MONTE CARLO CALCULATIONS OF DIATOMIC MOLECULE GAS FLOWS INCLUDING ROTATIONAL MODE EXCITATION

Kenneth K. Yoshikawa and Yukikazu Itikawa

Ames Research Center
Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1976
The direct simulation Monte Carlo method is used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. In this study, the semi-classical transition probability model of Itikawa is investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen is examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions.

A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium equipartition (i.e., all rotational energy states are assigned the mean energy level that obtains at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (i.e., the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). Since only uniform flow is considered, the effect of elastic collisions is ignored in the Monte Carlo simulation.

In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>constants appearing in equations (23) and (25)</td>
</tr>
<tr>
<td>A(_{\text{int}})</td>
<td>integral appearing in cross section (see eq. (6))</td>
</tr>
<tr>
<td>B</td>
<td>constant associated with intermolecular potential (eq. (23))</td>
</tr>
<tr>
<td>b</td>
<td>impact parameter</td>
</tr>
<tr>
<td>C</td>
<td>constant associated with intermolecular potential (eq. (23))</td>
</tr>
<tr>
<td>C(_{\text{a}})</td>
<td>coefficient of wave function (eq. (13))</td>
</tr>
<tr>
<td>C(_{6})</td>
<td>coefficient associated with (R^6) term (eq. (23))</td>
</tr>
<tr>
<td>c</td>
<td>molecular speed</td>
</tr>
<tr>
<td>c(_{0})</td>
<td>rms molecule speed, (\sqrt{\frac{3kT}{M}})</td>
</tr>
<tr>
<td>D(_{\alpha})</td>
<td>transition amplitude</td>
</tr>
<tr>
<td>d</td>
<td>strength associated with intermolecular potential</td>
</tr>
<tr>
<td>E</td>
<td>kinetic energy or energy</td>
</tr>
<tr>
<td>f</td>
<td>distribution function</td>
</tr>
<tr>
<td>g</td>
<td>relative speed</td>
</tr>
<tr>
<td>(\hbar)</td>
<td>Planck's constant divided by 2(\pi)</td>
</tr>
<tr>
<td>I</td>
<td>quantity given in equation (25)</td>
</tr>
<tr>
<td>(\hat{K})</td>
<td>matrix whose element is defined by equation (20)</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>m</td>
<td>magnetic quantum number; also molecular weight</td>
</tr>
<tr>
<td>N</td>
<td>number of simulated molecules within the cell</td>
</tr>
<tr>
<td>n</td>
<td>number density</td>
</tr>
<tr>
<td>P</td>
<td>transition probability</td>
</tr>
<tr>
<td>(\tilde{P})</td>
<td>modified transition probability</td>
</tr>
<tr>
<td>Q</td>
<td>collision cross section</td>
</tr>
</tbody>
</table>
R intermolecular distance
T temperature
t time
V interaction potential
W eigenenergy of the rotational Hamiltonian
|α> eigenfunction of the rotational Hamiltonian
Δτ increment of collision time
δ index of power associated with point centers of repulsion model
 (eq. (5)) or delta function (eq. (16))
λ quantity defined in equation (25)
μ reduced mass
ν collision frequency
σ effective collision diameter
τ characteristic collision time based on initial translational
temperature, 1/(nμσ^2c_0)
χ deflection angle defined in equation (1) or molecular orientation
 angle (eq. (22))
ψ wave function
ω difference eigenenergy

Subscripts:
C distance of closest approach of pair of molecules
i,j rotational states
max maximum value
0 initial
r rotational
t total
tr translational
α rotational state
The direct simulation Monte Carlo method is used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. In this study, the semiclassical transition probability model of Itikawa is investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen is examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions.

A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium equipartition (i.e., all rotational energy states are assigned the mean energy level that obtains at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (i.e., the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). Since only uniform flow is considered, the effect of elastic collisions is ignored in the Monte Carlo simulation.

In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

INTRODUCTION

Understanding the energy balance, as well as the energy transfer mechanisms, within the internal excited states of a nonequilibrium rarefied flowing gas, is important, in indeed, to a number of problem areas within the broad categories of planetary reentry, combustion, and pollution. In this paper, results are presented on translation-rotation relaxation. Furthermore, these results are obtained by solving Boltzmann's equation by the Monte Carlo direct simulation technique, a method that has received considerable recent attention (refs. 1-11). A feature of this method is that it gives insight into the effects of relaxation on the microscopic level during molecular

*Institute of Space and Aeronautical Science, University of Tokyo, Tokyo, Japan; visiting professor at Stanford University; and guest worker at Ames Research Center from August to October 1974.
collisions; in particular, the instantaneous distributions of internal states can be continuously followed.

The method is described in detail elsewhere (refs. 1 and 6-9). Briefly, the flow is computed by following in detail several thousand model molecules that are allowed to interact with each other. The coordinates of each molecule in phase space (including rotational state) are at all times known. These coordinates change only during a collision and the modeling of these intermolecular encounters is the essence of an accurate simulation. To account for these encounters, a molecule and a near neighbor are each selected at random as are also their impact parameter and deflection angles - all in a manner representative of typical molecules undergoing encounters. They are accepted for an interaction or rejected depending on a selected rule that depends on cross section and, therefore, on intermolecular potential and the relative velocity of the collision pair. Since the initial coordinates (relative velocity, impact parameter, and pair of rotational states) are known, there remains only to find the final rotational state. This is found by computing the distribution (transition probability) of all final states accessible from the known initial states. The final state is then determined by a random selection from this distribution.

The procedure for handling the "translational" interactions parallels other investigations (refs. 1 and 6-9) treating monatomic gases. The procedure described in this paper differs, however, from other investigations of the treatment of internal state interactions. These other investigations fall into four categories: (1) semi-empirical, (2) classical, (3) semi-classical, and (4) quantum mechanical. The semi-empirical models, energy sink (ref. 11), and rough spheres and loaded spheres (ref. 12), while adequate for steady flows at or near equilibrium, lack sufficient physical detail to inspire confidence in their use for highly nonequilibrium flows.

The classical models (refs. 13 and 14), although consistent with the classical direct simulation Monte Carlo procedure used here, necessarily include approximations to make the models sufficiently tractable to a study of the type that is the subject of this report. Those approximations, although yielding appropriate macroscopic behavior for a nonequilibrium gas, do not adequately describe its microscopic behavior. For example, molecular encounters can occur that violate energy and momentum conservation. One, therefore, is at a loss as to how to treat the negative energies and momentum that arise during a simulation.

Semiclassical models (refs. 10, 15, and 16) appear to be based on physically realistic criteria; however, the Pearson and Hansen model was too simplified. Although this model would not seriously violate equilibrium concepts, it was subject to slow drifts from equipartition (ref. 10) (i.e., the rotational temperature would drift from equality with the translational temperature). Although, by heuristic arguments this model could be altered to qualitatively satisfy proper interaction behavior, we have based our investigation described here on the semiclassical model of Itikawa (ref. 16). This model is founded on more rigorous concepts and, in addition, allows for treatment of molecular collisions. The model also satisfies conservation of probability.
In this paper we treat translation-rotation interactions for a uniformly flowing gas far removed from solid boundaries. In fact, we assume that the rotational relaxation does not affect the flow; we are concerned only with understanding the rotational relaxation behavior. Results are given based on calculations starting from three different sets of initial conditions: (1) complete equilibrium, (2) nonequilibrium equipartition (distribution of energy is constant for all molecules - the energy value is based on the total energy within the rotational states at complete equilibrium that is to be uniformly distributed to each molecule; that is, total energy in rotation is physically correct but distributed incorrectly), and (3) nonequipartition (same as (2) except partition of energy within rotational states is not based on complete equilibrium). Throughout this paper the key mathematical relations essential to the Monte Carlo simulation are defined. Readers desiring a more comprehensive treatment of the method are referred elsewhere (refs. 1 and 6-9).

PROCEDURE

The essential aspects of the procedure are described in the introduction. The analytical relations peculiar to this investigation are described in the text that follows.

Selection Rule Defining the Occurrence of an Encounter

The key to an accurate simulation is the procedure for selecting the molecular pair to reach in a collision, determining whether a reaction occurs, advancing the time parameter in a systematic manner until the next collision occurs, and so on. Both the probability and time intervals are strongly dependent on collision frequency which, in turn, is dependent on the uncertain relation for intermolecular potential.

To aid this discussion, it is worthwhile to refer briefly to classical relations and how those relations depend on, for example, an intermolecular potential base and on a two-parameter repulsion between the point-center model.

In this case, where the intermolecular potential \(V(R) \) is spherically symmetric, the deflection angle of an encounter, \(\chi(b,g) \), which depend on impact parameter \(b \) and relative velocity of approach, \(g \), and the \(\ell \)th moment "transport" cross section, \(Q^{(\ell)} \), are given by

\[
\chi(b,g) = \pi - 2 \int_{R_C}^{\infty} \frac{(bdR/R^2)}{\sqrt{1 - (b/R)^2} - V(R)/(1/2)ug^2} \quad (1)
\]

\[
Q^{(\ell)}(g) = 2\pi \int_0^{\infty} (1 - \cos^\ell \chi) bdb \quad (2)
\]
where R_C and μ are the distance of closest approach and reduced mass, respectively. (For example, see chap. 8, ref. 12.) The collision frequency v is then given by

$$v = nQ(\ell)g$$

From this relation, we can compute the collision time Δt of an encounter and the elapsing time t. There results

$$\Delta t = \frac{2}{N} \frac{1}{v}$$

$$t = \sum \Delta t$$

where N is the number of particles in a simulated cell. The collision frequency is not, however, accurately known in general.

In the case when the potential can be described by

$$V(R) = \frac{d}{R^6}$$

the frequency is given by

$$v = \pi n \left(\frac{\delta d}{1/2 \mu} \right)^{2/\delta} A(\ell)(\delta)g(\delta-4)/\delta$$

If v_{max} and g_{max} are the maximum values possible in a cell then the dimensionless ratios in the equation

$$\left(\frac{v}{v_{max}} \right) = \left(\frac{g}{g_{max}} \right)^{(\delta-4)/\delta}$$

define a curve for specified values of δ. If one accepts the above relation as representative of molecular encounters, then any point in the region below the curve represents a valid encounter, and points above the curve are invalid. We can then use the relation as a "selection rule," defining whether an encounter occurs or not.

Rather than accept the above relations as completely valid, we also investigated results using the linear relation

$$\frac{v}{v_{max}} = B + (1 - B) \frac{g}{g_{max}}$$
where B is an adjustable parameter that gives the best results in the case $B \approx 0.3$. The reasons underlying this choice are described later.

Discussion of transition probabilities is given in the next section. Given the fact that a rotational transition has occurred, however, trajectories are required by the method so that the particle coordinates in phase-space can be recomputed.

Collision Dynamics

The relative velocity after the collision is obtained by knowing the rotational energy and momentum before and after a collision. These relations are classical relations given by

\[(g')^2 = g^2 - \frac{2}{\mu} (E_{r1} - E_{r1} + E_{r2}' - E_{r2})\]

and

\[b' = \frac{gb - (M_{r1}' - M_{r1} + M_{r2}' - M_{r2})/\mu}{g'}\]

where E_{r2} and M_{r2} are rotational energy and momentum before a collision and a prime denotes value after a collision, the transition probabilities as well as calculation of a trajectory are based on $|g' - g|/g \ll 1$ and $|b' - b|/b \ll 1$; that is, the relative velocities and impact parameters are only slightly perturbed as a result of the rotational transitions.

The deflection angle (eq. (1)), although also dependent on intermolecular potential, can be adequately approximated to obtain trajectory results by the infinite-rise, rigid-spherical molecule of diameter σ. Such a relation yields

\[\chi(b) = 2 \cos^{-1}\left(\frac{b}{\sigma}\right)\]

To properly account for the effect of inelastic collisions, we use the following mean value:

\[\chi(b) = \frac{[\chi(b) + \chi(b')]}{2}\]

The derivation of the relation for rotational transition probabilities is briefly reviewed in the next section.

ROTATIONAL TRANSITION PROBABILITY

The details of the method and its applicability are discussed in reference 16. Only major derivations and results will be presented here for the purpose of direct application to the Monte Carlo simulation.
The interaction considered in the calculation of rotational transition probability is described by the reaction:

\[
N_2(j_1) + N_2(j_2) \rightarrow N_2(j'_1) + N_2(j'_2)
\]

(12)

The calculation is based on a semi-classical theory. To make numerical calculations tractable, several approximations are made. Whether these approximations are valid is difficult to assess, except that they lead to the correct qualitative behavior in the several applications considered. The total wave function of the system is expanded in terms of a set of wave functions based on a "rotational" Hamiltonian and given by:

\[
\psi = \sum_\alpha C_\alpha(t) |\alpha\rangle \exp\left(-\frac{i}{\hbar} W_\alpha t\right)
\]

(13)

Here \(\alpha\) specifies the rotational state of the molecules and \(W_\alpha\) and \(|\alpha\rangle\) are, respectively, the eigenenergy and eigenfunction of that state. The time-dependent coefficient \(C_\alpha(t)\) is then determined by:

\[
i\hbar \frac{dC_\alpha}{dt} = \sum_\alpha \langle \alpha' | V | \alpha \rangle \exp(i\omega_{\alpha',\alpha} t) C_\alpha
\]

(14)

where \(V\) is the interaction potential and \(\omega_{\alpha',\alpha} = (W_{\alpha'} - W_\alpha)/\hbar\). We separate the Hamiltonian into isotropic (spherically symmetric) and nonisotropic parts. Since our interest is in inelastic collisions, the elastic process due to the isotropic part of the potential, \(V(0)\), is eliminated by introducing the distorted-wave type coefficient defined by:

\[
D_\alpha(t) = C_\alpha(t) \exp\left\{\frac{i}{\hbar} \int_{-\infty}^{t} V(0)[R(t')] dt'\right\}
\]

(15)

where \(R(t)\) is the distance separating gravity centers of the molecules at time \(t\). The coefficient \(D_\alpha\) satisfies the equation

\[
i\hbar \frac{dD_{\alpha'}}{dt} = \sum_\alpha \left[\langle \alpha' | V | \alpha \rangle - V(0)\delta_{\alpha',\alpha}\right] \exp(i\omega_{\alpha',\alpha} t) D_\alpha
\]

(16)

\[
= \sum_\alpha \langle \alpha' | \tilde{V} | \alpha \rangle \exp(i\omega_{\alpha',\alpha} t) D_\alpha
\]

and the initial condition

\[
D_\alpha(t = -\infty) = \begin{cases}
1 & \text{for } \alpha = \alpha_0 \\
0 & \text{for } \alpha \neq \alpha_0
\end{cases}
\]

(17)

The second line in equation (16) defines the reduced matrix element \(\langle \alpha' | \tilde{V} | \alpha \rangle\).
The transition probability for the process \(\alpha_0 \rightarrow \alpha \) is given by

\[
P(\alpha_0 \rightarrow \alpha) = |D_\alpha(t = \infty)|^2
\]

(18)

In a rigorous treatment, the state \(\alpha \) depends on the rotational angular momenta, \(j \), and the projections, \(m \), of both molecules. For the present problem, we are only interested in the probability averaged over the \(m \) states. We use Rabitz method (ref. 17) to eliminate the \(m \)-dependence of the interaction matrix (effective potential method). We solve equation (16) with:

\[\alpha \equiv (j_1 j_2), \quad \alpha_\alpha \equiv D_{j_1 j_2} \quad \text{and} \quad \langle \alpha' | \tilde{V} | \alpha \rangle \equiv \langle \alpha' | \langle j_1, j_2 | \tilde{V}_{\text{eff}} | j_1, j_2 \rangle \rangle \]

This treatment is discussed in more detail in appendix A.

We can further approximate the solution of equation (16) by introducing the exponential approximation (refs. 18-20).

\[
D_{\alpha', \alpha}(t) = \langle \alpha' | \exp (\tilde{K}) | \alpha_0 \rangle = \sum_{n=0}^\infty \frac{1}{n!} \langle \alpha' | \tilde{K}^n | \alpha_0 \rangle
\]

(19)

where \(\tilde{K} \) is a matrix whose element is defined by

\[
\langle \alpha_i | \tilde{K} | \alpha_j \rangle = -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt \langle \alpha_i | \tilde{V}_{\text{eff}} | \alpha_j \rangle \exp(i \omega_{\alpha_i} \alpha_j t)
\]

(20)

The element of \(\tilde{K}^n \) is evaluated by

\[
\langle \alpha' | \tilde{K}^n | \alpha_0 \rangle = \sum_{\alpha_{1 \alpha_2 \ldots \alpha_{n-1}}} \langle \alpha' | \tilde{K} | \alpha_{n-1} \rangle \langle \alpha_{n-1} | \tilde{K} | \alpha_{n-2} \rangle \ldots \langle \alpha_1 | \tilde{K} | \alpha_0 \rangle
\]

(21)

For \(N_2 + N_2 \) we select the following interaction potential as the relevant interaction (refs. 21-22),

\[
V = V^{(0)}(R) + V^{(1)}(R) [P_2(\cos x_1) + P_2(\cos x_2)]
\]

\[
+ V^{(2)}(R) P_2(\cos x_1) P_2(\cos x_2)
\]

(22)

Here \(P_2 \) is the Legendre function of order two, \(R \) is the separation distance between the two molecules as before, and \(x_i \) is the angle between the
directions of the inter-molecular vector and the axis of \(i \)th molecule; the two molecules are not necessarily in a single plane. \(V(2) \) induces a simultaneous rotational transition in both molecules in first order. Each term of the potential is assumed to have the form

\[
\begin{align*}
V^{(0)}(R) &= C \exp(-\alpha R) - C_6/R^6 \\
V^{(1)}(R) &= AC \exp(-\alpha R) \\
V^{(2)}(R) &= BC \exp(-\alpha R)
\end{align*}
\]

(23)

(See appendix A for further discussion.)

In the present calculation the trajectory \(R(t) \) is determined by solving the classical equation of motion approximated by

\[
\frac{1}{2} \mu \left(\frac{dR}{dt} \right)^2 = E - C e^{-\alpha R} + \frac{C_6}{R^6} - \frac{E b^2}{R^2}
\]

(24)

where \(\mu \) is the reduced mass of the system, \(b \) is the impact parameter, \(R_C \) is the distance of closest approach, and \(E \) is the kinetic energy of the relative motion. This provides a semiclassical version of the modified wave number approximation (ref. 23) with the assumption that the gradients of the attractive part of the potential and the centrifugal force are much smaller than those of the repulsive potential, in the region where most of the rotational transition takes place. The solution of equation (24) can be obtained analytically and the time integration in equation (20) can be performed readily. We have, then

\[
\langle \alpha_i | \tilde{K} | \alpha_j \rangle = -i(\alpha_i | \alpha_j) I
\]

with

\[
I = \frac{\pi}{\alpha \lambda A} \cosech \left(\frac{\pi}{2A} \right)
\]

\[
\lambda = \kappa (2\mu \tilde{E})^{-1/2}
\]

\[
A = \frac{\alpha}{2|\omega_{\alpha_i \alpha_j}|} \left(\frac{2\tilde{E}}{\mu} \right)^{1/2}
\]

and

\[
\tilde{E} = E \left(1 - \frac{b^2}{R_C^2} \right) + \frac{C_6}{R_C^6}
\]
Two important properties of the transition probability should be mentioned: the conservation of probabilities and detailed balancing. The exponential approximation self-ensures the conservation of probabilities:

$$\sum_{j_1', j_2'} P(j_1 j_2 \rightarrow j_1' j_2') = 1$$

(26)

To satisfy the detailed balancing relation, we choose, as the kinetic energy E in the calculation of $\langle \alpha_i | V_{\text{eff}} | \alpha_i \rangle$, the mean value of the initial and final channel energies (i.e., $E = (1/2)(E_i + E_j)$). The channel energy E_i for the ith channel is defined by

$$E_i = E_t - W_{a_i} = (E_0 + W_{a_0}) - W_{a_i}$$

(27)

where E_0 is the initial relative kinetic energy and E_t is the total energy (which is conserved during the collision). This procedure results in a symmetry relation

$$P(j_1 j_2 \rightarrow j_1' j_2'; E_0) = P(j_1' j_2' \rightarrow j_1 j_2; E_0')$$

(28)

where

$$E_0 + W_{j_1 j_2} = E_0' + W_{j_1' j_2'}$$

In order to have a properly detailed balance, we modify our result by

$$\tilde{P}(j_1 j_2 \rightarrow j_1' j_2') = \frac{(2j_1< + 1)(2j_2< + 1)}{(2j_1 + 1)(2j_2 + 1)} P(j_1 j_2 \rightarrow j_1' j_2')$$

(29)

for $(j_1 j_2) \neq (j_1' j_2')$, and

$$\tilde{P}(j_1 j_2 \rightarrow j_1 j_2) = 1 - \sum_{j_1' j_2'(\neq j_1 j_2)} \tilde{P}(j_1 j_2 \rightarrow j_1' j_2')$$

Here $j_1<$ designates the smaller of j_1 and j_1'. These modified transition probabilities, \tilde{P}, satisfy both the detailed balancing relation and the conservation of probabilities.

The program listings for calculating rotational transition probability are presented in appendix B.
RESULTS AND DISCUSSION

Calculations were performed using three different sets of initial conditions. These initial conditions, described in the introduction, are: (1) complete equilibrium, (2) nonequilibrium equipartition, and (3) non-equipartition. The first case, equilibrium, was run to test whether the method remains in equilibrium for long computational times; that is, to verify that the model would not drift to improper internal distribution (ref. 10). The second case tests whether, indeed, the model has an internal mechanism to drive itself to equilibrium within a reasonable physical time scale. The third case provides insight into relative internal time scales to reach (1) a quasi-Boltzmann distribution characterized by a rotation temperature $T_{\text{rot}} \neq T$ and then (2) the time scale for this quasi-distribution to decay to equilibrium $T_{\text{rot}} = T$. The simulations, therefore, permit us to observe energy partitioning and the relaxation mechanisms, as well as relaxation rates. Because we are here interested only in rotational transitions that lead to a final equilibrium state, all elastic collisions have been ignored in order to expedite the calculations.

Equilibrium Case and Collision Frequency

Many of the physical properties for one-dimensional calculations have been based on the hyperbolic function trajectory $\text{sech}(at)$ (ref. 15); some others are based on the effective potential, and the classical equations of motion are solved for this interaction potential including the step by step energy conservation.

Collision frequency, however, cannot be evaluated analytically for these potentials (see eqs. 1-3). It is also not feasible to use the Monte Carlo method to compute and thereby describe intermolecular potentials numerically. Nevertheless, we can semi-empirically determine a macroscopically (statistically) correct collision frequency by using the results of equation (7) for the equilibrium case; that is, we determine the most probable index of power δ in equation (7) by varying $\delta = 4$ (Maxwellian molecules) to $\delta = \infty$ (hard-sphere molecules). The simulation should maintain equilibrium when the proper value of δ is chosen. The effect of the parameter δ on rotational energy is sensitive to the higher velocity collisions. We find that rotational temperature increases as the parameter δ increases. Figure 1 shows the computed rotational temperature history from an initial equilibrium state as the value of δ is varied. The proper value for which the model (point centers of repulsion) fits close to the present model, is found to be approximately $C = 0.45$, or $\delta = 7.5$, where $C = (\delta - 4)/\delta$. Also presented in the same figure are the results of the temperature variation obtained by using the linear selection formula of equation (7b) where the parameter B was varied from 0 to 0.5. The best value of B that satisfies this selection rule seems to be $B \approx 0.3$. Temperature histories computed using this value ($C = 0.45$) are shown next.

In figures 2 through 7, translational and rotational temperatures for different initial conditions are plotted as functions of nondimensional...
collision time. These temperatures should asymptotically approach the equilibrium values shown by the dotted line at the end of the time scale. Also shown in figure 2 for several time intervals, $t/\tau = 0, 5, 10, \text{ and } 20$, are the translational and rotational distribution functions. The translational distribution function f_{tr} is plotted as a function of molecular speed ratio c/c_0, where c_0 is the rms speed defined by $\sqrt{5kT/M}$. The rotational distribution function f_r is presented in terms of the rotational energy level j for the same collision times corresponding to the translational distribution functions. Mean collision time τ is calculated based on the initial translational temperature, kept always at room temperature $T_{tr} = 320^\circ \text{ K}$. Note that initial equilibrium distribution functions for rotational and translational energies are selected at random from the Rayleigh and Maxwellian distributions, respectively, (their distributions, therefore, do not represent analytical functions), and all subsequent distributions evolve from the present simulation using the Itikawa model.

Throughout the testing, all distributions and temperatures represented equally valid equilibrium states. Figures 3a and 3b show the comparison of the Monte Carlo solutions with theoretical (equilibrium) functions for the non-dimensional time at $t/\tau = 15$ and 20. Since the Monte Carlo solution - the so called Klimontovich function (ref. 24) - does not, in general, present a smooth function, a mean distribution function (Boltzmann solution), time averaged over the last five collision times (from $t/\tau = 15$ to 20), is shown in figure 3c. This mean value can be compared with the theoretical value when the gas approaches equilibrium. The agreement with theory seems to be very good.

Nonequilibrium Case

The result of the equipartition, nonequilibrium test is shown in figure 4. The gas initially starts in the equipartition state with the rotational energy of all molecules assigned the mean equilibrium energy corresponding to the level of $j = 10$, and where the translational energy is specified as in the previous case. Several energy distribution functions are shown at nondimensional times of 0, 1, 2, 3, 5, 20, and 35. The simulation again seems very good. The distribution functions for $t/\tau = 30$ and 35, and the mean distribution functions averaged over these time intervals, are compared with theoretical calculations in figure 5; once again the agreement is good. Notice that only even-numbered rotational energy levels are occupied. This follows since we have considered a homonuclear model to be initially in an even-numbered level, and we have not allowed changes in nuclear spin.

The last test investigated is for the nonequipartition and nonequilibrium case. All gases initially start with the rotational energy level of $j = 12$ (corresponding to a rotational temperature of $T_r = 455^\circ \text{ K}$) and where the translational energy is selected at random from the Maxwellian distribution corresponding to a translational temperature of 320° K. In figure 6, both the rotational and translational temperatures approach an equilibrium state, corresponding to a temperature of 374° K. This occurs in an exponential manner. Transition distribution functions are shown at $t/\tau = 0, 1, 2, 3, 5, \text{ and } 20$ in the same figure. The present model also appears to perform very
well in this case. This is the case (initial rotational temperature higher than translational temperature) for which the modified Pearson-Hansen model failed to show satisfactory performance when extended to higher temperatures (ref. 10).

The distribution functions for $t/\tau = 15$ and 20, and the mean distribution functions of rotational and translational energy, averaged over $t/\tau = 15$ to 20, are shown in figure 7. Comparison with theoretical distributions is very satisfactory.

Notice that in both figures 4 and 6 the gas relaxes asymptotically to equilibrium. The approach is rapid initially and quite slow finally.

Of all the models tested to date, the semiclassical model of Itikawa appears most satisfactory. However, this model with 1000 molecules consumes about 100 sec of the CDC 7600 machine computing time to travel one characteristic collision time. The model, therefore, may still need further simplification to permit its practical use in the more complex molecular simulations, such as, for example, shock wave structure and gas-surface interactions.

CONCLUSION

The Itikawa model when used with the appropriate representations for collision frequency provides an adequate physical description of a homonuclear diatomic gas in rotational relaxation. This model appears to hold the most immediate promise for further application to more complex problems. However, because of the computational time required to do rigorous calculations at each Monte Carlo collision event, subsequent investigations will require simplification of the algorithm. Nevertheless, the present model will permit one to examine the principal features of rotational effects in nonequilibrium flow of diatomic molecules, such as shock wave structure.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 1975
APPENDIX A

INTERMOLECULAR POTENTIAL AND INTERACTION MATRIX ELEMENT

Interaction Potential

Each term of the interaction potential (eq. (23)) is assumed to be defined by the representations given in the text. The first term, \(V(0) \), can be determined fairly reliably from either the result of molecular beam experiments (ref. 21) or the analysis of transport coefficients (ref. 22). These parameters are \(C = 3.44 \times 10^3 \) eV, \(C_6 = 73.4 \) eV Å\(^{-6}\) and \(\alpha = 3.16 \) Å\(^{-1}\). Unfortunately, we have little information about the anisotropy of the interaction potential for \(\text{N}_2 + \text{N}_2 \). Therefore, we adopt the form given by \(V^{(1)} \) and \(V^{(2)} \) in equation (23), similarly as in reference 15, and regard \(A \) and \(B \) as adjustable parameters. The values employed in this report are \(A = B = 0.2 \).

Interaction Matrix

Applying the effective potential method (ref. 17) to the interaction potential given by equations (22) and (23), we can calculate the matrix element as follows:

\[
\langle j_1'j_2'|\tilde{V}_{\text{eff}}|j_1j_2\rangle = \langle j_1'j_2'|V_{\text{eff}}|j_1j_2\rangle - V(0)\delta_{j_1'j_1}\delta_{j_2'j_2}
\]

\[
= (j_1'j_2'|j_1j_2)C \exp[-\alpha R(t)] \quad (A1)
\]

\[
(j_1'j_2'|j_1j_2) = \left\{ (2j_1 + 1)(2j_2 + 1)(2j_1' + 1)(2j_2' + 1) \right\}^{1/4}(-1)^L
\]

\[
\times \left\{ A \sqrt{\delta} \left[(-1)^{j_2} (2j_2 + 1)^{-1/2} \left(\begin{array}{ccc} j_1' & j_1 & 2 \\ 0 & 0 & 0 \end{array} \right) \delta_{j_2'j_2} \\
+ (-1)^{j_1} (2j_1 + 1)^{-1/2} \left(\begin{array}{ccc} j_2' & j_2 & 2 \\ 0 & 0 & 0 \end{array} \right) \delta_{j_1'j_1} \right] \\
+ \frac{B}{5} \left(\begin{array}{ccc} j_1' & j_1 & 2 \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} j_2' & j_2 & 2 \\ 0 & 0 & 0 \end{array} \right) \sum_{m=0,2,4} (2m+1)^{1/2} \left(\begin{array}{ccc} 2 & 2 & m \\ 0 & 0 & 0 \end{array} \right) \right\} \quad (A2)
\]

where \(\left(\begin{array}{ccc} j_1' & j_1 & j \\ 0 & 0 & 0 \end{array} \right) \) is the 3-j symbol and \(L = \max (j_1 + j_2, j_1' + j_2') \).
PROGRAM LISTING FOR ROTATIONAL TRANSITION PROBABILITY CALCULATION

*DECK MAIN
PROGRAM MAIN(INPUT,OUTPUT,TAPF5=INPUT,TAPF6=OUTPUT)

CROSS SECTION CALCULATION
COMMON /LLMIN,LLMAX/ LLMIN,LLMAX
DIMENSION PWAVE(20,20),SIGMA(20,20),LABCSA(20)
COMMON /CM1/ PWAVE,EKIN,L10,L20,BIMP,NMAX,NPRINT,L1PAR,L2PAR
COMMON /CM2/ JEL1,JEL2,LABCSA,LLMAX
COMMON /CM3/VA,VB,IPRT1,IPRT2,IPRT3,IPRT4
COMMON /CMVR1/VC,VALPHA,VC6,BBIMP,ESEE
COMMON /CV1/ABCC(40,40,9)
JMAX= 20
PAI2= 6.283185

C** INITIAL CLEAR OF ABCC, SHOULD BE MADE FOR EACH VA,VB
DO 5009 I=1,40
 DO 5009 J=1,40
 DO 5009 K=1,9
 ABCC(I,J,K)= 0.0
 5009 CONTINUE
5010 CONTINUE
 DO 5016 I=1,JMAX
 DO 5016 J=1,JMAX
 SIGMA(I,J)=0.0
 PWAVE(I,J)=0.0
 5016 CONTINUE
C** INPUT ** IMPACT PARAMETER (IN ANGSTROM)
C** INPUT ** CALCULATION FROM 'BIMPI' TO 'BIMPF' WITH STEP 'DBIMP'
READ(5,4) BIMPI,DBIMP,BIMPF
4 FORMAT(3F10.0)
IF(BIMPI.LT.0.0) GO TO 5999
C** INPUT ** CROSS SECTION CALCULATION (ICROS=1) OR NOT (0)
READ(5,3) ICROS
C** INPUT ** RELATIVE KINETIC ENERGY (IN EV)
READ(5,1) EKIN
1 FORMAT(F10.0)
C** INPUT ** INITIAL ROTATIONAL STATES
READ(5,2) L10,L20
2 FORMAT(2I5)
C** INPUT ** MAX NO. OF TERMS IN EXP
 READ(5,3) NMAX
 3 FORMAT(15)
C** INPUT ** INDEX FOR PRINT OUT
 READ(5,6) IPRT1,IPRT2,IPRT3,IPRT4
 6 FORMAT(4I5)
C** INPUT ** POTENTIAL PARAMETERS FOR SPHERICAL PART
C**
 V(R)= VC*EXP(-VALPHA*R)-VC6/R**6
C**
 V IN EV, R IN ANGSTROM
 READ(5,7) VC,VALPHA,VC6
 7 FORMAT(3F10.0)
C** INPUT ** POTENTIAL PARAMETERS FOR NON-SPHERICAL PART
 READ(5,5) VA,VB
 5 FORMAT(2F5.0)
C** INPUT ** WHEN IPRTSG=0, PRINT PARTIAL SUM OVER BIMP
 READ(5,3) IPRTSG
C** INPUT ** LIMITATION OF RANGE OF LL1,LL2
C**
 LL1= LL1MIN-LLMAX, LL2=LL2MIN-LL2MAX
 READ(5,8) LL1MIN,LL1MAX,LL2MIN,LL2MAX
 8 FORMAT(4I5)
 LL1MIN= LL1MIN+1
 LL1MAX= LL1MAX+1
 LL2MIN= LL2MIN+1
 LL2MAX= LL2MAX+1
 J1MIN= (LL1MIN+1)/2
 J1MAX= (LL1MAX+1)/2
 J2MIN= (LL2MIN+1)/2
 J2MAX= (LL2MAX+1)/2
 WRITE(6,5900)
1
2
3
4
5
6
7
8
9
BIMPJ,DKIMP,BIMP,ICROS,EKIN,
L10,L20,NMAX,IPRT1,IPRT2,IPRT3,IPRT4,
VC,VALPHA,VC6,VA,VB,
IPRTSG
5900 FORMAT(1H1,5X,10HINPUT DATA/)
1 5X,18HBIMPJ,DKIMP,BIMP,ICROS,EKIN/L10/L20/NMAX,IPRT1,IPRT2,IPRT3,IPRT4,
2 5X,3F10.2/5X,6HICROS/15/5X,5HEKIN/F10.6/5X,8HL10/L20/215/5X,5HNMAX/15/
3 5X,24HIPRT1,IPRT2,IPRT3,IPRT4/415/
7 5X,14HVC,VALPHA,VC6/,3F10.4/
8 5X, 6HVA,VR/,2F5.2/
9 5X, 7HPRSTG/,15//

WRITE(6,5902) L1MIN, L1MAX, L2MIN, L2MAX
5902 FORMAT(1H0/5X,4H L1=I4,3H - ,I4,3X,4H L2=I4,3H - ,I4/)

C******* NPRINT
NPRINT= *NMAX-3
BIMP= BIMPI
IF(ICROS.EQ.0) IPRT4=0
IF(ICRUS.EQ.0) GO TO 5500
H3= DBIMP/3.0*PAI2
NSUM= 0
MPRINT=0
H3B= H3*BIMP
CALL PROB
5100 CONTINUE
DO 5111 I=J1MIN, J1MAX
 DO 5111 J=J2MIN, J2MAX
 SIGMA(I,J)= SIGMA(I,J)+H3B*PMAVE(I,J)
 5111 CONTINUE
BIMP=BIMP+DBIMP
CALL PROB
H4B=4.0*H3*BIMP
DO 5112 I=J1MIN, J1MAX
 DO 5112 J=J2MIN, J2MAX
 SIGMA(I,J)=SIGMA(I,J)+H4B*PMAVE(I,J)
 5112 CONTINUE
BIMP= BIMP+DBIMP
CALL PROB
H3B=H3*BIMP
DO 5113 I=J1MIN, J1MAX
 DO 5113 J=J2MIN, J2MAX
 SIGMA(I,J)= SIGMA(I,J)+H3B*PMAVE(I,J)
 5113 CONTINUE
IF(IPRSTG.EQ.1) GO TO 5120
 GO TO 5300
5120 CONTINUE
IF(BIMP.GT.BIMPF-0.5*DBIMP) GO TO 5200
 NSUM= NSUM+2
 GO TO 5100
5200 CONTINUE
MPRINT =1
IF(IPRSTG .EQ.0) GO TO 5400
5300 CONTINUE
C***************SEARCH FOR MAX OF SIGMA
SMAX=0.0
DO 5305 I=J1MIN,J1MAX
DO 5305 J=J2MIN,J2MAX
IF(SIGMA(I,J) * GT. SMAX) SMAX = SIGMA(I,J)
5305 CONTINUE
C********** PRINT
L1PAR0= MOD(L10,2)+1
L2PAR0= MOD(L20,2)+1
WRITE(6,5901) BIMPI,BIMP,NSUM,L10,L20,EKIN
5901 FORMAT(1H1/5X, 23HCROSS SECTION FOR BIMP=F6.2, 3H = , F6.2, 7H(NSUM= 112, 1H), 3X, 5HL10=I2, 1X, 4HL20=I2, 1H), 3X, 5H EKIN=F13.5/3X, 2HL2)
DO 5311 JINV=J2MIN, J2MAX
J= J2MIN+J2MAX-JINV
L2= 2*J-3*L2PAR0
C********** NORMALIZATION TO SMAX
DO 5310 I=J1MIN, J1MAX
SIG(I)= SIGMA(I,J)/SMAX
5310 CONTINUE
JF= J1MIN+15
IF(JF.GT.J1MAX) JF= J1MAX
WRITE(6,5911) L2,(SIG(I), I=J1MIN, JF)
5911 FORMAT(1HO,3X,I2,16(1PF6.3,1X))
DO 5311 JINV=J2MIN, J2MAX
J= J2MIN+J2MAX-JINV
L2= 2*J-3*L2PAR0
C********** NORMALIZATION TO SMAX
DO 5310 I=J1MIN, J1MAX
SIG(I)= SIGMA(I,J)/SMAX
5310 CONTINUE
WRITE(6,5912) (LABCSA(I), I=1,16)
5912 FORMAT(1HO,4X,16(3X,I2,2X), 3H L1)
SMAX= 0.1*SMAX
WRITE(6,5919) SMAX
5919 FORMAT(1HO/3X,15H NORMALIZATION FACTOR, 2X, E13.5, 2X, 11 HANGSTROM**2)
SEL= -SIGMA(J1L1,J1L2)
C********** ELASTIC
WRITE(6,5918) SEL
5918 FORMAT(1HO,4X,9HTOTAL INELASTIC CROSS SECTION, 2X, E13.5)
IF(MPRINT.EQ.1) GO TO 5400
GO TO 5120
5400 CONTINUE
C********** ROTATIONAL CONSTANT IN EV
BROT= 0.2512E-3
S= 0.0
SWW= 0.0
W0= BROT * FLOAT(L10*(L10+1)+L20*(L20+1))
DO 5415 I=J1MIN, J1MAX
LI= 2*I-3+L1PAR0
DO 5414 J=J2MIN, J2MAX
IF(I.EQ.JEL1 AND J.EQ.JEL2) GO TO 5414
L2= 2*J-3*L2PAR0
W1 = BROT* FLOAT(L1*(L1+1)+L2*(L2+1))
WW = (W0-W1)**2
SWW = SWW+SIGMA(I,J)*WW
S = S+SIGMA(I,J)
5414 CONTINUE
5415 CONTINUE
WRITE(6,5916) S
5916 FORMAT(1HO,4X,29HTOTAL INELASTIC CRCSS SECTION,2X,E13.5)
WRITE(6,5917) SWW
5917 FORMAT(1HO/4X,27H***** SUM OF PCORCT *****,3X,4HSWW=E13.5/)
GO TO 5010
5500 CONTINUE
IF(BIMP.LT.0.0) GO TO 5010
CALL PROB
IF(BIMP.GE.BIMPF-0.5*DBIMP) GO TO 5010
5501 CONTINUE
BIMP=BIMP+DBIMP
GO TO 5500
5999 CONTINUE
STOP
END

*DECK PROB

SUBROUTINE PROB

C********** MAIN PROGRAM FOR THE CALC. OF TRANS. PROB.

COMMON /LLMIN,LLMAX,LL2MIN,LL2MAX
DIMENSION P1DD(20,20),PEVN(20,20),PRAE(20,20)
DIMENSION A(20,20),AKSUM(20,20)
DIMENSION LABCSA(16)
COMMON /MV1/ AMATRIX(20,20,9)
COMMON /MV2/ VBB,VAA,BROT,ETOT,BRC,VVALP
COMMON /CMVR1/ VC,VALPHA,VC6,BIMP,ECEE
COMMON /MV3/ NCOUNT
COMMON /CM1/ PRAE,EKIN,L10,L20,BBBB,NMAX,NPRINT,L1PAR,L2PAR
COMMON /CM2/ JEL1,JEL2,LABCSA,LLMAX
COMMON /CM3/ VA,VB,IPRT1,IPRT2,IPRT3,IPRT4
ICLOCK=0
BIMP=BBBB
JMAX=20
LMAX=2*JMAX-2
C********** REDUCED MASS IN AMU
RMASS= 14.02
C********** ROTATIONAL CONSTANT IN EV
BROT= 0.2512E-3
VVALP= 0.045723*VALPHA/ SQRT(RMASS)
VAA= 0.4472136*VA
VBB= 0.2*VB=0.6298283
ETOT= EKIN* FLOAT(L10*(L10+1)+L20*(L20+1))*BROT
EB= ETOT/BROT
EB1= SQRT(EB)
LLMAX= INT(EB1)+1
IF(IPRT1.EQ.1) GO TO 11
WRITE(6,901) BIMP,L10,L20,EKIN,ETUT,LLMAX,EB,VC,VALPHA,VC6,VA,VB
901 FORMAT(1H1,5X,5HBIMP=F6.2,5HANGST,5X,6H(L10=I2,5H L20=I2,2H),
1 5X,5HEKIN=F13.5,3HEV ,3X,5HETOT=F13.5,3X,6HLLMAX=I2,
2 3X,3HEB=F8.2/6X,3HVC=F10.2,2X,7HVALPHA=F8.3,2X,4HVC6=F7.2,2X,
3 3HVA=F7.2,2X,3HVB=F7.2/
11 CONTINUE
IF(LLMAX.GT.LLMAX) LLMAX=LLMAX
IF(LL1MAX.GT.LLMAX) LL1MAX=LLMAX
IF(LL2MAX.GT.LLMAX) LL2MAX=LLMAX
DC 18 I=1,JMAX
DO 18 J=1,JMAX
P:EVN(I,J)= 0.0
P:ODD(I,J)= 0.0
P:WAVE(I,J)= 0.0
AKSUMO(I,J)=0.0
AKSUM1(I,J)= 0.0
DO 16 M=1,9
AMATRIX(I,J,M)= 0.0
16 CONTINUE
18 CONTINUE
LL10= L10+1
LL20= L20+1
JFL1= (LL10+1)/2
JEL2=(LL20+1)/2
L1PAR= MOD(L10,2)+1
L2PAR= MOD(L20,2)+1
IF(L1PAR.LT.LL1MIN) L1PAR= LL1MIN
IF(L2PAR.LT.LL2MIN) L2PAR= LL2MIN
CLO= FLOAT((2*L10+1)*(2*L20+1))
PEO= 0.0
C************ N= 1
N=1
LL1I= LL10
LL2I= LL20
NCOUNT= 0
DO 59 K=1,9
CALL VMATRIX(LL1I,LL2I,K)
59 CONTINUE
19
59 CONTINUE
LL1FMN = MAX0(LL10-2,LL1PAR)
LL1FMX = MIN0(LL10+2,LL1MAX)
LL2FMN = MAX0(LL20-2,LL2PAR)
LL2FMX = MIN0(LL20+2,LL2MAX)
K = 1
JJ11 = (LL1I+1)/2
JJ12 = (LL2I+1)/2
DO 64 I=1,3
 LL2F = LL20-4+2*I
DO 63 J=1,3
 LL1F = LL10-4+2*J
 IF(LL2F.LT.1.OR.LL1F.LT.1) GO TO 62
 JJF1 = (LL1F+1)/2
 JJF2 = (LL2F+1)/2
 AKSUMO(JJF1,JJF2) = AMATRX(JJ11, JJ12, K)
62 K = K+1
63 CONTINUE
64 CONTINUE
TCTPW = 0.0
TCTPC = 0.0
DO 74 LL1F=LL1FMN,LL1FMX,2
 DO 73 LL2F=LL2FMN,LL2FMX,2
 JJF1 = (LL1F+1)/2
 JJF2 = (LL2F+1)/2
 PODD(JJF1,JJF2) = AKSUMO(JJF1, JJF2)
 PEVN(JJF1, JJF2) = 0.0
 IF(LL1F.EQ.LL1I .AND. LL2F.EQ.LL2I) PEVN(JJF1, JJF2) = 1.0
 PWAVE(JJF1, JJF2) = PODD(JJF1, JJF2)**2*4.0*PEVN(JJF1, JJF2)**2
 P = PWAVE(JJF1, JJF2)
 L01 = LL1F-1
 L02 = LL2F-1
 IF(IPRT2.EQ.1) GO TO 72
 PCORCT = P
 WRITE(6,902) N, L01, L02, PCORCT, PODD(JJF1, JJF2), AKSUMO(JJF1, JJF2)
902 FORMAT(1H0,2X,2HN=I2,3X,5H L1F=I2,2X,5H L2F=I2,5X,6HPWAVE=E13.5,1
 3X,7HPCORCT=E13.5,3X,5HPODD=E13.5,5X,6HAKSUM=E13.5)
72 CONTINUE
 TOTPW = TOTPW+P
73 CONTINUE
74 CONTINUE
 IF(IPRT1.EQ.1) GO TO 75
 WRITE(6,904) N, TOTPW, ICLOCK, NCOUNT, TOTPC
904 FORMAT(1H0,2X,2HN=I2,3X,5H L1F=I2,2X,5H L2F=I2,5X,6HPWAVE=E13.5,1
 3X,7HPCORCT=E13.5,3X,5HPODD=E13.5,5X,6HAKSUM=E13.5)
75 CONTINUE
 IF(NMAX.EQ.1) GO TO 300
N = 2
C**********100
100 CONTINUE
NCCUNT = 0
N2 = 2*N-2
LL2IMN=MAX0(LL20-N2,L2PAR)
LL2IMX= LL20+N2
IF(LL2IMX.GE.LLMAX) LL2IMX= LLMAX
DO 149 LL2I=LL2IMN,LL2IMX,2
JJ12= (LL2I+1)/2
EB2= SQRT(EB- FLOAT(LL2I-1)**2)
LLMAX1= INT(EB2)+1
LL11=LL10+N2
JJ11=(LL11+1)/2
IF(LLMAX1.GE.LLMAX1) LLMAX1= LL1MAX
IF(LL11.GT.LLMAX1) GO TO 130
DC 114 K=5,8,3
CALL VMATRX(LL11,LL2I,K)
114 CONTINUE
DC 119 K=3,9,3
CALL VMATRX(LL11,LL2I,K)
119 CONTINUE
IF(LL11-2.LT.1) GO TO 125
AMATRX(JJ1J1,JJ1J2,4) = AMATRX(JJ1J1-1,JJ1J2,6)
K=4
IF(LL2I.EQ.LL20-N2.OR.LL2I.EQ.LL20+N2) CALL VMATRX(LL11,LL2I,K)
AMATRX(JJ1J1,JJ1J2,7) = AMATRX(JJ1J1-1,JJ1J2+1,3)
K=7
IF(LL2I.EQ.LL20+N2-2.OR.LL2I.EQ.LL20+N2) CALL VMATRX(LL11,LL2I,K)
IF(LL2I-2.LT.1) GO TO 130
AMATRX(JJ1J1,JJ1J2,11) = AMATRX(JJ1J1-1,JJ1J2-1,9)
K=1
IF(LL2I.EQ.LL20-N2+2.OR.LL2I.EQ.LL20-N2) CALL VMATRX(LL11,LL2I,K)
125 CONTINUE
IF(LL2I-2.LT.1) GO TO 130
AMATRX(JJ1J1,JJ1J2,2) = AMATRX(JJ1J1,JJ1J2-1,8)
K=2
IF(LL2I.EQ.LL20-N2) CALL VMATRX(LL11,LL2I,K)
130 CONTINUE
LL11=LL10-N2
JJ11= (LL11+1)/2
IF(LL11.LT.L1PAR) GO TO 149
DO 134 K=5,8,3
CALL VMATRX(LL11,LL2I,K)
134 CONTINUE
DO 139 K=1,7,3
CALL VMATRX(LL1I,LL2I,K)
139 CONTINUE

AMATRX(JJ1I,JJI2,6)= AMATRX(JJ1I+1,JJI2,4)
K= 6
IF(LL2I.EQ.LL20-N2.OR.LL2I.EQ.LL20+N2) CALL VMATRX(LL1I,LL2I,K)
AMATRX(JJ1I,JJI2,9)= AMATRX(JJ1I+1,JJI2+1,1)
K=S
IF(LL2I.EQ.LL20+N2-2.OR.LL2I.EQ.LL20+2) CALL VMATRX(LL1I,LL2I,K)
IF(LL2I-2.LT.1) GO TO 149
AMATRX(JJ1I,JJI2,2)= AMATRX(JJ1I,JJI2-1,8)
K= 2
IF(LL2I.EQ.LL20-N2) CALL VMATRX(LL1I,LL2I,K)
AMATRX(JJ1I,JJI2,3)= AMATRX(JJ1I+1,JJI2-1,7)
K= 3
IF(LL2I.EQ.LL20-N2+2.OR.LL2I.EQ.LL20-N2) CALL VMATRX(LL1I,LL2I,K)
149 CONTINUE

C******************************** 150
LL1IMN= MAX0(LL10-N2+2,L1PAR)
LL1IMX= LL10+N2-2
IF(LL1IMX.GE.LL1MAX) LL1IMX= LL1MAX
DC 199 LL1I=LL1IMN,LL1IMX,2
JJ1I=(LL1I+1)/2
EB2= SQRT(EB- FLOAT(LL1I-1)**2)
LLMAX1=INT(FB2)+1
LL2I= LL20+N2
JJ2I=(LL2I+1)/2
IF(LLMAX1.GE.LL2MAX) LLMAX1= LL2MAX
IF(LL2I.GT.LLMAX1) GO TO 180
DO 164 K=5,9
IF(LL1I.EQ.LL10+N2-2.AND.K.EQ.6) GO TO 163
CALL VMATRX(LL1I,LL2I,K)
GO TO 164
163 CONTINUE

AMATRX(JJ1I,JJI2,6)= AMATRX(JJ1I+1,JJI2,4)
164 CONTINUE
IF(LL2I-2.LT.1) GO TO 175
AMATRX(JJ1I,JJI2,2)= AMATRX(JJ1I,JJI2-1,8)
AMATRX(JJ1I,JJI2,3)= AMATRX(JJ1I+1,JJI2-1,7)
IF(LL1I-2.LT.1) GO TO 180
AMATRX(JJ1I,JJI2,1)= AMATRX(JJ1I-1,JJI2-1,9)
175 CONTINUE
IF(LL1I-2.LT.1) GO TO 180
AMATRX(JJ1I,JJI2,4)= AMATRX(JJ1I-1,JJI2,6)
180 CONTINUE
LL2I=LL20-N2
JJ12= (LL2I+1)/2
IF(LL2I.LT.L2PAR) GO TO 199
DO 184 K=5,6
IF(LL1I.EQ.LL10+N2-2.AND.K.EQ.6) GO TO 183
CALL VMATRIX(LL1I,LL2I,K)
GO TO 184
183 CONTINUE
AMATRIX(JJI1,JJI2,6) = AMATRIX(JJI1+1,JJI2,4)
184 CONTINUE
DO 189 K=1,3
CALL VMATRIX(LL1I,LL2I,K)
189 CONTINUE
AMATRIX(JJI1,JJI2,8) = AMATRIX(JJI1,JJI2+1,2)
AMATRIX(JJI1,JJI2,9) = AMATRIX(JJI1+1,JJI2+1,1)
IF(LL1I-2.LT.1) GO TO 199
AMATRIX(JJI1,JJI2,4) = AMATRIX(JJI1-1,JJI2,6)
AMATRIX(JJI1,JJI2,7) = AMATRIX(JJI1-1,JJI2+1,3)
C*********** 199
199 CONTINUE
LL1FMX=LL10+2*N
LL2FMX= LL20+2*N
LL1FMN= LL10-2*N
IF(LL1FMN.LT.L1PAR) GO TO 201
LL11=LL1FMN+2
200 CONTINUE
LL2FMN=LL20-2*N
IF(LL2FMN.LT.L2PAR) GO TO 202
LL22= LL2FMN+2
GO TO 205
201 CONTINUE
LL1FMN= L1PAR
LL11= L1PAR
GO TO 200
202 CONTINUE
LL2FMN=L2PAR
LL22= L2PAR
205 CONTINUE
LL22F= LL2FMX-2
IF(LL2FMX.LE.LL2MAX) GO TO 206
LL2FMX= LL2MAX
LL22F= LL2MAX
206 CONTINUE
DO 249 L2=LL22,LL22F,2
LL11F= LL1FMX-2
\[EB2 = \sqrt{EB - FLOAT(L2-1) \times 2} \]

\[LLMAX1 = INT(EB2) + 1 \]

\[
\text{IF}(LLMAX1 \geq LL1MAX) \quad LLMAX1 = LL1MAX \\
\text{IF}(LL1FMX \geq LLMAX1) \quad LL1F = LLMAX1 \\
\]

\[
\text{DO 248} \quad L1 = LL11, LL11F, 2 \quad \text{K1} = 1 \\
\text{K2} = 0 \\
L22 = L2 - 2 \\
L11 = L1 - 2 \\
\text{IF}(L2, LE, L2PAR) \quad L22 = L2PAR \\
\text{IF}(L1, LE, L1PAR) \quad L11 = L1PAR \\
\text{IF}(L2, LE, L2PAR) \quad K1 = 4 \\
\text{IF}(L1, LE, L1PAR) \quad K2 = 1 \\
K = K1 \\
J1 = (L1+1)/2 \\
J2 = (L2+1)/2 \\
AK = AKSUM0(J1, J2) \\
L2P2 = L2 + 2 \\
\text{DO 219} \quad L2 = L22, L2P2, 2 \\
K = K+K2 \\
L1P2 = L1 + 2 \\
\text{DO 218} \quad L1 = L11, L1P2, 2 \\
JJ1 = (L1+1)/2 \\
JJ2 = (L2+1)/2 \\
AKSUM1(JJ1, JJ2) = AK*AMATRX(J1, J2, K) + AKSUM1(JJ1, JJ2) \\
K = K+1 \\
218 \text{ CONTINUE} \\
219 \text{ CONTINUE} \\
C********** \text{ PRINT OF AMATRX} \\
\text{IF}(N, LT, IPRT3) \quad \text{GO TO} 248 \\
L01 = L1 - 1 \\
L02 = L2 - 1 \\
\text{IF}(L2, GE, LL22F-1, AND, L20+2*N, LE, LLMAX+2) \quad \text{GO TO} 220 \\
\text{IF}(L1, GE, LL11F-1, AND, LL10+2*N, LE, LLMAX+2) \quad \text{GO TO} 220 \\
\text{IF}(L2, EQ, LL22, AND, LL20-2*N, GE, L2PAR-2) \quad \text{GO TO} 220 \\
\text{IF}(L1, EQ, LL11, AND, LL10-2*N, GE, L1PAR-2) \quad \text{GO TO} 220 \\
\]

\[\text{GO TO} 248 \]

\[\text{220 \text{ CONTINUE}} \]

\[\text{WRITE}(6, 906) \quad L01, L02 \]

\[906 \text{ FORMAT}(1H0, 5X, 15HCHECK OF AMATRX, 5X, 3HL1=I2, 2X, 3HL2=I2) \]

\[\text{WRITE}(6, 907) \quad (AMATRX(J1, J2, J), J=1, 9) \]

\[907 \text{ FORMAT}(1H, 2X, 9E13.5) \]

\[248 \text{ CONTINUE} \]

\[249 \text{ CONTINUE} \]

\[C********** \quad 250 \]
LL1FMX = LL10 + 2 * N
TOTPW = 0.0
DO 299 LL2F = LL2FMN, LL2FMX, 2
LL1F = LL1FMX
EB2 = SQRT(E8 - FLOAT(LL2F - 1) ** 2)
LLMAX1 = INT(EB2) + 1
IF(LLMAX1.GE.LL1MAX) LLMAX1 = LL1MAX
IF(LL1FMX.GE.LLMAX1) LL1F = LLMAX1
DO 298 LL1F = LL1FMN, LL1F, 2
JJF1 = (LL1F + 1) / 2
JJF2 = (LL2F + 1) / 2
AKSUM1(JJF1, JJF2) = AKSUM1(JJF1, JJF2) / FLOAT(N)
IF(MOD(N, 2) .NE. 0) GO TO 294
AKSUM1(JJF1, JJF2) = -4.0 * AKSUM1(JJF1, JJF2)
PEVN(JJF1, JJF2) = PEVN(JJF1, JJF2) + AKSUM1(JJF1, JJF2)
PWAVE(JJF1, JJF2) = Podd(JJF1, JJF2) ** 2 * 4.0 + PEVN(JJF1, JJF2) ** 2
GO TO 295
294 CONTINUE
Podd(JJF1, JJF2) = Podd(JJF1, JJF2) + AKSUM1(JJF1, JJF2)
PWAVE(JJF1, JJF2) = Podd(JJF1, JJF2) ** 2 * 4.0 + PEVN(JJF1, JJF2) ** 2
295 CONTINUE
P = PWAVE(JJF1, JJF2)
L01 = LL1F - 1
L02 = LL2F - 1
C********** PRINT OF PWAVE
IF(N.LE.NPRINT) GO TO 297
IF(P.GE.0.1E-4) GO TO 296
IF(LL1F.EQ.LL1FMN) GO TO 296
IF(LL1F.GT.LL1FMN - 2) GO TO 296
GO TO 297
296 CONTINUE
PCORCT = P
WRITE(6, 902) N, L01, L02, P, PCORCT, Podd(JJF1, JJF2), AKSUM1(JJF1, JJF2)
297 CONTINUE
TOTPW = TOTPW + P
AKSUMO(JJF1, JJF2) = AKSUM1(JJF1, JJF2)
AKSUM1(JJF1, JJF2) = 0.0
298 CONTINUE
299 CONTINUE
PE1 = PWAVE(JEL1, JEL2)
PE10 = ABS((PE1 - PE0) / PE1)
IF(IPRT1.EQ.1) GO TO 3904
WRITE(6, 904) N, TOTPW, ICLOCK, NCOUNT, TOTPC
904 FORMAT(1H0/2X, 8H**** N=12, 5X, 13HSUM OF PWAVE=E13.5,
15X, 7HICLOCK=110, 3HSEC, 5X, 7HNCOUNT=110, 5X, 6HTOTPC=E13.5)
CONTINUE
IF(AOS(TOPW-1.0))LT.O,1E-3.AND.PE1.LT.0.1E-3) GO TO 300
IF(N.EQ.NMAX) GO TO 300
N=N+1
PE0= PE1
GC TO 100
300 CONTINUE
C********** ELASTIC
DELS1= PEVN(JEL1,JEL2)
DELS2= -2.0*PODD(JFL1,JEL2)
C********** FINAL PRINT
MPRINT=O
L1PARO= MOD(L10,2)+1
301 CONTINUE
WRITE(6,901) BIMP,L1C,L20,EKIN,ETOT,LLMAX,EB,VC,VALPHA,VC6,VA,VB
WRITE(6,910) N,TOPW,NCLOCK,TOTPC
910 FORMAT(1H5,5X,5HMAX=I2,2X,6HTOTPW=E13.5,2X,6HNCLOCK=I5,3HSEC,1
1 2X,6HTOTPC=E13.5//3X,2HLZ)
IMN= LL2FMN
IMX=LL2F MX
IF(MOD(LL2FMX-L2PAR,2).NE.0) IMX= LL2FMX-1
DO 319 I=IMN,IMX,2
 LL2F= IMX+IMN-I
 J2= (LL2F+1)/2
 LL11F= LL1FMX
 EB2= SQRT(EB- FLOAT(LL2F-1)**2)
 LLMAX1= INT(EB2)+1
 IF(LLMAX1.GE.LL1MAX) LLMAX1= LL1MAX
 IF(LL1FMX.GE.LLMAX1) LL11F=LLMAX1
 J1MX= (LL11F+1)/2
 J1MX1= J1MX
 J1MN= (L1PAR+1)/2
 IF(J1MX-J1MN.GT.15) J1MX= J1MN+15
 L0Z=LL2F-1
 WRITE(6,911) L0Z,(PWA VE(J1,J2),J1=J1MN,J1MX)
911 FORMAT(1HO/3X,I2,16(1PF6.3,1X))
IF(MPRINT.EQ.1) GO TO 319
LMIN2= MIN0(L20,L0Z)
CL10= FLOAT(2*LMIN2+1)
DO 318 J1= J1MN,J1MX1
 L01= 2*J1-3+L1PARO
 LMIN1= MIN0(L10,L01)
 CL1= CL10* FLOAT(2*LMIN1+1)
 P= PWAVE(J1,J2)
PCCRCT= CL1/CL0*P
TOTPC= TOTPC+PCORCT
P\text{WAVE}(J1, J2)= PCORCT
318 CONTINUE
319 CONTINUE
LABCSA(1) = L1PAR-1
DO 320 I=2,16
LABCSA(1)=LABCSA(1)+(I-1)*2
320 CONTINUE
WRITE(6,912) (LABCSA(J),J=1,16)
912 FORMAT(1H0,4X,16(3X,I2,2X),3H L1)
IF(MPRINT.EQ.1) GO TO 9906
C*********** PRINT OF PCORCT WITH PElastic modified
P\text{WAVE}(JEL1,JEL2)= 1.0-TOTPC+P\text{WAVE}(JEL1,JEL2)
IF(IPRT4.EQ.1) GO TO 1000
MPRINT=1
GO TO 301
9906 CONTINUE
WRITE(6,9909) TOTPC
9909 FORMAT(1H0/2X,35H**********PCORCT WITH ELASTIC MODIFIED,5X,
1 7H(TOTPC=E13.5,2H)/)
1000 CONTINUE
P\text{WAVE}(JEL1,JEL2)= P\text{WAVE}(JEL1,JEL2)-1.0
WRITE(6,9911) DELST1,DELST2
9911 FORMAT(1H0/1X,28H******** FOR ELASTIC SCATTERING,3X,3HD1=E13.5,
1 2X,3HD2=E13.5)
RETURN
END

*DECK VMAT
SUBROUTINE VMAT\text{R}(LL1,LL2,K)
COMMON /MV1/ AMAT\text{R}(20,20,9)
COMMON /MV2/ VBB, VAA, BROT, ETOT, BRC, VVALP
COMMON /CMVR1/ VC, VALPHA, VC6, BIMP, EIJ
COMMON /MV3/ NCOUNT
COMMON /CV1/ ABCC(40,40,9)
JJ1= (LL1+1)/2
JJ2= (LL2+1)/2
L1J= LL1-1
L2J= LL2-1
IF(K.GT.3) GO TO 1011
L2I= L2J-2
IF(L2I.LT.0) GO TO 1510
GO TO 1100
1011 IF(K.GT.6) GO TO 1012
L21 = L2J
GC TO 1100

1012 L2I = L2J+2
1100 CONTINUE
IF(MOD(K,3) .NE. 1) GO TO 1111
L1I = L1J-2
IF(L1I.LT.0) GO TO 1510
GO TO 1200

1111 IF(MOD(K,3) .NE. 2) GO TO 1112
L1I = L1J
GO TO 1200

1112 L1I = L1J+2
1200 CONTINUE
ABC = ABCC(LL1,LL2,K)
IF(ABC .NE. 0.0) GO TO 1299

C = FLOAT((2*L1I+1)*(2*L2I+1)*(2*L1J+1)*(2*L2J+1))**0.25 *CSIGN
1212 CONTINUE
B = VBB*CC1*CC2
1213 CONTINUE
A = 0.0
IF(L2I .NE. L2J) GO TO 1215
A = VAA*CC1/ SQRT(FLOAT(2*L2I+1))
IF(MOD(L2I,2) .NE. 0) A = -A
1215 IF(L1I .NE. L1J) GO TO 1219
AA = VAA*CC2/ SQRT(FLOAT(2*L1I+1))
IF(MOD(L1I,2) .NE. 0) AA = -AA
A = A+AA

1219 CONTINUE
ABC = C*(B+A)
ABCC(LL1,LL2,K) = ABC
1299 CONTINUE

wi = BROT*FLOAT(L1I*(L1I+1)+L2I*(L2I+1))
wj = BROT*FLOAT(L1J*(L1J+1)+L2J*(L2J+1))
wiJ = ABS(wi-wj)
EI = ETOT-wi
EJ = ETOT-wj
IF(EI.LE.0.0 .OR. EJ.LE.0.0) GO TO 1510
EIJ = 0.5*(EI+EJ)
CALL ROOT(RE)
BRC = 1.0 - (BIMP / RC)**2 + VC6 / EIJ / RC**6
EIJL = EIJ**2

IF(K.EQ.5) GO TO 1500
IF(L11.EQ.L2J .AND. K.EQ.3) GO TO 1500
IF(L11.EQ.L2J .AND. K.EQ.7) GO TO 1500
ATJ = VVALP* SQRT(EIJL) / WIJ
EW = EIJL / WIJ
DBALPH = EW / AIJ
APAI = 1.570796327 / AIJ
F = EXP(-APAI)
FAIJ = 2.0*APAI*F/(1.0-F+F)
AAA = ABC*DBALPH*FAIJ

C*** 999 CHECK PRINT
999 CONTINUE
1498 CONTINUE
NCOUNT = NCOUNT + 1
1499 CONTINUE
AMATRX(JJ, JJ2, K) = AAA
RETURN
1500 CONTINUE
AAA = ABC / VVALP* SQRT(EIJL)
GO TO 1498
1510 CONTINUE
AAA = 0.0
GO TO 1499
END

SUBROUTINE ROOT(RC)
C***** REVISED 6/26/74
COMMON /CMVR/ VC, VALPHA, VC6, BIMP, EKIN
RMIN = 1.12
RRO = ALOG(VC / EKIN) / VALPHA
IF(RRO .GE. 4.1) RRO = 4.1
N = 1
3099 CONTINUE
RR = RRO
3100 CONTINUE
RL = EKIN*BIMP**2 / RR**2
V = VC* EXP(-VALPHA*RR)
VL = -VALPHA*V
IF(VC6 .EQ. 0.0) GO TO 3101
VR = VC6 / RR**6
V = V-VR
VL = VL+6.0*VR/RR
3101 CONTINUE
F = (V+RL-EKin)/(2.0*RL/RR-V1)
IF(ABS(F/RR).LT.0.1E-5) GO TO 3199
IF(N.GE.100) GO TO 3299
RR= RR+F
IF(RR.LT.RMIN) GO TO 3900
N=N+1
GO TO 3100
3199 CONTINUE
RC= RR
RETURN
3299 CONTINUE
WRITE(6,998) RR,F,RR0
998 FORMAT(1HO//5X,14ERROR N GT 100,3X,3HR=FL13.5,3X,2E13.5//)
RR=RR0
GO TO 3199
3900 CONTINUE
RRG= 0.5*(RR0+RMIN)
GO TO 3099
END

*DECK CG20
FUNCTION CG20(J1,J2)
IF(J2.EQ.J1+2.0.OR.J2.EQ.J1-2) GO TO 8001
IF(J2.EQ.J1) GO TO 8002
C= 0.0
GO TO 8100
8001 CONTINUE
IF(J2.EQ.J1+2) J=J1
IF(J2.EQ.J1-2) J= J2
X1= FLOAT(J+2)/FLOAT(2*J+5)
X2= FLOAT(J+1)/FLOAT(2*J+3)
X3= 1.0/FLOAT(2*J+1)
C= SQRT(1.5*X1*X2*X3)
GO TO 8099
8002 CONTINUE
J= J1
X1= FLOAT(J+1)/FLOAT(2*J+3)
X2= FLOAT(J)/FLOAT(2*J+1)
X3= 1.0/FLOAT(2*J-1)
C= - SQRT(X1*X2*X3)
8099 IF(MOD(J,2).NE.0) C= -C
8100 CG20= C
RETURN
END
REFERENCES

Figure 1.- Variation of rotational temperature depending on specified values for the potential parameters.
Figure 2.- Temperature and distribution functions: Complete equilibrium initial conditions.
Figure 3.- Translational and rotational distribution functions: Complete equilibrium initial conditions.

(a) $t/\tau = 15$
Figure 3.- Continued.

(b) $t/\tau = 20$

$M.C.\text{ Simulation}$

Theoretical
(c) Mean value.

Figure 3.- Concluded.
Figure 4. - Temperature and distribution functions: Equipartition initial conditions.
Figure 5.- Translational and distribution functions: Equipartition initial conditions.
Figure 5.- Continued.

(b) $t/\tau = 35$

Figure 5.- Continued.
Figure 5. Concluded.

(c) Mean value.
Figure 6. - Temperature and distribution functions: Nonequipartition initial conditions.
Figure 7.- Translational and rotational distribution functions:
Nonequipartition initial conditions.
Figure 7.- Continued.

(b) $t/\tau = 20$

Figure 7.- Continued.
M. C. Simulation

(c) Mean value end.

Figure 7.- Concluded.
"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546