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SPACEBORNE EARTH APPLICATIONS RANGING SYSTEM
SPEAR

F. O. Vonbun
W. D. Kahn

P. D. Argentiero
D. W. Koch
K. J. Eng

ABSTRACT

Earth surface motions on the order of one to several cm per year have been ob-
served. These motions could be due to land subsidance, i.e. the gulf coast of Texas
subsides about 5 to 10 cm per year; likewise, similar values hold for portions of the
Florida coast), crustal uplift (i.e. dilatency which is a phenomena observed to
precede earthquakes primarily along thrust faults), and loading (i.e. due to
large dams, etc.). Knowledge of these motions is of practical importance to
government and local agencies.

A technique is discussed here for the accurate (i.e. to within fractions of cm/yr)
detection of these motions utilizing the latest space technology. It is shown that
over a six day period and assuming a 50% cloud cover (i.e. as experienced over
the last few years of laser operation) utilizing spaceborne precision ranging
systems, intersite distances on the order of 5 to 15 km (dependent mostly on the
beam width of the laser) can be determined in the vertical and horizontal compo-
nents with errors in the 0.5 to 1.5 cm range. These errors are almost independent
of ground survey errors up to 0.25 meters and orbit errors up to 200 meters.

A spaceborne laser ranging system is assumed to range simultaneously to two or
more ground emplaced retroreflectors. The fundamental advantage derived from
simultaneous ranging is the elimination to first order of errors due to the system.
This means elimination of (a) bias errors in the ranging system, (b) errors due to
propagation effects, and (c) errors associated with the spacecraft's motion in its orbit.

In conclusion, it can be stated that horizontal and vertical errors in relative
distance determination up to 25 km are expected to be in the 0.5 to 1.5 cm range
using only a 6 day mission. This assumes very modest errors in the ranging
noise a of 5 cm (present GSFC laser system precision), orbital errors of 200
meters, and a priori knowledge in the intersite distances of 0.25 meters.
These results make this system very attractive as a new tool for monitoring
very small earth surface motions.
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SPACEBORNE EARTH APPLICATIONS RANGING SYSTEM
SPEAR

INTRODUCTION

Accurate determination of intersite distances has been pursued at Goddard for
many years. This work began in 1964 when the first satellite (BE-B) equipped
with laser corner reflectors was launched. Continuous improvement of ground
based laser ranging systems made it possible to determine intersite distances
of a thousand km to within perhaps tens of centimeters. As early as 1968, J.
Rosenberg suggested reversing the system; that is, using corner cubes on the
ground and precision laser systems in orbit. Serious consideration was given
to such a system during 1971/72 at Goddard. At this time work began to design
a precision laser ranging system for the space shuttle laboratory. Note that
the following analysis applies to both electronic transponders as well as laser
corner cube retroflectors. The analysis considers only ranges which are in-
dependent of the systems used for their determination. An analysis using pos-
sible range rates will be published at a later date.

One impetus came from the possible use of the application of such a system
for earthquake prediction. C. Scholz, L. Sykes and Y. Aggarwal presented a paper at
the AGU meeting in Washington, D. C. (Ref. 1) inthe spring of 1973 stating that dila-
tancy, among other phenomena, is a realprecursor to earthquakes. As outlined in
their paper, the ground rises around an active zone. A well documented case is, to
quote the example used by Scholz, the 1964 Niigata earthquake (M = 7.5)* (See
Figure 1). Measurements indicated rather clearly a constant vertical motion of
the ground of about 12 cm over 60 years (0.2 cm/yr). This is followed by a quite
rapid change of 5 cm over 3 years (1.7 em/yr). Subsequently, the motion stops
for 3 to 4 years till the earthquake occurred. A system as described here could
perform such measurements. Accurate (cm-level) relative intersite distances
are needed in many other practical applications. Such a system could further be
installed to monitor small motions near or on large dams, major construction
sites, shore facilities and structures, etc.

I. SYSTEMS CONCEPT

As was shown by Scholz, P. Ed. (1073) Ref. 1, the region of rock dilatancy extends
one fault length (L) on each side of an active fault zone (total length - 3L) and one

*M = Earthquake magn ; rude as measured on Richter Scale.
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length on each side (width = 2L). Thus, if one wishes to observe the rise of the
ground, an array of ground transponder cubes which covers this active area
must be used. (A = 6L 2 ) as shown schematically in Figure 2.

The smallness of the motions to be observed over several years requires the
use of a rather specific ranging and /or tracking systems concept. In essence,
one wants to determine very accurately (cm-range) a distance ( D I or better, its
changes between two ground points using satellite technology. In general, there
are three major obstacles or error sources to overcome if one wishes to com-
pute extremely accurate vector distances of 5 to 20 km, that is accurate to 0.5
to 1.5 cm from a spacecraft. These are:

1. Orbital errors of the spacecraft

2. Bias errors in the ranging system

3. Atmospheric propagation errors

These can be eliminated to first order by using range differencing. Practically,
this means sending one pulse from the spacecraft to two or more ground stations,
subtracting these measurements and using only their "differences" to compute
D I, the distance between neighboring ground stations (i.e. transponders or laser

corner cubes). It is thus evident by studying Figure 3 that the above mentioned
error sources will not play any major role (only second order) since

np
ki = (Pkj + 6 Pk j ) — (Pki +l + -^i'kJ+l)

(Pk j — 
f-'k J + l) ' (6%-'k ! — a f`k, + l )

_ (Pk 1 _ Pk j + 1 )

For bias errors in the ranging system

r

bf'kj+l _ oPkj

3
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because both the jch and (j + 1) 1h reflectors* are interrogated by the same
signal (within the beam). For orbital errors and atmospheric refraction,

j
/'kJ+l = opk) + (second order terms)

In summary, using range differences as the basic "measured" quantity elimi-
nates all first order errors in the determination of the distance 1161.

Using one pulse to cover more than one corner cube (or transponder) unfortunately
raises a power problem. From a signal to noise ratio vantage point it is preferable
to send a single beam out at a time to one ground station. This does, however,
create a problem by introducing the effects of errors 1 and 2 mentioned
before. For instance, a two second time interval between pulses means their
origin (spacecraft position) has separated in space by say 15 km. This means
the orbit error introduced by those 15 km along the orbit pass will now increase
the error in the determination of 15 1.  The bias error in range, from firing to
one cube and the subsequent firing to the other cube will further directly in-
fluence the determination of 161.  Thus the control of bias errors in the ranging
system and the orbit error becomes an important systems design factor. A
detailed analysis of this second possibility will subsequently be published.

II. MATHEMATICAL MODELS

1. DIRECT BASELINE ESTIMATION USING SIMULTANEOUS RANGING

During the estimation of the accuracy of the intersite vector distance 16 ( from
scalar range difference measurements, (p k , - l.k j + 1 ), two coordinate systems
are employed. The first is a local topocentric system, Z 3x 1, centered at the
observer. The second is a geocentric earth fixed system, U 3 . 1 , to which space-
craft motion is related. The intersite vector distance 151 is defined in the
same Z 3x 1 system in which a surveyor would work. The variation in 115 1 is the
quantity needed to determine small (cm-range) horizontal and vertical dis-
placements in the earth's upper crust.

If ground transponders are used, this is not so simple, since the delay time in each transponder

is not the same. (1 nanosec —_ 30 cm).
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As defined in Ref. 2 (Kahn, Vonbun,1966), the Z-coordinate system is centered
at the observer with the

z 1 -axis directed towards local east
z 2 -axis directed towards local north
Z 3 -axis directed along normal to local horizon plane

In order to relate the local Z
3x 1 

coordinate system with the dynamics of a
spacecraft, a transformation into a geocentric earth fixed system must be made.
This system, named the U-coordinate system, is defined as follows:

u 1 -axis directed towards Greenwich Meridian
u z -axis normal to (u l , u3) axes
u3 -axis directed along earth's axis of rotation.

The transformation needed later from the Z (3x 1) -coordinate system into the
U-000rdinate system is as follows (see reference 2):

Z (3x1) = Rl (71l2 - 0)	 (n/2 + X) 
[11(3x 1)- S(3x1)]	 (1)

where

St 
1) 

is the position vector of the observer in the U-system

and
R 1 (" /2	 are rotation matrices,
R 3 (n/2 + X) .

The vector 15 is now to be computed from range difference measurements which
are scalar quantities. It is to be shown how D is computed. The basic measure-
ment, slant range p, from the ground stations to the spacecraft or vice versa
can be expressed in terms of the coordinate systems defined in equation 1 in
matrix notation as follows:

	

P = (Z T Z)1i2	 (2)

where

ZTZ = U T U + S T S - 2STU

and	 (UTU)112 = geocentric distance to spacecraft
(S T S)1/2 = geocentric distance to ground station



By assuming that at time %, a signal is sent out by the ranging system onboard
the spacecraft and received at the j 1h and (j + 1) t h station. The range at each
station is by (2) expressed as follows:

pki = [ (UT (j )k + (S T S) - 2S i Uk 1
1/2	 (3a)

pkj+l _ 
[(UTU)k + (

STS) +l - 
2ST

+J Uk 11/2
	

(3b)

with similar expressions as (3a) and (3b) resulting for tiraes
t k+1 , k +2 , .. .,

The range difference measurement is obtained by subtracting equation 3b from
3a which then represents the fundamental observation equation, that is:

(pki - pki+1) "2 [(U T U)k + (S T S) - 2STUJ 1/2

(4)

[ (U T U)k + (S TS) +1 - 2S +1 Uk] 1/2

In arriving at equation 4, she assumption made Is that both stations, the j `h and
(j + 1)" ' simultaneously observe the laser pulse at time tk.

Since the range difference measurement is subject to errors as all measure-
ments are, and since D is derit ed from these measurements, D is also subject
to errors. We estimate the errors of D due to errors in the range difference
measurements (Pk J - Pki+1 ). To do so, standard linear estimation theory
(Ref. 3) is uGnd for a set of k observations of the same cubes. That is, by vary-
ing (4) and using first order terms of the Taylor expansion one obtains:

Y (k x 1) A(kx6)x0	 +$(kx3)8^	 +((k.3)^1+1	 +``(kxl)	 (5)
(6x1)	 (3x 1)	 (3x 1)

8



where

Y(kxo) 8(Pkj -Pkj+d1kx1)

1	 _ T	 i	 T DOk
A(kX6)	 Pk,	

sj - 
Pk1 * 1 [ - 

Sj 
1	 B

X 0	 - b uo
(ax 1)	 (6x 1)

B(kx3)	
1 [Uk - sjiT

Pkj

sj	 = as

( 3x 1)

C(k x 3)°	 1	 (uk - Sj . 1 1 T
Pkj { 1

gj+1	 Ssj;1

(3 x 1)
e z vector of observation errors.

2. INTERSITE DISTANCE DETERMINATION AND ITS ACCURACY

An estimatiou of the intersite distance between two ground emplaced corner
cube and their errors is obtained from range difference measurements by using
the standard least squares estimation technique (Ref. 3, 6, 7). In order to
minimize the effects due to geopotential uncertainties, multiple short orbital
area of 1 to 1-1/2 revolutions are used. In the least squares process, estimates
are to be obtained simultaneously for each orbital arc's state vector as well as
the coordinates of the corner cubes. The intersite distances and their errors
are computed by a least squares solution. A mathematical description of the
estimation process now follows.

The generalized matrix equation which represents all the observation equations
obtained from simultaneous ranging from the spacecraft to two ground emplaced
laser retroreflectors reads as follows:

9



ti

Yt. i _ i ^x (6r+6) T( 61+6 ) xt +Vex i
(6)

where

r L, number of different orbital area for which the state vector
Is to be estimated r = 1, 2, ... P;

P21

r

t	
T 

k, ; k,	 total number of observations associated
with each orbital arc.

k>>>Or+6)

I I(kix 1)

tx

ti
Yr (krxi)

Vector of all measurement residuals
observed during the entire 'SPEAR'
data collection period.

(k). a} .(k (. a ) .(k ) . a } -.	 (k(.a) (k, ,a ) (k ) ,	 ^)
• .

Al
•

• N7 1.3
(k 3.a ) (k ) , s ) lk J.4 ) (k7. a) (k,	 1 _	 (k J ,	 )—

i

i

l a ?^ {6r+6)

Mutrix of sensi-
tivity coefficients
associated with each
measurement.
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i
i
i

X10
( 6x 1)

r
T(6r+6)x 1	 xo

( 6x 1)

Si ( 3 x 1)

ti
Sj+1

( 3 x 1)	 (6r+6)x 1

Vector of error sources which are
major contributors to the measurement
residuals. These error sources are
the states associated with each orbital
arc used for calculation of measured
minus calculated range differences
(i.e. residuals) and corrections to the
corner cube coordinates. This vector
is estimated by the least square process.

E1

(k 1 x 1)

Vt x 1

E r

(krx 1)J (tx 1)

Vector of residuals which reflect the
neglect of second order terms of Taylor
expansion made for representing the
errors in the measurements.

The estimate of the vector T is obtained from ^ range difference measurements
with t > > 1 and a priori information about the state of each orbital arc and
station survey. That is:

T(6r + 6) x 1 = (F T W -1 r' + W TO] -1 [[-T W -1 Y t WT 1 To ]	 (°)

(6r+6) x (6r+6)	 (6r+6)x1

where

W"1 _ A priori covariance matrix associated with system accuracy.

W To = A priori covariance matrix associated with orbit accuracy and
station survey for each retroreflector.

11



The errors associated with the estimate of Tt . 1 are obtained from the covari-
ance matrix given by the following equations

E(TT T )	 [rTW - lr + WTO1(6r+6) x(6r+6) 	 (8)

Equations (7) and (8) are now used to (a) compute the inte.^site distance and (b)
its errors. The intersite distance, that is, the difference between the corner
cube position vectors (s, - S i +I ) is obtained by a coordinate transformation
of the vector T . This transformation rends as follows;

^' ti	 9D = (s j — S j+1 )3x 1 = Q 3x (6r+6)T(6r+6)x1	 ( )

where

Q _ [0(3x6r)I I (3 x 3)I -1 (3X 3)] 3x (6r+6)

0-= a  null matrix

I = the identity matrix

The error in the intersite distance is now given by the covariance matrix of
the intersite distances, that is:

E[(Sj — 8-+1) (a j — sj +1)T](3x 
3)	

{QE(TT T ) Q T}	 (10)
(3x3)

which upon introducing Equation 8 finally reads:

E [ ( S j — S j+1) ( S j — Sj+1 )TI (3x 3) _ {Q[r T W - 'r + WTO]l1  QT) (3x 3)	 (11)

12
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Equation 11 representing the intersite distance error, is the basic equation used
for the SPEAR System error analysis. Numerical results using (11) are depicted
in Figures 4 & 5.

III. ERROR ANALYSIS RESULTS

In order to evaluate: the accuracy with which intersite distances can be deter-
mined using the SPEAR concept, a parametric error analysis study was per-
formed utilizing the mathematical model described by Equation 11. For this
study very moderate systems errors were asbumed. The results obtained, are
presented in Figures 4 and 5. All assumptions concerning the source of errors
and their magnitude are indicated on each figure.

Although orbital errors up to 200 meters were used in the error analysis, theirH
contribution to the horizontal and vertical components of D consistently re-
mained negligible. Furthermore, survey errors associated with the location of
the retroreflectors also do not significantly change the errors in the vertical
and horizontal components of D. This means that no extra care has to be taken
in the emplacement of ground equipment.

Figure 5 shows the dependency of the vertical and horizontal distance errors on
the noise of the ranging systems used. As can be seen, a 5 cm system is ade-
quate, producing errors in the 0.7 and 1.3 cm ranges. As stated earlier, 5 em
ground laser ranging systems are now operational at Goddard Space Flight
Center, thus no difficulties are foreseen in achieving this precision for a space-
borne laser system.

IV. PRACTICAL APPLICATIONS

The SPEAR system can be developed as a payload for the shuttle applications
program. As a matter of fact, a breadboard model is under development at
Goddard (Ref. 5).

Such a system can easily be utilized in detecting small relative variations of
the Earth's upper crust in the 0.3 to 0.5 cm/yr range. Monitoring, is thus
possible, of land subsidance as it occurs at coastal regions of Florida and Texas,
as well as construction sites such as dams and even large buildings. Dilatency,
the vertical uplift along seismic zones, can further be followed and thus studied
as a precursory effect which takes place before many shallow foci earthquakes
(Ref. 1, 3, 4). The San Andreas fault area and the Niigata area in Japan are
examples.

13
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V. CONCLUSIONS

This paper has shown that the SPEAR system can be used to determine inter-
site distances up to 15 km depending only on the beam width or beam splitting
of a spaceborne laser system within a 6 day shuttle mission to a precision 0.5 cm
to 1.5 cm (assuming 50% cloud coverage). As anticipated, (a) survey errors (up
to 0.25 m), (b) orbital errors (up to 200 m), and (c) range bias errors (many
meters) play only a minor role, making the system potentially useful for many
practical applications where very small relative motions are to be monitored.
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