General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
AIRCRAFT COCKPIT VISION

MATH MODEL

(NASA-CR-14146) AIRCRAFT COCKPIT VISION:
MATH MODEL (Computer Sciences Corp., Wallops Island, Va.) 37 p HC $4.00
CSCL 05E

Unclas

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WALLOPS FLIGHT CENTER

WALLOPS ISLAND, VIRGINIA 23337

CONTRACT NO. NASA-2369

WORK ORDER 13

CSC
COMPUTER SCIENCES CORPORATION
ABSTRACT

A mathematical model has been developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model has already been implemented and is described herein.
1. **INTRODUCTION**

The National Aeronautics and Space Administration, Wallops Flight Center, Wallops Island, Virginia, is conducting studies of the existing air traffic patterns at uncontrolled airports. Data acquired are being used to evaluate new air-traffic pattern concepts which may reduce the potential for mid-air collision hazard near such airports. The Air Traffic Group of Computer Sciences Corporation, Wallops Island, Virginia, is providing support to the project by developing computer programs for data reduction, developing a data base, and providing statistical and mathematical modeling of the data. Approximately three thousand radar tracks were acquired at three uncontrolled and three controlled airports. A data base called Integrated Data Store (IDS) has been developed to store position-velocity time histories of the tracks, type of aircraft, airport, runway used, wind speed and direction, cloud ceiling, visibility, barometric pressure and other operator comments.

This report describes the math model developed for analyzing the pilot's field of vision from the cockpit of his aircraft. It has been noted that the pilot has a very limited field of vision available to him because he cannot see straight up, straight back, or straight down; and also his ability to detect other aircraft in his vicinity depends upon the orientation of his own aircraft. Most mid-air collisions in the vicinity of airports occur because either the pilot fails to look or cannot see due to his visual restrictions. This math model has been developed to determine whether or not some exterior point is potentially visible to a pilot seated in an aircraft. It should be mentioned that L. S. Joel,
W. A. Steele, J. J. Filliben and G. B. Hare have used similar ideas regarding the geometry of the vision envelope in their math model.*

The computer program simulating the model is initialized by calling Subroutine INIT, which loads the common data areas with the window outlines for the chosen aircraft. Window outlines were obtained from binocular photographs supplied by Mr. P. M. Rich of the Federal Aviation Administration's National Flight Evaluation Center at Atlantic City, New Jersey.

The Subroutine VISION is then called to test the visibility of a particular target from a viewing aircraft. The program presently contains the window outlines for the following types of aircraft.

<table>
<thead>
<tr>
<th>AIRCRAFT</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOONEY-21</td>
<td>1</td>
</tr>
<tr>
<td>CHEROKEE-140</td>
<td>2</td>
</tr>
<tr>
<td>CESSNA-172</td>
<td>3</td>
</tr>
<tr>
<td>CESSNA-210</td>
<td>4</td>
</tr>
<tr>
<td>PIPER AZTEC</td>
<td>5</td>
</tr>
<tr>
<td>PIPER 140B</td>
<td>6</td>
</tr>
<tr>
<td>BEECH BARON</td>
<td>7</td>
</tr>
<tr>
<td>AERO-COMMANDER 680E</td>
<td>8</td>
</tr>
<tr>
<td>BOEING 707</td>
<td>9</td>
</tr>
<tr>
<td>DOUGLAS DC8</td>
<td>10</td>
</tr>
</tbody>
</table>

Space has been reserved in the common area for ten more aircraft types.

2. MODEL FORMULATION

Since it is the pilot who is at the control, the model equations are written in the coordinate system fixed with the aircraft (A). In essence, the problem is to locate the point of intersection (I) of the line joining the pilot's eyes (P) to the object (O) and the plane of the window. If this point lies in front of the pilot's eyes and falls within the boundary of the window, the object should be visible through that particular window; otherwise not.

2.1 COORDINATE SYSTEMS

Two distinct coordinate systems are used. Figure 1 illustrates the system fixed to the ground (G-System) with the origin at any suitable point. Figure 2 shows the system fixed to the viewing aircraft (A-System) with the origin at any suitable point.

![Diagram of coordinate systems](image)

Figure 1. GROUND COORDINATE SYSTEM (G-SYSTEM)

R, β, and α are range, elevation, and azimuth of the aircraft. The cartesian components are:
\[x = R \cos \beta \sin \alpha \]
\[y = R \cos \beta \cos \alpha \]
\[z = R \sin \beta, \]

where

\[-90^\circ \leq \beta \leq 90^\circ,\]
\[-180^\circ (0^\circ) \leq \alpha \leq 180^\circ (360^\circ).\]

\[r, \lambda, \mu \] are spherical-polar coordinates of a point in A-System. The cartesian components of which are written as in (1) with (\(R, \beta, \alpha \)) replaced by (\(r, \lambda, \mu \)), respectively.

Since the locations of both the pilot and the object are 'read' by the same device on the ground, a coordinate transformation is required to locate the object in the A-System. Figure 3 illustrates the trajectories of the aircraft and the object. It may be pointed out that the object is treated as a point mass and may be another aircraft or a fixed structure, such as a building or a mountain peak.
Let \((x_0, y_0, z_0)\) are the coordinates of A and \((x_G, y_G, z_G)\) of O in G-System. Also, assume that \((x_a, y_a, z_a)\) are coordinates of O in A-System. The three vectors are related by a coordinate transformation at any given time:

\[
\begin{bmatrix}
 x_a \\
 y_a \\
 z_a
\end{bmatrix}
= T
\begin{bmatrix}
 x_G - x_0 \\
 y_G - y_0 \\
 z_G - z_0
\end{bmatrix},
\]

\[
T = \begin{bmatrix}
 \cos \phi & 0 & -\sin \phi \\
 0 & 1 & 0 \\
 \sin \phi & 0 & \cos \phi
\end{bmatrix}
\begin{bmatrix}
 \cos \theta & \sin \theta & 0 \\
 -\sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

Above \((\psi, \theta, \phi)\) are Euler angles between G- and A-Systems defined by three successive rotations: about Z-axis by \(\psi\) (heading), then about new X-axis by \(\theta\) (pitch), and finally about new Y-axis by \(\phi\) (bank).
For the sake of generality, let \((x_p, y_p, z_p)\) be the coordinates of the pilot's eyes \((I)\) in the A-System. In the A-System the windows have fixed positions. Therefore, the coordinates of each corner of a window are known.

2.2 SOME GEOMETRICAL FORMULAE

The coordinates of the point of intersection \((I)\), of the line from \(P\) to \(O\) and the plane of the window, will be determined.

As it may be found in any textbook on solid geometry, the equation of a (straight) line passing through two points \((x_1, y_1, z_1)\) and \((x_2, y_2, z_2)\) is

\[
\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} = Q,
\]

where \(Q\) is a constant.

The distance \((D)\) between two points \((x_1, y_1, z_1)\) and \((x_2, y_2, z_2)\) is given by

\[
D = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}.
\]

Any linear equation in \((x, y, z)\) defines a plane. The equation of a plane, whose three non-collinear points are \((x_1, y_1, z_1)\), \((x_2, y_2, z_2)\) and \((x_3, y_3, z_3)\), is given by determinant equation:

\[
\begin{vmatrix}
x & y & z & 1 \\
x_1 & y_1 & z_1 & 1 \\
x_2 & y_2 & z_2 & 1 \\
x_3 & y_3 & z_3 & 1 \\
\end{vmatrix} = 0.
\]
The intersection point \((x_I, y_I, z_I)\) of the line defined by (5) and the plane defined by (7) is given by

\[
\begin{align*}
x_I &= Q(x_a-x_p) + x_p, \\
y_I &= Q(y_a-y_p) + y_p, \\
z_I &= Q(z_a-z_p) + z_p,
\end{align*}
\]

where

\[
Q = \frac{d-ax_p-by_p-cz_p}{a(x-x_p) + b(y-y_p) + c(z-z_p)},
\]

with

\[
\begin{align*}
a &= y_1(z_2-z_3) - z_1(y_2-y_3) + (y_2z_3-z_2y_3), \\
b &= -x_1(z_2-z_3) + z_1(x_2-x_3) + (x_2z_3-z_2x_3), \\
c &= x_1(y_2-y_3) - y_1(x_2-x_3) + (x_2y_3-y_2x_3), \\
d &= x_1(y_2z_3-z_2y_3) - y_1(x_2z_3-z_2x_3) + z_1(x_2y_3-y_2x_3).
\end{align*}
\]

The area \((\Delta)\) of a triangle, whose corners are located at \((x_1, y_1, z_1)\), \((x_2, y_2, z_2)\) and \((x_3, y_3, z_3)\), is given by

\[
\Delta_{123} = \frac{1}{2} \sqrt{A_1^2 + A_2^2 + A_3^2},
\]

where

\[
\begin{align*}
A_1 &= x_1(y_2-y_3) - y_1(x_2-x_3) + (x_2y_3-y_2x_3), \\
A_2 &= x_1(z_2-z_3) - z_1(x_2-x_3) + (x_2z_3-z_2x_3), \\
A_3 &= y_1(z_2-z_3) - z_1(y_2-y_3) + (y_2z_3-z_2y_3).
\end{align*}
\]

2.3 Geometry of Vision

To find out whether the intersection point \((I)\) lies within the boundary of a window the procedure is described as follows:
Figure 4 shows a typical window for the sake of illustration.

Numerals (1, 2, 3, 4, 5) index corners and I is the point of intersection. The window and the point I lie in one plane. We form all possible combinations out of corners taking two adjacent ones at a time, i.e., (1,2), (2,3), (3,4), (4,5), and (5,1). We pick up one pair at a time and the point I each time to form as many triangles as there are pairs, i.e., (1,2,I), (2,3,I), (3,4,I), (4,5,I) and (5,1,I). We sum the areas (say, Δ^I) of the triangles above. Then we calculate the true area (say, Δ^T) of the window, which is the sum of the areas of triangles whose vertices are at (1,2,3), (1,3,4), and (1,4,5).

It may be noted that, by definition, the inner angle between any two adjacent sides of a window may not exceed 180°. Next we evaluate the distance (say, D^{PO}) between the pilot's eyes (P) and the object (O), and also the distance (say, D^{IO}) between the point of intersection (I) and the object (O). Quantities Δ^I and Δ^T are calculated using expression (9), while D^{PO} and D^{IO} are evaluated using (6).

2.4 VISIBILITY CRITERIA

Define a small arbitrary number (say, ε) which will provide the model a certain tolerance in the accuracy of the input data and the computer.

Then, the table in Figure 5 establishes the criteria that the object (O) would be visible to the pilot (P) through the particular window whose plane has the point of intersection (I).
| $|\Delta I - \Delta T| \leq \epsilon$ | $|\Delta I - \Delta T| > \epsilon$ |
|-----------------|-----------------|
| $d^{10} < d^{p0}$ | VISIBLE | NOT VISIBLE |
| $d^{10} \geq d^{p0}$ | NOT VISIBLE | NOT VISIBLE |

Figure 5. VISIBILITY TABLE
3. NUMERICAL EXAMPLE

For the purpose of illustration, we have chosen a CESSNA-172, the vision envelope of which, as seen by the pilot, is depicted in Figure 6. As it may be noted, the windows have shapes complicated enough to be described by simple geometry. Therefore, the windows are approximated to simple geometric shapes for mathematical convenience, as shown in Figure 7.

We will assume that the origin of the A-System is located at the pilot's eyes; therefore,

\[x_p = y_p = z_p = 0. \quad (10) \]

The position coordinates of the aircraft and the object are given in a coordinate system fixed to the runway, which we will choose to be our ground-based G-System. The orientation of the aircraft (i.e., pitch, heading, and bank angles) are given in the radar-relative coordinate system. Since X-Y planes of both the ground and radar are the same, only the heading is transformed to the G-System.

We will now show, using our model, whether an object is visible through the segment of the front window, marked (X) in Figure 7. The coordinates of the vertices of this window are calculated using (1) in the A-System, and are listed in Figure 8. \(r \) is of unit length, which seems to be a valid assumption.
Figure 6. Vision Envelope for Single-Engine, High-Wing
1966 CESSNA 172
Figure 7. Simple Geometry of the Vision Envelope of CESSNA 172
The coordinate of the aircraft and the object in G-System are given as

\[(x_0, y_0, z_0) = (-2142, 6498, 770) \text{ ft}, \quad (11)\]

\[(x_g, y_g, z_g) = (-11050, 4000, 1200) \text{ ft} \quad (12)\]

The orientation of the aircraft in radar-relative system is

\[(\Psi, \theta, \phi) = (-69^\circ, -2^\circ, -19^\circ), \quad (13)\]

and in the G-System (runway) is

\[(\Psi, \theta, \phi) = (-69^\circ - 46.18^\circ, -2^\circ, -19^\circ) \]

\[= (-115^\circ.18, -20^\circ, -19^\circ), \quad (14)\]

where we have corrected for the runway azimuth \((46^\circ.18)\) as measured by radar.

The coordinates of the object in the A-System are evaluated using (3) and (4) with values given in (11), (12), and (14). They are

\[
\begin{bmatrix}
 x_a \\
 y_a \\
 z_a
\end{bmatrix}
= \begin{bmatrix}
 -0.4125 & -0.9044 & 0.1683 \\
 0.8507 & -0.4252 & 0.3086 \\
 0.3253 & -0.0349 & 0.9449
\end{bmatrix}
\begin{bmatrix}
 -13192 \\
 -10498 \\
 420
\end{bmatrix} +
\begin{bmatrix}
 -3979 \\
 -15553 \\
 -4251
\end{bmatrix}
\]

\[(15)\]
Since a plane can be fixed by any three non-collinear points, we will choose vertices 1, 2, and 3. Therefore, from the table in Figure 8,
\[(x_1, y_1, z_1) = (0, 0.999, -0.0348),\]
\[(x_2, y_2, z_2) = (0.718, 0.694, -0.034),\]
\[(x_3, y_3, z_3) = (0.6015, 0.347, 0.719).\]
(16)

With the aid of (10), (15), and (16) we have the point of intersection given by (8):
\[(x_I, y_I, z_I) = (-0.2004, -0.7835, -0.2141).\]
(17)

The area enclosed by the window is evaluated using (9):
\[
\Delta^T = \Delta_{123} + \Delta_{134} = 0.258 + 0.413
= 0.671
\]
(18)

As described in article 2.3, we will calculate the areas of the triangles whose vertices are (1, 2, I), (2, 3, I), (3, 4, I), and (4, 1, I). They are:
\[
\Delta^I = \Delta_{12I} + \Delta_{23I} + \Delta_{34I} + \Delta_{41I}
= 0.6725.
\]
(19)

With (18) and (19), we have:
\[
\Delta^I - \Delta^T = 0.0042.
\]
(20)

Also using (6), we find that the distance between the intersection point (I) and the object (0) is less than that between the pilot (P) and the object (0), i.e.,
\[
p^{IO} = 16606.37,
p^{PO} = 16607.20.
\]
(21)

With the tolerance level \(\epsilon = 0.02\) and the table in figure 5, we conclude that the object is visible to the pilot through the window (X).
4. CONCLUSION

We have presented a technique and a computer program to determine whether a pilot can see an exterior (point) object if the position and the orientation of the aircraft, the position of the object, and the geometry of the windows of the aircraft are known. The formulation and calculation are extremely simple and easy to implement. The object is treated as a point mass, and may be another aircraft, the top of a building, or a mountain peak in the range of sight. Pilot look angles to the other references such as runway approach lights etc., can also be evaluated.

Since the speed of the aircraft is finite, and the object most probably has a finite dimension, it may be interesting and useful to know the duration the pilot can see the object. It might be interesting as well to determine the times and durations the pilot can see the particular area at which he expects to land during various traffic patterns.

The model assumes that the probability of the pilot looking through one window is the same as that when looking through another. In practice this is not true. The pilot spends more time looking through front windows and less through farther ones. This observation may be represented by a Gaussian distribution, and included in the calculation of the probability that the pilot can see through a particular window. This can be achieved by a modification of \((X_p, Y_p, Z_p)\) at \(t = t\) in Equation (8).
5. ACKNOWLEDGMENT

We wish to express our thanks to Loyd Parker of the NASA Wallops Flight Center for formulating the requirements.
APPENDIX

COMPUTER LISTING AND OUTPUTS
THIS IS THE MAIN PROGRAM

WRITTEN BY J. BASHIR
ON MACHINE HONEYWELL 625

VISION TEST PROGRAM,
The main program calls subroutines INIT and VISION.
SUBROUTINE INIT STORES THE DATA FOR THE TYPE OF A/C CHosen and evaluates its field of vision.
SUBROUTINE VISION determines the visibility of a target from an aircraft whose window geometry is known, given the position coordinates of the viewing and target A/Cs and the yaw, pitch and bank angles of the viewing A/C.

INPUT TO INIT IS INTYPE, GIVEN AS AN ARGUMENT,

INPUT TO SUBROUTINE VISION IS PASSED THROUGH A LABELED COMMON BLOCK 'INPUT', WHOSE VARIABLE LIST IS AS:

VRNAV - RUNWAY AZIMUTH IS GIVEN IN RADAR RELATIVE FRAME OF REFERENCES (ZERO DEGREES AT MAG. NORTH).
VXP, VYP, VVP - POSITION COORDINATES OF THE VIEWING A/C (RUNWAY RELATIVE).
V AZ - VIEWING A/C'S AZIMUTH, GIVEN IN DEGREES IN RADAR RELATIVE COORD. SYSTEM AND IS MEASURED CLOCKWISE FROM NORTH OR Y-AXIS.
VEL - VIEWING A/C'S ELEVATION ANGLE IN DEGREES.
VBA - VIEWING A/C'S BANK ANGLE IN DEGREES.
VXT, VYT, VVT - POSITION COORDINATES OF THE TARGET A/C (RUNWAY RELATIVE).

OUTPUT IS BROUGHT THROUGH A LABELED COMMON BLOCK 'OUTPUT', WHOSE VARIABLE LIST IS AS GIVEN BELOW:

IVISIBL = 1 MEANS VISIBLE,
= 0 MEANS NOT VISIBLE.
IVWINDO = WINDOW NO. AT WHICH TARGET IS LOCATED.
VPLANDA = VERTICAL ANGLE OF THE LOCATION OF THE TARGET A/C IN THE WINDOW.
I

\textbf{THIS IS THE MAIN PROGRAM}

\begin{verbatim}
43 COMMON /INPUT/ VRNWAZ,VXP,VRY,VRP,
50 1 VAZ,VEL,VBA,VXT,VT,T,VZT
51 COMMON /OUTPUT/ IVISIBL,IVINDO,VPLAMDA,VPMU
52 READ IYPE OF AIRCRAFT DESIRED,
53 IYPE = A CODE NUMBER WHICH INDICATES
54 WHICH A/C IS DESIRED,
55 CODES FOR DIFFERENT A/C\'S ARE LISTED
56 IN SUBROUTINE INIT.
57 READ IYPE
59 CALL SUBROUTINE INIT TO SET THE A/C TYPE AND
62 DETERMINE ITS FIELD OF VISION,
63 CALL INIT(IYPE)
65 TEST EXAMPLE FOR FIVE CASES,
67 DO 10 I=1,5
68 READ,VRNWAZ,VXP,VRY,VRP,VAZ,VEL,VBA,VXT,VT,T,VZT
70 CALL SUBROUTINE VISION
72 CALL VISION
74 WRITE(6,53)IVISIBL,IVINDO,VPLAMDA,VPMU
75 FORMAT(1X,"I\textsc{V}ISIBL = ",IVISIBL = ",11,4X,"I\textsc{V}INDO = ",
76 12,4X,"V\textsc{P}LAMDA = ",VPLAMDA = ",F7,2,4X,"VPMU = ",F7,2,1/)
79 CONTINUE
80 STOP
81 END
\end{verbatim}
SUBROUTINE INIT(ITYPE)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42

THIS SUBROUTINE STORES THE DATA REQUIRED FOR THE TYPE OF AIRCRAFT CHOSEN FOR VISIBILITY MODEL.

EVALUATION OF THE FIELD OF VISION
THE FIELD OF VISION UTILIZES ALL AVAILABLE WINDOWS, BUT EXCLUDES ALL OBSTRUCTIONS.
THE AVAILABLE FIELD OF VISION IS SUBDIVIDED INTO NUMBER OF GEOMETRIC CLOSED FIGURES CALLED WINDOWS.
THE VERTICES OF THE WINDOWS ARE DETERMINED THROUGH A SET OF RAYS EMANATING FROM THE PILOT'S EYES AND EACH RAY IS SPECIFIED IN A SPHERICAL COORDINATE SYSTEM WHICH MEASURES ANGULAR DISPLACEMENTS FROM THE LEVEL REFERENCE AXES PARALLEL TO THE FUSELAGE AND PARALLEL TO THE AIRCRAFT'S WINGS.

DETERMINATION OF THE EQUATION OF THE PLANE OF THE WINDOWS.
ONLY 3 NON-COLLINEAR POINTS ARE REQUIRED TO DETERMINE THE EQUATION OF THE PLANE.
AX + BY + CZ + D = 0 ARE CONSTANTS, THESE CONSTANTS ARE EVALUATED BY EXPANDING THE FOLLOWING DETERMINANT.

\[
\begin{vmatrix}
 x & y & z \\
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
\end{vmatrix}
\]

CALCULATION OF THE AREAS ENCLOSED BY THE WINDOWS.
EACH WINDOW IS DIVIDED INTO NUMBER OF TRIANGLES AND THE AREA OF EACH TRIANGLE IS CALCULATED AND THEN ADDED TO EVALUATE THE AREA OF THE WINDOW.

INPUT-
I-F-type - A code number which indicates which A/C is desired.

MOONEY=21 = 1 SEL
CHEROKEE=140 = 2 SEL
CESSNA=172 = 3 SEL
CESSNA=210 = 4 SEL
PIPER AZTEC = 5 SEL
PIPER=140 = 6 SEL
BEECH BARON = 7 TE
AERO-COMM600E = 8 TE
BOEING707 = 9 ME
DOUGLAS DC8 = 10 ME

OUTPUT -
The output values are returned in common block, since they are required by subroutines vision
and visible.

NWINDO = No. of geometric windows constructed out of the available windows for each A/C.
NRAYS = No. of vertices of each window.
TLAMDA = Vertical angle for each corner of the window, (in degrees)
TMU = Horizontal angle for each corner of the window, (in degrees)

This program is written with room for expansion to 20 aircrafts.

Common TLAMDA(25,6), TMU(25,6), NWINDO, XRAY(25,6).

1 TRAY(25,6), ZRAY(25,6), NRAYS(25,6), A(4,25).
2 AREA(25)

Dimension NW(20), NR(25,20), TL(6,25,20), TM(6,25,20),
1 V1(150), W1(150), V2(150), W2(150), V3(150), W3(150),
2 V4(150), W4(150), V5(150), W5(150), V6(150), W6(150),
3 H1(150), H2(150), H3(150), H4(150), H5(150),
DO 1 J=1,NRAYS(I)

C11 TLMDA AND TMU ARE THE VERTICAL AND HORIZONTAL
ANGLES OF THE VERTICES OF THE WINDOWS.

TLMDA(I,J) = TL(J,I,ITYPE)
TMU(I,J) = TM(J,I,ITYPE)

XRAY(I,J) = COS(TLMDA(I,J))
YRAY(I,J) = SIN(TMU(I,J))

DO 15 I=1,NWINDO

K=XRAY(I,J)

DO 15 J=1,K

IF(TLMDA(I,J),GT,90,0) TLMDA(I,J) = 180,0*TMU(I,J)

IF(TLMDA(I,J),LT,90,0) TLMDA(I,J) = 180,0*TMU(I,J)

TMU(I,J) = TMU(I,J)/57.2957

TLMDA(I,J) = TLMDA(I,J)/57.2957

XRAY(I,J) = COS(TLMDA(I,J))
YRAY(I,J) = SIN(TMU(I,J))

CONTINUE

15

EQUATION OF THE PLANE OF THE WINDOW IS DETERMINED HERE,

A(1,1),A(2,1),A(3,1),A(4,1) ARE THE A,B,C,D CONSTANTS
OF THE EQUATION OF THE PLANE OF THE WINDOW.

DO 30 I=1,NWINDO

A(1,1) = XRAY(1,1) + (YRAY(1,2) - ZRAY(1,3))

A(1,2) = -YRAY(1,2) + (XRAY(1,3) - ZRAY(1,1))

A(1,3) = XRAY(1,2) + (ZRAY(1,1) - YRAY(1,3))

A(1,4) = YRAY(1,1) + (XRAY(1,2) - ZRAY(1,3))

A(2,1) = XRAY(2,1) + (YRAY(2,2) - ZRAY(2,3))

A(2,2) = -YRAY(2,2) + (XRAY(2,3) - ZRAY(2,1))

A(2,3) = XRAY(2,2) + (ZRAY(2,1) - YRAY(2,3))

A(2,4) = YRAY(2,1) + (XRAY(2,2) - ZRAY(2,3))

A(3,1) = XRAY(3,1) + (YRAY(3,2) - ZRAY(3,3))

A(3,2) = -YRAY(3,2) + (XRAY(3,3) - ZRAY(3,1))

A(3,3) = XRAY(3,2) + (ZRAY(3,1) - YRAY(3,3))

A(3,4) = YRAY(3,1) + (XRAY(3,2) - ZRAY(3,3))

A(4,1) = XRAY(4,1) + (YRAY(4,2) - ZRAY(4,3))

A(4,2) = -YRAY(4,2) + (XRAY(4,3) - ZRAY(4,1))

A(4,3) = XRAY(4,2) + (ZRAY(4,1) - YRAY(4,3))

A(4,4) = YRAY(4,1) + (XRAY(4,2) - ZRAY(4,3))
THIS LOOP CALCULATES THE AREAS OF THE WINDOWS.

DO 40 I=1,NWINDO
 J2=1
 JU=0
 DO 35 J=1,(NRAYS(I)-2)
 J2=J2+1
 A1 = XRAY(I,1)*YRAY(I,J2)-YRAY(I,J3)
 A2 = XRAY(I,1)*YRAY(I,J2)-YRAY(I,J3)
 A3 = XRAY(I,1)*YRAY(I,J2)-XRAY(I,J3)
 AREA(I,5)=SORT(A1*A2*A3)
 SUM=SUM+AREA
 CONTINUE
40 CONTINUE
 AREA(I)=SUM
 CONTINUE
 RETURN
40 END
1. SUBROUTINE VISION
2. THIS SUBROUTINE TESTS WHETHER TARGET AIRCRAFT LIES
3. IN THE VIEWING AIRCRAFT'S PILOT'S FIELD OF VISION;
4. THE LOCATION OF THE TARGET A/C IN THE PLANE OF THE WINDOW
5. AT WHICH IT WAS LOCATED IS CALCULATED AND PASSED
6. TO THE LABELED COMMON BLOCK 'OUTPUT';
7. C21 DEFINITION OF THE TRANSFORMATION MATRICES TO BRING
8. TARGET A/C IN VIEWING A/C'S COORDINATE SYSTEM.
9. C22 DETERMINE THE EON OF THE LINE JOINING PILOT'S EYES AND
10. THE TARGET A/C, ALSO INTERSECTION POINT
11. OF THIS LINE WITH PLANE OF THE WINDOW.
12. EON OF THE LINE JOINING (X1,Y1,Z1) AND (X2,Y2,Z2) IS
13. \((X-X1)/(Y-Y1)/(Z-Z1) = 0 \)
14. C23 DETERMINE INTERSECTION POINT OF THE LINE OF SIGHT WITH
15. THE PLANE OF THE WINDOW;
16. INTERSECTING POINT IS GIVEN BY
17. \(X = (X_0 - XE) * XE \)
18. \(Y = (Y_0 - YE) * YE \)
19. \(Z = (Z_0 - ZE) * ZE \)
20. WHERE
21. \(X_0, Y_0, Z_0 \) ARE THE COORDINATES OF THE TARGET A/C
22. IN VIEWING PLAN'S SYSTEM; \(XE, YE, ZE \) IS A/C'S EYES COORD.
23. AND
24. \(S = (D - A*XE - B*YE - C*ZE)/(A*(X_0-XE) + B*(Y_0-YE) + C*(Z_0-ZE)) \)
25. C24 CALCULATION OF DISTANCES JOINING \(X_1,Y_1,Z_1 \) AND \(X_0,Y_0,Z_0 \)
26. DISTANCE JOINING \((X_1,Y_1,Z_1) \) AND \((X_P,Y_P,Z_P) \) MUST BE SMALLER
27. THAN DISTANCE JOINING \((X_P,Y_P,Z_P) \) AND \((X_E,Y_E,Z_E) \); THIS TEST
28. IS PERFORMED TO ENSURE THAT INTERSECTION POINT LIES IN
29. FRONT OF PILOT'S EYES AND NOT BEHIND HIS BACK.
AND TWO CONSECUTIVE CORNERS OF THE WINDOWS.

CALCULATION OF THE AREAS IS PERFORMED AS EXPLAINED EARLIER.

TEST FOR VISIBILITY.

AREA1 CALCULATED IN SUBROUTINE VISION AND AREA2
CALCULATED IN SUBROUTINE VISIBLE ARE COMPARED FOR THE
VISIBILITY TEST. IF THESE AREAS ARE EQUAL OR WITHIN
THE SPECIFIED TOLERANCE (GIVEN IN THE DATA STATEMENT),
THEN WE SAY THE TARGET A/C IS VISIBLE OTHERWISE NOT.

LOCATION OF THE TARGET A/C IN THE VISIBILITY WINDOW.

VERTICAL AND HORIZONTAL ANGLES OF THE TARGET
A/C ARE CALCULATED.

DIMENSION TPNSFM(3,3), AREA2(25)
DIMENSION XI(25), YI(25), ZI(25)

COMMON TLAMBDA(25,6), THETA(25,6), NWINDO, XRAY(25,6),
1 TRAY(25,6), ZRAY(25,6), NRAY(25,6), & (4, 25),
2 AREA1(25)

COMMON /INPUT/ VRNWAZ, VXP, VYP, VZP,
1 VAZ, VEL, VBA, VXT, VT, VZN
COMMON /OUTPUT/ VISIBLE, VN1, VN2, VPLAMDA, VPMU

DATA XE, YE, ZE/3.0/, TOLR/1.0E-02/

DETERMINATION OF THE TRANSFORMATION MATRIX

TO MAKE ALL DATA CONSISTENT THE A/C IS
AZIMUTH IS CORRECTED TO BE RUNWAY RELATIVE.

AZA=IVAZ-VRNWAZ)*3.1416/180,
EISA=VEI*3.1416/180,
HA=VBA*3.1416/180,
CS=COS(2AZA)
SS=SIN(2AZA)
CT=COS(2ELA)
<table>
<thead>
<tr>
<th>IVISIBL</th>
<th>IVWIND</th>
<th>VPLAMDA</th>
<th>VPHU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>149.96</td>
<td>65.99</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>118.97</td>
<td>3.55</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>128.91</td>
<td>1.96</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>131.45</td>
<td>7.84</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10.51</td>
<td>1.30</td>
</tr>
</tbody>
</table>