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FREQUENCY STABILITY REQUIREMENTS
FOR TWO WAY RANGE RATE 'TRACKING

Victor Reinhardt
NASA/Goddard Space Flight Center, Greenbelt, Maryland

ABSTRACT

Accuracy limitations to two way range rate doppler tracking
due to master (reference) oscillator frequency instabilities are
discussed. Theory is developed to treat both the effects of
random and non-random oscillator instabilities. The non-
random instabilities treated are drift, environmental effects,
and coherent phase modulation. The effects of random insta-
bilities on range rate accuracy are shown to be describable in
terms of ay (2, T, -r). For the typical noise processes encoun-
tered in precision oscillators, range rate error is related to
the more familiar ay (T) and 2 (f). Three examples are dis-
cussed to show how to determine range rate error from given
o'y ( T) or i (f) curves, and approximations are developed to
simplify the treatment of complex systems. An error analysis
of range determined from range rate data is also given.

INTRODUCTION

Two way range rate doppler tracking (TWDT) is a means of measuring range
rate by observing the doppler shift in a radio signal coherently tra.nsvonded
from a satellite. Recently proposed applications of TWDT to Earth and ocean
physics have range rate accuracy requirements of 0.003 to 0.005 cm/sec.1, 2

These stringent accuracy requirements impose constraints on TWDT systems
which make careful analysis and minimization of system errors imperative.
One source of error in TWDT systems is the instability of the master oscillator
(reference oscillator). OtherF have analyzed the effects of this error source ,3.4.5

but have either not treated the problem in sufficient detail, made some errors
in their analysis, or not treated the problem directly as it applies to TWDT
systems for satellites. This paper will attempt to correct these defects. The
paper will not discuss ins :vidual TWDT systems, but will take a generalized
approach. Existing systems and requirements, however, will be kept in mind to
ensure the utility of the paper's results.
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STATISTICS OF RANGE RATE ERROR

A generalized schematic of a TWDT system is shown in Figure 1. In a TWDT
system, a reference frequency, f o, provided by the master oscillator is trans-
mitted to the satellite and transponded back to the receiver. The doppler
shifted frequency, f U + f D, is then mixed with f U to produce fD . After passing
through a band pass filter, f D is measured in a frequency or period counter. In
actual systems, f D is biased by an arbitrary frequency 4 so that the doppler
signal can be averaged over any time, T. The master oscillator also supplies
the time base for the counter. The accuracy requirements for this are not
stringent, and will not be treated here.

The counter used to measure f D can fit into four possible categories. 4 The
first two categories deal with the way individual measurements are taken. The

Fig. 1— Two way doppler tracking
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counter can measure the total numbor of periods of f D for a fixed elapsed time,
T, or it can measure the total elapsed time for a fixed number of periods. In
this paper, we shall consider T given; the results can be related to the fixed
period case through an estimate of the behavior of fD. The other two cAtexories
deal with the way in which successive measurements are treated. The counter
is considered destructive or non-destructive depending on whether it is cleared
or not cleared after each measurement. In the destructive case, the counter
acts as a conventional period or frequency counter. In the non-destructive
case, the counter acts as a real time clock. The effects of destructive versus
non-destructive data taking will be discussed later.

Nominally, when fo is subtracted from fo + fD, ail that remains is fD. The
tracking signal, however, takes a finite time, T, to jropagate from the trans-
mitter to the receiver. If the frequency of the master oscillator shifts, in time
T, by S fo , the counter will measure f D + S fo as the doppler shift. Since there
is no way to distinguish between fD and S f o in the counter, a fo will introduce a
range rate errer.

No matter how frequencies are coherently changed as signals propagate through
the TWDT system, the doppler shift will be given by6:

	

f D	 2v

	

fo - C	 (1)

where v is the satellite's range rate and where c is the velocity of light. Using
(1), it can be shown that the range rate error frcm :naster oscillator instability
for averaging time, T, is given by:

+r + 	 t T	 1
6v(t,T,T) = 2	

T

T ^f y(t')dt' - J y(t')dt'
J
	(2)

z	 tJt + 

y (t) is the normalized master oscillator frequency change:

fo(t) - fo

	

Y( t ) -	 f 0

and fo is the nominal oscillator frequency. For T < T, this can be rewritten as
(see Figure 2):
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r>T
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t+r	 t+T+r

r < T
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t+r .,	 -it +T	 t + T + r

Fig. 2—Response functions for range rate error

(T < T)

L+T+'j'	 LtT	 1
8v(t, T, T) = 2TT f y( t ') dt'-	 f y ( t ') dt'i	 (3)r 

If the master oscillator instabilities are random, range rate errors can be de-
scribed in terms of the variance of S v (t, T, T):

(T ^ ^) _ < 1' v ( t, T, ^))2^

<A> denotes the average of A over time, t. Using equation 3, for T < T, the
variance becomes:

(T < T)

22
a^ - 2	 T I or ( 2 , T, T)	 (4)
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where a 2 (2, t 1 , t2 ) is the two sample Allah 7ariance of y (t) for averaging time
t2 and dead time t l - t 2 given by7'e:

1 
	 t+ti+ta2

oY(2, tl, t2) = 2
	 (ft + t2

y ( t') dt' -
ft + tl

Y(tdt'
 

For T ? T, the variance is:

(T > T)

2
^^ = 2 ^y ( 2, T , T)

	
(5)

Notice that in the case of (5), the definitions of T and T are reversed from
those of references 7 and 8.

In general, Qy (2, T, r) is not a statistic which is given in oscillator specifica-
tions. In the time domain, generally, Qy (T) =v y (2, T, T) is what is specified.
One can relate these two statistics by 7 a:

QY (2, T, T)	 B2 (r, A) vy ( -r	
(g)

where r = T/ -r, and where µ characterizes the noise process involved.

Another typical way in which an oscillator is specified is by I (f), the power
density in one phase modulation side band divided by the total oscillator power!

(f) can be related to Uy (2, T, T) by8:

ay (2,T, T) =	
4	

^df .'(f)1he(f)I2H(f) 	 (7)
(n f  7) 2 o

where h Q (f - fD) is the frequency response function of the post mixer filter of
Figure 1, and where:

H(f) = sine (_" f T) sin e (.n f T)
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TYPICAL OSCILLATOR INSTABILITIES

Master oscillator frequency instabilities can be divided into two classes,
random and non-random effects. We shall first consider two non-random
effects, frequency drift and coherent phase modulation.

An oscillator's frequency drift is defined by:

Y (t) = Dt

Using this and equations 2 and 3, one can shc,v that for both -r < T and r > T:

c 
8v 

= 2 r	 (8)

If we use b v = 0.001 cm/sec as a target error and T = 0.3 -ee as a typical
worst case delay, we obtain for D a maximum allowable value of:

D = 1.92 X 10-8 / dey

Clearly this is easily met with most good crystal oscillators.

Equation 8 can also be used to determine environmental constraints if the fre-
quency change per unit environmental change is known. If, for example, an
oscillator changes its fractional frequency by 1 x 10-12 per °C, and 8 v <
0.001 cm/sec is required, one can write:

D = 1 X 10- 1 2/ T x K( °C/ sec)

Using equation 8, we oiitain:

K < 0. 22 °C / sec

How coherent phase modulation of the master oscillator effects a TWDT system
depends not only on the modulation amplitude and frequency, but also on the
precise phase relationships between the modulation and the data taking process.
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We can, however, obtain approximate results by ignoring phase, and describing
the modulation by:

i
QM (f) = 2 P 8(f - fu)

where f M is the modulation frequency, and where 1/2 Ps is the tractional power
in one modulation sideband. Using this in (7), we obtain:

2 PM
o,y (2, T, T) =

(n f o T) 2 I h e ( f.) I 2 H(fM)

Since H (f) < 1, we obtain the inequality:

2 PM

he ( f„) I 2^Y (2, T, T) < (,^ fo T) 2 I 

Substituting this in (4) and (5), gives:

(T < T)

Cr	
22 <	

c	
I he (f.) 12 PM

- („ fo T)2

and:

(T —̂' T)

Q	 c22 <	 I he ( fM) 
12 P

V - (n f 0 T) 2	 M

As an example, let o-v = 0.001 cm/sec, T = 0.3 sec, T = 5 sec, aad fo =
5 M Hz. We obtain:

(9)

(10)

he(fM) 12 PM = - 112 db
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i
as the estimated upper limit of filtered phase modulation that can be
tolerated.

Random processes typically encountered in precision oscillators can be de-
scribed as weighted and filtered sums of power spectral densities of y (t) given
by' , 8

hQSY (f) =	 I
f"

i
3

with:

a = 2, 1,0,-1,_2

<j

Sy (f) can be related to 2 (f) by 8

2

(f 1(f)	 2 \ f / SY (f)	 (10)

10 4) 5 and previously derived equations relating ^ 2Using	 T andg( )^ ( a O^	 p	 Y	 q	 g OY
0y (2, T, r) for each noise process, one can relate 2 (f), a (T) and a-^ (T, T).
Chart 1 gives these relationships. The chart assumes that the post-mixer band
pass filter is infinitely sharp with a pass band of f  - f h to f D + fh , that
2 7r f . T » 1 and that 2 Tr f h T >> 1. For completeness, drift is included even
though it is not a random process. To simplify formulae in the chart, the fol-
lowing are used.:

T
r	

T	 _'q

i
fydt phasex 	

27T f o
a

-	 -	 1
9

r 1 for r	 1
^ r1 1 =

0 for r 0

8-
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Notice that for all processes but random walk y and drift, when T < T, av is
proportional to T" 2. By statistically averaging N succe ssively taken counter
readings, one improves the variance of the average by N- 1 or T- 1 . This means
that as long as random walk y or drift processes a -e not involved, smaller
errors are obtained by going to longer averaging Mmes or taking non-destruc-
tive data rather than by statistically averaging d,.ta. Even when taking non-
destructive data, to obtain the smallest a^ for i given T, one should only use
data every T seconds apart, and not least squsres fit the data from smaller
time intervals.

Notice also that for white x noise, o-2 is Proportional to f h. This allows one to
reduce the white noise contribution to av by reducing fh. Flicker x also de-
pends on f h , but in such a slowly varying manner that it can essentially be con-
sidered fixed.

APPLICATION TO TYPICAL REFERENCE OSCILLATORS

In this section, a., (T, T) shall be deriver for three reference oscillators, an
Oscilloquartz crystal oscillator, a Hewlett-Packard cesium standard, and a
NASA hydrogen maser, to demonstrate techniques for using the theory of the
previous sections. The results for the two commercial oscillators used are
based on manufacturers specifications. Their use is for the purpose of example
only, and does not constitute an endorsement of these products or a confirmation
of their specifications.

The first oscillator we will consider is the Oscilloquartz B-5400 crystal os6l-
lator. 10 Its 1'(f) spectrum is given in Figure 3 and its ay (T) curve is given in
Figure 4. Deriving a, for this device is very simple; since ;ts instabilities are
just the sum of simple processes (white y, flicker x, flicker y, drift), a2 is
just the sum of the results taken from Chart 1 for each process. Figure 5
shows o v (T, T) for T = 0.3 s.

The second oscillator to be considered is the Hewlett-Packard 5061A High Per-
formance Cesium Beam Standard. 11 S! (f) for this device is shown in Figure 6.
Notice that, in this case, we don't have just the sum of simple processes.
Equation 7 could be used to generate a2 from k (f), but this tedious method can
be avoided; we can quickly obtain an approximate curve for a,, (T, T) by using
the limiting properties of H (f) in relation to 2 (f).

For our approximation, we shall rely on the fact that 2 (f) can be broken in two
general categories: a short term i s(f) which changes slowly with f, and a long
term 5.' f (f) which blows up as f goes to zero and makes a negligible contribution
for large f. Using this, we can write:

10
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10-1a

10-11-

10'12

10-13
l0•2	 10-1	10°	 101	102	103	104	105

r (SECONDS)

Fig. 4—ay (z) for Oscilloquartz Fs-5400
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Fig. 5-0•" (T, 0,3 s) for Oscilloquartz B-5400	 j

py (2, T, T) ^ oYS + a 2

and use (4) and (5) to obtain approximations for o-^ .

Since H (f) is a periodic function, for a slowly changing 2s (f), we can replace
H (f) 2, (f) in the integral of equation 7 by < H (f) > '-S (f). < H (f) >,denotes the
average of H (f). The short term part of equation 7 becomes:

1
i	 l

1+	 a

1;	 a s (2, T, T) =	
2	 r, 

1	 the (f),1 2	 (£) df'	 (11)

r^

j

r-

12	 i

g
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Fig. 6—S-) (f) for Hewlett-Packard High Performance Cesium Standard

The long term part of aY (2, T, T) is determined by H (f) 2e (f) in a region near
f = 0. For long term noise processes, Qy (2, T, T) is determined by H (f) 2e (f)
in the regions of f given in the following chart (T < T):

noise process	 region of contribution

white y	
-2T  < f < 21T

flicker y	 f ti 1

-z 2 T

random walk y	 f < 2 1T
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For a complex 2e (f), which noise process contributes ay e2 is determined by the
chart and the appropriste values of T and T. For the Hewlett-Packard cesium
standard, Q (f) changes from flicker y to white y noise at f = 0.1 Hz. Thia
means that, for T = 0.3 s, ay ? is determined by the flicker y part of Q(f) for T
up to 5 seconds, and by the white y part of P (f) for T greater than 5 seconds.
Because white y noise is determined by Q (f) for f up to 1/2 T = 1.67 Hz, and the
white y noise is truncated at f = 0.1 Hz, the full value of a2 from Chart 1 can-
not be used to determine the white y contribution for the cesium standard, but
must be multiplied by a reduction factor, p. An approximate method for calcu-
lating p is shown in Figure 7. Figure 8 shows a (T, 0.3 s) for the cesium
standard using the approximation techniques just derived.

Fig. 7— Approximate calculation of p
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Fig. 8— Q, (T, 0.3 s) for Hewlett-Packard High Performance Cesium Standard

The last device we wall consider is NASA's latest generation hydrogen maser.
The ay (T) curve is shown in Figure 9. The device uses an Oscilloquartz B-5400
as a local oscillator which it phase locks to the maser with a 1 Hz loop. Using
this fact and Figure 9, by indirectly using (11), we can calculate the white x
noise contribution to a 2 with a 1 KHz band width as the sum of the oscilloquartz
contribution with a 1 KHz bandwidth and the maser's contribution with a 1 Hz
bandwidth. In this case, the other noise processes make a negligible contribu-
tion. orgy (T, 0.3 sec) is shown in Figure 10. Even though a v is determined by
white x noise, av cannot be appreciably reduced by reducing fh ; a•v is deter-
mined principally by the maser white x noise in the 1 Hz loop bandwidth.

RANGE FROM RANGE RATE

Integrating fD yields the integral of range rate: range. Since the averaging
process involves int-gration, not dividing the information stored in the counter

15
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Fig. 9—a-y (T) for non-autotuned NASA hydrogen maser

register by T turns range rate data into range data. This means that the error
in taking range data produced by the master oscillator is just:

a s(t, T, T) = T 6v(t, T, T)

Similarly, this also means for random processes:

OI s (T, T) = T2 aV (T, -r).

For the three sample oscillators, Figure 11 shows cr g (T, 0.3 s). Nonce again
that taking non-destructive data instead of destructive data will yield -)etter re-
sults in all cases but that of the crystal oscillator for T greater than 400 sec-
onds.
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Fig. 10— o, (T, 0.3 s) for NASA hydrogen maser

10'r

100-
r=0.3s

E
10-1-

Qy

^J^^G

CESIUM

--''^/' 	 H. MASER
10-2 •—•--	 ^. ._. MASER

10"3
10 -2	 10 .1	 100	101	102	103	104	105

T (SECONDS)

Fig. 11— a. (T, 0.3 s) for three master oscillators
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