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CLASSIFICATION OF MULTISPECTRAL IMAGE DATA BY
EXTRACTION AND CLASSIFICATION OF HOMOGENEOUS OBJECTS*

R.L. Kettlig and D.A. Landgrebe

ABSTRACT

A method of classification of digi-
tized multispectral image data is
described. It Is designed to exploit a
particular type of dependence between
adjacent states of nature that s
characteristic of the data. The advan-
tages of this, as opposed to the
conventlional "per point" approach, are
greater accuracy and efficlency, and the
results are in a more desirable form for
most purposes. Experimental results
from both alrcraft - and satellite data
are Included.

I. [INTRODUCTION

An important subject before the engineering and
scientiflic community at the present time is the processing
of scenes which represent tracts of the earth's surface as
viewed from above. A typlcal scene may consist primarily of
regular and/or irregular reglons arranged in a patchwork
manner, each containing one "class" of surface cover type.
These homogeneous reglons are the “cbjects" in the scene. A
basic processing goal iIs to locate the objects, (identify
(classify) them, and produce tabulated results and/or a
type-map" of the scene. As 1in other Image processing
applications, the 1locations and spatial features (size,
shape, orlientation) of objects are revealed by changes in
average spectral properties that occur at boundaries, But

* This work was supported by NASA through Grant NGL 15-005-112
and Contract NAS 9-14016.
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uniike most other applications, these spatial features often
enable anliy a raough categorization of the object. Therefore
cTassification Is more often based on its spectral features
using statistical pattern recognition techniques, a task for
which the digital- computer Is well adapted.

Computer classification of multi-spectral scanner (MSS)
data collected over a region Is typlcally done by applying a
“simple symmetric" decision rule to each resolution element
(plxel). This means that each plixel is classified
individually on the basis of ({ts spectral measurements
alone. A baslic premlise of this technique 1is that the
abjects of Interest are Targe compared to the size of 3
pixel, Otherwlise a large proportion of pixels would be
composites of two or more classes, making statistical

pattern classiflication unreliable; i.e. the prespecifled

categorlies would be Inadequate to describe the actual states
of nature. Since the sampling interval is usually
camparable to the pixel slize (to preserve system
resolution), it follows that each object Is represented by
an array of pixels. This suggests a statistical dependence
between consecutive states of nature, which the simple
symmetric classifier falls to exploit. To reflect this
property, we shall refer to simple symmetric classification
as "no-memory" classification.

One method for dealing with dependent states is to
apply the principles of compound decision theory or
sequential compound decision theory. Abend |1| points out
that a sequential procedure can be Iimplemented fairly
efficiently when the states form a low-order Markov chain.
However the prospect Is considerably less attractive when
they form a Markov mesh, which 1Is a more suitable model for
two-dimensional scenes. Furthermore, estimation of the
state transition probabilities could be another significant
obstacle to implementation of such a procedure.

The compound decision formulation Is a powerful
approach for handling very general types of dependence.
This suggests that perhaps by tailoring an approach more
directly to the problem at hand, one can obtain similar
results with considerable simplification. A distinctive

characteristic of the spatlial dependence in MSS data is.

“redundance"; l.e. the probability of transition from state
] to state j Is much greater If j=i than if j#l, because the
sampling interval is generally smaller than the slze of an
object. This suggests the use of an "Yimage partitioninz"
transformation to dellneate the arrays of statistically
similar pixels before classifying them, Since each
homogeneous array represents a statistical “sample" (a set
of observations from a common population), a “sample
classifler could then be used to classify the objects. In
this way, the classificatlion of each pixel in the sample is
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a result of the spectral propertlies of its nelghbors as well
as Its own. Thus Its “context" In the scene is used to
provtde better classiflication. The acronym ECHO (extraction
and ciassification of homogeneous objects) designates this
general approach.

A characteristic of both no-memory and compound
decision technigques 1Is that the number of classifications
which must bz performed 1Iis much 1larger than the actual
number of cbjects in the scene. When each classification
requires a large . amount of computation, even the no-memory
classifier can be relatively slow. An ECHO technique would
substantially reduce the number of classifications,
resulting in a potential increase In speed (decrease in
cost).

The recent 1literature contains numerous references to
image partitioning algorithms. Robertson |2]| divides them
into two maln categories. “Boundary seeking' algorithms
characteristically attempt to exploit object contrast., Two
of- these have been implemented with MSS data |[3|, but they
are incompatible with sample classifliers due mainly to their
failure to produce boundaries that always close on
themselves. The other category can be called "“object
seeking" algorithms, which characteristically exploit the
internal regularity (homogeneity) of the objects. As the
name implies, an object seeking algorithm always produces
well~-defined samples (and thus closed boundaries as well).
There are two opposite approaches to object seeking, which
we shall call conjunctive and disjunctive. A conjunctive
algorithm begins with a very fine partition and simplifies
it by progressively merging adjacent elements together that
are found to be similar according to certalin statistical
criteria |4,5]. A disjunctive algorithm begins with a very
simplie partition and subdivides it until each element
satisfies a criterion of homogenelty. For example,
Robertson's algorithm |2,6] iIs based on the premise that if
a reglion contalns a boundary, splitting the region
arbitrarily will usually produce two subregions with
significantly different statistical characteristics.

We combined Rodd's 151 conjunctive partitioning
algorithm with a minimum distance sample classifier and
observed an Improvement In classiflication accuracy over
conventional no-memory classification, but processing time
wis increased |7l. Gupta and Wintz |8| added a test of
second order statistics to Rodd's first order test, but
obtalned essentlally the same results as the first order
test at greater cost In processing time. Robertson 2,61
implemented a disjunctive partitioning algorithm with the
same minimum distance classifler, He obtalned about the
same classiflcatlon accuracy as conventlonal no-memory
classiflication with an order of magnlitude Increase in
processing time.
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The current investigation 1Is devoted to further
development and testing of the conjunctive approach. Major
changes In both the classiflcation and partitioning
strategles have resulted In significant Improvements in
accuracy, stability, and speed.

i1, SAMPLE CLASSIFICATION

A typlical scene 1is assumed to consist primarily of
objects whose boundaries form a partition of the scene.
Each object 1In the partition belongs to one of K classes.
Let W; denote the event that an object belongs to class i.
As previously indicated, we ignore any statistical
dependence of this event on the size, shape, and locatlon of
the object. We rely Instead on its spectral features. Each
pixel in an object is a q-dimensional random varlable, where
q denotes the number of spectral measurements per pixel. It
is commonly assumed that the g-variate, marginal,
probability density function (pdf) of a pixel, X, depends
only on the class of the object containing X. This is due
to the homogeneity of the types of objects typically
encountered in remote sensing applications. p(x|Wy), x €RY,
denotes this class-conditirnal density function for the ith
class. Another common assumptlion is that the classes can be
defined such that p(xiW;) is approximately multi-variate
normal (MVN); i.e.

- -k
p(xIWs) = N(x;M{,Cy) e (12=Cy | exp((;—ﬂi)tgii(a-mi)))

for some q-dimensional positive-definite, covariance matrix
C4y and some mean vector Me RY . Parametri. estimates of
tkese density functions are obtained by estimating My and C
from sets (samples) of training data supplied for eacn
class.

Two pixels in spatial proximity to one-another are
unconditionally correlated, with the degree of correlation
decreasing as the distance between them increases. Much of
this correlation is attributable to the effect of deoendent
states mentioned in the previous section, which 1Is the
effect we wish to exploit. For simplicity we shall ignore
other sources of correlacion. Thus we assume
class<conditional independence (as does the compound
decision approach).

If X=(X,,...,X,) € R? represents a set of pixels in
some object, then this set constitutes a “sample" from a
population characterized by one of the class-conditional
pdf's. A sample classifier Is simply & strategy for
decliding which »one, based on the n observations. One
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popular approach Is the "minimum distance (MD) strategy"
I191. In MD classification, the n data vectors are used to
estimate the pdf of the population, and the class Is chosen
whose pdf |Is closest to this estimate as measured by some
appropriately defined "distance measure” on the set of
dens ity functions, A popular dlstance measure Is the
Bhattacharyya distance, which for N(l'Mi'ci) and N(L;M,C) is
given by:

Leg;+ ¢)/212 (1)

Ic,T ICI

( In ¢ tr((Cp+ C)7TeMy-MI (M -M)T) )

A drawback of the MD approach is that it falls for small n,
because the density estimate becomes degenerate.

Qur prefarasnce is the maximum likellhood (ML) strategy
which assigns X to class | If

1n p(Xlwi) = max In p(Xij)
J

Due to the assumption of class-conditional independence,
these quantities can be computed as:

-1 - te-1
In p(X|W;) = -% tr(C;"s,) ¢+ Migi 51 -% n(M;CI M, + Inl2nC. )

(2)
n ) n t
s = I X S. = I X X
1 fm1 ~2 jmg 1

Of course: M= 51/" and C= §2/n - M_Mt.

Formula (2) is much faster to compute that formula (1) for
eacn (§,,S,) pair, once the non-data-dependent constants
 have been initialized. Thus the ML strategy is
computationally efficient. Another important property is
that it does pot fall for small n. On theoretical grounds,
for the idealized conditions we have stated, it is the
optimum strategy (for minimum error rate) when the a-priori
class probabilities are equal. Also, the Chernoff bound for
ML no-memory classification (n=1) can be extended to provide
an error bound for ML sample classiflcation that is a sum of
exponentially decreasing functions of the sample size.
Experimentally the two strategles appear about equal in
terms of accuracy, with the ML strategy possibly having a
slight advantage.

As a matter of theoretical interest, it can be shown
that use of the ML strategy glves the same results (with
less computatlion) as an MD strategy using one of the
Kullback=-Lelbler numbers, if |C| > 0. (¢f iCl = 0, the K-L
number Is undefined, but the ML strategy is still valid.)
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111, IMAGE PARTITICNING

The basic approach that we have adopted (due to Rodd
151) consists of two '"levels" of tests. Initially the
pixels are divided, by a rectangular grid, into small groups
of four (for example). At the first level of testing, each
group becomes a unit called a '"ceil", provided that it
satisfles a relatively mild criterion of homogeneity. Those
groups that are rejected are assumed to overlap a boundary
and their individual pixels are classified by the no-memory
method., These groups are referred to as "singular" cells.
At this level It is usually desirable to maintain a fairly
low rejection rate to reflect the relatively high a=-priori
probability of a group being homogeneous. The goal at this
level is essentially the same as the goal of the boundary
ceeking techniques mentioned previously; i.e. to detect as
many pixels as possible that 1le along boundaries without
requiring that the ones detected form closed contours or
even be connected.

At the second level, an individual cell is compared to
an adjacent "field", which is simply a group of one or more
connected cells that have previously been merged. 1f the
two samples appear statistically similar by some appropriate
criterion, then they too are merged. Otherwise the cell is
compared to another adjacent field or beccrmes a new field
itself. By successively "annexing" adjacent cells, each
field expands until it reaches its natural boundaries, where
the rejection rate abruptly Iincreases, thereby halting
further expansion. The fileld is then classified by a sample
c}assifler, and the classification is assigned to eoll lts
pixels.

This approach has the important advantage that it can
be implemented ‘“sequentiallyY; i.e. raw data need be
accessed only once and in the same order that it is stored
on tape. This 1is important for practical, rather than
theoretical, considerations. The flow chart in Figure 1
indicates how it can be done. 1In this chart, the top of the
scene is referred to as north, and the general processing
sequence is from north to south,

Many modificatlions to the basic flow chart are, of
course, possibie. One of the modifications we use involves
comparing a cell to as many as three different fieids at
once (seeking the best "match"), Instead of cne-at-a-time.

e
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Let X = (xl,...,x ) represent the plixels in a group of
one or more cells wﬂlch have been merged by successive
annexations. Let Y =_(11,....1m) represent the pixels In an
adjacent, non-singular "cell, Since both X and Y have
satisfied certain criteria of homogeneity, we assume that
each is a sample from a MVN population. Let f and g
represent the corresponding density functions. It is
desired to test the (null) hypotheslis that f = g. This Is a
composite hypothesis, since It does not specify f and g.
The "1ikelihood ratio procedure”™ [10]| provides an effective
statistic for testing this hypotheslis. Van Trees |11]
refers to it as the "generallized 1lkellhood ratio%. Let

Ho(x,y) = {p(x,ylf,g): g=f, feQ }
Hl(x,y) = {(p(x,ylf,g): feQ , gefl }
where p(x,y|f,g) is the conditional joint density of X and Y
evaluated at xeR®™ and yeR™, and 8 is a set of MVN
density functions, The assumptlion of <class-conditional
independence enables us to express the joint density of
pixels as the product of thelr marginal densities. Thus:
pix,yif,g) = p(xIf) p(ylg)

n m

« (I f{x,))C T g(y,))
i=1 1 ja1 !

The generalized likelihood ratio is given by:

sup H_ (X,Y) max p(X|f) p(Y|f)
- 0 = feQ
sup HI(X,Y) max p(X|f) max p(Ylg)
feq g€N

For an "unsupervised" approach to partig;oning we take fI to
be the following set of functions of X €R :

Q = {N(L:M,Q): M eRS, C » symmetric and positive-definite}

Anderson |12]| shows that:

A = Al.AZ (3)
where
A, = alisnY? (4)

L

N
A, = A/l Lay/ml /1A/NG) (5)

e X8 S e
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N = p+m

n - m
X = Xy/n X -lzllilm

I=1
n - — m - -t
AL " zl(xi-x)(xi-x)t Ay g 21(11'1“11'1’

(In order to assure noa-singular matrices with probability
one, we need n > q, m > q. |12])

A=Ay + Ay

M = (nX + ﬁz)/N

n -— -
By -1 (X MIXg=MIE = Ag + n(X-MD(X-M) "
=1

m — -
By = L (LML) € o= Ay ¢ m(X) (Xt ‘

B = Bx+ B8y = A+ m(X-Y(XY°
N

Anderson also suggests modifying A by replacing the number
of pixels Iin each sample by the number of degrees of
freedom; i.e. replace n by n-1l, m by m-1, and N by N-2 in
formulas (4) and (5). In elither case, the statistics are
invariant with respect to a linear transformation on the
data vectors. It follows that thelr distributions under the
null hypothesis are independent of the actual MVN populaticn
from which the samples are drawn.

Therefore we can construct a signiflcance test of the
null hypothesis. A, and A, are independent under the null
hypothesis 12|, so the procedure we use is to test A, at
significance level =, and A, at level «, , and reject the
null hypothesis if elther test produces a rejection.
(Cooley and Lohnes |13]| give transformations of A, anc A
(the modified versions) with F-distributions under the nulf
hypothesis.) The overall significance 1level is then « =
1-(1-=; )(1-% ). Essentially, A, tests the hypothesis of
equal covarlance matrices (seconé order statistics), and A,
tests the hypothesis of equal mean vectors (first-order
statlstlcs).

o e i B it o
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These multivariate (MV) tests have the same weakness as
MD classiflcation, namely the problem of estimating a MVN
density from a relatively small sample (sometimes known as
the "dimensionality" problem). This led to the constraint
m>q, a condition which is often not met. Even when the
condition Is met, poor estimates can result, leading to
decislion errors. One approach to thls problem is to reduce
q by deleting features. It Is well-known, for example, that
a subset of features used to trailn a classifier from small
training samples can sometimes produce better classification
results than the full set. With thils approach, however, one
Is faced with the problem of choosing the subset.

Another approach is to base the decision on the gq,
univariate, marginal distributions; l.e. simp:y consider the
data in one spectral channel at a time. This has been
termed a "multiple univariate" (MUV) approach. In each
channel we test the univariate hypothesis that the means and
variances of the two samples are equal. Since the
boundaries may be strong in some spectral channels and weak
in others, we accept the null hypothesis only Iif the
univariate hypothesis 1Is accepted in all q channels.
Beslides avoiding the dimensionality problem, the MUV
procedure requires le-~- computation and simpler distribution
theory. However, it must be pointed out that in sltuations
where class separability is primarlily a multivariate effect,
the MV procedure may be more advantageous.

For a “"supervised" approach to partitioning we take Q
to be:

Q = {p(xlwi): i=1,...,K}

This greatly simplifles each hypotheéls, but paradoxically
the resultant test criterion is much more complicated:

m?x p(Xlwi) p(YlWi) (6)
A =
m?x p(Xlwi) max p(Yle)
J

This 1is a multivariate statistic without the constraint
m > q that was necessary in the unsupervised mode. However
the maxima in formula (6) cannot be expressed in a simple
analytic form as in (3). They can only be obtained by
exhaustive search. Furthermore, the distribution of (6) is
unknown under elther hypothesls, because It depends on the
true classes of X and Y. But in return we galn a statistic
which should be more "sensitive" to the presence or absence
of a boundary. This should produce better performance and
make the speciflcation of a decision threshold less
critical. 1In fact, the experimental results Indlcate that
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the threshold need not be a function of n, the current slze
of sample X, In order to obtaln good results. Furthermore,
the results tend to be falrly stalle over several orders of
magnitude of threshold vartation. Thus we will find it
convenient to represent thc decision threshold as

T = 107%, tyo0

In other words, we reject the null hypothesis If A < T or
equivalently =log A > t. Otherwise we accept it.
Experimentally we investigate the effect of different values
of t on performance.

Cell Selection Criterion

“Cell selection” refers to the Level-l test which is
used to detect cells that overlap boundaries. Such cells
frequently exhibit abnormally large variances. Thus, in the
unsupervised mode, we say that a cell is singular if the
ratio of the square root of the sample variance to the
sample mean falls above some threshold, ¢, in any channel.

in the superviseda mode we call a cell singular if
Qj(Y) > ¢, where:

-1 t ta-1 ta-1

where j is such that:

In p(Y|Wy) = m?x Tn p(Y|Wy) = m?x ~%(m-1n|2ngil + Q40Y))

The decislon rule is to accept the hypothesis that Y s
homogeneous f Q;71Y) < ¢, where ¢ is a prespecified
threshold., Otherwise the hypothesis 1is rejected. This
criterion has the particular advantage that it tends to
reject not only inhomogeneous cells, but ‘'unrecognizable"
cells as well. (Unrecognizable cells are those which
represent spectral classes that the classifier has not bLeen
trained to recognize.) Another advantage of this criterion
is that its wuse of the log-likelihood function makes it
especially compatible with the supervised annexation
criterion and the ML sample classifier.

As a final note, the distribution function
P(Q,(Y) > clW.) Is chi-squared with mq degrees of freedom,
Thig can be uged to provide initial guidance in choosling c.

-
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IV. EXPERIMENTAL RESULTS

Two alrcraft and two LANDSAT-1 data sets, for which
large amounts of tralning and test data are avallable, were
classified by the following six methods:

1. Conventional ML No-Memory Classificatlion |1l4]

2. Supervised Cell Selection only (t=0); ML Sampie
Classificatlion

3. "Optimized® MUV Unsupervised Partiticning; ML Sample
Classificatlon

k. Supervised Partitioning (t=4); ML Sample Classiflcation

5. ML Sample Classification of Test Areas Only

6. MD (Bhattacharyya) Sample Classiflcation of Test Areas
Only |14]|

The cell size for #2-#4 was fixed at 2 x 2 pixels, which is
the minimum allowed in the unsupervised mode.

A qualitative assessment of the results Is provided by
Figures 2 and 3. Figure 2 (left slide) shows a section of
alrcraft Jdata that has been classifiad by method #1., Each
class has been assligned a gray level, and each pixel has
been displayed as the gray level assigned to its
classification. A great deal of "“classification nolse" is
readily appaerent. In contrast to this, Figure 2 (right
slde) shows the same section as classified by method #4.
The random errors have, for the rnost part, been eliminated.
This map is much closer to the desired "type-map" form of
output that is generally desired.

Figure 3 shows the centers o these two maps !n zreater
detall. Each class is represented by an assigned symbol and
each symbol represents one pixel. The four rectanguiar
areas are test areas designated as wc~ded pasture (displayed
as a Dblank). The diversity of symbols in the test areas
testifies to the Inadequacy of the no-memory method for
classifying this section, whereas most of the confusion Is
avoided by the ECHO technique.

The estimated probability of error for each method
gives an important quantitive measure of performance. It is
obtained as the ratio of the number of mlcclacsified pixels
in the test areas to the total number of pixels in the test
areas. Figure L shows results obtained for each of the four
data sets.* The results are about what one would expect.
lMetnod #1 consistentiy has the highest error rate because of
its lack of use of spatlial dependence. #2 uses some spatial
information and consistently coes somewhat better than #1.
#3 uses more spatlal information, which accounts for its
improvement over cell selection alone, and #4 does
consistently better than #3 because It uses rncre of the
available information in the partioning phase.

* Each data set contains different classes from the general
categorles: agriculture, firest, town, mining, and water.
Refer to reference 15 for details.
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#5 and #6 usually provide the best performance, because
they are glven more a-priorl information to begin with. One
reason for Including them here is to determine If either
provide: a distinct advantage over the other., On 3 of the 4
data secs, maximum likellhood sample classification achieved
lower error rates than the minimum Bhattacharyya distance
strategy. The differences are small however. This
justifies our use of the ML strategy In #2-#4, Another
reason for including them is that the performance of #5
provides a “goal" (but not . bound) for the performance of
#3 and #4; l.e. the nearness ¢ the performance to this goal
is an Indication of the effectiveness of the partitioning
process alcne,

Although #3 appears to be falrly close to #i§ in
general, [t must be polinted out that the "optimum"
combination of = and «, which achleves this performanrce is
somewhat unpredictable at this time. All that we can say of
a general nature Is that « tends to be effective at about
.005 and «, at a smaller vaﬁue such as .001 or G.

The results for the supervised mode, however, are much
more stable. Figure 5 shows only the results for t=4, which
are not always the optimum results, but thev are within 1%
of the optimum in all 4 cases. Figure 5 shows a typical
example of the effect >f t on classification error rate.

The results are not 2 sensitive function of the Level-1
threshold, c¢c. The values ¢=.25 (unsupervised mode) and
c=15q (supervised mode, 3 & q § 6) usually provided the
desired effect.

The main advantage of the unsupervised mode appears to
be speed, when classification complexity is reasonably high.
This is because the time saved by classifying pixels
collectively can more than compensate for the time required
to partition. For a LANDSAT-i data set classified with &
channels and 14 spectral ciasses, orocessor #3 required 22%
less CPU time than #1, in spite of the fact that the
classification subroutine in #1 is coded in assembler
language for peaxn efficiency. (It has been estinated that
this increases its efficiency by about 50%.) #> -=nd #4 are
just developmental versicns coded in FORTRAN. But for an
aircraft data set wi{th 6 channels and 17 spectral classes,
#4 required 26% less timc and #3 requlired 56% less time than
#1.

-
Pdals
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V. CONCLUSION |

We have successfully explolted the redundancy of states
that Is characteristic of sampled Iimagery of ground scenes
to achlieve better accuracy and reduce the number of actual
classifications required. The only training used is the
same as that required by a conventional maximum lixellhood,
no-memory classifler, i.e, estimates of the
class-conditional, marginal densities for a single pixel,
Thus we have not relled on speciflc spatial features,
tertural information (class-conditional spatial
correlation), or on the contextual information assoc!ated
with spatlal relationshlips of objects.
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Gray-Scale-Coded Classification Maps Produced by
Sample Classifier (right)

No-Memory Classifier (left)
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Figure 4 Classificatlion Perfarmance of Six Different *rthod,
Applied to Four Different Data Sets
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