented vehicle
along the entry trajectory.

The results of this investigation showed that the model exhibited positive damping in
pitch except at an angle of attack of about 10° for Mach numbers of 0.98 and 1.2. The
model had positive yaw damping throughout the test angle of attack and Mach range and had
positive roll damping except for angles of attack in excess of 20° for Mach numbers of
0.98 and 1.2. There was generally good agreement between the appropriate parameters in
the in-phase portion of the dynamic data and in the corresponding static data. The results
from the longitudinal stability calculations showed the pitch damping had some large effects
on the aperiodic divergent rate. The major result from the lateral stability analysis was
that the unstable spiral mode divergence was very dependent on the value of the yaw
damping and on the rolling moment due to yaw rate.

INTRODUCTION

As part of the space shuttle development effort, a program has been initiated at the
NASA Langley Research Center to measure experimentally the dynamic deviatives of the
shuttle orbiter under conditions which correspond to the entry to landing phases of flight
and then use the measured derivatives to predict the vehicle dynamics for the orbiter with
an unaugmented flight control system. Since adequate theoretical prediction techniques do
not exist to estimate the damping at high angles of attack and since experimentally



measured data for these combinations of angle of attack and Mach number are not avail-
able, these results are unique. These tests are part of an overall program that will pro-
vide a consistent set of damping data for the shuttle orbiter from hypersonic to subsonic
Mach numbers.

As part of this study, subsonic and transonic forced oscillation tests of a 0.0165-
scale model of a modified 089B shuttle orbiter have been conducted in the Langley 8-foot
transonic pressure tunnel. These tests were conducted for several configurations over a
Mach number range from 0.3 to 1.2 measuring the pitch, roll, and yaw damping as well as
the normal force due to pitch rate and the cross derivatives yawing moment due to roll
rate and rolling moment due to yaw rate. Static tests were also run for the same configu-
rations and test conditions and these data are presented herein for comparison with the
in-phase portion of the dynamic test results. The measured dynamic data and three-
degrees-of-freedom longitudinal and lateral motion equations were utilized to compute
the period and damping of the basic unaugmented vehicle along the entry trajectory. The
effects of variations of the damping and cross derivatives on the computed vehicle dynam-
ics were also determined.

The results for the corresponding study of the shuttle orbiter for Mach numbers
of 1.6 to 4.63 are contained in reference 1 and the hypersonic results are shown in
reference 2,

SYMBOLS

All data presented are referred to the body axes system except for the static longi-
tudinal data which are referred to the stability axes system. (See fig. 1.) The origin of
the axes was located to correspond to the center-of-gravity positions shown in figure 2.
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MODEL AND APPARATUS

A drawing of the 0.0165-scale model used in the investigation is presented in fig-
ure 2. The model, a modified 089B shuttle orbiter, had a double-delta planform wing with
81° sweep on the fillet and 45° sweep on the main wing. The model had a vertical tail with
a rudder that could be deflected for yaw control and flared from the basic 10° to 85° to
provide a speed brake. (See fig. 3.) Wing trailing-edge control surfaces were utilized to
provide both pitch and roll control and a body flap was utilized to produce longitudinal trim.
Orbital maneuvering engines (OMS pods) were located as shown in figure 2 and were
removed for part of the tests.

The subsonic and transonic static and dynamic tests were conducted in the Langley
8-foot transonic pressure tunnel. A photograph of the model mounted in the tunnel for
forced oscillation tests is presented in figure 4. A description of the technique and appa-
ratus for the forced oscillation tests is presented in reference 1.

TESTS

The forced oscillation tests were conducted to determine the damping in pitch
(Cmq + Cmo'z)’ yaw (Cnr - CnB cos a>, and roll (Clp + CZB sin a) and the change in nor-

mal force due to pitch rate (CNq + CN&) and the cross derivatives yaw due to rolling

velocity (Cnp + Cné sin a) and the roll due to yawing velocity <Clr - Clé cos a). The
dynamic longitudinal stability derivatives were measured for a pitch amplitude of 1° for
frequencies corresponding to values of the reduced frequency parameter k of 0.0050

to 0.0325, The dynamic lateral stability derivatives measured during the yaw oscillation
tests were for a yaw amplitude of 1° for frequencies corresponding to values of the
reduced-frequency parameter k of 0.0096 to 0.0605. The dynamic derivatives measured
during the roll oscillation tests were measured for an amplitude of Z%Ofor frequencies cor-
responding to values of k of 0.0287 to 0.1112. Pitching oscillation tests were conducted
with two representative center-of-gravity positions and results are presented for both
positions.

The static tests were conducted to determine the static longitudinal and lateral sta-
bility characteristics of the model to aid in interpretation of the dynamic tests results.
Both the static and dynamic force tests were conducted over an angle-of-attack range from
-2° to 22°, The static lateral stability characteristics were determined from the incre-
mental differences in C,, C;,and Cy measured over the angle-of-attack range at fixed
angles of sideslip of 0° and 2°. The test conditions were as follows:



Mach ¢ P R
number N/m?2
0.30 5 980 3.2 x 108
.80 29 780 6.7
.90 33 950 7.1
.98 18 430 3.7
1.20 21 120 3.7

The static force data presented have been corrected for sting bending and all drag data
presented are total drag in that the base drag has not been subtracted out.

For all Mach numbers the model was tested with transition fixed by application of
No. 120 grit 2.54 centimeters aft on the nose and 1.27 centimeters streamwise on the wing
and vertical tail. The grit size and location were chosen on the basis of the work in
reference 3.

CALCULATIONS

Linearized three-degrees-of-freedom equations of motion as presented in reference 4
were used to calculate the period and damping of the phugoid, short-period and other oscil-
lations, the damping of the longitudinal aperiodic modes, the period and damping of the
Dutch roll oscillation, and the damping of the lateral aperiodic modes for the basic unaug-
mented vehicle. All the stability calculations and motion studies were made with the use
of the measured stability derivatives combined with the static longitudinal and lateral data
and mass properties presented in tables I, II, and III for flight conditions (Mach number,
angle of attack, and altitude) that were representative of the nominal vehicle flight trajec-
tory. (See fig. 5.) The static data and the mass properties were obtained from the shuttle
data base for the current vehicle design at the time the analyses were made.

PRESENTATION OF RESULTS

An outline of the contents of the figures presented in this paper follows:
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Effect of body flap deflection and rudder flare on static longitudinal
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Effect of rudder flare and body flap deflection on the static lateral
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Figure
Effect of rudder flare and body flap deflection on yawing moment due to roll

rate parameter and yawing moment due to roll displacement parameter. . . . . 30
Effect of configuration components on yawing moment due to roll rate

parameter and yawing moment due to roll displacement parameter . . . . . .. 31
Effect of center-of-gravity position on the computed vehicle damping and on
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RESULTS AND DISCUSSION OF TESTS

Static Longitudinal Stability

The static longitudinal stability data for the model are presented in figures 6 to 8.
These data, which were obtained by utilizing the forced oscillation model for the same
test conditions as the dynamic tests, are presented to verify and to aid in the interpretation
of the dynamic tests results. Presented in figure 6 are the results of static tests to deter-
mine the effect of removing the body flap on the longitudinal stability. As expected,
removing the flap resulted in an increased pitching moment at zero lift because of the
effective change in camber and a slight destabilizing effect at angles of attack above 10°.
The effect of the vortex lift of this planform is evident in the increase in the slope of the
lift curve at Mach numbers of 0.3, 0.8, and 0.9 in figure 6. The data of figures 7 and 8
show the effect of a large rudder flare tested in combination with a body flap deflection
and the effect of orbital maneuvering system (OMS) installations, respectively.

Static Lateral Stability

The static lateral stability data for the model are presented in figures 9 to 12 and
show the effect of the vertical tail, a combination of body flap deflection and rudder flare,
OMS installation, and body flap, respectively. These data show the expected increments in
directional stability and dihedral effect for the removal of the vertical tail. The other
configuration changes show no significant effects on the static lateral characteristics.
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Pitching Oscillation Tests

The oscillatory longitudinal stability parameters measured in the pitching oscillation
tests at Mach numbers of 0.3, 0.8, 0.9, 0.98, and 1.2 are presented in figures 13 to 20. The
in-phase with displacement parameter Cma - k"Cy,. and the out-of-phase with displace-

q

ment parameter Cmq + Cmd are presented in figures 13 to 16. In order to determine

the damping for varied flight conditions, tests were conducted with the most forward (0.652)
and most aft (0.671) center-of-gravity locations. (See fig. 13.) A comparison of the in-
phase derivative with the slopes determined from the results of the static tests is also pre-
sented in the figure. For all the Mach numbers except 0.98, there is very good agreement
between the dynamic data and the static results. At a Mach number of 0.98 there are some
differences between the static and dynamic results at angles of attack above 16°,

In general, the model exhibited positive pitch damping (negative values of
Cmq + Chp ) throughout the angle-of-attack range. For the near transonic Mach numbers
a

(M = 0.8 to 0.98) as separation begins to occur on the wing at angles of attack in excess

of 169, there is a marked increase in the pitch damping. (See figs. 13(b) to 13(d).) This
increase in damping is possibly the result of this region of separated flow lagging the body
motion and therefore tending to damp out the body motion.

Shown in figures 13(d) (M = 0.98) and 13(e) (M = 1.2) are regions of very low damping
and negative damping starting at an angle of attack of about 10°. These regions of negative
damping also occur as nonlinearities in both the static Cma’ in-phase parameter

(Cma - kZCmd) and changes in Cy, - kchfl and CNq + CN& (fig. 17(c)). These non-

linearities in Cma - kzcmél and in Cmq + Cm& are probably associated with separation

caused by the mixed flow regions and standing shocks on the wing at the Mach numbers
near 1,

The data of figure 14 present the effect on the pitch damping of removing the body
flap. The data show that removal of the flap had essentially no effect on the pitch damping.

The effects of increased rudder flare (850) combined with a body flap deflection are
presented in figure 15. The increased rudder flare and body flap deflection resulted in a
decrease in damping at the higher angles of attack; for the higher Mach numbers (0.98
and 1.2) there were regions of negative damping. This decreased damping is primarily
due to alterations of the shock pattern on the aft portion of the wing and body caused by
the bluntness of 85° flare.

The effects of the OMS pods installation are shown in figure 16. Removing the OMS
pods had essentially no effect on the damping except at a Mach number of 0.98 (fig. 16(d))
where it resulted in a decrease in the pitch damping.
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Presented in figures 17 to 20 are the changes in normal force due to pitching velocity
o . . 2
C Cw . and the in-phase with displace t parameter {C -k .). The normal
(Crg * ) g prcemen P (O - )

force due to pitching velocity also had the regions of nonlinearities that were analogous to
those noted in the discussion of the pitch damping. Presented also in figure 17 is the com-

parison of the in-phase parameter CNa’ - kZCN. with that determined from the static
q
test results. There is good agreement between the static and in~phase dynamic results.

Yawing Oscillation Tests

The oscillatory stability parameters measured in the yawing oscillation tests
are presented in figures 21 to 26. The in-phase with displacement parameter
<Cn3 Ccos a + szng.) and out-of-phase with displacement parameter (Cnr - C“B cos a) are

presented in figures 21 to 23. The model had positive damping in yaw (negative values of
Cnr - Cné coSs a) throughout the test angle of attack and Mach number range. Presented in

figure 21 is the effect of removing the vertical tail on the yaw damping (Cnr - Cné cos oz)
along with data showing a comparison of the in-phase parameter (Cnﬁ cos a + kzcni) and
CnB cos a computed from the static tests. There appears to be reasonably good agree-

ment between the static and dynamic results. Removing the vertical tail resulted in the
expected destabilizing increment in the in-phase parameter and a reduction in yaw damping
at a Mach number of 0.3. At the higher Mach numbers (M = 0.8), there appears to be a
tail contribution to yaw damping but it is not as well defined as at the lowest Mach number.
The data presented in figure 22 show the effect of increasing the rudder flare to 85° as a
speed brake and deflecting the body flap 13°. These results show that the increased speed
brake deflections at all but the lowest test Mach number (M = 0.3) resulted in an increase
in yaw damping and a decrease in directional stability. Data presented in figure 23 show
that removing the OMS pods also resulted in an increase in damping at the higher Mach
numbers.

The rolling moment due to yawing velocity (Clr - Clé cos a) is presented in fig-

ures 24 to 26. Also presented in figure 24 is a comparison of the in-phase parameter
(CZB cos ¢ + kzclr'.) with CZB cos @ computed from the static data. The comparisons

show the static data to have the same trends with « and the same level as the in-phase
parameter. The measured value of Clr - Clé cos «a is slightly positive at zero angle of

attack with an increase with increased a. Configuration changes have little effect on this
parameter.
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Rolling Oscillation Tests

The oscillatory stability parameters measured in the rolling oscillation tests
are presented in figures 27 to 31. The in-phase with displacement parameter
(Cl 5 sin a - szlf,) and out-of-phase with displacement parameter (Clp + C lé sin a) are

presented in figures 27 to 29. Data showing the effect of vertical tail on the roll damping
are presented in figure 27 along with a comparison of ClB sin « ~ kzclﬁ with CZB sin &

computed from the static tests. There is good agreement between the static and dynamic
test results up to angles of attack of about 8° to 10°. The model exhibited positive roll
damping (negative values of C I + CZB- sin a) at all but the highest angles of attack at Mach

numbers of 0.98 and 1.2 (see figs. 27(d) and 27(e)) where the damping begins to decrease to
the point where at angles of attack above 20° , the model had negative damping. Results of
tests to determine the effect of rudder flare and OMS pods (figs. 28 and 29) on the roll
damping show only small effects on the damping level.

The yawing moment due to rolling velocity (Cnp + Cp s sin a) data measured in the

B

roll tests are presented in figures 30 and 31. These results show that the parameter is
nonlinear with angle of attack and has both positive and negative values. At the near tran-
sonic Mach numbers (M = 0.8 and 0.9) at high angles of attack, there was considerable
scatter in the data that was apparently caused by a sting vibration and therefore the data
for these conditions are not presented. The comparisons of the in-phase parameter

Cnﬁ sin a - kzcnf) with CnB sin @ computed from the static data show some discrepan-

cies at the higher angles of attack. The configuration changes appeared to have some
effect on the level of the cross derivative.

MOTION STUDY ANALYSIS

In order to assess better the impact of the results measured in the forced oscillation
tests, three-degrees-of-freedom longitudinal and lateral motion equations have been used
to calculate the vehicle longitudinal and lateral period and damping. These analyses were
made by using the measured dynamic derivatives with the o and [3 terms assumed to be
zero, static data presented in table II, and vehicle mass properties as given in table III
taken from the shuttle data base. The calculations were made by utilizing the basic air-
frame in that no stability augmentation was input. Variations in the stability derivatives
were made to determine the effects of the individual derivatives on. the calculated period
and damping. Although the vehicle was designed to fly in the active control mode, analysis
of the unaugmented vehicle characteristics would indicate the existence of significant
anomalies that would have to be taken into consideration in the vehicle flight control sys-
tem design.
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Longitudinal Analysis

Because of the requirements for a large center-of-gravity travel for the shuttle
orbiter (0.651 to 0.67l), the effect of center-of-gravity position on the vehicle longitudinal
oscillatory and aperiodic modes was computed and these results are presented in figure 32.
For these analyses the damping was assumed to vary linearily between the center-of-
gravity positions tested. The calculations have been made for Mach numbers of 0.3, 0.6,
0.8, 0.9, 0.95, and 1.0 and for the conditions listed in table I. At the subsonic Mach num-
ber of 0.3 (fig. 32(a)) for the forward center of gravity (0.65.) where the vehicle is neutrally
stable, the results show the characteristic short period and phugoid oscillations; however,
as the center of gravity is moved aft and the vehicle becomes statically unstable, the short
period and phugoid oscillations break down and the roots of the stability quartic combine to
form a third oscillation and two aperiodic modes. The third oscillation has been discussed
in reference 4. Experience from the supersonic transport work of reference 5 has shown
that the third oscillation was of such long period that it creates no control problems. The
unstable aperiodic mode is the main concern from these results. This mode is directly
associated with the vehicle static stability and at the aft center of gravity (0.6752) the
reciprocal of the time to damp to half amplitude is approximately -0.65 which corresponds
to a time to double amplitude of 1.5 seconds. The feasibility of flying at this level of insta-
bility would depend directly upon the ability to determine the vehicle attitude accurately
enough to prevent the motion from building to a level of pitch acceleration where recovery
was not possible. At the higher Mach numbers (0.6, 0.8, 0.9, 0.95, and 1.0), there is no
phugoid for the range of center-of-gravity positions shown in figure 32. However, there is
a short period oscillation and an aperiodic divergence which goes to double amplitude at
0.6 Mach number for the center of gravity at 0.6751 in 1.3 seconds and to double amplitude
at Mach 1.0 in 8 seconds. The results show the higher Mach numbers to be less critical
for the aft center of gravity as a result of the increased static margin due to the rearward
shift of the aerodynamic center at transonic speeds.

In order to determine the importance of the pitch damping derivative Crnq on the

vehicle dynamics, calculations have been made to determine the effects of varying this
parameter plus or minus an order of magnitude (10 times the measured value) and these
results are presented in figure 33. For the lowest Mach number (M = 0.3), varying the
value of Cmq, as expected, did greatly affect the character of the short period which

breaks down into two stable aperiodic modes for values of Cmq near the measured value.
However, the large effect was on the unstable aperiodic mode (see fig. 33(a)) which was
very sensitive to small changes in Cmq as Cmq became positive. Examination of the

longitudinal normal mode ratios as in reference 4 indicated that the aperiodic divergence
would occur predominately in angle of attack. For the higher Mach numbers (M = 0.8,
0.9, 0.95, and 1.0) because of the level of static stability, changes in Cmq had little effect
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on the aperiodic modes but, as is evident, the short period oscillation remained intact and
quite dependent upon the magnitude of Cmq- The major results from these calculations

are that as the vehicle becomes unstable, the pitch damping parameter Cmq not only

affects the short period oscillation but also has some large effects on the aperiodic mode
divergent rate.

Lateral Analysis

The effect of center-of-gravity position on the lateral oscillatory and aperiodic
modes is presented in figure 34 for Mach numbers of 0.3, 0.6, 0.8, 0.9, 0.95, and 1.0.
These results show the characteristic Dutch roll oscillation and roll and spiral aperiodic
modes. Varying the center of gravity did not appreciably change the characteristic
motions or their values. The effect of the parameters Cnr’ C“p’ Clp’ and Clr on the

calculated vehicle lateral oscillatory and aperiodic modes is presented in figures 35 to 38.

Yaw derivatives.- Presented in figure 35 is the effect of yaw damping Cnr on the

lateral period and damping. As pointed out in the previous discussion for the measured
values of Cp r? the analysis shows the characteristic Dutch roll oscillation and the ape-

riodic roll and spiral modes. For the Mach numbers of 0.3 and 0.6 the spiral mode was
unstable for the measured values of the derivatives. Decreasing the yaw damping (less
negative values of Cnr) tended to decrease the stability of the Dutch roll oscillation, the

spiral mode, and the roll aperiodic mode, as Cnr became positive, the spiral mode
became more unstable and increasingly sensitive to variations in Cnr. The roll aperi-

odic mode and the Dutch roll oscillation tended to become less stable as Mach number
increased, but remained stable for all values of Cp, investigated.

The results of the analysis to determine the effect of the yawing moment due to roll
rate on the calculated period and damping are presented in figure 36. Both the Dutch roll
oscillation and the aperiodic roll mode are affected by Cnp, increased positive values of

Cnp making the Dutch roll oscillation more stable and at the same time reducing the sta-

bility level of the aperiodic roll mode to zero at the highest Cnp value studied.

Roll derivatives.- The effect of roll damping Clp on the calculated vehicle period

and damping is presented in figure 37. As expected, the aperiodic roll mode was extremely
sensitive to variations of Clp to the extent that 1/ ty /2 as presented is multiplied by

10'1. The sensitivity of the roll mode to Clp is greatly reduced by an increase in Mach

number as can be seen by a comparison of the data at a Mach number of 0.3 (fig 37(a)) to
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the data at a Mach number of 1.0 (fig. 37(c)). The Dutch roll oscillation is stable for neg-
ative values of C; p’ but there are some unstable regions as Clp becomes positive.

The effect of the rolling moment due to yawing velocity on calculated vehicle damping
is presented in figure 38. These results show that Clr affected the Dutch roll and both

the roll and spiral aperiodic modes. The main point is that measured values of Clr

resulted in an unstable spiral mode at the lower Mach numbers which became more unsta-
ble for small increases in Clr'

SUMMARY OF RESULTS

An investigation has been conducted to determine the subsonic and transonic dynamic
stability characteristics of a 0.0165-scale 1aodel of a modified 089B shuttle orbiter. The
results of this investigation may be summarized as follows:

1. The model exhibited positive damping in pitch except at an angle of attack of
about 10° for Mach numbers of 0.98 and 1.20. The model had positive yaW damping
throughout the test angle of attack and Mach number range and had positive roll damping
except for angles of attack in excess of 20° for Mach numbers of 0.98 and 1.20.

2. There was generally good agreement between the appropriate parameters in the
in-phase dynamic data and in the corresponding static data.

3. The results from the longitudinal stability calculations showed that small changes
in the pitch damping caused a breakdown of the short period oscillation at a Mach number
of 0.3; the significant result was that the aperiodic divergence was very sensitive to small
changes in the pitch damping for positive values of the pitch damping.

4, The lateral stability calculations showed that the yaw damping affected the Dutch
roll oscillation, decreased yaw damping tending to decrease the stability of the Dutch roll
oscillation; the major effect was on the unstable spiral mode where the divergent rate was

very dependent upon the value of the yaw damping and on the rolling moment due to yaw
rate.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

July 15, 1975
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TABLE 1.- FLIGHT CONDITIONS FOR ANALYSIS

[Nominal trajectory shown in fig. 5]

Mach
number

0.3
.6
.8
.9
.95

1.0

a 2
deg

12.0

12.0
13.0
13.5
13.5
11.5

Altitude,
m

914
7 240
11 030
12 500
13 260
17 230

Velocity, S )
m/sec N/mz

129.0 10 170
186.8 10 017
236.1 10 117
258.2 10 175
273.1 10 055
289.1 5 975




TABLE II.- ORBITER STATIC AERODYNAMICS USED IN ANALYSIS

l:Derived from shuttle data base]

deg M= 0.2 M= 0.6 M= 0.9 M= 1.2
Untrimmed lift coefficient
0 0.065 -0.104 -0.120 0.056
5 .155 .142 .152 .234
7.5 270 .265 .280 .372
10 .392 .399 412 .500
12.5 .510 .530 .545 .630
15 .644 .669 .674 759
20 .878 .934 .900 .986
25 1.104 1.129 918 1.123
Untrimmed drag coefficient
0 0.065 0.067 0.087 0.169
5 .065 .068 .100 .184
7.5 .074 .078 .128 .210
10 .090 .095 .161 .242
12,5 112 125 .213 .295
15 151 .118 .26 .357
20 .288 .349 .428 .510
25 479 537 .536 .668

Untrimmed pitching moment coefficient (forward center of gravity)

0
5

7.5
10
12.5
15
20
25

0.051
.051
.051
.051
.050
.049
.026
.015

0.056
.055
.054
.054
.054
.050
.026
.034

0.089
.060
.043
.024
.003

-.007

0

0

0.062

.003
-.019
-.033
-.041
-.052
-.077
-.058
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TABLE II.- Continued

deg M= 0.2 M = 0.6 M= 0.9 M= 1.2
Cm5e (forward center of gravity)
0 -0.008 -0.009 -0.009 -0.006
5 -.008 -.009 -.009 -.006
7.5 -.008 -.009 -.009 -.006
10 -.008 -.009 -.009 -.006
12.5 -.008 -.009 -.009 -.006
15 -.008 -.009 -.009 -.006
20 -.007 -.009 -.009 -.006
25 -.007 -.007 -.009 -.006
CLGe
0 0.0185 0.020 0.017 0.0075
5 .0180 021 017 .0075
7.5 .0175 021 017 .0075
10 .0175 .021 017 .0075
12.5 .0175 .018 017 .0075
15 .0175 .018 .017 .0075
20 .0160 .016 015 .0075
25 .0135 .014 .010 .0075
CDée

0 0.0016 0.0012 0.0006 -0.0004
5 .0022 .0028 .0020 .0004
7.5 .0031 .0041 .0028 .0012
10 .0040 .0054 .0036 .0020
12.5 .0046 .0059 .0048 .0022
15 .0052 .0064 .0060 .0024
20 .0070 .0078 .0066 .0040
25 .0080 .0091 .0071 .0050




TABLE II.- Concluded

&’g M= 0.2 M = 0.6 M = 0.9 M= 1.2
CnB per degree
0 0.00155 0.00190 0.00310 0.00285
5 .00180 .00180 .00275 .00250
1.5 .00190 .00180 .00235 .00180
10 .00195 .00180 .00190 .00125
12.5 .00195 .00180 .00120 .00040
15 .00190 .00175 .00040 -.00225
20 .00175 .00140 -.00100 -.00280
25 .00160 .00080 -.00100 -.00325
CZB per degree
0 0.00041 0.00073 0.00002 -0.00069
5 -.00049 -.00067 -.00068 -.00083
7.5 -.00099 -.00097 -.00089 -.00096
10 -.00119 -.00147 -.00101 -.00109
12.5 -.00150 -.00167 -.00163 -.00111
15 -.00160 -.00166 -.00187 -.00118
20 -.00171 -.00151 -.00204 -.00128
25 -.00166 -.00143 -.00222 -.00180
CYB per degre
0 -0.0190 -0.0195 -0.0230 -0.0225
5 -.0190 -.0195 -.0230 -.0210
7.5 -.0190 -.0195 -.0225 -.0200
10 -.0190 -.0195 -.0220 -.0190
12.5 -.0185 -.0195 -.0210 -.0180
15 -.0185 -.0200 -.0195 -.0175
20 -.0180 -.0220 -.0170 -.0155
25 -.0200 -.0210 -.0140 -.0310
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TABLE III.- ORBITER MASS PROPERTIES

[Derived from shuttle data base]

Mass, KE . . v v i e e e e e e e e e e e e e e e e e e 84 096

Iy, RE-M2 . . . . e e e 7 710 400
I, KE-2 . o o e e e e e e e e e 1 014 100
Iy, RE-2 e e 7 870 400
Z, ......

IX7Z, KE-M2 L ot o e e e e e e e 199 300




X

Xs

Wind direction =0 =0°

Wing +:
d d/rectl'on
X5, X B\

Azimuth reference
a=@ =0°

2,27

Figure 1.- System of axes used in investigation. Arrows indicate positive
direction of moments, forces, and angles.
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N \\ Rudder fiare = 85°
AN

Figure 3.- Rudder flare angle definition.
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(a)

Figure 6.- Effect of body flap on static longitudinal characteristics. Forward

M= 0.3.

center of gravity; 0 = 0°; rudder flare, 10°.
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Figure 6.- Continued.
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(C) M = 0.9,

Figure 6.- Continued.
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Figure 6.- Continued.

24

31



L4E i
L2E /[gm .6
3 y
L0 E ﬁ/ .5
’85 ;}/é .4
L .6F /E; 3 Cp

3 @°
A B 4.2
oo P g%’
2 E /z/j 1
0 E ) 0
E_g Body flap
= O On (6 =0
-2 B a off
.15
Cm Of L
;_ ~NO o
_‘1: O\%\ .
= O~0—0
-_2 Llllllll IIHIHII lllllllll JlLllllH lHLlllll lllll!Hl llllllll
-4 0 4 8 12 16 20 2%

Angle of attack, a, deg
(e) M= 1,2,
Figure 6.- Concluded.

32




Laf T
LZi &é) .6
%/;; .5
.85 ,/;/ / .4
C = / 3 C
o E/;/ D
.4; ’:_;/D K .2
= O—p—0—
2 E ] 1
= 04 o—0]
o A :
- Rudder flare 6 g
- o 10° 0°
2 F 0 sse 13°
2E
AE
c = D——EE—D—G——D—A}_D\D
" J“WQ\C%O\O\M I
= : O—0
-1 = Il[IIH lIlllIlll lllllllullll}llll Ill|hlll lHLLJlll lllllllll
-4 0 4 8 12 16 20 2
Angle of attack, o, deg
(a) M= 0.3.
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Figure 11.- Effect of OMS installation on the static lateral characteristics of the model.
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Figure 20.- Effect of OMS installation on normal force due to pitch rate parameter and
normal force due to pitch displacement parameter. Forward center of gravity;
rudder flare, 10°; body flap off.
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Figure 25.- Effect of rudder flare and body flap deflection on rolling moment due to yaw
rate parameter and effective dihedral parameter. Forward center of gravity.

123



lllll

R

Clr-Clécosa o 2
per radian - \Q/B
-2
-4
-6
Rudder flare 9 g
O 10° 0°
o &° 13°
-8
.2

Czﬁcos o+ kZClF
per radian

[

S8 8 oeg g

IIIIITTT IIITITTII llIIIITTI lllllllll TTTT]TTTI TII]]IIII IIIIIIIII lllllllll lllllllll

cnbdvesdnodidiod oo b bl b
4 8 12 16 20 24

uy
—
-
L
[
-
—
[

!
P
o

Angle of attack, a deg
(b) M= 0.8.
Figure 25.- Continued.

124




TTTT ITTTT
*?

Clr‘ClB cos a
per radian

-2

-4

-6
Rudder flare &g
O 10° 0°
[] 8s° 13°

-8

.2

Cchos a+ k2 le
per radian

e

|Hll llllll” ITIII?HIIHH l”ll”ﬂ T1TTTHH U”IIIH ””ITHI ”ﬂl]lll

-2 D

-4

-6 ;lllllll] IllIlHIl ll]llllll ]Illlllll llJlllllJ lJlllHll lllllllll
-4 0 4 8 12 16 20 24

Angle of attack, o, deg
(c) M= 0.9,

Figure 25.- Continued.

125



2 E g
= W
Cy,~Crgcos a W
per radian - 4
2 E
-4 :
-6 = Rudder flare  § gp
— O 10° 0°
- ] &° 13°
..8 :
2
C ZC' E
chosa+k i -
per radian -
—:'OO\ﬁ 8:830\:, B;E;ﬂ
- D
_.2 -
=
6 ool ook oo booded e Lo b

|
=9
o

4 8 12 16 20 24
Angle of attack, a, deg
(d) M= 0.98.
Figure 25.- Continued.

126




IEI 'ITT

Cchos o+ K Cy
per radian 0

Clr'Clé cos a
per radian =
-2 :
-4 :
© E Rudder fl
= udder flare  § pr
= O 10° 0°
- O 8-° 13°
..8 -
02 :

S 2as;

llllllll ””'”H 1AL

ul
-
-
[~
—
l—
—
-

-6 NETYITYTL INETE NRAT) AT IATY INSTUOOOY cedpdnndigg
4 8 12 16 20 24

!
F=
o

Angle of attack, a, deg
(e) M=1.2,

Figure 25.- Concluded.

127



Cl,-'le; cos a
per radian

Ill‘ll‘llfl

-2
-4
6 OMS
O On
] off
-8
.2

Cchos a+ kZClF
per radian

TIIIIII |I1IIIT11 Illllllll llll|l1ll 1IIIITIII T1II|III| IIIIlllll l|l||l|1l IliIll

-2 %)

_.4

6 T ool b [EESL TN oot
-4 0 4 8 12 16 20 24

Angle of attack, a, deg
(a) M= 0.3.

Figure 26.- Effect of OMS installation on rolling moment due to yaw rate parameter
and effective dihedral parameter. Forward center of gravity; rudder flare, 10°;

NG
GBF—O.

128




lllllll[

[ ]
s

Clr‘Clé cos a
per radian

OoMS

O On
O off

Cchos a+ kzclf
per radian 0

i
7

8~ 083

IIIITIII IIII|ITII IIIIIIIII lllll]lll ITTIIIIII ITT1|III| IIIIITII] IIIIITTII Ill1]l]ll

RSN IllllllJJ Illllllll JJJJIIIII IJlllllll lllllllll IlJllljll

0 4 8 12 16 20 24

]
I

Angle of attack, o deg
(b) M= 0.8.
Figure 26.- Continued,

129



Clr-Czé cos a
per radian

Clﬁcos a+ k2 le
per radian

130

OoMS

O On
O off

Hlll”l] Illl]lﬂ H”l”ﬂ ”Tll]lﬂ l”llﬂll HIIII]II Hlllllll

D

b

o e

O

= O
Enduotoodn aoloodidi oo
4 0 4 8 12 16 20
Angle of attack, a, deg
() M= 0.9,

Figure 26.- Continued.

24




Clr'Clé cos a
per radian

Cchos a+ kzcl;

per radian

0

OMS

O on
O off

T IIII|]1II TlI]IIIl] lllll‘]ll llll[TTT1 ll]]llll] T111]]1]l 111111111 |I||lll||

%

e

IIYIIIII lll1[llll 1

ool oo o bbb b i ool
4 0 4 8 12 16 20
Angle of attack, a, deg
(d M= 0.98.

Figure 26.- Continued.

24

131



Clr‘Clé cos o
per radian

Cchos a+ kzclf
per radian

132

oms

O on
O off

HTTT

lJJllliJl

lllJlJll

Illll llll]lllf Illjé%TTl TTIIII]II TTTIITII1 llllITTTT I]IIIITII lTTTITIT] lll1|T1TI lllll]l]l

lJJ]lllll

llll]llll

Illllllll

lllJlJJll

vl

o
o
o

8 12

Angle of attack, a, deg

(e) M= 1.2.

Figure 26.- Concluded.

16

20

24



L2

Clp + Clésin a
per radian 0

- 4
- 8

Vertical tail

o} on
.08

o Off

_____ on (CZB sin o) static tests

.04 |

. 2
Cy, si - .
lﬁ na-k Clp
per radian O

| HHIIIII IHI'IIII HH]IHI HHIHH IIIIII[H IIIIIIIH IIHIHH HIl]Hll

|

FﬁJ
"

lllllIH

. L P
_08:1U|$|m tmhm]uuhmlmn!m| oo o
B 0 4 8 12 16 20 24

Angle of attack, a, deg
(a) M= 0.3.

Figure 27.- Effect of vertical tail on the damping in roll parameter and on the rolling
moment due to roll displacement parameter. Forward center of gravity: rudder

o. - 00
flare, 10%; Opf = 0.

133



L2

ﬂ]rﬂll

Clp + Cllg sina
per radian 0

- 4
.3 Vertical tail B
. On
Off
8T+ - Oon (CLB sin o static tests
.04 —

fHH IIIIIHH HII’HII llll’llll illlillll IIIIWHI HIIIIII]

CLB sina- kzclb

per radian 0

Pﬂ! Hll‘llll TTT
}
1\7-'
/l[]
/ M

> Cx\c\ =i
-.04 ‘D\G\ _
\\ \D
— \
‘08 :TIIIIJUIlHLhJHLllllllllll]llu_llHH|HII HHJHJJIIH{IIII
R 0 4 8 12 16 20 24

Angle of attack, o, deg
(b) M= 0.8,

Figure 27.- Continued.

134




L2

IIHH HHP—W—H

1]’lll|

Clp + Clésin a
per radian 0

- BB 00 g gt e P
_ 4 - a
=
. g = Vertical tail
E On
- o Off
- . .
JN1): S = I R —— On (Cl‘3 sin o statictests
.04

. 2
Ci, s - .
lB ina-k Clp 0
per radian

HWI HI{IT]%HIPIH Ilr’lll
1
!
4

-, 04 N @)
\\
‘.08 Hllllll Hlllllll lllllllllHlllllllHIIIJLLLJLLIJHII Illllllli
- 0 4 8 12 16 20 24

Angle of attack, a, deg
(¢) M=0.9.

Figure 27.- Continued.

135



L2 =
g ]
:
AL
Clp+Clés|nu =
per radian 0 F Jf
- N é 5 §<ﬁé
-4 B
8 TE Vertical tail
. - 0 On
:% o Off
.08 i """ On (ClB sin a static tests ]
L04 -
ClBSi” a~k2Cl' E_ | L
5 = O —q
per ragian 0 © =0 == '\\U\D\@\E
-.04: ﬁ 3\\©/!\ﬁ P)f
_OgrtlllilllllllllllllH_lllllllIIllllLIlIlIlIIIHIlllllllllllllllll
-4 0 4 8 12 16 20 24

Angle of attack, a, deg
(d) M= 0.98.

Figure 27.- Continued.

136




Clp + ngsm a

per radian

ClB sina-k
per radian

2
Cv
%

L2

0

.08

.04

0

- 04

- 08

-

==

-

=

-

N

- Vertical tail

- c  On

E o Off

— - On (CLB sin o) static tests

- 9 o E ‘QE;Q NN

= \C)»\O\h/ TS0

S r»/o\ - 3\.

- A | -
E_LLJ_[iJLLlU_LlLLU J_LLLJ_LM_LJVHJIHH lll[lllll !Hllllll HHIHH
-4 0 4 8 12 16 2 2

Angle of attack, o, deg
(e) M=1.2.

Figure 27.- Concluded.

137



L2 &
-
8
A E
Clp+Cl[§S|n0 =
per radian 0 F
-
—
= —0—C
"-4 — ja A
—
-8 = Rudder flare 0 BF
T E o 10° 0°
= 0 g5° 13°
.08 =
04 &
=
. 2 =
Ci,sina-kCy. -
B by E
per radian -
- 04 | q ./@
- 08 bbb bbb b wdi

4 0 4 8 12 16 20 24

Angle of attack, a, deg
(a) M= 0.3.

Figure 28.- Effect of rudder flare and body flap deflection on the damping in roll
parameter and on the rolling moment due to roll displacement parameter.

Forward center of gravity.
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Figure 29.- Effect of configuration components on the damping in roll parameter and

on the rolling moment due to roll displacement parameter. Forward center of
gravity; gy = 0°,
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Figure 30.- Effect of rudder flare and body flap deflection on yawing moment due to
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Figure 31.- Effect of configuration components on yawing moment due to roll rate
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