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LIST OF SYMBOLS

a width of duct.

a. Phase shift of j t	component.	 Ref. eq. 25.

Aj Amplitude of j th component.	 Ref. eq. 25.

co Sound speed at infinitesimal amplitude

f 7 jth dissipation, see eq.	 51.

j, j1,	 j2 Positive integers, see eqs.-41 and 42. 

Q Positive integer.

M Mach number of the mean flow = Umc
0

m Wave number in traverse direction.

m _ m

N11 N2 Nonlinear differential operators.	 See egs. 4 &	 5.

p Positive integer.

P Pressure.

R Resistance of the wall.
F	 o

t Time.
tc

I'	 t Nondimensional time _ a°

u Acoustic velocity.L

Um Mean velocity.

x Tranverse;distance, _	 7
f

x x:Nondimensional transverse distance, x = a
i.;

Yl, Y 2 ,Yn ,Ym, Parameters,	 see eqs.	 39,,	 40, 67, and 68.

I z Propagating direction.

z zNondimensional propagating direction, z = —a

zo ,zl,z 2 Multiple scales in propagation direction, see eq.	 32.

U Wave number in `z direction
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Y
	 Specific heat ratio

C
	

Peak Mach Dumber of acoustic wave,	 perturbation
0

parameter:

n Constant,, see eq.	 43.

X11 Conductance (Inverse of resistance) of the wall..

0 az - wt,

u Parameter, see eq. ,64.

po Density

Nondimensional acoustic velocity potential, $ =	 `^Ecoa

^ J jth order velocity potential component, see eq. 34.

Xo Reactance of the wall.

Xo Ratio of Reactance of Resistance (Xo/Ro).

T. Component of the second order solution eq. 37.

T. Component of the second order solution eq. 37.
^ J

{ w Nondimensional angular "frequency (or reduced'

frequency).	 _w = waco

_	 _ i



ABSTRACT

The resonance expansion method, developed: earlier to study 	 9

the propagation of sound in rigid rectanglular ducts, has been

applied to the case of slightly soft ducts. Expressions for

the generation and decay of various'harmonics is obtained. The

effect of wall admittance is seen through a dissipation function

in the system of nonlinear differential equations, governing the

generation of harmonics As the wall admittance increases, the

resonance is reduced. For a given wall admittance this phenomenon
s

is stronger at higher input intensities. Both the first and sei --ond

order solutions are obtained and the results are extended to the
case of ducts having mean flow.

is

F
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G I.	 INTRODUCTION

This report 'deals with the propagation of higher 'order

mode, finite amplitude sound in slightly soft rectangular
ducts., carrying mean flow.	 This report is a comparison of a
report which deals with the rigid wall boundary condition (1).

`. Conventional methods of analysis have failed to solve, satis-
factorily both these problems.

l
It was shown in the case of the rigid rectangular duct

that the sound wave undergoes a nonlinear resonance. 	 This is
_ due to the fact.that the eigenvalues of the higher order modes

{ are integral multiples of the eigenvalue of the first mode.

In reference 1	 it was shown that a new method could be used

j to analyze such a problem.	 This method was called resonance-

expansion method.	 It will be seen that the resonance pheno-

menon persists for a soft duct as long as the admittance of
the duct is not very large.	 Larger the amplitude of the
sound waves, greater is the extent of the admittance to which
this phenomenon will persist.

I Previous researchers (2,3) have attempted a solution of

the soft wall problem by a direct multiple-scale expansion
method.	 Unfortunately, the solution obtained by this method

is not valid as the linear -attenuation coefficient approaches
to the order of the perturbation parameter E,	 (based on ini-

tial amplitude). 	 This is due to the result that, in such a

case, the direct method leads to secular terms in the second

order solution.	 This alters the accuracy of the modal ampli-
i tudes in the first order solution.

There exists an intrisic need to have a unified theory

which explains the curious behavior in the entire domain of
3

wall admittance.	 It would be seen that the solution described

in this report approaches the one for the rigid wall case as

the admittance tends to zero and to that from a straight for-

ward solution as the admittance increases.	 There is also a

pragmatic need for such a solution as it promises a practical
way to reduce resonance by means of a relatively small amount
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II. FORMULATION

The problem formulated herein is idealized to the extent

that an acoustic field is considered within an infinite duct,

therefore only outgoing waves exist. (see Figure l)

The following set of non-dimensional veriables are in

troduced, where ( ) indicated the dimensional quantity:

x	
x/a, z= z/a, t	 tco/a . P	 P/Poco 2 ,	 _ / ECO a	(1)

i

where 6 is the nondimensional velocity potential. Therefore,

we have

V _ 0	 (2)

i
In terms of the non-dimensional quantities, the governing

non-linear equations 'for the inviscid polytropic gas are (1) 	 (E
is amplitude of input wave) .

0 2 ^	 =EN1 (	 )	 + E 2 N'2 4)	 (3)

r 
Nl	 (y-1)^J2^ + 2V^ • (V^ t )	 (4)

N2	 (^)	 =	 (y-1)	 (V^) 2	 D 2 ^/2 +	 (V^-V)	 (0f) 2/2	 (5)

Where

i,	
1

q

02	 (	 )	 =	 a 2 (	 )/aX2	 +	 a2 (	 ) / a Z2'	 (6)

r,
[Q(	 )l2	 _	 [ a (	 )/a XJ

2 	
+	 [a(	 )/az] 2 	 (8)

The relation between the pressure and velocity is (1)

_	 2	 2	 1	 7/ (Y-1);,`;	 YP -	 { (1-y )	 [E^	 +	 F	 (dq^)	 /2,	 + 1}	 (9)



I
1

4
3

The formulation of the problem is completed once the

boundary conditions are descirbed. 	 Here we use ,a modified

form of the semi-empirical form proposed by Zorumski and

Parrott(6),	 (It's also used by Nayfeh and Tsai (3)) that is

p-po _ (R(u) - X(u) a ) u at x = 1	 (10)

9

W	 at

wherea	 $x, is the velocity in the x direction.	 The form 3
of this equation differs from that used in reference3 in

that the equation reduced to the familiar form

p-po	 (R + iX) u	 (10a)

in the linear monochromatic case.

In particular the following forms for R and X could be

considered:

R(u) _ R 0 + R2 	(u/c0 ) 2 	(11)

X (u)	 = X0 + X2	 (u/co) 2
	 (12)

It will be seen later on in this analysis that R 2 and X2 play

no part up to the second order solution. 	 Therefore ordinary

linear boundary conditions would be ddequate. 	 However, since

the nonlinear boundary conditions are found in the 'current

literatures we have chosen to retain them and to demonstrate
1

their relative lack of significance.
y

Substiduting equations	 (11) and (12) into (10) and non-

dimensionalizing the resulting equation leads to

p-Y- i - 
e [R u/o c	 - Xo/ `A'^'o co '	

+ 0 (E2) ] ^X
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Expanding the right-hand side of equation (9) into Taylor's

series, the polynomial relation between p andXZ) can be

found.	 Therefore equation (13) becomes
I
i

t

at x = 1,	 -n l 	[fit + E(^z + ^2- fit )/ 2 + O(E 2 ) }	
a

[1 - X0 /W a-- + O(e 2 MX 	(14)
at

Where
' poco	 Xo

TI	 ,	 Xo = -_--	 (14a)
R	 Roo

For the wall of duct with small admittance, let 0(pl)-s and

O (X0 )r 1.	 Using this relation equation (14) can be arranged as

at x = 1,	 (l - X0/W a/at) ^X+E ( T11/ E ) $.t + O(E 2 )	 = 0	 (15)

The condition at x = 0 is

^x = 0	 (for symmetric case)	 (16)

= 0	 (for anti`-symmetric case)	 (17)

For the report, we consider the solution based on (16). 	 The

E initial condition (or the input condition) at z = 0 is

`cos m x cos W t +; O (E)	 (18)

_Where m =- m7T	 (m = 1,	 2,	 3,.....) . -	 The correction,	 O(E) ,	 is found`
such that the slightly soft wall condition is satisfied.	 (see the

second order solution, section 3.3).

r i

p,

a
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III PERTURBATION SOLUTIONS

To determine an approximate solution for this system, we

use the perturbation expansion. Let

_ 0	 E 1 + O ( E2 )	 (19)

Z
where 1 and 2 are the functions of z 0 , z l ,	 , t and x.

The z . ' s are defined

z = El z	 (20)

z  is a fast scale characterizing the wave length while z i (i =
1, 2, 3,.....) is a slow scale characterizing the amplitude 	 -
modulation ('ref . 2)

3.1 The First Order System

substituting equation (19) into the governing system, the

first order system is (let z0 be denoted as z)

I

v2^^o, tt
	 O

at zo	 O,	 !o = Re [cos mx cos wt]	 (22)

1

at x	
0,o'x	

O	 (23)
1

at x	 1,-	 = o
	

= O	 (24)o,.k.	 w o, xt

1

Therefore the solution ofo is (i)

N_
Aj ('zl ) cos jmx cos [jO + aj (Z1) ]	 (25)

where

-a2	 w 2 - m 2 , 8 = ax = wt
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Note that the form of equation (25) is of the resonent
expansion type. This form could be generalized for various

types of inputs. As a simple example, consider

l	 j	 l

Aj (Q)	 _ (26)
O	 j	 l

a7 (0)	 _	 O	 j	 =	 1,2,3,...... (27)

It would be assumed, at first that the order of the phase
a. is less than or equal to E. 	 in Appendix B, this restriction
is removed.	 It follows from equations 	 (23) and (24) that

m	 m TF	 m	 1	 2,	 3,....... (28)

The behavior of Ad's and a.'s can be determined by the con-
dition that the second order system should be without.; secular
terms.

3.2 Solvability Condition for A.

The governing equation for second order is

N
021	 ^l,tt	 E 2ja A!	 cosjmx sin (j8+aj)

3° 1

N
f	 E

-	 E 2ja A a!	 cosjmx cos (j@+aj )	 =^ N1(^ o ) (29)
` j =l

i

In view ofthe assumption stated above, the phases shift

i
can be neglected with the possible exception of its derivative,
a^.	 Equation (29) could be rewritten as

f

1
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•

N
fi

^ 2 ^1	 ^l,tt _ E	 23a A! cos jmx sin j8
3j=1

i

N+	 E 2ja a!A. cos jmx cos j8 + Nl 4o ) (30)
j=1	

I

,.	 where.

N	 N
[	 Nl(^o)	 -	 E	 E	 F 1 (x)j9,2 AA Q	 sin	 (j+9,,) e

j=1 Q=1

N	 I1
+	 E	 E F 2 (x)	 3102 A A	 sin	 (j-Y,) 8 (31)

j =1 Q=1	 J

1

F 1 (x) =	 [- lf (Y-l) w 3— a 2 w] cos jmx cos Q,m x + m 2 w sin jmx

i

sin Qmx
(32)

F 2 (x) _	 [-h2 (Y-1) w3 - a 2 w]	 cos jmx cos Qmx - m 2 w sin jmx sin Rmx

(33)

The boundary conditions are
y

at Z _ 0 '	 1

at x = O,l_ X _ O

ate= 1,	 x-X/ 1	 o,to _lxt (36)
,. a

s

Let the solution of ^1 be of the form

N•	 N	
N

7 
E	

Tj	
(x, Z 1 )	 sin j A +	 E l T	 (x, z l )	 cos j 8 (37)1	

j=

t

Substitution of equation (37) 	 into	 (3 0') , (34) , (35) , and	 i
(36) ,yields the differential systems for T. and T.. 	 For Ti.

k	 C
F
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+ j 2 m 2	 T	 2ja A'. cos jmx +

j1
E	 ] k (j-Q;)	 Aj_ QA R [-Y1 cos jmx + Y2 cos (j-2R,)mx] +

k=1

n [-Y1
-^

cos jmx + Y 2 ]	 (j/2) 3 1/2
S

^ 2
E	 jQ (j+Q,)	 A.	 AR

J+k
[-Y1 cos jmx + Y2 cos (j+2Q,)mx] (38)

a
j=1

where

{

Yl

__	

(Y+1)	
w3/4

(39)

Y 2 (Y-1) w 2 -a 2 1/4 (40)

j / 2 - 1	 if j/2 is an integer

j 1
(j-1)/2	 if j/2 isn't an integer (41)

j2
_	 N - ] (42)

3
a

1	 if j/2 is an integer

n

' O	 if j/2 isn't an integer (43)

The boundary conditions are

;r	 at x = 0,	 Y	 = 0 (44)

f

E	 at x = 1`,	 `f'!	 - jXo V = -(n 1/E)cos jm A! (45)

For.Y j the equation is

'^	 + j 2m2W = 2ja a Aj cos jmx ( 46)
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The boundary conditions are

at x = 1, Tt + j Xo '^^ _ O (48)

Eliminating Y! (1) between equations 	 (45) and ( 48) yields

at x = 1, V _ -(n l/e) j w cos jm Aj /( 1 + j2 X0 2) (49)

It is shown in the appendix A that the system for T.
y	 (equations	 ( 38), (44) ,	 and	 (49))	 has a solution, -if and

only if

Y
Aj +

fjA7 	 2d	 [	 E 1 k( j -k) A.A
k=l J -k

j1

(J/ 2 ) 2 Aj/ 2 +	 E	 k	 (J+k) Aj +QAk 7 O,	 j	 =	 1,2,3,.... (50)
k=1

with

fj = (n l/E)w	 [a(1+j'Xo 2 )l	 j =	 1,2,3,,..... (51)

or

J	 ea	 Ro + J2 Xo (52)

or

e f j ka	 P ° c='	 °R° (53)

f

k2a^- m2^2	 RO +G

k

J2X

f,.
k
,

_..
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where k•is the dimensional wave number, 	 (so that w	 kco).

From the dimensional form of fj , it could be recognized that

contribution to'1	 due to absorption is the same as obtianed
ft-

in the linear theory by Doak and Vaidya (7).	 For other har-
monics, equation (53) can be rewritten as

kaEf j	 Kt (7)	 (54)

{

._
k z a 2 - m272

where

P c R
K_(j)	 _	 o00	 (55)
t	

Ro + 
j2 

X0 
2

is the admittance ratio for the jth harmonic.	 For the first
harmonic, its definition coincides with the coventional defini-

tion.	 Other harmonics have their admittance ratio computed`I
after enlarging the duce reactance by j2.

Equations (50) through ('54) were obtained by assuming that

the resistance of the linear was very large.	 Similar analysis -

could be carried out by assuming that the reactance was very

large.	 Detailed analysis shows that the form of equations (50)

and (52) is valid as long as the addmittance ratio is not an
t.

order of magnitude greater than e. 	 The analysis is also valid

above cut off of the exciting mode.

As the admittance ratio gets smaller and smaller, the duct

approaches the hard ;wall conditions.	 In that case the equation

(50) reduces to the one obtained by Wang and Vaidya (1) .	 There-
{ fore,'there is a continuous transition from the hard to the

slightly soft case.	 As the softness increases the ,generation of

harmonics slows down.	 In that case, depending upon the type of
boundary conditions, simple multiple scale expansion or a straight-
forward expansion is adequate.
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3.3	 The Solution of the Second Order System

ii
Having obtained Ad's we could proceed with the second

'	 order solution.	 The condition that this solution be valid

would lead to an equation in a. with dA j /d2,. replaced by

equation	 (50) and from equations	 (35),	 (38) and	 (49),
(

3y2	 31
(x, z )	 _ - (a/m) f .A. x 'sin jnix +	 [ E	 A.	 QAy cos (j-2k)mx

1	 3 3	 4 2	 37	 kl=1
j

i2E	 A.	 A	 cos	 ( j+2SC)mx +	 n	 (A?	 8.	 )]	 j	 _ 1,2,3,...	 (56)
3 +z Q	 3/2	 3/2,1R=1

f	 where
1	 j _ 2

a j/2,1	 (57)

I	 0	 3 # 2
t
a	 Substituting the form of T. into the condition (48) gives

at x = 1,	 Y'.= j2 a Xo f .A	 cos jm	 (58)- i

t

Hence, for the system of Y.	 (equations 46,47, and 58) the con'-
3dition of solvability is

I

a^` =	 j	 Xo	 f'j 	(59)'

Therefore -

a 	 j Xo f.	 Zl	 (60)

For small value of z	 (i.e. not far away from the inlet) the order

of a,is e.	 This agrees with the assumption we made at Section3

3.2.	 The solution of T. is

T	 '(x, z1)	 _	 (a/m) j Xo	 f .A.	 x	 sin jmx	 ,,	 j	 = 1,2,3,...	 (61)
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V. NUMERICAL. RESULTS

Equation (50) was solved using N = 25, Y1 /a = 15.6, w
y	,

3.685, a = 1.926, and four cases of wall impedance parameters
shown in the table below:

No,	 poCo/Roe	 Xo/Ro	 Kt
j

l	
0.0
	 0.0	 0.0

2	 1.0	 1.0	 0.75 x 10-3

3	
10.0	 10	 7.5 x 10 3

4	 1.0	 0.1	 1.48 x 10-3

5	 50.0	 1.0	 3.75 x 10 2	 a

i
In this table the values of Kt were -obtained for-j=l and

assuming_6 = 1.5 x 10-3 . It represents the admittance ratio	 {

for the principal mode.
Figure 2 shows the effect of nonlinearity on propagation

of first harmonic. The curves by dot line are obtained from

linear theory with the boundary conditions given above. Which

diminish only by the absorption of the wall. The nonlinear

theory (solid line) shows more reduction in amplitude due to
-	 the transfer of energy into higher modes.

Figure 3 shows Al for various impedances. As the admittance 	 s

ratio Kt goes up, ,so does the attenuation. Figure 4 and '5 show

the second and the third harmonic respectively.

Figure 6'shows the ratio of A2 to Al as wall admittance ratio

chances. It should be noted that as the wall gets softer the

generation of the higher harmonics is slowed down. For a very

soft wall, the resonance would disappear and a straight forward

multiple scale prediction would be adequate.
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VII. DISCUSSION A14D CONCLUSIONS

I
This report has outlined a method to obtain the sound field

I in a slightly soft rectangular duct. 	 It was shown in an earlier

I paper that the rigid rectangular duct demonstrates a resonance

phenomenon.	 The method of resonance expansion was proposed to

solve that problem. 	 In this report, the results are extended to

the case when the wall admittance is small.

It is seen that the phenomenon of resonance persists. 	 How-

ever, it gets weaker as the wall gets softer.	 The analysis

1 shows that the criteria of softness is through parameters p C0 0

Roe and eo /Roe.	 This implies that at high sound intensitieso
even a moderately soft wall would act as a hard one. 	 These para-

meters show the classical antithesis between nonlinear convective_ 	 j
terms and the dissipative terms. 	 When the nonlinear terms pre-

dominate over the dissipative terms, the resonance persists.

It is also to be noticed that the same parameters which con-

trol nonlinearity for the rigid duct control nonlinearity in -a

soft duct.	 Thus the parameter Y l/a shows that the resonance is	
a

stronger near the cut-off frequency.	 Effect of mean flow is

again qualitatively similar to that for the hard wall.

It is interesting that for the principal mode the dissipation

function is same as the one which could be obtained by linear con-

j siderations. 	 For higher harmonics the function is lower than

would be expected by the linear theory.

The results also show that a small amount of absorption re-

dices the resona^ice and hinders the process of higher harmonic 	 7
generation.	 In a generalized form, this conclusion could lead to

some practical applications.	 (see for example Reference 8)

j

I
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APPENDIX A:	 COMPATABILITY CONDITIONS

For the non-homogeneous linear system

L (u) = r

Ui (u)	 u'	 (bi)	 Y 	
i = 1,2	 (A. 1)

9

where L is a second order Linear differential operator and U.

is some algebric operator indicating the boundary condition. 3
3

The necessary and sufficient condition that this system

may have a solution is that every solution, v, of the homo-

geneous adjoint system (defined below)
i

L(V) = 0

Vl (V)	 = v 	 (1)	 = 0, V2 (v)	 = v' (0)	 = 0	 (A.2)

Satisfies the relation (9) which could be obtained from the

Green's formula,

b2
vrdx = -Y1V (bl )+ Y 2V (b2)	 (A.3)

.bl

2
In second order systems if L - P o= + (2P0-P 1 ) + (Po '-P 	 + P2)

dx

where the prime	 denote derivation with respect to x, in the

particular case described in this appendix L = L, that is the a
equation is self-adjoint. 	 In any case, any given equation can
be converted into the self-adjoint form 	 d	 dL = [aX(k) - G].	 (see

p	 215 of _Ref,-9) The boundary conditions V i for the adjoint equa-

tion are obtained from V i and K as illustrated below.

'G Consider the particular system defined as L	 d2	 + .2m2,'
t

= ddx
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In	 confirmity	 with the rest of the paper let the argument u
of this operator be 

Tj 
and v, the argument of the adjoint opera-

tor be 4j.

Therefore let

2
L(`^j)	

d	
_	 (T.)	 + j 2m2

x
(A.4)

U
1 

(T!)	 = `Y j (0)	 = Y1 = 0 (A.5)

1
1

U
2 

(T!)= T j (1)	 = Y 2 (A.6)

2 
XoY2 = -( n l/e)	 jw Aj cos jm	 (1+j 2 )

I

(A.7)'

j1

r = 2'aA! cos jmx +	 E	 k('-k) A.^	 7	 J	 J]	 j-kA Q	 I-Yl cos jmx + Y2 cos (j-2k)mx) 	 1R=1

+ n [-Y1 cos jmx + Y2] (j/2) 3Aj^2

j2
-	 E jx(j+.t) A

j+RA R	 I-Y^ Cos jmx + Y'2 cos (j+2.t) mx)	 (A.8)
R=1 1

Therefore, the adjoint system corresponding to (A.4),	 (A.5),	 and
_(A.6)	 ;.s

2
L ( j )	 _ -	 (^j)	 + j 2m2iD

dx
0 (A.9)

V1(^j)
	 _ ^P	 (1)	 = 0 (A.10)'

v2 (^Dj) 	
V (

0 )	 = 0 (A.11)

4
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The adjoint system has a nontrival solution that is

Cos jmx (A.12)

By the relation (A.3), we have

j,
[2jaA! cos jmx +	 E jk(,j-k)A j _ y Ak (-y	Cos jmx + Y 2 cos(j-2k)mx)

0

+ fl(-y	Cos jmx + Y	 (j/2 )3 A^2	 J/2

j2
Z jt (j+Y.) A	 A	 (_Y

j+.t z	 1 Cos jmx + Y2 cos (j+2k)mx)]cos jmx dx

T1 2	 2
cos jm( —)jwA	 Cos jm/(l+j X06

(A.13)

After integration, it yields

Y	 ji1	 k(j-k)	 Aj	 2
A!	 f-A	 —	 _ZAy + D-(j/2)

2a	 2
2Aj/2I	 J	 j

Y	 31
+	 1 E	 (j + t)	 A	 At	 0'f 7	 j+k (A. 14)

k=1
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APPENDIX B: GENERAL EQUATIONS OF A. AND a

Form of the equation (50) when the phase angles aj may
or may not be small.

Equation (60) provides meaningful insight about the

order of magnitude of the phases a j . Rewriting it in the
form

a
	

(dj .l-A ) wapo 	j	 l

7 A/'R-2a2 m2^ 2 (Ro2+j 2 ) E	 (B.1)

j

Order of magnitude analysis on this equation shows that

when' j.XoR >> 1 or.<< 1, aj would be of the order smaller than E.
0

When jXoR == 1, a.
3

	be of the order of E in the nearfield of
o	 -

the solution. In the farfield solution, a modified form of the

first order solution is required.

	

d	 outl inedWorking out the procedure o .lined rn Appendixppendix A, when j s
are not assumed to be arbitrarily small, equations of compatibility

become

d (A . cos a.)	 Y3	 j	 !+ f .A (cos a j	 jXo sin aj) - `2a [ Elk (^ k)
aZl 	 k=1

Aj -QAk cos ( a + a R ) + T1 	 2 A3/2 cos (2aj /2)

._	 a

32,

	

E k (j+t) Aj +kAk cos,(aj+Q-ak) l = Of j,= 1, 2, 3, ..	 (B.2)
k=1
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r	 and

d(Aj 	sin a.) Yl j1
+ f jA. (sin

-
aj	 j Xo cos aj)	 2a E	 Q (j+k)

dZl Z=1

A^_QA Q sin (a 	 + a Q )	 + (j/2)2 A^^ 2 sin	 (2a /2 ) -

j2

E R (J+R) Aj+tA91 sin (a +, - -a,) ]	 =	 0,	 j = 1,2,3 . ... (B. 3)
Z=1

E

Note that equation (B.2) changes into equation (50)	 as a^	 0.

Equation (B.3) changes into equation (60) as a.	 -> 0. These equa-
tions will be discussed in a coming paper (10) which gives detail

about the couplex sound' wave input.

1
3

3

i

3

4

_ .	 _...
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