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LIST OF SYMBOLS

a width of duct,
aj . Phase shift of jth component. Ref. eq. 25,
Aj B Amplitude of jth component. Ref. eq. 25.
Cq Sound speed at»infinitesimal amélitude
fj jth dissipation, see eq. 51.
3 jl' j2 Positive integers, see egs. 41 and 42.
) :Positive integer. |
M : Mach number ofvthe mean flow = Um
o
m Wave number in traverse direction,
m | =m T
Nl’ N2 | Noniinear differential operators. See‘egs. 4 & 5,
P Positive integer.
P Pressure.
io Resistance of the wall.
t Time. _
: : te
t Nondimensional time = —59 .
u e . Acoustic velocity.
Um ',7;' ’ ~ Mean velocity. .
o _ Tranverse distance. :
x - .i o  N§ndimensional transverse distance;‘x = %
Yi, Yé'Ym’me : Parameﬁers, see egs. 39, 40, 67,:énd‘68;
Z | Propagating dirédtion. o
z : . -,NondimensionalTPropagating di:ection,_z-= % .
‘ zd;zl;zz o ‘Multiple scalés in~propagatiqn direction,’see eq.»32;

o , “ 0 Wave number in z direction
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Y Specific heat ratio.
£ Peak Mach puamber of acoustic wave, %— perturbation
parameter. °
| n , Constant, see eq. 43.
i ny Conductancé (Inverse of resistance) of the wall.
% ) oz - wt,
| U :  Parameter, see eq. 64.
% Po Density
§ 0 ' Nondimensional acoustic veloéity potentiai, ¢ = EE = .
: ¢j - jth order velocity potential compopent, see eé. 34?
25 ' Reactance of the wall.
Xo ‘Ratio of Reactance of Resistance (¥_/Ro).
Wj Component of the second order solution eqf 37.
‘;j | Component of the secbnd order‘solutioh eqg. 37.
 w § o - Nondimensional angular frequency (or reduced
frequency). w = gi . | |
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ABSTRACT

The resonance expansion method, developéd.earlier to study

the propagation of sound in rigid rectanglular ducts, has been

~applied to the case of slightly soft ducts. Expressions for

the generation and decay of various harmonics is obtained. The

- effect of wall admittance is seen through a dissipation function

in the system of nonlinear differential equations, governing the
generation of harmonics. As the wall admittance increases, the

resonance is reduced. For a given wall admittance this phenomenon

is stronger at higher input intensities. Both the first and second

order solutions are obtained and the results are extended to the

case of ducts having mean flow.



I.  INTRODUCTION

This report deals with the propagation of higher order
moae, finite amplitude sound in slightly soft rectangular
ducts, carrying mean flow. This report is a comparison of a
report which deals with the rigid wall boundary condition (1).
Conventional methods of analysis have failed to solve, satis-
factorily both these problems. |

It was shown in the case of the rigid rectangular duct
that the sound wave undergoes a nonlinear resonance. This is
due to the fact that the eigenvalues of the higher order modes
~are integral multiples of the eigenvalue of the first mode.

In reference 1 it was shown that a new method could be used
to analyze such a problem. This method was called resonance-
expansion method. It will be seen that the resonance pheno- |
menon persists for a soft duct as long as the admittance of
the duct is not veryAlarge. Larger the amplitude of the
sound waves, greater is the extent of the admittance to which
this phenomenon will persist.

Previous researchers (2,3) have attempted a solution of
the soft wall problem by a direct multiple-scale expansion
method. . Unfortunateiy, the solution obtained by this method
is not Valid as the linear attenuation coefficient approaches -
to the order of the perturbation parameter e, (based on ini?
~tial amplitude). This is due to the result that, in such a
case, the direct method leads to seculer’terms in the second
order solution. This alters the accuracy of the modal ampli—‘
~tudes in the first order solution. » ‘ , |

There exists an intrisic need to have a'unifiea theory
which explains the curious behavior in the entire domain of
wall admittance. It would be seen that the-solution described
1n thls.reportapproaches the one for the rigid wall case as
the admittance tends to zero and to that from a stralght for-
ward solution as the admittance increases. There is also a
pragmatic need for such a selution as it promiseé‘a practical

“~way to reduce resonance by means of a relatively small.amount



of sound absorbent.

It should be noted that in view of the equivalent impe-
dance concept of Cremer (4), (extended to higher order modes
by Vaidya (5)), effects of viscosity and heat conduction could
be lumped on the wall of a duct as a small admittance. Thus
~this report could as well be viewed as one describing sound
pro?agation in a rigid rectangular duct, carrying viscous,
heat conducting fluid.
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IT. FORMULATION

The problem formulated herein is idealized to the extent

- that an acoustic field is considered within an infinite duct,

therefore only outgoing waves exist. (see Figure 1)
The‘following set of non-dimensional veriables are in-

troduced, where ( ) indicated the dimensional quantity:

x = x/a, z= z/a, t = tc_/a, p = p/p,c % ¢ = §/ec_a (1)

where ¢ is the nondimensional velocity potential. Therefore,

we have
Vv = V¢ (2)
In terms of the non-dimensional quantities, the governing

non-linear equations for the inviscid polytropic gas are (L) (e

is amplitude of input wave).

V29 = b, = N (9) + €Ny (§) (3)

N, (¢) = kw-l)cpt"vzqs + 2v¢-(v¢t) : , - (4)

Ny (9) = (y=1) (V¢)* V3¢/2 + (V¢+V) (v¢)2)2 g (5)

- Where : : : ,
VE () = 8% /0%t + aP( ) /02 (6)

ve) =~ta( )/ x1 1+ [8()/ z]1 k S v,(7>

v ( ‘)1% = £3( 1/8x1% + [a( ) /3212 (85

The relation between thé pressure and velocitykis'(l)

vp = {(1-y) [e¢, figf(V¢)2/2];+‘l}7/(Y';),‘ (9



The formulation of the problem is completed once the
boundary conditions are descirbed. Here we use a modified
form of the semi-empirical form proposed by Zorumski and
Parrott (6), (It's also used by Nayfeh and Tsai (3)) that is

B-p, = R@) - x{u) 3_) §at x=1 (10)

w ot _

where u = ¢#, is the velocity in the x direction. ' The form
of this equation differs from that used in reference 3 in
that the equation reduced to the familiar form

P-p, = (R + i}) U | ~ (10a)

in the linear monochromatic case.
In particular the following forms for R and X could be
considered:

Ru) = Ry + R, (u/c,)? f (11)

X =Yg+ Xy (We)? - a2)

It will be seen later on in this analysis that ﬁz and X, play
no part up to the second order solutlon. ‘Therefore ordinary
linear boundary condltlons would be ddequate. However, since
the nonlinear boundary conditions are found in the current
literature, we have chosen to retain them and to demonstrate
~ ‘their relative lack of significance. |
Substldutlng equations (11) and (12) into (10) and non-

dlmen51onallzlng the resulting equatlon leads to

P | -
Py = elR /o e = X w0, Co EE + 9e? )]¢



Expanding the right-hand side of equation (9) into Taylor's
series, the polynomial relation between p and (¢X,¢z) can be

found. Therefore equation (13) becomes

at x = 1, -ny [oy + elog + ¢7 - 6£)/2 + 0(e?)]

= [1 - x /v 4 O(ez)]¢ ' (14)

at
Where
N = Po%o o = 2o .
= - , = =
1 = o 3 | (14a)
o o

For the wall of duct with small admittance, let O(n1)~e and
O(xo)~ 1. Using this relation equation (14) can be arranged as

at x =1, (1 - xo/w 8/3t)¢x+e(n1/e)¢t + 0(e?) = 0’ ' (lS).
The condition at x = O is

¢, =0 (for symmetric case) (16)

6 =0 i(for antiQSymmetric case) -(17)

For the report, we consider the solution based on (16). The

'initial‘conditionf(or the input condition) at z = O is

¢ = cos m x cos w t + O(e) ‘ | (18)

‘Where m = mr (m =1, 2, 3,.0...). The cortection, O(e), is found
'such that the sllghtly soft wall condition 1s satlsfled (see the

second order solution, section 3.3).




'III PERTURBATION SOLUTIONS

To determine an approximate solution for this system, we
use the perturbation expansion. Let

9 = ¢+ edy + O(e?) (19)
where ¢1 and ¢2 are the functions of Zor Zqr eeeeny t and X,
The zi's are defined
i

Z, = g2 (20)

Z, is a fast scale characterizing the wave length whiie z; (1 =
1, 2, 3,.....) 'is a slow scale characterizing the amplitude

modulation (ref. 2).

3.1 The First Order System

Substituting equation (19) into the governing system, the
first order system is (let 2z be denoted as 2)

2 L —1
Viey = o, et = O
at z, = O, ¢, = Re [cos mx cos wt] (22)
at x. =0/ 4y, =0 | (23)
t =1 Lo
at x. =4 ¢cﬁx" s bo,xt =0 (24)
Therefore the solution of b, is (1)
N , . ~ .
z - Z - [ . .
¢g =5&1 Aj(zl) cos jmx cos[JQ + aj(zl)] ; (25)
where
a? =w? -m?, 8 = ax - wt



Note that the form of equation (25) is of the resonent
expansion type. This form could be generalized for various
types of inputs. As a simple example, consider

1 =1

A.(0) = . (26)
J 0 J # 1

aj(0 = o = 1,2,3,000... (27)

It would be assumed, at first that the order of the phases
aj is less than or equal to €. In Appendix B, this restriction

is removed. It follows from equations (23) and (24) that
m=mrm M =1, 2, 3,eeveees (28)

The behavior of Aj's and aj's can be determined by the con-
dition that the second order system should be without secular
terms.

3.2 Solvability Condition for Aj

The governing equation for second order is

N
2¢. - -~ I 2ja A!' cosjmxXx sin(j0+a.
VIOt 01kt jo 0% By cosamx sin(3tay)
N SR ‘ :
-jilZJa Ajaj’COSjmx cos(je+aj) = N1(¢o) (29)

In view of the assumptidﬁ stated above, the phases shift
can be neglected with the possible exception of its derlvatlve,,
a;. Equation (29) could be rewritten as



N
2 - o 3 ' . » ]
v ¢l ¢l,tt §=123a Aj cos jmx sin jB
N
+ . TS . .
jleJG aJAj cos jmx cos jo +_Nl(¢o) (30)
where
N N _ ,
N, (g ) = = = F.(x)522 A,A, sin (5+2)6
1Yo j=1 =1 1 378
N N _
+ L L F,(x) ja? A.A, sin (j-2)6 (31)
j=1 2=1 I o
Fo(x) = [-% (y=1)w3-02%w] cos jmx cos mx + m?w sin jmx sin fmx
(32)
§2(X) = [~%(y-1)w®~0?w] cos jmx cos mx - m?w sin jmx sin mx
(33)
The boundary conditions are
at z = 0O, ¢l =0
at x =0, 97 .= O
= 1 L e = - ’
at x ! ¢11X Xo/w ¢l,xt n1/€¢0:t - (36)

- Let the solution Of‘¢l be of the form

¢y =,
j

I A

~ , N
L Wj (X'Zl) sin j6 + ji Yj (x,zl) cos j@ (37)

Substitution of equation (37) into (30),(34),(35), and
(36) yields the differential systems for wj and Wj. fFor'Wj,



Wg + 32 m? Wj = 2ja Aa cos jmx +

1
j% (3-2) A,
1 j

1 cos jmx + Y

By [-Y 5 cos(j-28)mx] +

I & 3.

%

nl-¥; cos jmx + Y,] (3/2)% n2, -

j/2
j2
jil FR(3+R) Aj+ZA2 [--Yl cos jmx + Y, cos (j+28) mx]
where
Y, = (y+1) w?/4
Y, = wlm® = (y=1)w® -a®1/4
| j/2 - 1 if j/2 is an integer
iy =
} (3=1)/2 if j/2 isn't an integer
i, = N
1 if j/2 is an integer
o} ~if j/2 isn't an integer

The boundary conditions are

at x =0, Y.=0

J
= '—_ '=_ . ,‘..,;'
at *— 1, ,Wj IXo lek (nl/€)°°§_?m:Aj
For,\yj the equation is
C¥! 4 3y, = 2ja alA, cos jm
¥3 *3Tm7¥y = 2ja ajA; cos jmx

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)'
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The boundary conditions are

i

at x o, wa =0 : " (47)

‘ =1 v o4 gy ¥l =0 ' ’- 8
at x ' WJ IXg : | (4})

Eliminating Wi (1) between equations (45) and (48) yields

at x = 1, ¥ =-(n/e)ju cos 3m A,/(L + 32 %) (49)
It is shown in the appendix A that'the‘syétem for Wj

(equations (38), (44), and (49)) has a solution, if and

only if B '

1

3
5 a(j-2) A. . A +
g=1 3=k R

'+ FLA, - ot
Ay + 58y 33 |

: : . jl » :
3 (3/2)2 Ad/o +»221 Lo(3*+R) Ay A 1 =0, 3 =1,2,3,.... (50)

with :
£y = (ng/e)a a1+ M) 3 = 1,2,3,...0.. (51)
or : o | '
goou Pof o et
J ea ﬁg + 32 ié | S (52)
or
S PeoR L
e £, = =18 - =220 | (53)
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where k. is the dimensional wave number, (so that w© = EEO).

From the dimensional form of fj’ it could be recognized that

contribution to dA1 due to absorption is the same as obtianed

z
in the linear theory by Doak apd Vaidya (7). For other har-

3 monics, equation (53) can be rewritten as

I , _ ka . '
‘, *f5 = = K ) (54)

szaz - m2T2

where

K (3) = — oo ', (55)

: is the admittance ratio for the j™ harmonic. For the first

harmonic, its deflnltlon coincides with the coventional defini-
tion. Other harmonlcs have their admittance ratio computed
after enlarging the duct reactance by j?
; Equations (50) through (54) were obtained by assuming that
the resistance of the linear was very large. Similar analysls'
could be cafried out by assuming that the reactance was very
large. Detailed analysis shows that the form of equations (50)
and (52) is valid as long as the addmittance ratio is not an
order of magnitude greater than e. The analysis is also valid
above cut off of the exciting mode. |

As the admittance ratio gets smaller and smaller, the duct
approaches the hard wall conditions. In that case the equation
(50) reduces to the one obtained by Wang and Vaidya (1). There-~
fore, there is a continuous tfansition from. the hard to the ’
slightly soft case. As the softness. increases the generation of
harmonics slows down. In that case, dependlng upon the type of
boundary conditions,,51mple_mult1pleﬂscale expansion or a straight-

forward expansion is adequate.
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3.3 The Solution of the Second Order System -

Having obtained Aj's we could proceed with the second
order solution. The condition that this solution be valid
would lead to an equation in aj with dAj/dz, replaced by

equation (50) and from equations (35), (38) and (49).

. 3 S
o L jY, -1 .
Wj(x,zl) = -(a/m)fjAj X sin jux + —s [}E Aj-zAz cos(j=-22)mx +
; 4m =1
ER |
. . b e n 2 - -
221 Aj+ZA2 cos (j+22)mx + 3 (Aj/2 vaj/Z,l)] 3. 1,2,3,... (56)
- where
1 j o= 2
g, = ' . :
i/2,1 e ) (57)
0] j # 2 , ,

~

Substituting the form of Wj into the condition (48) gives

: (3 2 ' ‘ 2 ‘ .
— ' ‘ .
at x'f 1, Y. =3 a}xlf.A. cos ?m: (58)_

Hende; for'the'system of Wj (equations 46,47, and 58) the con-

‘dition of solvability is

al =3 x, £. , S (59)

~ Therefore

a, = 3 X_ £, 7, e (60)

For small value of Z (i.e. not far away from the inlet) the order
of aj’is €. This agrees with the assumption we made at Section

3.2. Theksolution‘of,wj is

Yy xzy) = (o/m) 3 _»x,'o Ay X sin‘jan r 3= 12,3, (61)
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From equations (37), (56) and (61) the complete solution
of the second order could be written as

N 'Y Jl
¢ sin j 20 Al A (3-28)mx +
¢, = I { =(a/m) £. A. X sin jmx + —5 . cos(j-28)mx
1 j=1 3773 4m2 j=1 J=LL
i, |
) . . 2 ’ ‘ : . +
jil Aj+2Az cos(j+2¢) mx + n/2(Aj/2 6j/2,l)]}f sin j6 +
N ‘ ‘
b {{a/m)j x . £. A, x sin jmx cos j6} (62)
j=1 o "j 73 v

This solution is a generalized form of the one obtained for
the case of the rigid walled duct. Equation (62) gives the
correction, O(e), of the input ¢ondition. That is

¢1 = (u/m)fl X sin mx (X. cos wt - sin wt)(63)
2=0 o . 2
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IV. NONLINEAR PROPAGATION IN
PRESENCE OF MEAN FLOW

The governing equation in presence of mean flow was
derived in reference 1. ‘ ‘

V24 - M2 6. - e, - b = € Ni(6) + €N, (9)  (64)

_ _ . (1)
where p=1- Y ; 1 M?, and N1(¢) becomes '

N (0) = (y=1) (0 - Mo,) Ve + 204+ (Vo - MTG)  (4)

Therefore equétion (21) should be Changed‘to

. 2 2 . ,—
U¢ = H] ¢ - 2M¢jO,Zt - q)jo,tt = 0

4

m2¢. - M
jo,z2z jo . 7 Tjo,zz
3= 1,23 0000000 - (65)

Assume again that solutions are the form in equation (25).
Substituting that into equation (65) yields '

o = -—17,[ ~Mw * [u (w? + M2 - umz)]%J,  (66).
T | - | o

Where the positive sign is to be used for aneS-traveling in

mean flow direction and the negative sign is to be used for

" waves traveling against mean flow direction., u is*the coef~

ficient that takes into account compressibility; Note. that
in the conventional convective wave equation u is’assumed td
be unity. The_soltui@ns of,¢0_and ¢, are of the same form as
that in the previous section,_except:for the following modifi*
cations: . ' e - B ' ’
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¥, = ¥y, = %+ (@®4m?) (u-Ma) (67
Y. = Y. = %[(3=y)m® - (1+y)a?] (w=Ma) (68)
2 2M 4
_ M2 (69
By = YlM/[a(u M°) + wM] | (69)
= 2 : (70)
Bom = You/M

Aj's are, once again, to be obtained-by solving the equation

(50) . The mean flow changes the transmission parameter a and

Yl. These changes alter the propagation. The change depends

upon.the mode, the frequency of operation, magnitude and direc~
tion of the mean flow.
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V. NUMERICAL. RESULTS

Equation (50) was solved using N = 25, Yl/a = 15.6, w =

3.685, o = 1.926, and four cases of wall impedance parameters

shown in the table below:

No. poco/ﬁoe io/ﬁo | . Ky
1 : 0.0 0.0 0.0
2 1.0 : 1.0 . 0.75 x 1073
3 , 10.0 1.0 7.5 x 1073
4 1.0 0.1 | 1.48 x 1073
| , .

5 : 50.0 1.0 3.75 x 10

In this table the values of Ktwere obtained for j=1 and

. assuming € = 1.5 x 10-3. It represents the admittance ratio

~ for the principal mode. |

Figure 2 shows the effect of nonlinearity on propagation
of first harmonic. The curves by dot line are obtained from
linear theory with the boundary conditions given above. “Which
diminish - only by the absorption of the wall The nonlinear
theory (solid 1line) shows more reduction in amplltude due to
the transfer of energy 1nto hlgher modes. .

Figure 3 shows Al for various 1mpedances. As the admittance
ratio K goes up,. so does the attenuatlon. Figure 4 and 5 show
the second and the third harmonlc respectively.

Figure 6 shows,the ratio of A2 to Al as wall admittance ratio
changes. It should be noted that as the wall gets softer the
- generation of the higher'harmonics is slowed down. Forka very
soft wall, the resonance would dlsappear and a stralght forward
multlple scale predlctlon would be adequate.
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VII. DISCUSSION AND CONCLUSIONS

This report has outlined a method to obtain the sound field
in a slightly soft rectangular duct. It was shown in an earlier
paper that the rigid rectangular duct demonstrates a resonance
phenomenon. The method of rescnance expansion was proposed to
solve that problem. In this report, the results are extended to
the case when the wall admittance is small.

It is seen that the phenomenon of resonance persists. How-
ever, it gets weaker as the wall gets softer. The analysis
shows that the criteria of softness is through parameters PoCo /

ﬁoe and eoCo/ioE. This implies that at high sound intensities
even a moderately soft wall would act as a hard one. These para-
meters show the classical antithesis between nonlinear convective
terms and the dissipative terms. When the nonlinear terms pre-
dominate over the dissipative terms, the resonance persists.

It is also to be noticed that the same parameters which con-
trol nonlinearity for the rigid duct control nonlinearity in a
soft duct. Thus the parameter Yl/a shows that the resonance is
stronger near the cut-off frequency. Effect of mean flow is
again qualitatively similar to that for the hard wall. }

It is interesting that for the principal mode the dissipation
function is same as the one which could be obtained by linear con-
sidératidns. For higher harmonics the function is loﬁer than
would be expected by the linear theory.

The results also show that a small amount of’absorptiCn re-
dices the resonaace and hinders the process of higher harmonic
generation. 1In a generalized form, this conclusion could lead to
some practical applications. (see for example Reference 8)
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APPENDIX A: COMPATABILITY CONDITIONS
For the non-homogeneous linear system

L(u) = r

Ui(u) =u' (bi) = vy i=1,2" (a.1)

where L is a second order linear differential operator and Ui

is some algebric operator indicating the boundary condition.
The necessary and sufficient condition that this system

may have a solution is that every solution, v, of the homo-

geneous adjoint system (defined below)
L(v) =0
Vl(v) =v'(l) = 0, Vz(v) =v'(0) =0 (A.2)

Satisfies the relation (9) which could be obtained from the
Green's formula,

by
[ vrdx = -y;V(by) + y,V(b,) (A.3)
'bl ‘

2
d Vop v :
Po-——z-dx + (ZPO Pl) + (PO Pi + P2>

In second order systems if L

where the prime denote derivation with respect to X, in the
particular case described in this appendix L = L, that is the
equation is self-adjoint. 1In any case, any given equation can
be converted into the self-adjoint form o .d d, _

o ; L = [3xlkgg) - Gl. (see
p. 215 of Ref.9) The boundary conditions v for the adjoint equa-
tion are obtained from Vi and K as illustrated below. o

Consider the particular system defined as . _ a? 2_2

d

X
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In confirmity with the rest of the paper let the argument u
of this operator be Tj and v, the argument of the adjoint opera-
tor be Qj'

Therefore let

2

. e NN .2 2 0 :
L ‘yl = = \P. + . ' . .
( J) E;g ( J) J m (WJ) (A.4)
Ul(WJ) = Wj(O) =Y, =0 (r.5)
Up(¥1) = ¥ (1) = v, | (2.6)
_ - . 2. 2
Yy = -(nl/s) Jjw Aj cos ji///kl+3 X ) (A.7)
3y | |
r = 2joAl cos jmx + I jL(j-2) A. A, [-Y, cos jmx + Y cos (j=-22)mx]

+ nl-¥; cos jmx + Y,] (j/2)3Aj§2

32
- zfljz(j+“),Aj+2Az I-Yl'cos jmx + ¥, cos (3+22)mx] (A.S)
Therefore, the adjoint system corresponding to (A.4), (A.5), and
_(A.6) is
' 2

= _.d 2.2 =
L(q>j) = 5;7 (qu) +»3} m @j =0 , | (A.9)
= ' (1 = y
vy = i) =0 (A.10)
Vz(Qj),= ¢j(0) =0 (A.l})
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The adjoint system has a nontrival solution that is

Qj = cos jmx (A.12)

By the relation (A.3), we have

1
1

(IR e N

IR (j- SL)AJ 2 2( Y cos jmx + Y, cos (j-22)mx)

J[ZjaA! cos jmx +
J 1

0

+ n(-Yl cos jmx + Y2) (3/2) 3/2

I2
- 12131(3+2) A. +2A2 (=Y, cos jmx + Yz cos (j+28)mx)]cos jmx dx

=N
= cos jm( ——-)ijJ cos jm/ (147 on), (A.13)

After integration, it yields

Y j :
v - 1, s N s /oy 2 22
Al + £A4 - 53 [Zﬁlg(J 2) Ay By + 3(3/2)7 Ay ]
3 |
v, ‘1
+ 1

5= I +2) A, =0 A.14
5% e (3+2) 542y | (2.14)
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APPENDIX B: GENERAL EQUATIONS OF Aj AND aj

Form of the equation (50) when the phase angles aj may

or may not be small.
Equation (60) provides meaningful insight about the

order of magnitude of the phases aj. Rewritihg it in the

form

1
€

2)

(B.1)

ot - ((S:J l-A.)wapo 3 X
j Z
1Al /fizaz 272 (R 243 Xo

Order of magnitude analysis on this equation shows that

-J
when ;ig >> 1 or << 1, aj would be of the order smaller than e.

X
When - 0 1, a. would be of the order of £ in the nearfield of

the solution. In the farfield solution, a modified form of the
first order solution is requiréd.

Working.out the procedure outlined in Appendix A, when aj's
are not assumed to be arbitrarily small, equations of compatability

become
d(A, cos a.) Y. 3
i) 73 - i - = 1
= i + fjAj (cos aj jxovSln aj) 5Lz a(5-0)
1 - ' : =1
A. A cos(é +a,) +2 (j/2)2 Az cos (2a )
=27 j=& & 2 3/2 j/2

PO
- E 2(j+2) A

+2°"
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and

d(Aj 8in éj}

. . Y 0
Pra + fjAj (sin aj - JX, cos aj) - 55 8 (5+8)
1 =1

o . ' N e yon 2 A2 . -
Aj-mAg sln(aj_z f az) + 5 (3/2) Aj/2 sin (Zaj/z)

P
I %(3+%) A

TR

Note that equation {B.2) changes into equation (5C) as aj + 0.

Equation (B.3) changes into equation (60) as a, + 0. These equa-
tions will be discussed in a coming paper (10) which gives detail
about the couplex sound wave input,
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LIST OF FIGURES

Sketch of the semi-infinite two dimensional
rectangular soft duct.

A, predicted by linear theory (dot line) and
nonlinear theory (solid ‘line). The conditions |

+of curve 2 and 4 are yiven at Section V.

Al'at different B.C.

A3 at different B.C.

Ratio of A2 to A; for different B.C. The values

within (3) are (poco/ﬁoe , ﬁo/ﬁo) respectively.
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