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PREFACE TO THE STUDENT
^j
µ

1

Prerequisites	 This Case Study is the last component of the
LARSYS Educational Package. The presentation 	 rr

of material is based on the assumption that
you have mastered the instructional objectives
of the first five units of the sequence.

Instructional	 The analysis of a set of multispectral scannerT'	
Objectives	 data can be broken down into a sequence of

 steps. By the time you have finished studying
this volume and the recommended references, and
you have carried out a detailed analysis your-
self, you should be able to list the steps of
the analysis sequence in the proper order.7

Furthermore, for each step in the analysis
you should be able to do three things:

1) give a brief explanation of the signifi-
cance of the analysis step with respect
to the whole analysis sequence,

2) name and briefly describe any software
tools available to carry out the analysis

'	 step, and

3) apply the analysis principles to a spe-
cific problem by writing control cards,
running programs, and interpreting the
results of the LARSYS functions used
in the analysis sequence.

References Throughout this case study references will be
made to other written materials.	 The two most
commonly referenced sources are considered
part of this unit of instruction:	 LARSYS User's
Manual, edited by T. L. Phillips, an d Pattern
Recognition:	 A Basis for Remote Sensing Data:#
Analysis, by P. H. Swain	 LARS Information Note,

These references should be in your
site library.	 Be sure you have them available
before you begin the case study.	 See your

E

instructor if you need help locating them. .3
.

,g
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Student-	 While this case study attempts to summarize
n	 Instructor	 the experiences of a great many multispectral
_	 Interaction	 data analysts, there is no real substitute for

M	 talking to someone who is already familiar with
4

	

	 the use of the LARSYS programs. This is espe-
cially true when you begin carrying out the case
study analysis. You are encouraged to discuss
your progress periodically with your instructor.

Format	 Each section of the case study follows this
format: the instructional objectives are stated
in italics, followed by a discussion of the pur-
pose, philosophy, and analysis techniques asso-
ciated with that step in the data analysis se-
quence; then there is an example showing control
cards, computer output, and an interpretation
of the results; exercises are provided to test
your mastery of the section's instructional
objectives; information and directions are,pro-
vided to guide in the case study analysis.

The material is presented in this format so
that a person wishing to become adept in the
analysis of multispectral data (in particular,
LANDSAT data) using LARSYS can proceed through
this case study and learn what the analysis
steps are, why each step is important, how
each step is carried out, and gain practice in
using these analysis techniques.
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INTRODUCTION

Launch of the first Earth Resources Technology Satellite
(ERTS), now called LANDSAT, in July, 1972 provided a new perspec-
tive for remote sensing research. Scientists interested in com-
puter-aided analysis of multispectral scanner data had to devise
new techniques appropriate to the new data characteristics and
analysis problems.

The techniques described in this manual make use of the
LARSYS data processing system. LARSYS has been used for a number
of years as a tool in the analysis of multispectral scanner data
collected from aircraft altitudes. Analysts experienced with
LARSYS in that context have brought their experience to bear on
the development of techniques suitable for LANDSAT data.

The procedures used for analysis of multispectral data fall
into two categories: "supervised" approaches and "unsupervised"

I	 approaches. In a "supervised" approach, data points known to
contain specific cover types are used to "train" the classifica-

"`	 tion algorithm. If. the cover types of interest (call them infor-
mation classes) are spectrally distinct (have significantly dif-
ferent reflectance characteristics)® the classifier will perform
well. If the information classes are spectrally similar, the
classifier will have difficulty distinguishing between them. For
more information about ` a "supervised" approach, see Guide to Multi-
spectral Data Analysis Using LARSYS by J. C. Lindenla

On the other hand, in an `unsupervised" approach, spectrally
distinct classes are determined without reference to the cover
types present on the ground. The spectrally distinct classes are
found by a clustering algorithm and are called cluster classes.
The cluster classes are then used to train the classification al-
gorithm. After the data has been classified, the analyst tries

3i	 to associate the cluster classes with cover types of interest.
If the relationship between cluster classes and information classes
is one-to-one (Figure la), or if several cluster classes are asso-
ciated with the same information class (Figure lb), the procedure
will be considered successful. If one cluster class is associated
with two or more cover types of interest (Figure lc), it is likely

`	 that these cover types are spectrally similar and cannot be differ-
entiated using this data set.

The procedure described in this manual combines some techniques
from both the supervised and unsupervised approaches. First, the
analyst chooses the geographic area to be analyzed and determines
the cover types he wishes to classify. Data from areas known to

0.,
}	 contain these cover types are input to the clustering algorithm.

k
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ipr ,̂ °rnation classes	 Cluster Classes
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pasture F:	 ->2

t	 woods	 > 3

t	
,, water	 4

b)
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w	 Information classes	 Cluster Classes

`^ ..	 commerc ial f ---------^ 1
older housing --------^2-^3newer housings--,--^
agriculture F,	 !'— 4

5^ 6

c)
Information classes 	 Cluster Classes

corn	 1
soybeans	 2
bare soil s--'`^	 3
industrial	 4
older housing
newer housing

.Figure 1. Examples of relationships between information classes
{	 and cluster classes.
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As is the case in the unsupervised approach, cluster classes are
formed, but, in this modified procedure, the cluster classes are
then immediately associated with information classes (cover types
of interest) before classification. The spectral similarity of
the cluster classes is calculated in preparation for the next
step, in which spectrally similar cluster classes belonging to
the same information class are combined and labelled with their
information class identification. At this point this approach
resembles a supervised approach in its usage of the data points
known to contain specific cover types for "training" the class-
ifier.

This discussion of kinds of approaches points up the fact
that the procedure to be described here is preselted as an approach,
not necessarily the approach.

For any a£ these procedures, the same bARSYS processors are
used, although they may be used in different sequences or for
somewhat different purposes in the various approaches. The way'
in which an analyst tees a processor depends on the characteris-
tics of the data being analyzed, the analysis objectives, the
analyst's understanding of the processor, and his experience and
ingenuity.

The following steps comprise the procedure to be described
in this manual;

examination of data quality

coordination of multispectral scanner data with available
reference data

selection of candidate training areas

refinement of training set

calculation of statistical characteristics of training
classes

classification, results display, and evaluation

information extraction and interpretation

At any step in the sequence, interpretation of the results
of that step can lead you to conclude that you need to go back
to a previous step and revise a decision made there. That is,
the procedure is not strictly sequential, but rather tends to be
iterative with feedback at various steps causing an analyst to
loop back and repeat a previous step. A flow chart of the analysis
sequence with dashed lines showing potential iteration loops is
shown in Figure 2«

_v.^
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Examination of
data quality

Coordination of MSS
data with reference

data

Selection of candi-
date training areas

Clustering

Association of	 Statistics --•-!
cluster-classes
and information

classes	 Separability	 I

[Separability  diagram I
construction

Training class selection - - - -- - - - - ---- -

Stati stics of training classes

1

Classification,
results display,
and evaluation

Information extraction 

I

and interpretation

—

i

Figure 2. Flow chart indicating the sequence of steps undertaken
in the analysis procedure described in this manual.
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Section 1. EXAMINATION OF DATA QUALITY

The instructionaZ objectives for each section wiZZ be printed
in itaZics at the beginning of the section.

State at Zeast one reason why the quaZity of the data set
being considered for anaZysis must be evaZuated.

Name at Zeast two sources of data quaZity information.

Name at Zeast three data idiosyncrasies which might hinder
analysis.

Use LARSYS processing functions to obtain identification
information about a run and to obtain gray scaZe printouts of
muZtispectraZ data.

Formulation of a problem or a hypothesis always precedes
any analysis undertaking. To carry out the analysis, two com-
ponents of the problem statement must be clearly specified: the
geographic area of interest, and the particular cover types of
interest. These two factors identify precisely what the analysis
is supposed to accomplish, that is, the analysis objectives. An
example of an analysis objective is "classify Fayette County,
Illinois into corn, soybeans, and other cover types." Another
example is "determine the percent of the San Juan National Forest
in each of these cover types: ponderosa pine,, spruce-fir, aspen,
and other."

After the analysis objectives are stated, a data set must
be selected. LANDSAT satelI.ites with eighteen day cycles provide
a wealth of data over any area. From this data, an analyst will
choose a set at the time of year suitable for the cover types of
interest. In many cases, data sets with much cloud cover or snow

y	 photographic imagery created from the digital data. This kind
of imagery can be obtained from the data c. ^istri.l^tztion .enters

u

cover will not be as desirable as cloud-free or snot.-free data
sets.

A preliminary evaluation of data can be marl( by insnectinq
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which supply digital data tapes. Gross data characteristics,
including cloud cover and snow cover, will he ap parent in these
products. Figure 1-1 shows an exam ple of this kind of imagery,
with cloud cover on the right side of the scene.

9

w

Figure 1-1. Scene number 1n7n-15041 over Chicago and the surrounding
area has clouds obscuring the east side of the scene.
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After a data set is selected, the analyst requests that the
data preprocessing ac,d reformatting group at LARS convert the
LANDSAT data tapes into 4ultis pectral Image Storage Tapes, the
format required by LARSYS programs. When the data is reformatted,
data log sheets are generated. A master file of these log sheets
is maintained in the LARS Computer Center, and a copy is sent to
the individual who requested that the data he reformatted. These
log sheets are another source of information about data quality.
An example is shown in Figure 1-2. Note that the section at the
bottom of the form for comments includes the information that
there are some bad data lines in that run.

Further examination of data duality can he done by use of
LARSYS processors. Examples of various kinds of idiosyncrasies
found in LANDSAT data will he given. The LARSYS run number for
each data set is included, so that you can obtain gray scale
printouts to observe these characteristics firsthand.

The examples were generated by use of the IMAGHDISPI.AY pro-
cessing function, which creates an image on a television screen
by the same process PICTUREPRINT uses to create grav scale print-
outs.

The data in Figure 1-3 shows a phenomer ,,n which appears in
LANDSAT data due to the earth's rotation. A rectangular image
on the ground appears as a skewed parallelogram, the ton edge of
the image being shifted to the right with respect to the bottom
edge by approximately 5% of the height of the image. In addition
the LANDSAT orbit is not oriented exactly over the north pole.
This results in a rotation of the imagery which varies with lati-
tude (this rotation is about 12° at 40 0 north latitude). Figure 1-3a
shows non-rectangular fields in LANDSAT data, while Figure 1-3b
shows the same data after it has been processed to remove these
effects. The run number for Figure 1-3a is 72053602 and for
Figure 1-3b is 72053609.

a) uncorrected	 h) geometrically corrected

Figure 1-3. LANDSAT data before and after processing to remove
effects of the earth's rotation.

- 3 -
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LARS FCRM - 17
DATA STGRAGE ,T APE FILE

RUN NUMBER..... .............. 73052002

DATE TAPE GENERATED..... MAR 16,1974

TAPE NUMBER ..................... 1353

FILE NUMBER ....................... 19

LINES OF DATA ................... 	 536

SECLNCS OF DATA ................	 6.56

MI LES OF DATA .................	 23.41

LINE RATE............ 81.68 LINES/SEC

SPECTRAL BANDWIDTH IN MICROMETERS..

CFAN	 LOWER	 UPPER	 CHAN

( 1)	 0.50	 0.60	 ( 2)

( 4)	 -0.80	 -1.10	 i 5)

(LO )	
-----	 -----	

( 11)

(13) 
	

(14)

(16)	 --r--	 -----	 (17)

(19)	
'•__
	 _____

	 (20)

(22)	
----_	 ---__
	 (23)

t^8)	
-----	 -----	

(29)

FLIGHTLINE ID......... 134116111 ILL

DATE DATA TAKEN ............... 6/29/73

TIME DATA TAKEN ............. 1011 HOURS

PLATFORM ALTITUDE......... 3^62000 FELT

GROUND HEAOINu ............. 190 DEGREES

FIELD OF VIEW........... 	 G.C'27 RADIANS

DATA SAMPLES PER CHANNEL PER LINE	 328

SAMPLE RATE........ 	 0.09 MTLLIRADIANS

LOWER	 UPPER	 CHAN	 LOWER	 UPPER

C.60	 0.70	 t 3)	 C.70	 0.80
-----	 -----	 -----	 -----

( 6)
--___

	

-----	
(	

-----
9)
	 -----

(12)

(15)
-----	 -----	

(18)	
- ---	 -----

-----	 -----

	

-----	
t21)

(27)
----	 -----	 -----	 -----

(30)

DATA RUN CONDITIONS..

DATA TAPE COMMENTS..

GEOMETRIC CORRECTION OF FAYETTE CUUNTY, ILLINOIS - CITARS TIME, II.

THIS RUN IS A GEOMETRIC CORRECTION OF RUN 73052001 (6/29/73) AND IS REGISTERED

TO THE COORDINATES OF RUN 73039101 (6/11/73).

CORRECTED TO LINEPRINTER ASPECT RATIO.

CHANNELS 1,3,AND 4 HAVE 1,7 1 AND 11 BAD LINES RESPECTIVELY.

Figure 1-2. Data Log Sheet for LANDSAT Data.

- 4 -
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141iae the "uncorrected" data is adequate for some analysis
tas};s, "corrected" data simplifies the analyst's job of locating
features, since it can more easily be com pared with reference data
(maps, aerial photography).

As previously mentioned, clouds can significantly decrease
the usefulness of a data set. The example shown in Figure 1-4
is from run 72033000. A more subtle situation is the presence
of haze. Figure 1-5 shows data collected on September 12 and
13, 1972, over southern Indiana.*

On the 12th a thin haze was present, but on the 13th the sky was
clear. Images from two spectral bands on each date are shown.
Notice that ti ►e channel two image (.6-.7 um) on the 12th shows

	 f

w. the haze, while the channel four image (.8-1.1 ; gym) from the same
date does not. This is due to the fact that there is less scat-
tering of the 'Longer wavelengths.

Figure 1-4. An example of clouds and
their shadows.

T_
The coverage pattern provides sidelap on succeeding passes ranging
from 14% at the equator to more than 85% at the poles. The side-
lap is approximately 30% for southern Indiana.

- 5 -	 REPRODUCIBILITy OF THE
ORIGINAL PAGE IS POOR
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a) September 12, channel 2
	

b) September 12, channel 4

Figure 1-5. Haze was present on September 12, but September 13 was clear.



The presence of snow can be a limitation in data analysis
if the cover types of interest are the vegetative cover types
under the snow. The data shown in Figure 1-6, run 7:3034300,
has quite a bit of snow cover. If the purpose of the analysis
is to determine the areal extent of snow cover, the presence of
snow would be desirable, but the presence of both clouds and
snow in the same data set would be undesirab?.e, since they are
spectrally similar. An example of such a situation is shown in
Figure 1-7, from run 7205140(1. Of course, if the n_ urpose of
the analysis is to compare the responses of clouds and snow,
this data set would be quite useful. This example points up the
necessity of clearly formulating analysis objectives and keeping
the objectives in mind.

Another id.iosycrasy which can occur in LA NDSAT data ;%pnears
as strives in the image. In the LANDSAT scanner systom, six scan
lines are swept out in each wavelength hand each time the mirror
oscillates. A separate set of detectors is used for each of
these scan lines	 I£ these detectors and their associated elec-
tronics are not ^ronerly matched or calibrated, a striping effect
may be noticeable in the imagery. A dramatic example can he
seen in Figure 1-8, channel 1 of run 72044401, a LA1DSAT scene
which includes .Lafayette, Indiana. The STATISTICS processing
function was used to obtain quantitative information about this

aY.».

Snow covers the higher elevations
in the mountains of Colorado.

RLPRODUC18 1111 Y OF 'rf"
ORIGINAL PAGE IS POOR
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Figure 1-7. The Rocky Mountains are on the
left and the Great Plains on the
right. There is snow on the
plains and haze over the mountains.

Figure 1-8. Striping effect in imagery.
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striping. The table below shows the mean and standard deviation
for the output of each of the channel 1 detectors over the whole
frame. To obtain this information from the STATISTICS processor,
a line interval of six was used, with successive starting lines
of 1, 2, 3, 4, 5, and 6.

Standard
Detector	 Mean	 Deviation

1	 21.9	 3.21
2	 21.8	 3.07
3	 7.0	 1.52
4	 21.5	 3.13
5	 20.9	 3.11
6	 21.9	 3.03

Notice that the mean value for detector 3 is very low compared
to that of the other detectors. Apparently a malfunction occurred
in the detector electronics, resulting in the striping illustrated
in Figure 1-8.

Another data idiosyncrasy which is sometimes present in LANDSAT
data is called a bad data line. In Figure 1-5, the example of haze,
look at the channel four image from September 12th. In the top half
of the picture there is one bad data line all the way across, and
near the middle of the picture one bad data line goes about two
thirds of the way across.

The material presented in this section has indicated that
analysis objectives include specification of geographic area and
cover types.	 After these are determined, a data set is chosen.
Next, the quality of the data must be examined to determine

E whether it will be adequate for meeting the analysis objectives.

r Several kinds of data characteristics were discussed and
illustrated, including cloud cover, snow cover, haze, striping,
and bad data lines.

li", The example and case study that follow will give you an
opportunity	 o	 e LARSYS processing functions to examine datapp	 tunny t	 use	 p	 c	 nq
quality.	 In preparation for the material presented there, you
should read the following material in the LARSYS User's Manual:

a)	 Section 4 (Volume l) of the LARSYS User's Manual, pages 4-1
j to 4-3, gives a general description o 	 LARSYS Control Commands.

bn; The remaining pages in Section 4 describe the individual Control
t Commands in detail. 	 In particular, review the REFERENCE RUNTABLE

k Control Command.

b) Section 6 (Volume 2), pages 6-1 to 6-3, gives a general
description of LARSYS Processing Functions. The remaining pages
in Section '6 describe the individual Processing Functions in
detail.. Review the DUPLICATERUN, IDPRINT, and PICTUREPRINT
Processing Functions at this time. In particular note the last
paragraph on page PIC-7, concerning the BLOCK control card.

I

r)JW

- 9 -
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EXAMPLE

The examples given in conjunction with each step of the
analysis include representative control card listings, computer
printouts, and interpretations drawn from an analysis of LANDSAT
data from the Kenosha Pass area of Colorado, run 73057902.*

The objectives of the Kenosha Pass analysis were the following;

1) to classify and inventory the area into these cover
- types: snow, - grasslands deciduous forest,  coniferous .forest,

barren (bare rock and base soil);

2) to produce a classification map of these cover types;

3) to evaluate the classification accuracy.

In order to determine if the run was in the system runtable,
the analyst typed in the following information at the terminal:

reference runtable 73057902

and the computer indicated that the run was in the system runtable
by responding:

RUN NO. TAPE FILE LINES CHAN SAMP FLIGHTLINE ID

73057902 1087 3 1535 4 2200 138817134 COL

f

	

	 To obtain more information about the run, the analyst used
the IDPRINT processing function. The following control card
deck was set up:

*IDPRINT
PRINT RUN (73057902)
END

The output is shown in Figure 1 -9. Note the wavelength bands of
the LANDSAT scanner system. The first two bands are in the visible
portion of the spectrum, and the last two are in the near infrared.

The next step was to make a working copy of the run. The
DUPLYCATERUN processing function was used. A -working copy can
serve several purposes, as you read on page DUP-1 in Section 6
of the LARSYS User's Manual. The analyst set up the following
control cards to copy thedata:

s

	

	 -COMMENT COPY OF RUN 73057902 FROM 1087 TO 253
*DUPLICATERUN
FROM RU1V(73057902)
TO TAPE (253) , FILE (1)
END

The original analysis of this data was done for the U.S. Forest
Service under USDA Contract 21<-292.

10
i

I
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TECTRA	 LABORATORY FOR APPLICAT104S OF REMOTE SENSIN
WILSSN	 PURDUE UNIVNSiTY

MAY	 7.1975
1C 35 14 AM
LARSYS VERSI UN 3

TAPE NUMBER .............. 1087 FILE NUMBER...............	 3 RUN NUMBEk ...........	 73057902

CONTINUATION CODE........... 0 NUMBER OF DATA CHANNELS.... 4 NUMBER OF DATA SAMPLES... 2200

FLIGHT LINE.. 138817134 COL DATE DATA	 TAKEN...... 8/15/73 TIME DATA TAKEN.... 0913 HOURS

PLATFORM ALTITUDE.3062000 FEET GRCU:ND HEADING....	 18J DEGREES REFORMATTING DATE.APR	 8,1974

NUMBER OF LINES......... 1535

z

1 SPECTRAL CALIBRATION
i BANC PULSE VALUES

Fes+	 CHANNEL LOWER UPPER CO Cl C2

1	 1 0.50 3. 6C 0.0 2.48C O.0
2 0.60 C.70 O.G 2.C" G C.!'
3 0.70 0.80 C.0 1.760 O.0
4 0.8c 1.10 0. C, 4.6 C 0.0

f

i
_	 2

Figure 1-9. Output from the IDPRINT processing function.
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For the remainder of the analysis, the analyst used a personal
runtable so that he gained access to run 73057902 in the first
file of tape 253.

The analyst then wanted to combine the task of investigating
data quality with the tasks of (1) locating the line and column

j' coordinates of the area of interest, and (2) producing gray scale
printouts of the area of interest to use for selection of training
areas.

From experience combined with knowledge of how Earth surface
features interact with the sun's electromagnetic energy, the analyst

I	 knew that one of the two channels from the visible portion of the

	

,.	 electromagnetic spectrum together with one of the two channels
from the near infrared portion would provide sufficient information
for locating areas. He therefore chose channels 1 and 3 for the

f

	

	 task of locating the line and column coordinates of the area of
interest. To generate the desired gray scale printouts, the
following cards were used:

-COMMENT GRAY SCALE FOR LOCATION OF KENOSHA PASS COORDINATES
-RUNTABLE
DATA
RUN(73057902), TAPE(253), FILE(1)
END
*PICTUREPRINT
DISPLAY RUN (73057902) ? LINE (1, 1535, 4) , COLUMN (1, 219414)
CHANNELS 1, 3
END

The analyst used a comment card so that the output would be readily
identifiable. Using these printouts in conjunction with reference
data, the analyst located the coordinates of the area of interest.
To look at the area in more detail (with line interval of one and
column interval of one) for subsequent steps in the analysis, the
analyst used the following cards:

COMMENT PICTUREPRINT-KENOSHR PASS TRAINING AREA SELECTION
RUNTABLE

DATA
TAPE (235) , FILE (l)
END
*PICTUREPRINT
DISPLAY RUN (73057902), LINE (197, 531 1, 1), COL (401 1, 803, 1)
CHANNELS 2, 4
BLOCK RUN (73057902), LINE (197, 531E 2), COL (401, 803, 2)
END

r

Two points should be noted in this control card setup. First, note
that different channels were used than for the previous job. The
analyst has now looked at all four channels to investigate data
quality, Second, note the use of the BLOCK card. In the first
P'ICTUREPRINT, no block card was used because the entire run was
to be displayed, and histogramming every tenth line and column
of the run (the default parameters) seemed reasonable. In this

12 -
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second PICTUREPRINT, a subset of the rur, was being displayed,
and the analyst chose a line and column interval of two because
he wanted his histogram to be based on ingre data points than the
default interval of ten w •̂ )uld provide.(.See page FIC-7 in Volume 2
of the LARSYS User's Manual for an explanation of the block card.)

The analyst observed a couple of clouds and their shadows,
but judged the overall data duality to be adequate.

EXERCISES

1. Explain in your own words why examination of data quality
should precede any extensive analysis.

2. Name at least two ways inwhich the analyst of remote
sensing can examine data quality.

3. Name at least three types of data idiosyncrasies an
analyst might find in LANDSAT data.

-CASE STUDY

As you progress through this guide, you will be asked to
carryout an analysis of a portion of LANDSAT scene 1321 - 15595,
collected June 9, 1973. (Figure 1-10). The run number is
73033802*. The scene is in southern Indiana. Take time now to
look at Figured-10 and state analysis objectives you would like
to pursue. Discuss them with your instructor.

Students who have analyzed this data set have used these
objectives: a) classify the area into cover type classes of
urban„ forest, agriculture, and water b) produce a cover type
map of these four classes; c) assess the accuracy of the class-
ification.

The data set you will be working with has been processed
for geometric correction, and it has a scale of 1:24,000, which
matches the scale of the U.S. Geological Survey 7.5 minute topo-
graphic ser°_,es.

obtain gray scale printouts for the channels corresponding
to the .6 - .7 um and .7 - 8 um wavelength bands, for lines 30
to 430 and columns 112 to 333. These printouts will be used in
the next stEstp of the analysis.

T^PLICATERUN processing function has been used to make a copy
of this run for your terminal site. Consult your instructor for
the proper tape and file number.

- 13
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This is a print of ERTS scene 1321-15595, channel 5 (.6-.7wm),

collected June 9, 1973 at 9:59 a.m. Note that north is displaced

13* from vertical.
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This print shows channel 7 (.R-1.Iµm) of the same CRTS scene.
'he area outlined corresponds to the frame of aerial photography
on the next page. This area includes Monroe Reservoir and Bloom-
ington, Indiana.

FOLDOUT FRAME

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



This paint was made from a 9 x 9 color infrared photograph
collected at an altitude of 60,000 feet at 11:40 a.m. the same
day.
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URIGINAL PAGE IS PuUh
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Section 2. COORDINATION OF MULTISPECTRAL SCANNER DATA WITH
AVAILABLE REFERENCE DATA

Upon completion of this section, you should be able to do
the foZZowing;

State one reason for the necessity of reference data.

State one reason for correZating muZtispectraZ scanner data
with reference data.

List at Zeast four kinds of reference data.

CorreZate the Zocation of ground features apparent on muZti--
spectral scanner data with the Zocation of those features on an
aerial photograph.

Coordination of multispectral scanner imagery with known
features on the ground is necessary in order to determine the
line and column coordinates of candidate training areas. The
importance of accurate information about the actual ground scene
is discussed in detail in LARS Information Note 120371, The
Importance of "Ground Truth” Data in Remote Sensin , by Roger
M. Ho er. You should reaa Ms information note at this time.

What can an analyst use to obtain information about the
ground scene? Aerial photography can be a source of information.
Photography can be collected at various altitudes, resulting in
reference data over a range of scales. In general, as a plane
flies higher, each photograph will cover a larger area, but less
detail will be discernible.

,Another variable in aerial photography besides altitude is
film type. Black and white film, color film, and color infrared
film can all record various kinds of information about a ground
scene, and serve as reference data for an analyst who understands
how to interpret photographic film.

Aircraft multispectral scanner data can also serve as .reference
data for an analyst working with satellite data, by providing more
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detailed information about the spectral characteristics of portions
of a scene.

Maps (county highway maps or U.S. Geological Survey maps,
for example) and historical records (past crop yields or weather
patterns,. for instance) can be useful to an analyst by helping
him visualize an area and its characteristics.

Another source of information includes observations "at
the scene" by the analyst, or other personnel. These observations
can provide the key to successfully relating the spectral responses
in the data to the cover types on the ground.

As a part of the case study, you will see examples of some
'r-
	of these kinds of reference data.

EXAMPLE

in the example analysis of the Kenosha Pass area of Colorado,
the analyst had small-scale (high altitude) photography available
for reference data. By looking at the photography and gray scale
printouts of the data, the analyst was able to correlate the lo-
cation of ground features in the two images.

EXERCISES

1. State one reason for obtaining reference data.

2. State one reason for correlating multispectral scanner
data with reference data.

3. List at least four kinds of reference data.

CASE STUDY

Obtain the following materials from your instructor: U.S.
Geological Survey 7.5 minute topographic quadrangle sheets for
six quads,* a 35 mm slide of a color-infrared aerial photograph,
and a Monroe County map. Using these materials and Figure 1-10
.in conjunction with the printouts generated during the previous
analysis step, mark on the printouts with a felt tip pen the
boundaries of as many features as possible (Lake Monroe, Highway 37,
Bloomington, for example). ?dote that some features are more
apparent on one printout than the other.

Oolitic, Bartlettsville, Clear Creek, Allen's Creek, Bloomington
and Unionville, Indiana.

i
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Section 3. SELECTION'OF CANDIDATE TRAINING AREAS

Upon completion of this suction, you should be able to do
the following;

State in your own words why training areas must be selected.

Name at least two considerations that should go into , the
selection of candidate training areas.

Select candidate training areas, and specify their coordi-
nates • by means of Field Description Cards.

The next step in the analysis of multispectra,l scanner data
is the selection of candidate training areas. This section will
begin-with a discussion of what training samples are and why they
are needed, followed by a discussion of how candidate training
areas are chosen.

Toexplain what training samples are and why they'are needed,
some pattern recognition concepts should be introduced. Pattern
recognition provides the theoretical framework for LARSYS (Swain,
1972). The pattern recognition algorithms require that examples
of typical data from each class of-interest be supplied to the
computer programs. These data, called training samples,, are
used to set certain parameters for the pattern recognition algo-
rithms, in effect "training" the computer to recognize the training
classes. When the classification operation is being carried out
by the pattern recognition algorithms; each data point is "compared"
to the training sample for each class, and the point is assigned
to the "most likely" or most similar class, Further discussion
of these concepts can be found in LARS Information Note 110474,
An Introduction to Quantitative Remote Sensing_by John Linde.nlaub
and James Russell, and in LARS InfofifidEion Note 111572, Pattern
Recognition: A Basis for Remote Sensing Data Analysis byyPhrl! R.
Swain, As you increase your understanding ot the material presented
in those readings, you will bring more insight to the interpretation
of your analysis results.

- 19
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	 To obtain training samples for this procedure, the first
step is selection of candidate traininq ?i-eas. Experience
gained during the development and evolution of this step in
the analysis has indicated that a good starting point is to
select candidate training areas from 40 to 100 lines by 40 to

±`

	

	 -100 columns in size, and containing from three to five cover
types.

To select these candidate training areas, an analyst begins
by reviewing the analysis objectives. In stating the objectives,
the cover types of interest are listed. These cover types are
called information classes. Candidate training areas are selected
in such a way that every information class is represented in at
least one of the areas. When possible, each information class
is included in more than one candidate training area. This in-
creaser the likelihood that the training data will be represen-
tative ' of all of the variations in cover types in the scene being
analyzed. When representative training data is available to the
classifier, assignment of a data point to the most likely training
class has a higher probability of being a correct assignment.

A common procedure for selecting the candidate training areas
is to identify in the available reference data some general areas
that contain the information classes. These areas are also located
on gray scale printouts of the multispectral scanner data. From
these areas, candidate training areas are selected, following the
auidelines indicated previously: each area is from 40 to 100 lines
SY 40 to 100 columns, each area includes more than one cover type,
and every cover type is included in at least,one (preferably two
or more) candidate training area. To help assure obtaining repre-
sentative training data, the candidate training areas should be
distributed uniformly throughout the area to be classified, but
this may not be possible if adequate reference data is not avail
able. Usually, representative training data for all information
classes can be obtained by selecting from four to eight candidate
training areas.

After the candidate training areas are selected, their coor-
dinates must be specified in terms of lines and columns, so that
the areas can be submitted to LARSYS processing functions in
subsequent analysis steps. The formats of the Field Description
Cards used to accomplish this are described in Volume 1 of the
LARSYS User's Manual, pages 2 - 27 and 2 - 28. A coding sheet
set up for the ormat is shown in Figure 3-1.

V,

EXAMPLE

In the Kenosha Pass example, the analyst used his available
reference data - color infrared aerial photography - to select
candidate training areas. Since the photography was available
only for a limited area, he restricted his choice of candidate
training areas to fall within regions covered by photography.
Review of the analysis objectives indicated that the cover types
of interest were snow, grassland, deciduous forest, coniferous
forest, and barren (bare rock and bare soil). With these cover

+	 - 2 .0 -



FIELD DESCRIPTION CARD CODING SHEET	 Page	 -0-f

s

N
!

E

i

'j

}

j
i

i

u

^

Run
Number
(1 - 8)

Fie3_d
Designation

(11- 18)

First
Line

(21-25)

Last
Line
(26 - 30)

Line
Interval
(31-35)

First
Column
(36-40)

Last
Column
(41-45)

Column
Interval
(46-50)

Field
—Type
(51-58)

Additional
Information

(59-72)

n^

f^^	 Figure 3-1. Field Description Card format.



types in mind, the analyst selected four candidate training
areas. Each of the areas contained more than one cover type.
Figure 3-2 shows a gray-level image (.6 - „7 um band) of the
Kenosha Pass area with the four candidate training areas out-
lined.

In terms of number of lines by number of columns, the four
candidate training areas were of the following size: 89x73,
97x70, 44x103, and 56x66. Notice how these areas compare to
the guideline of 40 to 100 lines by 40 to 100 columns.

By interpretation of his reference data, the analyst
selected the areas so that one area included grassland, conif-
erous forest, and deciduous forest; a second area included

	
i

those three cover types again and also included water; a third
area included bare soil in addition to grassland, coniferous
forest, and deciduous forest; and the fourth area included snow,
grassland, bare rock, and conifers.

a
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Figure 3-2. Kenosha Pass area and the four candidate training
areas outlined.
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Then the analyst completed
specifying the coordinates on F:

73,057902	 411
7;6057902	 199
73057902	 324
73057902	 212

this
field

499
295
367
267

step of th,
)escription

1	 493
1	 719
1	 494
1	 468

analysis by
Cards.

565 1
788 1
596 1
533 1

One point which should be discussed is the percent of total
area used for training. In the Kenosha Pass analysis, the areas
covered slightly more than 15% of the area. However, this is a
larger proportion than usual. As the size of the area to be
classified increases, the percent of the area used for training
generally decreases. This trend is an expression of another
idea;. the amount of reference data available is an upper limit
on the amount of training data that can be used, and as the area
being considered increases in size, the logistics and expense of
collecting reference data will l.lnit the amount collected.

Where there-has been a scarcity of reference data over a
large area, an analyst has used as little as one tenth of one
percent of the area for training. A more common proportion
ranges from 1% to 10%.

EXERCISES

1. State why training areas must be selected.

2. Name two considerations that should go into the selection
of candidate training areas.

CASE STUDY

Using the available reference data and the gray scale print-
outs, select candidate training areas. 'take sure that every
cover type specified in your analysis objective is included in
at least one of the candidate training areas. Specify your can-
didate training areas on Field Description Cards. Discuss the
areas you selected with your instructor.

- 23 -
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Section 4. CLUSTERING CANDIDATE TRAINING AREAS

Upon completion of this section, you should be able to do
the foZZowing:

Describe at Zeast two tasks the CLUSTER processing function
can accomp Zish for you.

E,

.Mate the ruZe -of-thumb used to determine the number of
cZusters to request, and the reason behind it.

Given punched and printed output from the CLUSTER processor.,
expZain the effect of choosing different MINPOINTS vaZues.?

Use the CLUSTER processing function to find spectraZZy
ni distinct cZasses, given FieZd Description Cards of the areas to
Y be clustered.

In the previous section, the concept of "training samples"
was discussed, and candidate training areas were chosen. 	 The
process of getting from candidate training areas to training
samples is a complex process as well as a crucial one. 	 This
section and the next five sections will all deal with aspects ;
of thisrefinement process. 	 Although the material is written
in a linear or "straight-through" fashion, the process is some-
what circuitous, as indicated in Figure 4-1.

The portion of the refinement process to be discussed in
this section involves use of the CLUSTER processor. 	 LARS'Infor-
mation Note 111572, Pattern Recognition: 	 A Basis for Remote x
Sensing	 ata Analysi s 	 Philip H.g	 Swain contains a section on

k clustering.	 Pages 27 through 36 are recommended for your reading. r

The CLUSTER processor uses information from more than one
' channel or wavelength band (four channels in the Case Study) to

produce a single image. 	 Since more information is used, boundaries
of ground features or cover types tend to be more distinct on
cluster maps than on a single-channel gray scale printout. 	 Thus,
one task the CLUSTER processing function can accomplish is boundary
enhancement.

25
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Figure 4-1. Flow chart indicating the steps involved in refinement
of candidate training areas. Dashed lines indicate
potential iteration loops. This is a portion of the
flow chart shown in the Introduction, Fi gure 2.
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The clustering algorithm is called an unsupervised class-
ifier, because it finds natural groupings in multispectral
scanner (MSS) data strictly on the basis of inherent properties
within the data. These natural groupings in the data are called
cluster classes. Thus, another task the CLUSTER processing
function can accomplish is to determine cluster classes within
a data set.

When data from a natural scene is clustered there is a
tendency for the data points within each cluster class to be
distributed in a Gaussian fashion.

Figure 4-2a shows a typical Gaussian function in one dimen--
P sion -- commonly called a "normal curve."	 Figure 4-2b shows a

two-dimensional Gaussian density function. 	 The fact than clusters
in remotely ;sensed data tend to be Gaussian is important because
the classification algorithm to be used is based upon a Gaussian
assumption, i.e., that the data to be classified can be approx-
imated by a. set of Gaussian density functions.

The distribution of the data associated with an information
9 class is likely to be non-Gaussian such as that shown in Figure

4-3a.	 As an example, an agricultural crop might exhibit a multi-
modal distribution (more than one peak) due to different soi,is,

E moisture content, planting dates, crop density, seed varieties,
or a combination of these factors. 	 The multimodal non-Gaussian
density function in Figure 4-3a could be decomposed into two
Gaussian components by clustering, as shown in Figure 4-3b.
These components are commonly referred to as subclasses. 	 The
subclass concept is an important one as it allows the analyst to
use a classification algorithm based upon a Gaussian assumption
even though the information class distributions may be non-Gaussian.

In this step of the analysis the CLUSTER processing function
is used to determine cluster classes in the training areas. The
enhanced boundaries on the cluster maps will be used iri Section 5
to help establish associations between the cluster classes and
information classes.

The clustering algorithm implemented in LARSYS requires that
the analyst specify the number of clusters to be found. Experi-
ence has indicated that most cover types have mul,timodal distri-
butions, and a rule-of-thumb is to request twice the number of
expected information classes, except in areas of great topographic
relief (such as the Kenosha Pass example), where three times the
number of expected information classes seems, to be a better
guideline.

If an analyst requests an insufficient number of clusters,
zz some of the clusters will be multimodal„ and further clustering

will still be necessary. If "too many" clusters are requested,
they can be grouped back together without much trouble.

A good understanding of the interactions between solar
;.f	 energy and matter will help you know how many cluster classes a
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Figure 4-2b. Gaussian density function in two dimensions.
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given scene could be .expected to have. Basic information of
interest to the analyst of MSS data mould be the reflectance
properties of bare soil, green vegetation, and water, shown in
Figure 4-4. For more specific information, refer to LARS
Information Note 011069, Ecological Potentials in Spectral Si na-
ture Anâ̂l̂ sis, by R. M. Hoffer and C. J. Jo annsen, and also
LARS InforMation Note 072473, Emission and Reflectance from
Natural Targets, by R. Kumar and L. Sl va.

EXAMPLE
	 i,

i

	

	 The analyst wanted to cluster each of his candidate training
areas into distinct cluster classes, so he set up his deck in

• '"	 the following way:.

COMMENT KENOSHA PASS CANDIDATE TRAINING AREA 1
RUNTABLE
DATA
RUN (73057902) , TAPE (253) , FILE (1)
END
*CLUSTER
OPTIONS MAXCLAS (15)
PUNCH FIELD, MINPOTNTS (3)
C1120NELS 1, 2, 3, 4
DATA
73057902	 411 499 1	 494 565 1
EN'D
-COMMENT KENOSHA PASS CANDIDATE TRAINING AREA 2
*CLUSTER
OPTIONS MAXCLAS (15)
PUNCH FIELD, MINPOINTS (3)
CHANNELS 1, 2, 3, 4
DATA
73057902	 199 295 1	 719 788 1
END

COMMENT KtN0SIJA PASS CANDIDATE TRAINING AREA 3
*CLUSTER
OPTIONS MAXCLAS (15)
PUNCH FIELD, MINPOINTS (3)
CHANNELS l:, 2, 3r 4
DATA
73057902	 212 267 1	 468 533 1
END

Why did the analyst choose a MAXCLAS of 15? The Kenosha
Pass study area includes some very rugged terrain. The analyst
was looking for five cover types - snow, grassland, deciduous
forest, coniferous forest, and barren. He expected an average
of three subclasses per cover type due to the complexity of topo-
graphic relief. If he had wanted to, the analyst could have
cliosen a different MAXCLAS parameter for each area clustered.

- 30
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Each of these CLUSTER jobs produced a punched deck d.f Field
Description Cards to be used in a later step in the refinement
of candidate training areas (Section 6).

EXERCISES

1. Describe two tasks the CLUSTER processing function can
accomplish for you.

2. State the rule-of-thumb used to determine the number
of cluster classes to request, and the reason behind it.

3. The following control cards were used to generate the
.»	 cluster map in Figure 4-5 and the punched output listed in

Figure 4-6s

COMMENT CLUSTER EXAMPLE, MIN.POINTS EXERCISE
*CLUSTER
OPTIONS MAXCLAS (6)
PUNCH FIELD, MINPOINTS (2)
CHANNELS 1, 2, 3, 4
DATA
RUVI (72072302)r LINE (500, 515, 1) : COI, (445, 465, 1)
END

The format of the punched cards should be familiar to you from
Figure 3-1. .Look at the first punched card, find its coordinates
on the cluster map, and mark the map with a colored pencil or
felt tip marker. Follow the same procedure for all the punched
cards describing cluster class 1.

Now, prepare the control cards shown above, BUT use a MIN-
POINTS parameter of 3. Then, hooking at your cluster map, which
should be the same as the one in Figure 4-5, and .a listing of
your punched output, again locate the data points corresponding
to the Field Description Cards for the.f irst cluster class.
Observe the differences in the two punched decks. Discuss with
your instructor the factors you should keep in mind when choosing
a MINPOI14TS parameter.

CASE STUDY

Set up the control cards to cluster separately each of the
candidate training areas you chose in the last section. Remember,
you can ask for a different number of cluster classes from each
candidate training area if you have reason to do so.

The printed cluster maps will be used in the next section,
Section 5, and your punched deck will be used in Section 6.

r
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CLUSTER EXAMPLE, MINPOINTS EXERCISE

FIELD INFORMATION-----------------------

FIELD
	

TYPE
	

LIN'S	 500- 515
RUN NO.	 72072302
	

Nil. OF SAMPLES	 336
	

COLUMNS 445- 465
OTHER INFORMATION

t
ca
w

t'

^: C
O ^'

jf

'r

444444444444444444444
444445555555555666666
567890123456789012345

500	 XXSS SSSSSS SNNXMNMAX
501 XS	 SS	 SS SXXNMN.XXX
5v2 XS	 SSS	 XXNXXXXXX
5C3 XS S	 S	 X.NM)XNXNXX
504 SXS	 S SXMN)XXXXXX
505 SSSS	 S SNN)))XNXNM
506 SS	 S)	 S SNM)) NXXi4X
507 S	 S)SSSNMMX))XXNN
508 SSSXMMX) XNNNNN
5C9 SSc XXNMNNNNXNi4N
51C SSSS SXXXMNNXXXNSS
511 SSSSS	 f` 1NXXMMNNNf4SSSX
512 SS	 NSMMNXNXMNXNXXXSSN
513 SMMMMNXXNNMMNNN SSSN
514 SSMXMM^!MMMMMNNNNNNSNM
515 SNX)))))XNMNXXNNNNNM

N'UMD R OF POINTS PER LLUaJER

	

CLUSTER	 1	 2	 3	 4
a

	

SYMBOL	 )	 S	 X	 SIN	 "4

	

POINTS	 67	 .17	 75	 7G	 70	 37

Figure 4-5. An, example of a printed cluster map.
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CLASS NS- 1/	 6
72072302
72072302
72072302
72072302
72072302
7207230,2
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
CLASS NS- 2/
72072302
7207302
'72072302
72072302
CLASS NS- 3/ 6
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72C72302
72072302
72072302
CLASS NS- 4/ 6
72072302
72072302
72072302
72072302
T2072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
CLASS NS- 5/ 6
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
72072302
CLASS NS- 6/ 6
72072302
"^72302
72072302
7207"302
72072302
72:'72302
72072302
72072302'

3 501 501 1 447 448 INS- 1/ 6
4 501 501 1 451 453 INS- 1/ 6
6 502 502 1 447 448 INS-- 1/ 6
7 502 502 1 452 456 INS- 1/ 6
9 503 503 1 449 450 INS- 1/ 6

10 503 503 1 452 455 INS- 1/ 6
11 504 504 1 448 452 INS- 1/ 6
13 505 505 1 449 452 INS- 1/ 6
16 506 506 1 448 450 INS- 1/ 6
2u 507 507 1 447 450 INS- 1/ 6
21 508 508 1 445 451 INS- 1/ 6
22 509 509 1 445 449 INS- 1/ 6
24 510 510 1 445 447 INS- 1/ 6
26 511 511 1 450 451 INS- 1/ 6
27 51.2 512 1 447 448 INS- 1/ 6
28 513 513 1 445 446 INS- 1/ 6

3 505 505 1 458 460 1NS- 21 6
5 506 506 1 459 460 INS- 21 6
7 507 507 1 460 461 INS- 21 6
9 515 515 1 448 452 INS- 2/ 6

1 500 500 1 447 448 IINS- 3/ 6
1 500 500 1 450 455 INS- 3/ 6
5 501 501 1 449 450 INS- 3/ 6
6 501 501 1 454 455 INS- 3/ 6
9 502 502 1 449 451 INS- 3./ E..

17 505 505 1 445 448 INS- 3/ 6
20 506 506 1 446 447 INS- 3/ 6
26 507 507 1 453 455- INS- 3/ 6
21 508 506 1 452 454 INS- 3/ 6
26 509 509 1 450 452 INS- 3/ 6
29 510 51C 1 448 451 1NS- 3/ 6
31 51C 510 1 464 465 1114S- 3/ '6
32 511 511 1 445 449 INS- 3/ 6
33 511 511 1 462 464 INS- 3/ 6
34 512 512 1 445 446 INS- 3/ 6
38 513 513 1 462 464 INS- 3/ b
39 514 514 1 445 446 INS- 3/ 6

1 500 500 1 445 446 INS- 4/ 6
3 500 500 1 464 465 1NS- 4/ 6
5 501 501 1 458 459 INS- 4/ 6
6 501 501 1 463 465 iNS- 4/ 6
8 502 502 1 457 458 INS- 4/ 6
9 502 502 1 460 465 INS- 4/ 6

14 503 503 1 464 465 INS- 4/ 6
17 504 504 1 460 465 INS- 4/ 6
20 506 506 1 462 463 INS- 4/ b
23 507 507• 1 462 463 INS- 4/ 6
27 509 509 1 454 455 INS- 4/ 6
29 510 510 1 454 456 INS- 4/ 6
30 51C 510 1 460 462 NS- 4/ 6
31 511 511 1 454 455 INS- 4/ 6
36 512 512 1 461 463 INS- 4/ 6
37 513 513 1 453 454 INS- 4/ 6
41 515 515 1 457 458 INS- 4/ 6

1 500 500 1 458 459 INS- 5/ 6
10 505 505 1 456 457 INS- 5/ 6
12 535 505 1 464 465 INS- 5/ b
17 507 507 1 464 465 INS- 5/ 6
18 508 508 1 461 465 iNS- 5/ 6
20 509 509 1 458 461 INS- 5/ 6
21 599 509 1 463 465 INS- 5/ 6
22 510 510 1 458 459 INS- 5/ 6
25 511 51.1 1 458 461 1NS- 5/ 6
33 513 513 1 455 456 INS- 5/ 6
34 513 513 1 459 461. INS- 5/ 6
36 514 514 1 457 462 INS- 5/ b
41 515 515 1 459 463 INS- 5/ 6

7 507 507 1 457 458 INS- 6/ 6
8 508 508 1 456 457 INS- 6/ 6

12 511 511 1 456 457 INS- 6/ 6
13 512 512 1 451 452 INS- 6/ 6
15 513 513 1, 448 451 INS- 6/ 6
lb 513 513 1 457 458 INS- 6/ 6
18 514 514 1 449 456 1NS- 6/ 6.
21 515 .515 1 464 465 INS- 6/ b

Figure 4-6. Listing of punched Field Description Cards generated
by CLUSTER.

3



Warning! You'll get a punched deck for each cluster area.^ A	 Be sure to label the cards and keep them in order.

Since clustering is both complex, and crucial to the
success of your analysis, be sure to ask your instructor any
questions that come up.

35



d:

ig. fK ,yv	
J

Section S. ASSOCIATION OF CLUSTER CLASSES AND INFORMATION CLASSES

Upon completion of this section, you should be able to do
the following:

Describe why cluster classes are associated with informa-
tion classes.

Given printed cluster maps and available reference data,
associate cluster classes with information classes.

c	 `i
Up to this point in the process of meeting analysis objec-

q` tives, the LANDSAT imagery has been examined for data quality,
the imagery has been correlated with reference data, candidate
training areas have been selected and the data within each can-
didate training area has been clustered.	 Previous sections have
introduced the concepts of information classes and cluster classes.
Recall that information classes were defined during the process
of stating the analysis objectives.	 Cluster classes for each
candidate training area were determined by means of the CLUSTER
processing function.	 The objective of this step of the analysis
is to associate each cluster class with one of the information
classes in order to obtain information class (or subclass) training
dcta.

To carry out this step of the analysis, maximum use is
made of all available reference data, so that the cluster classes
can be reliably identified. 	 If errors occur in this step of the
analysis the training data supplied to the classifier will not
be representative of the information classes. The association
of cluster classes and information classes is difficult and time
consuming, but.this step is most important for insuring that the
classifier is correctly trained.

f.'

EXAMPLE

The reference data available for the Kenosha pass area in-
cluded color infrared 9" x 9" transparencies. 	 The analyst used

- 37 -

PRECEDING PAGE BLANK NOT FILMED

orw
__



P

r

I

an overhead projector to superimpose the photography on the printed
cluster maps. By varying the projector-to-wall distance, he was
able to project the transparency to the scale of the printout,
and since the data had been geometrically corrected, a good match
could be obtained.

U.S. Geological Survey quadrangle sheets of the area were
useful for general location, and for indicating which areas would
fall in topographic shadow at the time of the satellite overpass.

The analyst identified the cover types as accurately as he
could, making use of his knowledge of the area and his skill as
a photointerpreter. The results of his efforts at identification
are shown in Table 5-1.

There are several points to observe about Table 5-1. One
point is that if the analyst felt a single cluster corresponded
to more than one cover type, then he identified it that way. For
example, cluster 13 in candidate training area 1 is associated
with both deciduous and coniferous cover types.

Another point to observe is that the list includes grassland 1,
grassland 2, and 3 and 4. There were four distinctly different
kinds of grassland that the analyst could distinguish in the color
infrared photography: dry grass, mountain bunch grass, wet meadows,
and tundra. Since they were clearly distinct in the photography,
the analyst wanted to keep that information available. Grassland 1
is dry grass. Grassland 2 is mountain bunch grass. Grassland 3
is wet meadow, and grassland 4 is tundra.

Another point to observe is that cluster class numbers from
different training areas do not necessarily correspond to the
same information classes. For instance, cluster 12 in candidate
training area 1 was deciduous, in area 2 it was coniferous, in
area 3 it was grassland 3, and in area 4 it was again coniferous.
This occurred because each candidate training area was clustered
separately, and the results of clustering always depend on the
data being clustered. In this example, each candidate training
area contained different information classes.

EXERCISES

1. State why cluster classes are associated with information
classes.

CASE STUDY

To carry out the next step in your case study analysis,
assemble the following materials: the printed maps you got from
clustering your candidate_ training areas, the 35 mm slide, the
Monroe County map, and the topographic maps. Then identify as
completely as possible each cluster class in every candidate

,y
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Table 5-1. Kenosha Pass cluster. identification

Candidate Training Area
Cluster
Number 1 2 3

1 grassland 1 grassland 2 bare soil

1 2 grassland 2 grassland 3 grassland 2

3 grassland 2 grassland 2 grassland 3

4 grassland 2 grassland 3 grassland 3

,..	 - 5 grassland 2 grassland 3 grassland 2

6 grassland 2 grassland 3 grassland 3

7 grassland 2 grassland 3 grassland 3

8 grassland 3 deciduous and grassland 3

f

grassland 3

9 grassland 3 edge grassland 3

r 10 coniferous deciduous deciduous

11 deciduous water + grassland 3

12 deciduous coniferous grassland 3
i'

13 deciduous and coniferous deciduous
coniferous

14 deciduous coniferous coniferous

15 coniferous coniferous coniferous
and water

L.

{
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4

snow

snow and edge

grassland 4

grassland 4

bare rock

grassland 4

bare rock?

coniferous
and grassland

bare rock

coniferous
and grassland

coniferous

bare rock
in shadow

coniferous

coniferous
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training area. Since the topographic maps are the same scale as
the MSS data, you will probably want to start with them. They
will be most useful in the vicinity of the reservoir. The Monroe
County map shows the Highway 37 By-Pass well.*

The 35mm slide will be helpful for making more detailed 	 j
identifications, such as distinguishing fields of bare soil from
green vegetation in agricultural areas or shopping centers from
residential neighborhoods in the urban area.

One way to use the 35mm slide is to use a regular slide pro-
jector, and instead of projecting the slide onto a screen, pro-
ject it onto the cluster map (taped to a wall). The first time
you do this, the scale of . the slide image will probably not
match the scale of the cluster map. If the slide image is bigger	 f

than the corresponding part of the cluster map, move the projector
closer and re-focus. This procedure is somewhat tedious, but it
does work.

After you have identified each cluster class in every candi-
date training area, make a table of your resultse This informa-
tion will be used in Section 9.

If you have access to a zoom transfer scope, you could use it
to match the Monroe County map and the cluster maps to the same
scale.
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Section 6, CALCULATION OF STATISTICAL CHARACTERISTICS OF CLUSTER
CLASSES

M^

Upon completion of this section, you should be able to do
the following:

.Name the two statistical parameters which define a Gaussian
distribution.

Use the LARSYS processing function to obtain statistics for
classes described by a set of Field Description Cards.

This section describes another step in the process of getting
from candidate training areas to training samples. So far, can-
didate training areas have been selected to contain representative
data from every information class, the candidate training areas
have been clustered, and the cluster classes have been associated
with specific information classes.

In this section the STATISTICS processing function will be
run, and the resulting statistics file will be punched out on
cards, for use in the next analysis step.

Inpfit to the STATISTICS processing function includes a deck
of y ield DeScription Cards. In this step, the input will be all
of the cards punched out by CLUSTER in the step described in
Section 4. From the data points specified on the Field Descrip-
tion Cardsf the STATISTICS processing function will calculate
the mean vector and covariance matrix for each cluster class.
The mean vector is the average of all the data vectors in the
class, and the covariance matrix is a measure of the "spread" of
the data.

These two statistical parameters de ine a a sss:an probability
density function. A Gaussian distribution iss assumed in processing
functions to be used later (Sections 7 and 11,.

In addition to the mean vectors and covariance matrices, the
STATISTICS processing function can produce several kinds of printed
output. The input and output are described in Volume 2 of the
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LARSYS User's Manual, pages STA-1 through STA-22. Examples of
printed output are shown. Take time now to read these pages.

EXAMPLE

i	 After clustering his candidate training areas, and associ-
ating each cluster class with aground cover type, the analyst
was ready to obtain the statistical characteristics of all the
cluster classes. In order to have the statistics available for
the next step, he requested a punched statistics de ck.

The control card deck lis$ed below was used.

-COMMENT STATISTICS OF 60 CLUSTER CLASSES
-RUNTABLE
DATA
RUN (73057902) , TAPE(253) j, FILE (1)
END
*STATISTICS
PUNCH
CHANNELS 1,2,3,4
SCALE SPCINT (1)
DATA

all field description cards punched out by CLUSTER for
cluster area 1

all field description cardsp	 punched out by CLUSTER for
cluster area 2

F•
all field description cards punched out by CLUSTER for
cluster area 3

all field description cards punched out by CLUSTER for
cluster area 4

END

Notice that the analyst did not request histograms. When
the Field Description Cards used as input for STATISTICS come

F	 from CLUSTER, individual fields generally have so few points
that histograms of fields are not meaningful. The analyst could

`

	

	 have requested histograms of cZasses, but they would have added
considerable bulk to the printed output. Since the STATISTICS
processor will be 'run again at a later stage in the refinement
process (with a smaller number of classes), the analyst chose
to wait until then to look at histograms.

kV .

r

Why was the SCALE; control card used? One of the printed
outputs from STATISTICS is a coincident spectral plot. The
analyst had learned in his first few analyses of LANDSAT data
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that data values range up to 128 in the first three channels,
and to 64 in the fourth channel, so using an interval of 1
(rather than the default interval of three) would show more
detail in the plot while still fitting on the page.,

The analyst inspected the coincident spectral plot to gain
insight into relationships between his various classes. He
kept the Field Description Cards for use at a later stage in
the analysis, and he kept the punched statistics deck for use
in the next step.

EXERCISES

1. Name the two statistical parameters which define a
Gaussian distribution.

2. Explain why statistics are needed at this point in the-
analysis.

CASE STUDY

Set up the control cards for the STATISTICS processing
function. Use the punched output from CLUSTER as your input
data. Request a punched statistics deck so that you will have
the mean vectors and covariance matrices of each cluster avail-
able for the next analysis step.

h

t
f

^jf
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;	 Section 7. CALCULATION OF DISTANCES BETWEEN CLUSTER CLASSES

Upon completion of this section, you should be able to do
the foZZowing:

Given two pairs of one-dimensionaZ density functions, iden-
tify the pair which is separated by the Zarger statistical dis-
tance.

Name two measures of statistical distance caZculated in
LARSYS.

Name the two characteristics of Gaussian probability density
functions which determine the statistical distance between the
density functions.

Set up the controZ cards and run the SEPARABILITY processing
function when given a punched statistics deck.

At this pointin the analysis sequence, candidate training
areas have been chosen and clustered, the cluster classes have
been associated with information classes, and the statistical
characteristics of the cluster classes have been calculated. It
would be possible at this point to use all of these cluster
classes to train the classifier, but that is usually not done
for a couple of reasons. First, the number of clusters avail-
able at this point is normally greater than the number of classes
needed to adequately train the classifier. For instance, one
of the cluster classes in area 1 identified as forest may be
spectrally similar to a cluster class of forest in area 3. An
analyst would like to reduce the number of training classes in
such cases, because a smaller number of classes saves computer
time and simplifies interpretation of results. Also, some of
the clusters may have too few data points to get ,good estimates
of the mean vector and covariance matrix. By combining spectrally
similar clusters, the number of data points used to calculate
the mean vector and covariance matrix for a training class will
be greater, and this will generally lead to a better representa-
tion of the cover type.
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The second major reason a classification is not performed
at this point is that the analyst would like to have some indica-
tion of the probability of correct classification in advance of
doing the classification. If there appears to be confusion be-
tween classes, an analyst can do more clustering on the areas
already used, asking for a different number of clusters, or per-
haps the analyst would choose to go back and select additional
candidate training areas in an effort to get good distinction
between classes.

The SEPARABILITY processing function in LARSYS can help
an analyst determine which cluster classes are similar, and it
can serve as an indicator of probability of correct classifi-
cation.

To explain how this can be accomplished, the concept of
statistical distance must first be discussed. Figure 7-1 shows
two cases of one-dimensional density functions. Intuitively
you know that the "distance" between the density functions is
greater in case b than in case a.' There are a number of ways
of measuring statisticaZ distance. (Section 2.4 of LARS Infor-
mation Note 100771, The Minimum Distance Approach to Classifi-
cation, by Wacker and Lan gre e). T e i.stance measure imple-
mented in SEPARABILITY, transformed divergence, assumes that
the density functions are Gaussian. The distance between two
Gaussian probability density functions depends not only on the
ordinary (Euclidean) distance between the mean values but also
on the "spread" of the data. Figure 7-2 illustrates this point.
The Euclidean distances between the mean values are equal in
both of the cases shown, but the smaller variances (smaller
of

	 in part b result in a larger statistical distance be-
tween the two density function.

At this point another distance measure, the one that is cal-
culated in CLUSTER, will be discussed. The Swain-Fu distance is
printed out in the column labelled QUOT on the page showing
separability information for the clusters. Figure 7-3 shows an
example of this information. The Swain-Fu distance is discussed
in detail on pages 30 to 33 of Pattern Recognition: A Basis
for Remote Sensing Data Anal ysis by Philip  H. Swain. Ana ysts
have observed that it" the Swain-Fu distance for two clusters is
less than .75, the two clusters can probably be combined back
into a single class without creating a multimodal distribution.
From this experience, an algorithm has been programmed that in-
dicates which pairs of clusters could be combined together on
the basis of having a distance less than .75 (or some user-speci-
fied threshold). An example of a grouping table output from
CLUSTER is shown in Figure 7-4. A detailed explanation of the
algorithm used to get the suggested groupings can be found on
page CLU-20 of the LARSYS User's Manual.

Now, a natural question to ask is "Why don't we just use
the Swain-Fu distance and the suggested grouping table?" There
are two reasons why transformed divergence, calculated by SEPARA-
BILITY, is used instead.
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Figure 7-1. Two pairs of one-dimensional density functions.
The statistical distance between the density func-
tions in part b is greater than in part a.
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Figure 7-2a

Figure 7-2b

Figure 7-2. Each pair of distribution functions shown above has
equidistant means, but the smaller variance in P (a)
and P 4 M cause them to have a larger statistical
distance.
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SEPARABILITY INFORMATION! 
---------------------------

I J D1 1,J) D( I) D(j) D(I)+U(J)

1 2 21.467 9.426 5.219 14.645
1 3 9.860 8.931 6.479 15.409
1 4 19.002 9.232 5.754 14.986
1 5 19.568 9.054 6.094 15.148
1 6 25.497 8.797 5.934 14.730
2 3 16.691 6.335 7.G20 13.354
2 4 11.819 7.060 5.290 12.350
2 5 17.396 7.436 4.510 11.946
2 6 25.314 7.246 4.351 11.597
3 4 9.860 6.087 5.817 11.904
3 5 9.716 6.476 6.C92 12.568
3 6 1.6.247 7.155 5.726 12.b81
4 5 5.621 5.423 4.473 9.b95

,- 4 6 13.542 5.230 4.419 9.649
5 6 8.255 4.662 4.655 9.317

AVERAGE QUOTIENT 1.197

^j

QUOT

1.466
n.640
1.268
1.292
1.731
1.250
0.957
1.456
2.183
0.828
x!.773
1.261
0-.568
1.4G3
0.886

Figure 7-3. Separability information calculated in CLUSTER.

RESULTS OF CLUSTER GROUPING

THRESHOLD = G.15C

GROUP	 CLUSTERS	 NO. PTS.

1

	

1	 67

	

3	 75

2

	

` 2 	 17

3

	

4	 70
	5 	 70

4

	

6	 37

Figure 7-4. A CLUSTER grouping table.
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First, in order to have a Swain-Fu distance calculated
between all the cluster pairs in all of the candidate training
areas, all of the areas would have to be clustered together in
one job. This would increase the'computer time significantly
(a factor of 7 was observed in one example).

The second reason transformed divergence is used is that
transformed divergence seems to correlate better with probability
of correct classification than Swain-Fu distance does.

How does transformed divergence relate to probability of
correct classification? You might expect that a greater sta-
tistical distance between density functions would be accompanied
by greater classification accuracy.In general, that does

..	 happen, although the relationship is not linear,

For a detailed discussion of the relationship between sta-
tistical distance and probability of correct classification,
see LARS Information Note 042673, Two Effective Feature Selection
Criteria for Multispectral Remote Sensing, y Swain an King.
In particular, experimental resu is of plotting probability of
correct classification versus transformed divergence-for training
data are shown in the graph in Figure 7-5. A transformed diver-
gence value of 1.5 on that graph corresponds to a value of 1500
in SEPARABILITY output. See Figure 7-6 for an example of SEPARA-
BILITY output. Notice that the distances are given for pairs of
classes,.and that the largest value appearing in the table is
2000.

Before proceeding to the exercises and case study you will
want to familiarize yourself with the material on the SEPARABILITY
processing function in Section 6 (volume 2) of the LARSYS User's
Manual.
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Figure 7-6. Output from the SEPARABILITY processing function.
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EXAMPLE

The analyst working on the Kenosha Pass area ran SEPARABILITY
to determine which clusters could be combined. To do this, he
used the following control cards:

-COMMENT SEPARABILITY FOR 60 CLUSTER CLASSES
-RUNTABLE
DATA
RUN (73057902), TAPE(253)j, FILE (1)
END
*SEPARABILITY
COMBINATIONS 4
SYMBOLS A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
SYMBOLS U,V,W,X,Y,Z,$,+,=,/,A,ByC,D,E,F,G,H,I,J
SYMBOLS K,L.,M,N,O,P ,Q,R,S,T,U,V,W,X,Y,Z,$,+,=,/
CARDS READSTATS
PRINT DIV(1000)
DATA

Punched statistics deck from previous STATISTICS
run - 60 classes, 4 channels

END

Since the analyst intends to use all four of the available
channels (rather than oelecting a subset of features), he used
.the parameter 4 on the required COMBINATIONS card. A (one-charac-
ter) symbol had to be assigned to every class. The DIV(1000)
on the PRINT card caused a summary-listing of all class pairs
whose pairwise distance was less than or equal to 1000 to be
printed out. The analyst knew that this condensed listing
would be useful when he constructed his "separability diagram"
(Section 8), because he had chosen 1000 as his first threshold
for combining classes. This part of the procedure frequently
involves two or more iterations, depending on how simple or
complex the analysis problem is, and the threshold may change
from one iteration to the next. 1000 has been a useful starting
value for combining clusters in many problems.

Notice in Figure 7-7 the legend accompanying the SEPARABILITY
output. Since there were more classes than printer symbols, the
analyst had to use symbols twice, requiring extra care in inter-
preting the results.

Figure 7-8 shows the condensed list at the end of the
printout that resulted from the PRINT DIV(1000) card. The
analyst annotated the list as shown in Fiqure 7-9 to eliminate
any confusion due to duplicate symbols.
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CLASSES CONSIDERED
-=--------------------

SYMBOL	 CLASS

C	 NS- 3%15
F	 NS- 6/15s
I	 NS- 9/15
L	 NS-12%15
MS-13/ 15

P	 NS-11/15

5	 NS- 4/15
U	 NS 6/15
W	 NS- 8/15
X	 NS- 9/15

Z	 NS-11/15
+	 NS-13/15

NS-14/15

A	 NS-11%15

C	 NS- 3/15
F	 NS 6/15
I	 NS- 9%15
K	 NS-11/15
L	 NS-12/15

i

N	 NS-14/15
P	 NS-11%15

R	 NS- 3/15 F

T	 NS- 5/15
V	 NS- 7/15

9/15X	 NS-`
NSZ	 -11%15c + NS-_13/15
NS/	 -15/15

Figure 7-7.	 The legend accompanying SEPARABILITY output for the
Kenosha Pass analysis.
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BB 945, PB, 152,

BU 838, QD 599,

FQ 950. QY 413.

FD 489, RD 996,

FY 740, RE 8146

GR 284. SG 754,

GE 874, Sz 931.

HQ 932. TH 8470

HC 394. TX 340,

HW 887, UI 493.

IS 671. Ui 873.

IY 988. VF 468,

JE 634. V$ 658.

J$ 797. YM 597.

KU 690. Z= 421.

KX 995, $N 271.

KJ 541. $/ 959.

KZ 544. +/ 507.

IV 343. --o 203.

LF 462. BU 850.

mz 518. DY 238.

M= 834. F$ 957.

NY 866. F= 753.

NM 593. HX .581.

0+ 473. NI 646.

00 704, 0/ 666.

0/ 397.

Figure 7-8. SEPARABILITY output resulting from the PRINT DIV(1000)
card.
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BB 945. Bl-B2 PB 152, PI-B2

BU 838. Bl-U2 QD 599. Q1-D2

PQ 950. Fl-Ql QY 413. Ql-Y2

FD 489. F1-D2 RD 996. RI-D2

FY 740. Fl-Y2 RE 814. RI-E2

GR 284', G1-R1 SG 754,, S1-G2

GE 874. GI-E2 Sz 931. S1-Z2

HQ 932. Hl-Ql TH 847. Tl-H2

HC 394. Hl-C2 TX 340. Tl-X2

HW 887. Hl-W2 UI 493. U1-12

IS 671. I1-S1 Ui 873. Ul-J2

IY 988. Il-Y2 VF 468. V1-F2

JE 634. J1-E2 V$ 658,- V1-$2

J$ 797. Jl-$2 YM 597. Y1-M2

KU 690. Kl-Ul Z= 421. Z1-=2

KX 995. Kl-Xl $N 271. $1-N2

KJ 541. Kl-J2 $/ 959. $1-/2

KZ 544. Kl-Z2 +/ 507. +1-/2

LV 343. L1-V1 =0 203. =1-02

LF 462, L1-F2 BU 850. B2-U2

Mz 518. M1-z1 DY 238. D2-Y2

M= 834. Ml-=2 F$ 957. F2-$2

NY 866. Nl-Yl F= 753. F2-2

NM 593. N1-m2, HX 581. H2-X2

0+ 473. 01-+l NI 646. N2-/2

00 704. 01-02 0/ 666. 02-/2

0/ 397. 01-/2

Figure 7-9. List of class pairs from Figure 7-8 annotated to
eliminate confusion due to duplicate symbols.
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EXERCISES

1. Look at the two pairs of one-dimensional density functions
shown in Figure 7-10. For which pair is the statistical distance
between density functions the largest?

2. Name two statistical distance measures calculated in
LARSYS.

3. Name the two characteristics of Gaussian probability
density functions which determine the statistical distance between
the density functions.

CASE STUDY

Set up the control cards to run the SEPARABILITY processing
function. Use the statistics deck you punched out in the pre-
vious step as input data. You should note that when you ran the
STATISTICS processing function, you put the punched decks from
CLUSTER in a certain order, and the punched STATISTICS deck kept
the classes in the same order. When the punched statistics deck
is used as input to SEPARABILITY, the same class order is still
preserlied. You may want to make use of the PRINT control card
as the analyst did in the example.
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Section 8. CONSTRUCTION OF SEPARABILITY DIAGRAM

Upon completion of this section, you should be able to con-
struct a "separability diagram," when given SEPARABILITY output.

The SEPARABILITY processing function was run to determine
how to combine cluster classes from different cluster areas to
form training samples for information classes. In this section,
a technique for graphically portraying the information from
SEPARABILITY will be demonstrated. In Section 9, this separa-
bility diagram will be interpreted in conjunction with the in-
formation on cluster class identification obtained in Section 5.
Review the analysis flow chart, Figure 2 in the Introduction,
to see how these steps fit into the analysis sequence.

There are several ways in which the information can be
diagramed. Two of the possibilities are demonstrated here.

To work with a fairly simple case first, consider this
example: two areas were clustered, and in each case eight
clusters were requested. Statistics were calculated, and SEPARA-
BILITY was run with the option to print out class pairs whose
interclass divergence was less than 1000. The sixteen classes
were assigned the symbols A,B,C,D,E,F,G,H,1,2,3,4,5,6,7, and 8.
The following list was printed out:

Al	 815.

C2	 823.

C3	 760.

D4	 70.

E6	 382.

F8	 732.

G7	 194.

One way to approach the diagram construction would be to set
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all 16 symbols down in a circle, as shown in Figure 8-1. Then
start at the top of the printed list with the pair Al and draw
A line connecting A and 1. Along the line, write the divergence
value, 815, as shown in Figure 8-2. Then proceed to draw in
lines indicating the remaining class pairs, as shown in Figure 8-3.

f

o	

'OB

 a

o	 D0
a5

4	 FO
(3 O0 0

Figure 8-1. First step in one method of constructing a
separability diagram.
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l O°^	 5	 O^:	
E

4	 FO O

O	 ^
O

O	 B	 ^1

CO

O

Figure 8- 2. Second step in one method of constructing a separability
diagram.
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Figure 8-3. A completed separability diagram.
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An alternative approach is to start at the top of the list
of pairs and draw the pair relationships. First, make a list of
all of the class symbols. Then, noting that'the first pair is
Al, draw the A, the 1, cross them off the symbol list, and draw
the connecting line, as shown in Figure 8-4. The second pair
is C2, and neither C nor 2 is represented yet, so draw the C.
the 2, cross them off the symbol list, and draw the connecting
line as shown in Figure 8-5. The next pair is C3. A check of
the symbol list shows that the C has already been drawn, so
draw the 3 only, cross it off the symbol list, and connect C3,
as shown in Figure 8-6.

;C B C D E F G H	 815	 Figure 8-4.
A	 '-'-^-(1 )	 Step one of a

X 2 3 4 5 6 7 8 	 separability
diagram.

XB DEFGH 	 Figure 8-5.

0---!L5
1	 Step two.

X x 3 4 5 6 7 8

@----EL--02

X B D E
,F G H n	 815	 ^,`^

RAJ"""'
Figure 8-6.
Third step.

X x 1 4 5 6 7 8

rV, f
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When the list of class pairs has been exhausted, the diagram
shown in Figure 8-7 results. Note that the symbol list shows
that 3 classes (B, H, and 5) had a statistical distance greater
than 1000 from every other class.

Figures 8-3 and 8-7 contain the same information, and you
could come up with still other diagrams equivalent to these two.
When carrying out this step of the analysis you will have to

r	 choose some way of representing the separability information so
that the class relationships are apparent to you.

1r

70	 4

382
E	 ^̂J

(D- 732
	 f1

194	 ! :,1^	 U

Figure 8-7. A completed separability diagram.
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In the next section, you will use the separability diagram
constructed here along with the cluster class identification
you found in Section 5 to select training samples for the infor-
mation classes you wish to classify.

EXAMPLE

The analyst working on the Kenosha Pass area used his list
of class pairs having interclass divergence values less than or
equal to 1000 to construct a separability diagram. He had al-
readv annotated the list, as discussed in the last section, to
prevent confusion about symbols. The annotated list is repro-
duced as Figure 8-8 for your convenience.

If the analyst had chosen to diagram the information in a
circle, Figure 8-9 would have resulted. However, he chose in-
stead to construct the diagram shown in Figure 8-10. (Don't be
surprised if your first few diagrams do not look so orderly --
you can redraw them if they look too confusing.)

r

CASE STUDY

Using the SEPARABILITY output you generated in the last
section, construct a separability diagram. Discuss the results
of this operation with your instructor.
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PB 152. P1-B2
'. BB 945. B1-B2

QD 599. QI-D2
BU 838. Bl-U2

Qy 413. Q1-Y2
F' FQ 950m F1-Q1

RD 996. Rl-D2
FD 489. Fl-D2

" RE 814. R1-E2
FY 740. F1-Y2

SG 754. S1-G2 rr.
GR 284. G1-.R1

SZ 931. Sl-Z2 
G E 874. Gl-E2

TH 847. Tl-H2 r
-"' HQ 932. Hl-Ql

TX 340. T1-X2
HC 394. Hl-C2

UI 493. U1-I2
HW 887. H1-W2

UJ 873. U1-J2
IS 671. I1-Sl

VF 468. V1-F2
IY 988. Il-Y2

` V$ 658. Vl-$2
JE 634. J1-E2

YM 597. Y 1-M2
J$ 797. J1-$2 1

Z= 421. Zl-=2 
K U 690. Kl-Ul

r $N 271. $1-N2 j
KX 995. Kl-X1

$/ 959. $1-/2
KJ 541. Kl-J2

+/ 507. +1-/2
. KZ 544. K1-Z2

LV 343. Ll-V1 =0 203. =1-02

LF 462. L1-F2 BU 850. B2-U2

518. Mi-Z1 DY 238. D2-Y2
MZ

F$ 957. F2-$2
M= 834. Ml-=2

NY 866. Nl-Y1 F= 753. F2--2 y

N M 593. N1-M2 HX 581. H2-X2 

O+ 473. 01-+1 N/ 646. N2-/2
n

00 704. 01-02 0/ 666. 02-/2
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Section 9. SELECTION OF TRAINING CLASSES

Upon completion of this section, you shouZd be able to
seZeet training cZasseo for use in cZassification, given a
separabili ty diagram and a Zist of cluster-cZass/information-
cZass associations land an analysis objective).

This section describes the last step in the process of re-
fining the candidate training areas to obtain training samples.
So far, refinement of candidate training areas has included
clustering the areas, associating cluster classes with informa-
tion classes (cover types), calculating statistics of the
clusters, running SEPARABILITY to get a measure of the dis-
tance between clusters, and constructing a separability dia-
gram. In this section, training classes will be selected from
the cluster classes. To select training classes, the separability
information diagramed in Section 8 and the cluster-class/infor-
mation-class associations determined in Section 5 will be used.

First, analysis objectives should be reviewed, to bring
clearly to mind the cover types of interest.

There are a number of ways t,= problem of selecting training
classes from cluster classes could be approached. A few possibil-
ities will be suggested in general terms in the discussion, and
then one of the possibilities will be pursued in detail in the
example.

One possibility would be to begin by transferring the cluster
class identification information onto the separability diagram.
Then, group together cluster classes from the same cover type
whose interclass statistical distances are less than the chosen
threshold (e.g., a transformed divergence T 1000). When cluster_	 classes from the same cover type have a pairwise statistical
distance greater than the chosen threshold, the conclusion would
be that the cluster classes are spectrally distinct subclasses
of that cover type. When cluster classes from DIFFERENT cover
types are spectrally similar, as shown by a small statistical
distance, there is a problem. Possible courses of action include
the following: the classes could be clustered again to refine
them further; the identification of cluster classes could be
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checked to verify that the cluster classes are indeed from dif-
ferent cover types; the confusion between classes could be
accepted and no action taken. Another possible course of action
is more easily described by an example: assume that an analyst
is interested in classifying an urban area, and has discovered
that a cluster class identified as urban is similar to a cluster
class identified as agriculture. He could decide that for his
purposes, the error of classifying some-agriculture data points
as urban would not be too troublesome, while the error of class-
ifyinq some urban points into agriculture would be disastrous.
In that case, the analyst could choose to eliminate the cluster
class identified as agriculture from any subsequent processing.

Another possible way to select training classes would again
begin with the transfer of cluster class identification infor-
mation onto the separability diagram. Then, when cluster classes
from the same cover type have interclass statistical distances
less than the chosen threshold, just one of those clusters would 	 j
be chosen to represent that cover type, and the rest would not
be used. The philosophy behind this approach is that the single
cluster class will have a smaller variance than would a group
of cluster classes, and therefore the single class would be
less likely to be confused with other cover type classes. How-
ever, a criticism of this approach is that the number of data
points is not as large as it would be if all clusters were used,
and in general a larger number of data points in a training class
is more representative.

Again if cluster classes from DIFFERENT cover types have a
small interclass distance, the same problem arises as before, and
one of the previously mentioned ways of dealing with the situa-
tion can be chosen.

A third possible approach to the selection of gaining
samples would begin with the separability diagram. Tentative
class groupings would be determined on the basis of the statis-
tical distances without reference tothe cover type identifications
of the clusters. After cluster groupings have been determined
on the basis of statistical distances, then the cluster class
identification information is transferred onto the diagram.
Then the groupings are inspected to see if the spectrally similar
clusters are from the same cover type. The difference between
this approach and the first one is rather subtle and can best be
understood by trying both ways.

One point which should be apparent by now is that there is
no sing le correct way to progress through an analysis sequence.
As you increase your understanding of the pattern recognition
concepts used in LARSYS and gain experience in analysis, you
may even develop new procedures yourself.

This section has described ways in which training samples
can be selected from the cluster classes generated earlier. The
techniques described make use of the separability diagram con-
structed in the last section and the cluster class- information
class associations determined earlier.
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fThe techniques described here are still subject to a great
deal of investigation. The construction of the separability dia-
gram can be expressed in terms of a programmable algorithm, and
the numerical criteria for grouping clusters together could be

 programmed. Experimental work along these lines is in progress
at this writing.

EXAMPLE
c;

In the Kenosha Pass example, remember that the analyst con-
structed the separability diagram shown in Figure 9-1. We will
now go through a step-by-step interpretation of that diagram to
convey the kinds of thinking an analyst does.
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The analyst who did this work chose to begin by looking at the
statistical distances first without reference to the cover type iden-
tification of the various clusters. Two of the cluster groups were
straightforward. Look in the lower left-hand corner at the N1-Yl-M2
group. It was not connected to any other group and every pair of 	 }'

k	 clusters in the group has transformed divergence less than 1000.
Similarly, the Tl, X2 and H2 clusters were close to each other while
being separate from any other clusters. The analyst then interpreted 	 j
those by circling those two groups as shown in Figure 9-2.
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Then what? Look at the Bl-B2-U2-Pl group in the upper left-
hand corner. Since the transformed divergence values between B1
and P1 and between U2 and P1 were greater than 1000, how did
this group get handled? The analyst who did this work set a
second criterion for cases such as this. This criterion will.be
expressed in terms of an example. Suppose you have three clusters
a, b, and c. The a-b distance is less than 1000 and the a-c dis-
tance is less than 1000, but the b-c distance is greater than 1000.
If this b-c distance is less than 1500 go ahead and group all three
together. If the b-c distance is greater than 1500 only group to-
gether a-b or a-c, whichever pair has the smaller transformed di-
vergence.

Now to return to the B1-B2-Pl-U2 group, the analyst went back
to his SEPARABILITY output to find the transformed divergences for
Bl-P1 and U2-P1. The Bl-P1 distance was 1312 and the U2-Pl distance

Ln was 1117. Both of these were less than 1500 so the analyst grouped
all four clusters together and his separability diagram looked like
Figure 9-3.
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Next go the the bottom of the page,the 01,+1,=1,02,/2,$1 and
N2 group. In order to decide how to handle this the analyst again
had to go back to his SEPARABILITY output to find the transformed
divergences associated with some of the other class pairs. To help
in following the discussion, draw in the indicated distances with
dashed lines on Figure 9-3. The 01-=1 distance was 1170. The 02-+1
distance was 1072. The 02-N2 distance was 1579. The 02-$1 distance
was 1747. The =1-$1 distance was 1850. Since the =1-$1 distance,
02-$1 distance and the 02-N2 distance were all greater than 1500 the
analyst decided that the clusters represented by $1 and N2 belonged
together in a group separate from the other clusters. For thorough-
ness the analyst also inspected the =1-+l distance, 1470, and the
=1-/2 distance, 1131. Both were .less than 1500 so the 01,+1,=1,02,/2
clusters were all grouped together. At this point the separability
diagram looked like Figure 9-4.
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Now how did he interpret this string that is left? Start at
the left end with the Ml-Z1-,=2 group. Should it be combined with
other clusters or not? Going back to his SEPARABILITY output,
the analyst found that the Ml-F2 distance, 1073, and the Z1-F2 dis-
tance, 1266, were both less than 1500. However, the Ml-Ll distance,
1538, and the Zl-L1 distance, 1731, both exceeded 1500 so these
three clusters became a separate group. The separability diagram
looked like Figure 9-r,
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To proceed with the interpretation, the F2-Ll-Vl-$2 group is
next. Again the analyst had to go back to his SEPARABILITY output
to find out some more distances. The L1-$2 distance was 1197, the
V1-Jl distance was 1611, and the F2-J1 distance was 1683. The V1-J1
distance and the F2-J1 distance were both greater than 1500 so the
F2-$2-L1-V1 group was separated from the rest of the string. How-
ever the analyst wasn't yet ready to circle this group and finish
with it. He looked at the mean and standard deviation of the
clusters as plotted on the coincident spectral plot which he got
as part of his STATISTICS output. He decided that the cluster
represented by $2 would cause confusion so he chose to delete that
cluster. His separability diagram then looked like Figure 9-6.
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The next part of this string is the Jl-E2-Gl-Rl group. Other
distances of interest include the Gl-J1 distance, 1703, the R1-J1
distance, 1464, and G1-D2, 1612. Since the G1-D2 distance and the
Gl-J1 distance were both greater than 1500, the analyst grouped
E2 and J1 together in one group, and made a separate group of G1
and R1. The separability diagram at this point looked like Figure 9-7.

Co
w



c^

V/ O

A^CDE^'^^I+^'^J^^I^^^^^^"+"^YW^^^^^^^A 	 KL	 P9RST V 7	 + X	 '.
h

95	 950	
c^ 1 

932 
it 

887 ^V2
B_	 B2	

>	 1
co
m	 co
co 5g9 2 8	

rn
jJ	 P^	 2	 2	 2.

43

N] 866 Y	
1 473 

1	
UV847

9° 9^ ° m
203 0? 666

f

1

a

	

to	 Figure 9-7

271
^2

i

i

h



Next, move to the right-hand side of the diagram, the part that
has the I2, U1, J2, K1, and X1 clusters. The analyst again went back
to his SEPARABILITY output to find out some more distances. The J2-I2
distance was 1675, the X1-U1 distance was 1797, and the Xl-I2 distance
was 1970. Because the J2-12, the X1-I2, and the X1-U1 distances were
all greater than 1500, only U1 and I2, the pair with the smallest trans-
formed divergence, got grouped together. The diagram then looked like
Figure 9-8.
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Moving to the left of the Ul-I2 group, what about the J2, Kl, X1
clusters? Well, the J2-Xl distance was 1404 so those three clusters
at least could be put together. But how did Z2 fit in? Well the
Z2-J2 distance was 1228, the Z2-X1 distance was 1079. The Z2-I1 dis-
tance was 1586 and the Z2-G2 distance was 1119. Z2 was closer to
the J2-K1-X1 group than to the other clusters and all pairwise dis-
tances for Z2, J2, K1 and X1 were less than 1500 so the analyst
grouped those four clusters together. The separability diagram in
Figure 9-9 shows the interpretation to this point.
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Next look at the G2-I1 distance. The analyst found on his
SEPARABILITY output that that was 1121. Since it was less than
1500, G2 1 S1 and Il all went into one group. What about Y2?
How did it fit with this group? The Y2-S1 distance, 1578, was
greater than 1500 so Y2 did not go with this group. The separa-
bility diagram looked like Figure 9-10.
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Now did W2 go with C2 and Hl? The C2-W2 distance was 1230,
but the analyst looked at the means and standard deviations of the
clusters and decided that the W2 cluster would cause too much con-
fusion so the W2 cluster was deleted. Now, did H1 and C2 go with
the Fl-D2-Q1-Y2 group? The H1-Y2 distance, 1459, and the Q1-C2
distance, 1031, were less than 1500. The Y2-C2 distance was 1500.
The Fl-H1 distance, 1860, and the D2-C2 distance, 1745, were so
large as to prevent C2 and H1 from being included in that group.
Therefore H1 and C2 became a separate cluster group and the dia-
gram looked like Figure 9-11.
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Before circling the Fl, Ql, B2, Y2 clusters and calling them a
cluster group the analyst reviewed the cluster means and standard
deviations and found that the Q1 cluster was likely to cause con-

k fusion with the Hl-C2 group, so that cluster was also deleted.
Figure 9-12 was the result of the interpretation to this point.
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The line across the top of Figure 9-12 shows that several sym-
bols were not crossed off, indicating that the clusters they repre-
sented were still classes by themselves. The rest of Figure 9-12
shows how the analyst had decided to combine clusters. This iter-
ation reduced the number of classes from 60 to 30, but 30 is :still
a large number of classes for an analysis with an objective of dif-
ferentiating five cover types.

The analyst combined clusters, assigned new symbols to all
classes, and ran STATISTICS and SEPARABILITY over again,
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Table 9-1 shows how the 60 classes were combined into 30, and
the new symbols corresponding to the 30 classes are shown.
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Table 9-i.

symbols in new symbols in new
t

first iteration symbols first iteration symbols

Al A B1,B2,P1,U2 Q s
a

C1 B F1,D2,Y2 R
i

D1 C H1,C2 S

El D G1,R1 T

Wl E J1,E2 U f

/1 F I1,S1,G2 V

A2 G K1,X1,J2,Z2 W

K2 H U1,12 X

L2 I Ml,Z1,=2 Y

P2 J L1,V1,F2 Z

Q2 K N1,Y1,M2 $

R2 L 01,+1,=1,02,/2 +

S2 M T1,H2,X2 =

T2 N $1,N2

V2 0
+2

P
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Figure 9-13 shows the information from Table 9-1 put on the
separability diagram. The analyst combined the Field Description 	 •`,
Cards from CLUSTER in the manner indicated, and added to those 	 t'
cards a set of Field Description Cards describing clouds, cloud
shadows, and water, chosen from outside the Kenosha Pass area
boundaries. Then he took all these Field Description Cards, ran
STATISTICS again, ran SEPARABILITY again, and constructed another
separability diagram, the one shown in Figure 9-14.
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To interpret this diagram the analyst started by putting
the cluster class identification information on the diagram.
The result is shown in Figure 9-15.
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To interpret the diagram, classes J, Ky A2r E2 and C2 were
rather straight-forward, They were not connected to any other
clusters, so they could each be circled individually and maintained
as clusters.

The next thing the analyst did was to delete any classes
composed of more than one cover type. For instance, R represented
grassland 2, grassland 3 1 and bare rock, so it was deleted. U
represented both coniferous and grassland 2, so it`was deleted.
Z was deleted, and W, E, Q and Y were deleted. The diagram then
looked like Figure 9-16.
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In this iteration, when classes of the same cover type had
 transformed divergence values less than 1750, the analyst grouped

them together.	 As the interpretation of the rest of the diagram
is discussed, you may wish to annotate Figure 9-16 to indicate
the interpretation. 	 Let's start at the bottom.	 Cluster F was
coniferous and water. 	 The next cluster up was coniferous.	 F
was kept separate and by itself. 	 Then the + and / were both con-
iferous, so they were grouped together. 	 The $ was deciduous,
so that became a class by itself.	 The I and H were both grass-
land 3, so they got grouped together..	 The S,=,V, and X

5^'
classes were all grassland 3 and they were all connected to
each other, so the analyst grouped them together into a single

' class.	 The X was also g rassland 3 but it was not close to V
gi or S, so it became another subclass of grassland 3. 	 T. grass-

land 2, became a class by itself.	 Moving up to the B and D and
C classes, the B-D distance was rather large and by inspection
of the coincident spectral plot from STATISTICS the analyst de-
cided that C was between B and D and therefore would cause con-

°' fusion.	 He interpreted these classes by deleting class C, having
B a separate class, and D as a separate class.

Look next at cluster A in the corner. It was identified as

	

r	 grassland 1 so it became a class by itself. The class G, bare
soil, looked rather suspicious because it was close to class At
grassland 1, and would cause confusion. Also there is a class M,
of grassland 4, and a class N of grassland 4 1 so the analyst felt
tiar grassland 4 could be adequately represented without L, and
it was deleted also. Them M became one grassland 4 subclass and
N was the second grassland 4 subclass. 0 was a class of bare
rock by itself and P was another class of bare rock. The inter-

	

{	 pretation of the diagram is shown completed in Figure 9-17.
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Using this diagram the analyst went back to his Field Des-
cription Cards again and did the combining and deleting indicated
in Figure 9-17 to get together the description of all the .rain-
ing classes to be used to classify the Kenosha Pass test site.

CASE STUDY

Using the procedure illustratedin the example, interpret
the separability diagram you created at the end of the preceding
section, using the cluster class identification information you
derived earlier, and keeping in mind your analysis objectives.

.	 You will have to decide how many iterations are necessary.

You should arrange to discuss your progress with your in-
structor at this time.



Section 10. CALCULATION OF STATISTICAL CHARACTERISTICS OF
TRAINING CLASSES

Upon completion of this section, you should be ab4o to do
the foZZowing

ExpZain why statistics are needed at this point in the anaZy-
sis,.

Use the LARSYS processing function to obtain statistics of
training cZasses.

! The analysis sequence so far has resulted in a set of Field
Description Cards indicating the coordinates of data to be useds
for training.	 Before the classification can be performed, the
.STATISTICS processing function must be run on this final training
set.	 The classifier available in LARSYS for classifying data
on a point--by-point basis (CLASSIFYPOINTS) is based on the assump-
tion that the training classes can be represented by multivarilate
Gaussian probability density functions, defined by mean vectors
and covariance matrices. 	 The STATISTICS processing function cal--
culates the mean vectors and covariance matrices for the data
described on Field Description Cards.

A, detailed description of the input and output of the STA-
TISTICSprocessor can be found on pages STA-1 to STA-22 in Volume 2
of the ,LARSYS User's Manual.

k EXAMPLE

After the analyst had defined training patterns as discussed
in the last section, he was ready to generate statistics for
training.	 The control cards lasted on the next page gave him the
output he wanted:
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-COMMENT EENOSHA PASS FINAL TRAINING STATISTICS
RUNTABLB
DATA
RUN ( 73053' 902), TAPE ( 253)j. FILE(1)
END
*STATISTICS
CHANNELS 1,2,3,4
PUNCH
PRINT HIST (C) , CORRE (C)
SCALE SPCINT
DATA
CLASS GRASLNDI,

field description Cards for Dry Grass

CLASS GRASLND4

field description cards for first Tundra subclass
o

CLASS GRASLND4•
w
v

field description cards for second Tundra subclass
6
•

CL^SS BAREROXI

field description cards for first subclass of Bare Rock

CLASS BARESHAD
r

field description cards for Bare Rock in Shadow

CLASS GRASLND2
s

•

field description cards for first subclass of
'Mountain Bunch Grass
•
e

CLASS GRASLND2

field description cards for second subclass of
Mountain Bunch Grass

	

K	 CLASS GRASLND2

field description cards for third subclass of
Mountain Bunch Grass
a

r
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CLASS GRASLND3

field description cards for first subclass of Wet Meadow

CLASS GRASLND3

field description cards for second subclass of Wet Meadow

CLASS GRASLND3

field description cards for third subclass of Wet Meadow

CLASS DECIDOUS

field description cards for Deciduous

CLASS CONIFERl

field description cards for first subclass of
Conifer a

CLASS CONIFER2

field description cards for second subclass of
Conifer•
•

CLASS BAREROK2

1	 field description cards for second subclass of Bare Rock

CLASS SNOW
•
field description cards for Snow

CLASS CLOUD

•
field description cards for Clouds

CLASS C SHADOW
r

field description cards for Cloud Shadows

CLASS WATER
•
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This time the analyst wanted to see the histograms of the
classes and the correlation matrices of the classes. Again, he
used the SCALE card so that the coincident spectral plot would
have a scale appropriate to LANDSAT data.

After running STATISTICS, the analyst ran SEPARABILITY one
more time for the purpose of checking on probability of correct
classification. The transformed divergence between all class
pairs was greater than 1750, which generally corresponds to better
than 90% probability of correct classification for-training data.
The analyst considered this acceptable, and decided that he was
ready to classify-the data, so the punched statistics deck from
this job was saved for use in the next analysis step.

r

EXERCISES

1. Explain why statistics are needed at this point in the
analysis.

CASE STUDY

Set up the control cards to run. the STATISTICS processing
function with your Field Description Cards from CLUSTER combined
in the way determined in Section 9. Remember to request punched
output*
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Section 11. CLASSIFICATION, RESULTS DISPLAY, AND EVALUATION

Upon completion of this section, you should be able to do
the foZZowing:

Name and briefly describe the decision rule implemented in
the CLASSIFYPOINTS processing function.

Identify the kind of distribution training classes are
assumed to have, and name the two parameters needed to define
such distributions.

Given a statistics deck and the coordinates of an area to
be clas sified, set up the control car "s and run the CLASSI"FYPOINTS
processing function.

Set up controZ cards for PRINTRESULT,S to display the class-
ificat7,on, and run the job.

.Given an example of a class performance matrix, indicate
points correctly classified, errors of omission, and errors of
commission for a specified class.

The CLASSIPYPOINTS processing function classifies multi-
spectral (and multitemporal) data one point at a time into
classes defined by the training statistics. This is the last
major step in the process of deriving useful information from
remote sensing data. Of course, an analyst may decide that the
first classification produced is not satisfactory for the ob-
jectives to be met. In that case, decisions made in previous
steps would have to be revised. The first few times an analyst deals
with the spectral properties of cover types by using the pattern
recognition techniques available in LARSYS it may be necessary
to go all the way back to the step where candidate training
areas were selected. However, with experience and increased
analysis skill, such drastic revisions can be avoided.

The decision rule implemented in LARSYS is called a maxi-
mum likelihood classification rule. Each data point to be class-
ified is compared to all of the training classes, and is assigned_
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	 to the most likely class. To express the concept of a classifies
in a quantitative way so that the computer can do the work, we
would like to have a set of functions corresponding to the train-
ing classes. These functions would have the property that when
a data vector to be classified is substituted into all of them, the
function having the largest value corresponds to the class to

'l

	

	which the data vector belongs. This would provide a quantitative
way of discriminating between classes. Such functions are called
discriminant functions. One way to get such a set of functions
(the way LARSYS gets discriminant functions) is to start with
training classes, and assume that they have multivariate Gaussian
(or multivariate normal) probability density functions. Then

f'	 he distribution ofor a	 define tthe. mean vest	 d covariance matrix den
the training data. The discriminant functions are expressed in
terms of the mean vector and covariance matrix, which were cal-
culated for all training classes by use of the STATISTICS process-
ing function in the last section.

For more detailed information about the classification
algorithm, see pages CLA-25 through CLA D-29 of Volume 2 of the
LARSYS User's Manual and also LARS Information Note 111572,
Pattern Recognition: A Basis for Remote Sensing Data Analysis
by Philip H. Swain.

The classification which is produced is stored on disk or
tape (whichever you specify). In order to access and evaluate
classification results, another LARSYS processing function is
used. The PRINTRESULTS processing function can provide an alpha-
numeric printout,and it has a capability for providing quantita-
tive information about a classification in the form of tables.
The analyst can specify the coordinates of areas of interest,
called "test fields." The computer then examines and tabulates
the classification decision for each data point, and prints out
A summary by fields, or classes, or both, as specified by the
analyst. An example of tabular results for classes is shown in
Figure 11-1. Such a table can be called a test class performance
matrix.

NO  ̀OF PCT.
SAMPS CORCT OATS CORN WHEAT SOYB GRASS

OATS 66 98.5 65 0 0 1 0
CORN 93 93,5 0 87 0 6 0
WHEAT 69 100.0 0 0 69 0 0
SOYB 97 93.0 2 0 0 53 2
GRASS 31 90.3 0 3 0 0 28

TOTAL 316 67 ' 90 69 60 30

Figure 11-1. Test class performance matrix
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What do the numbers in the performance matrix tell you about
the classification? Look first at the 66 samples of OATS. The
table indicates that 65 of those paints, or 98.5%, were correctly
identified. Looking across that row, the table also indicates
that one data point which the analyst knows to be oats was in-
correctly classified as soybeans. That is, there was one error
of omission for the 66 oats samples. Looking down the column
labelled OATS, there were two errors of commission for the class
oats. That is, two samples were called oats that should not
have been.

The diagonal elements of the matrix can be summed, and that
total divided by the total number of samples. The result is
called overall performance. For Table 11-1, the overall per-
formance is (65+87+69+53+28) + 316 = 95.5%.

Another way of evaluating the classification is to sum the
percent correct for each class, and divide by the number of
classes. This result is called average performance by class.
The average performance by class in Table 11-1 is (98.5+93.5+
1-00.0+93.0+90.3) 4 5 = 95.1%.

The capability to get tabular results for a specified
area can be used to obtain area estimates for the cover types
in a classification.. To do this, the coordinates of the en-
tire area can be put in as a test field. Then the output,
instead of being the usual performance matrix, will be a
one-line table indicating the number of data points classified
into each cover type. Given the total number of data points
and the total area, the area per data point can be calculated.
Then this area per data point multiplied by number of data
points per cover type will give area per cover type.

Furthermore, the information in the performance matrix
about the error rates associated with a classification can
be used to adjust areal estimates derived from the classifi-
cation, so that they more nearly estimate the true amounts
of each cover type. More detailed information about this
use of the performance matrix can be found in Appendix A,

] material extracted from the final report for Contract NAS5
21773: A Study of the Utilization of ERTS-1 Data from the
Wabash River Basin by Marvin E. Bauer, titled Identification
and Area Estimation of Agricultural Crops by Computer C ass
i' cat Qn of ERTS-a. MSS Data.

l
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EXAMPLE

For the Kenosha pass example, the analyst used the following
control cards to classify the data:

-COMMENT KENOSHA PASS CLASSIFICATION
-RUNTABLE
_DATA
RUN(73057902) f TAPE(253), FILE(l)
END
*CLASSIFYPOINTS
RESULTS TAPE (TTT) FILE (F)
CARDS READSTATS
CHANNELS 1.2,3.4
DATA

punched statistics file from STATISTICS processing function

DATA
RUN (73057902) ;, LINE (197j,531 j 1),r COL(401p8036,1)
END

Note that the analyst specified that his results were to go onto
tape, where they remain until he writes over them. 'When you
classify the case study data, you should put your results on
disk. However, this means that you must run your PRINTRESULTS
job in the same terminal session (or batch job) as the CLASSIFY-
POINTSy because disk results are cleared at logout.

When you do need to keep results on tape, check with your
supervisor to learn the numbers of any tapes assigned to you.

The next control card,, CARDS READSTATS,, indicates that the
statistics (mean vectors and covariance matrices) of the training
classes are to be read from punched cards.

The CHANNELS card of course specifies which channels are to
be used for classification. The analyst chose to classify with
all four channels. If a subset of channels had been desired
(for instance, if one of the channels had striping so bad it
couldn't be used), this is where the subset would be specified.

The first data deck contains the statistics of the training
classes. The second data deck indicates the area to be classified.

To display the results, the analyst used the following con-
trol card setup:
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-COMMENT PRI `1%7,,'OUT Off' KENOSHA PASS
*PRINTRESULTS
RESULTS TAPE (TTT) , FILE (F)
PRINT TRAIN(C)
SYMBOLS +F-FI+F-I-F+r+s+r' P + JV + F/i 0 r 0 01-F r 1$1W

GROUP GRASSLND( 1/1,2,3,6,7,8,9,10,11/)
GROUP BARREN(2/4,5,15/),DECIDOUS(3/12/)
GROUP CONIFER (4/12,14/) ,SNOW (.5/16/) ,CLOUD (6/1.7/)
GROUP C SHADOW(7/18/),WATER(8 /19/)
END

The analyst specified that training class performances were
to be printed out. Since CLASSIFYPOINTS stores the coordinates
of the training data at the beginning of the results file, the
analyst did not have to include a data deck to get training per-
formance as he woi,, l.d have for test performance.

On the SYMBOLS card, alphanumeric symbols were assigned to
the classes in the 'order that the classes appeared in the statis-
ticsdeck. Using-a

 thI_ s_ ^e ame symb7ol for all subclasses  or a singlet
cover type simplified the printed map. By the way, a blank can
be used as the symbol for a class (for example, classes 16 and

s 17 above).

The next four cards the analyst used were GROUP cards.
Notice that the conventions for continuing function control
cards include repeating the key word, not ending with a comma,
and not punching past column 72. These cards provide special
instructions to the computer about how results are to be tab-
ulated. The first GROUP card, for instance, indicates that
if. a data point specified to the computer as grassland was
classified into class .1, 2,3,6„7, 8r9s 10 or 11, it was correctly
-classified. Similarly, .f a point specified to the computer
as barren was classified into class 4 or class 5 or class 15,
it was correctly classified.

For this Kenosha Pass study, the analyst did not have ade-
quate reference data to specify the coordinates of test fields.
The training class performance provided one indication of accur-
acy. The training class performance matrix is shown in Figure 11-2.

Notice that the headings across the top of Figure 11-2 in-
clude water, cloud, and cloud shadow,,but the column on the side
doesn't. The explanation is that the column on the side lists
only those groups of classes for which there are training fields
within the area classified. Remember that the analyst selected
training data for water, clouds, and cloud shadows from outside
the Kenosha Pass area.
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GROUP	 NO OF	 PCT.
SAMPS	 CORCT WATER	 CLOUD	 C SHADOW	 SNOW GRASSLND DECIDOUS CONIFER BARREN

SNOW	 8	 100.0 0 0 0 8 0 0 0 0

GRAS SLND	 3185	 99,7 0 0 0 0 3175 0 0 10

DFCIDOUS	 552	 93.3 0 0 0 0 9 515 28 0

CONIFER	 823	 95.7 0 0 2 0 0 33 788 0

BARREN	 306	 98.7 0 0 0 1 3 0 0 312

f	 TOTAL	 4874 0 0 2 9 3187 548 812 312NN0	 OVERALL PERFORMANCE (4'788/4874) 	 98.2

AVERAGE PERFORMANCE Bat CLASS (487.4/5)	 = 97=5

Figure 11-2.	 Training class performance, Kenosha .Pass example,
r	 r;



Further evaluation of the results was not available for the 	
>,

Kenosha Pass area at this writing. However, the Forest Service,
Rocky Mountain Forest and Range Experiment Station had provided
evaluation information for two othedr areas. Since the two avail-
able areas, Manitou and Eleven Mi"^; are similar to Kenosha Pass,
the evaluation procedure and results for those two areas will be
discussed.

Test fields were found by the following procedure: In each
area, the part corresponding to a 1:50,000 color infrared aerial
photograph was used for evaluation. A grid of cells, each the
same size as a 4 x 4 block of data points, was superimposed on
the photography, and the grid was sampled systematically. Sample
cells which E,°ere completely within one cover type became test
fields. To minimize possible location errors, only the results
of the interior 2 x 2 block of data points were tabulated. For
the Manitou area, the hand-calculated results table is shown in
Figure 11-3. The other area which was evaluated by this proce-
dure, the Eleven Mile area, had the results (or test class per-
formance matrix) shown in Figure 11-4.

You have followed the Kenosha Pass example through classifi-
cation, results display, and evaluation, the topics of this section.
However, since you will be instructed to use test fields to eval-
uate your classification, another example will be shown.

An example of the PRINTRESULTS processing function where test
fields have been included for evaluation purposes will be presented.
The analysis was done on MSS data collected from aircraft altitude
over an agricultural scene. The analyst has already examined data
quality, coordinated MSS data with reference data, selected candi-
date training areas, refined the candidate training areas, and
calculated statistics for training classes. We will just look
over his shoulder to see how he set up his card deck to classify
the data and display the results.

r
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1

Computer classification category

Photointer- Number
pretation of Percent Deciduous Coniferous
Category Samples Correct Grassland Forest Forest water

Grassland 257 84.4 217 10 30 0

Deciduous 21 23.8 8 5 8 0
Forest

Coniferous 1239 86.1 146 26 1067 0
Forest

Water 3 66.7 0 0 1 2

Total 1520 84.9* 371 41 1106 2

*overall performance_number correct/total number of samples

Figure 11-3. Hand-tabulated test class performance matrix for Manitou
area.
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Photointer- Number
pretation of Percent Deciduous Coniferous
Category Samples Correct Grassland	 Forest Forest Water	 Barren

Grassland 433 8011 347 7 74 0 5

Deciduous 94 51.1 35 48 11 0 0
Forest

Coniferous 739 66.0 76 175 488 0 0
Fores c

Water 60 95.0 0 0 3 57 /S
w

Barren 54 1.9 34 1 18 0 1

Total 1380 68.2* 492 231 594 57 6

*overall performance number correct/total number of samples„

Figure 11-4. Band-tabulated test class performance matrix for Eleven Mile
area,
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He used the following card deck:

-COMMENT CLASSIFY, DISPLAY, AND EVALUATE 66000652°-
-RUNTABLE
DATA
RUN (66000652) , TAPE (TTT) , FILE (F)
END
*CLASSIFYPOINTS
RESULTS DISK
CARDS READSTATS
CHANNELS 1,6,8,12
DATA.

s tat . deck from previous STATISTICS run

DATA
RUN(66000652), LINES(1,950 1 2), COL(1,222,2)
END
*PRINTRESULTS
RESULTS DISK
PRINT OUTLINE (TRAIN, TEST) , TRAIN (F, C) , TEST (F r C, P )
SYMBOLS O,O„O,C,C,C,C,W,W,W,S,S,S,G,G,G,G
GROUP OATS(1/1 1'2,3/), CORN(2/4,5,6,7/) 1 WHEAT(3/8,9,101)
GROUP SOYBEANS(4/11,12,13/), GRASS(5/14,15,16,11/)
DATA
TEST 1

•
Field Description Cards for OATS test fieldsr
TEST cards and Field Description Cards for corn,wheat , and soybeans
s
•

TEST 5

Field Description Cards for Grass test fields

EN
t

There are several points to be observed about this deck.
The CLASSIFYPOINTS and PRINTRESULTS jobs are being run "back-to-

`	 back”. The classification results file is to be stored on disk,
Training and test fields are to be outlined on the PRINTRESULTS
display map. If your training fields are small, three- or four-
point fields, outlining them may not be desirable. Training field
and class performances are to be printed out (again, if your train-
ing fields are small, you would probably print performances for
classes, not fields). Test field, class, and percentage tables
are to be printed out.

Also observe that the group number on the GROUP cards deter-
mines the order in which the test fields appear in the data deck.

• i^
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EXERCISES

1. Name and briefly describe the kind of decision rule im-
plemented in the CLASSIFYPOINTS processing function.

2, Identify the kind of distribution training classes are
assumed to have, and name the two parameters needed to define such
distributions.

3. IA Figure 11-1 indicate the paints correctly classified,,
errors of omission, and errors of commission for soybeans.

CASE STUDY

Using the punched STATISTICS deck you generated in the last
section, set up the control cards to run the CLASSIFYPOINTS pro-
cessing function, putting your results on disk. The area to be,
classified is from line 30 to 430, and from column 112 to 333.

Also set up the control cards to run the PRINTRESULTS pro-
cessing function. Your instructor has a set of test fields which
you can use to evaluate your classification. Ask for any output
products you think would be useful.

Run the CLASSIFYPOINTS and PRINTRESULTS jobs. Consider the
possibility of running more than one PRINTRESULTS job. For in-
stance, you might wish to assign every class and subclass a dif-
ferent symbol on one map, while on another map you could assign
the same symbol to all subclasses of a class. If one cover type
is of particular interest to you, you could assign a symbol to
:i.t,, and blanks to all other classes.

If your overall test performance is not satisfactory,, con-
sider what you could do to improve the classification. Discuss
the possibilities with your instructor.

f^
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Sect^.on 12, INFORMATION EXTRAC'" T_QN AND 'INTERPRETATION

Upon comp'Zetion of this section, you shouZd be able to do
the foZZowing:

Name at Zeast two kinds of information that can be extracted
from a eZassification.

Give an example of usefuZ information extracted from multi-
spectraZ classifications in your discipZine.

The final and most important step is T6ncerpretation of re-
sults. The classification results themssive.s are not usually
the product of interest. Instead, the objective of an analysis
is usually to gain information for use in such things as forest
management or land use planning. For instance, the objective
usually involves learning where specific cover types are located,
or what proportion of the area belongs to each cover type.

To complete the analysis, the original objec I ives must be
reviewed, and the desired information extracted.

Examples of results analysis and the extraction of useful
information from multispectral data classifications may be found
in several journals, including those listed here:

Remote Sensing of the Environment
IEEE Transactions on Geoscience Electronics
Remote Sensing in Ecology
Journal of Soil and Water Conservation
Photogrammetric Engineering and Remote Sensing
Agronomy Journal
Applied Optics

;i	 Samples can also be found in a number of LARS Informatakon Notes,
r.	 published proceedings of remote sensing conferences, etc.

f 2

^f.
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`	 EXAMPLE

The objectives of the Kenosha Pass analysis were 1) to classify
,and inventory the area into these cover types: water, snow, grass-
land, deciduous forest, coniferous forest, barren (bare rock and
bare soil); 2) to produce a classification map of these covert	 types; 3) to evaluate the classification accuracy.

f

	

	 The third objective, evaluation of accuracy, was discussed
in the previous section. The analyst requested training class

_	 performance from PRINTRESULTS, and overall performance was 98.2.
:

	

	 Test performance was determined manually, rather than by submitting
test field coordinates to PRINTRESULTS.

The second objective was to produce a classification map of
the covey' types of interest. The control cards used to produce
the map were listed and discussed in the previous section.

And now for the first objective--a classification and inven-
tory of the cover types. In addition to the map showing how cover
types were distributed, an inventory of the amount of each cover
type was needed. To get this information, the analyst ran PRINT-
RESULTS again, and input the coordinates of the entire area as a
test field. Then the output, instead of being the usual perfor-
mance matrix, was a one-line table indicating the number of data
points classified into each cover type.

The control cards used are listed here:

-COMMENT ]KENOSHA PASS INVENTORY
*PRINTRESULTS
RESULTS TAPE (TTT) , FILE (F;)
PRINT TES's (C) , MAPS (0)
CROUP GRASSLND(l/1,2,3,Er7,8,9,10,11/)
GROUP BARREN(2/4w5,15/), DECIDOUS(3/12/)
GROUP CONIFER (4/13,14/) , ,SNOW (5/16/) , CLOUD (6/17/)
GROUP C SHADOW (7/3.8/) , WATER (8/19/)
DATA
TEST 1
RUN (73057902) , LINE (197, 531,1) , COL (401, 803,1)
END

The table produced by these cards contained the following
information:

NUMBER OF SAMPLES CLASSIFIED INTO

GRASSLND BARREN DECIDOUS CONIFER SNOW CLOUD C SHADOW WATER

97742	 3597	 13519	 19640	 38	 196	 253	 20
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Since the total number of data points (135,005) and the total
area in acres (154,965) are known, the number of acres per data
point could be determined (154965 4135005=1.14785), and from
this the number of acres classified into each cover type was cal-
culated.

The analyst has carried out an analysis sequence which met
his objectives.

EXERCISES

1. Name at least two kinds of information that can be ex-
tracted from a classification.

2. Check with your instructor on the availability of the
listed references, and skim through one or more of them. Then
give an example of useful information extracted from multispectral
classification.

CASE STUDY

Study your classification analysis results. Did you meet your
analysis objectives? What information can you extract from thO)
results? Based on your results, would you say that the cover ?:ype
classes you initially selected were sufficiently distinct spectrally
to provide adequate classification accuracy? Would you consider it
worthwhile to use these classes as the basis for a "real life"
application of Smote sensing?

Discuss your results and conclusions with your instructor.

-127,
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Appendix A

The following material has been reprinted from Section 2 of
Identification and Area Estimation of Agricultural Crops by Com-
puter Classification of ERTS-1 MSS Data, the final report for
Contract NAS5-21773: A Study of the Utilization of ERTS-1 Data
from the Wabash River Basin.

2.333 UNBIASING CLASSIFICATION RESULTS

Experience has shown that it is inevitable that some points
are incorrectly identified by the maximum likelihood classifier.
In this experiment, only about 80% of the test samples were cor-
rectly classified. The primary source of these errors is over-
lapping density functions for two or more classes. For example,
some corn "looks" like soybeans and some soybeans are spectrally
similar to corn. As described above, prior probability informa=
tion or class weights can be used to good advantage to at least
partially reduce the effects of such circumstances. A second pro-
cedure which can be used after the classification has been per-
formed is to unbias or adjust the results based on the correct
classification proportions and error rates. The latter procedure
was first used during the 1971 Corn Blight Watch Experiment„

The source of the correct classification proportions and
error rates are the matrices of test field classification per-
formance such as shown in Table 2.6. From such information, we
can determine the proportions, for instance, of corn classified
as corn and non-corn and the proportions of non-corn classified
as non-corn and corn. With this information, it is then possible
to unbias or adjust the classification results for a county or
several counties so that they more nearly estimate the true amounts
of each class present in the classified area.

Theoretically, if the true values of the error rates of
omission and commission were known, the classification results
could be adjusted so that in effect the area estimates based on
the classification closely approximated the true amounts of each
crop, present. In practice, of course, this situation is seldom
found. The primary limitation is that the test samples are not
completely representative of the total area classified and only
provide estimates of the true error rates. Possible causes of
non-representative test samples are that samples come from only
a small part of the total area being classified and that many
cover types such as farmsteads, idle land, roads, and urban areas
generally have not been included in the set of test fields.

The method we have used for unbiasing classification results
involves multiplying the county classification results (Table 2.7)
by the inverse of the test field classification performance
matrix (Table 2.6) as follows:

A = CPrl
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(b)	 Prior probability information used, unequal.
class weights.*

PERCENTNO. POINTS CLASSIFIED AS
NO. CORRECTLY

CLASS	 POINTS CORN SOYBEANS	 "OTHER" CLASSIFIED

Corn	 9290 7983 382 925 85.9

Soybeans	 2235 395 1556 284 69.6

"Other"	 1121 206 220 695 62.0'

I	 TOTAL	 12646 8584 2158 1904 80.9

Class weights were 44, 16, and 4.0 for corn, soybeans, and "other",
respectively.

C

i

i

^.	 Table 2.6 Classification of corn, soybean, and "other" test
fields, DeKalb, Ogle, and Lee Counties, Illinois,
with and without the use of prior probability
information in the classification decision rule.

(a) No prior probability information used,
j	 equal class weights assumed.

N0. POINTS CLASSIFIED AS PERCENT
NO. CORRECTLY

CLASS POINTS CORN SOYBEANS	 "OTHER" CLASSIFIED

Corn 9290 7546 973 771 81.2

Soybeans 2235 244 1732 259 77.5

"Other O° 1121 150 307 664 59.2

TOTAL 12646 7940 3012 1694 78.6
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Table 2.7 Number of samples classified into corn, soybeans, and
"other" for DeKalb, Ogle, and Lee Counties, Illinois.

(a)	 Equal Class Weights

No. Points Classified As

County Corn Soybeans "Other"

DeKalb 131,451 85,.148 74,311

Ogle 146.108 112,385 135,058

Lee 150,992 122,101 120,266

TOTAL 428,551 319,634 329,63,5

h-

a (b)	 Unequal Class Weights

DeKalb No. Points Classified As

County Corn Soybeans "Other"
F 	 ^

DeXalb 152,920 54,948 83,042

' Ogle 170,220 74,940 148,391

Lee 178,177 80,241 134,941

a;
TOTAL 501,317 210,129 366,374

i
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where, C is the classification vector with n crops or classes, P-1
is the inverse of the n x n classification performance matrix, and
A is a 1 x n vector of the crop acreages.

The results of applying this correction procedure are pre-
sented in Table 2.8 and discussed in the next section along with
further results on the use of prior probabilities to the class-
if ication function.

2.334 ACREAGE ESTIMATION

The classification performance indicated by 80% correct
recognition of test fields is believed to be adequate for satin-

,

	

	 factorily estimating crop acreages„ To determine how well crop
acreages could be estimated from the ERTS classification, the
ERTS coordinates of the three counties were obtained, the counties,
were classified, and the number of pixels classified into each
class tabulated (Table 2.7). In Table 2.8, four acreage esti-
mates based on the ERTS classifications are compared to each other
and to estimates made by the Illinois Cooperative Crop Reporting
Service (SRS/USDA). The ERTS estimates are the four combinations
of using prior probability information in the classification de-
cision rule and unbiasing the classification results as discussed
in the previous two sections.

The standard to which the ERTS classifications are compared
is the acreage estimates (shown asg	 percentage of total land area)
made by SRS/USDA. The mean squared differences between the SRS/
USDA estimates and the several ERTS estimates are shown as a
means of comparing the overall goodness of each ERTS estimate.

One of the most difficult aspects of remote sensing technology
is quantitatively evaluating classification results. It is phys-
ically impossible to collect sufficient ground data of crop iden-
tification and acreage over large areas, to determine how accurate
area estimates made from the ERTS classification are. We have
therefore used the USDA county estimates as the reference for
comparison. however, the crop surveys conducted by the USDA are
designed to achieve prescribed levels of accuracy at only the
national and state levels. For this reason the USDA does not
Publish accuracy figures for their county estimates. However,
in those states, including Illinois, in which an annual farm

i
census is conducted, the acreage estimates are considered to be
quite accurate. Their estimates are probably within three to five
percent of the actual acreages.

The ERTS estimateso particularly those adjusted for class-
ification bias, are very close to those made by the USDA. It seems
clear that the USDA and ERTS estimates are of the same parameter.
The estimates agree best for the total of the three counties.
There is more variation between the two estimates for the individual
counties. However, this is simply a result of having a larger
sample and can be expected as long as there is not a consistent
bias in one direction in the ERTS classification, eg., corn is
always over-estimated.

132 -
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{	 Table 2.8. Comparison of crop acreage estimates by USDA and
estimates based on EFTS classifications. The
results of utilizing prior probability information
in classification and bias correction of classi-
fications are shown,

t

Total	 Corn 40.2	 39.8 46.5	 39.6 41.8
z.̀ for all	 Soybeans 18.0	 29.6 19.5	 17.8 12.7

Counties -	 "Other" 41 . 8	 30.6 34.0	 42.6 45.5

rms. 9.3 5.8	 0.6 3.9 ^

P
r.m.s.-root mean square difference between USDA and ERTS estimates

RE R0DtFCrjT JTY Car,  'Tjij'
ORIGINAL PAGE' I3, MOR
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County Class
SRS-
USDA

ERTS

Uncorrected Bias Corrected

Equal.
Wts.

Non-Eq,
Wts.

Equal
Wts.

Non-Eq.
Wts.

(Percent of Total Land Area)

45.2 52.6 47.6 50.$`
29.3 18.9 19.9 14.3
25.5 28.5 32.5 34.9'

6.5 6.9 8.3 8.5

37.1 43.3 35.5 37.0
28.6 19.0 14.4 10.2
34.3 37.7 50.1 52.8

12.6 7,.1 4.1 4.1

38.4 45.3 37.6 40.0
31.0 20.4 19.9 14.0
30.6 34.3 42.5 46.0

7.6 5.5 1.8 5.8

DeKalb	 Corn 41.5
Soybeans 21.3
"Other" 37.2

r.m.s.*
i
I

Odle	 Cora 41.3
Soybeans 11.5
"Other" 47.2

r.m.s.

}	 Lee	 Corn 37.9
Soybeans 21.9
"other" 40.2

r.m.s.



Two additional things are clear from the results: (1) the
use of class weights or prior probability information in class-
ification gave substantially Fetter estimates of the amounts of
corn and soybeans present (reduction of the r.m.s difference
from 9.3 to 5.8) and (2) the application of the unbiasing pro-
cedure after classification further improved the ERTS estimates
(reduction of r.m.s. difference to 3.9 and 0.6) for the class-
ification with and without class weights„ respectively. In con-
clusion, these two procedures should be used whenever possible
in making, crop acreage estimates from classifications of ERTS
type data.
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