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FOREWORD

E

The Avionics Research Branch of NASA Ames Research Center is -
conducting and sponsoring analysis, simulations and flight tests
to assess the microwave landing system (MLS) requirements for STOL

'. aircraft operations and evaluate prototype MLS,equipment for STOL
F^ aircraft.	 Aircraft must transition to and from the MLS in the

terminal area, and the-performance of each individual system affects
! that of the others.	 The merits of each of the alternate MLS imple-

mentations must be determined and compared to enable making a clear
decision on further developmental efforts required.

As a part of the STOL aircraft research program at Ames, the
STOLAND ground cockpit simulator complex was developed. 	 A unique
feature of this facility is that it duplicates theavionics portion
of the airborne system, 	 including all interfaces.	 The 'purpose of
this effort was to develop a software program to.duplicate the auto-
matic'portion of the STOLAND simulator system, on a general-purpose
-computer system (i..e., IFM 360). 	 This enables a wider group of
Ames Research Center personnel to conduct meaningful research
studies in STOL aircraft systems.

This report presents the organization and use of the software/
hardware avionics research program (SHARP) developed for the above
effort.	 The program's uses are:,;(1)	 to conduct comparative evalua-
tion studies of current and proposed'-airborne and ground system
concepts via single run or Monte Carlo simulation techniques, and
(2) to provide a software tool for efficient algorithm evaluation
and development for the STOLAND avionics computer. 	 j

The development of this program was supported under NASA Con-
tract No. NAS2-3344, by Ames Research Center, Moffett Field, 	 Cali-
fornia.	 Project monitor was C.N. Burrous.	 The project manager
and project engineer for this phase of the study at Systems Control,
Inc.	 (Vt) were J.S.	 Karmarkar and M.N.	 Kareemi,	 respectively.
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The microwave landing system (MLS) is a high priority national

program to replace; the present Instrument'Landing System (ILS) at

all U.S. airports.	 The program is interagency in scope and in-

cludes the Department of Defense, Department of Transportation, and

NASA. 	 Ames Research Center's role in this program involves:'

(a) the development of various MLS operational requirements via

j aircraft simulations;	 (b) evaluation of a prototype MLS for short

take off and landing ' (STQL) aircraft operations; and (c) develop-

i ment of various low cost MLS airborne receiver subassemblies. F

To conduct the research entailed by item (a) above, it was

recognized that a software/hardware avionics research digital com-

puter program (SHARP), operable on a general-purpose computer (IBM

!360/67), was needed.	 Although a realistic piloted/automatic cock-

pit simulator	 (e.g., STOLAND) of a:STOL aircraft-was operating at
r

Ames, the principal reasons dictating need of a general-purpose

{ computer_ program were requirements for:	 (a) greater availability,

(b) ease of programming/modification, and (c) extensive debugging/

printout capabilities. 	 This report presents	 the details of the

program developed for this purpose; the C_g aircraft model, equa-

tions of motion, environmental disturbances, and the interface with

the avionics software used in the program were developed under a #

I! separate contract.	 Program SHARP, operating in the interactive

or batch mode, can be used by researchers for two purposes, namely: Y

(a) comparative analysis of various navigation, guidance, and

j control policies, and (b) efficient software development of novel

navigation, guidance and control concepts.' The program for con-

ducting these two general classes of research projects is presented

in this report.

Chapter II of this report presents the capabilities of the

program SHARP in terms . of avionics software development-procedures F

and Monte Carlo simulation studies.	 Prospective users of this pro-

I I I I ^^
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gram can obtain an overview of the scope of this research tool from

this chapter.
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and IVcover e thehimplementation t ando operating details 	 p ro- roP	 p	 g	 - I;

ram.g	 Additional program documentation on aircraft dependent pars-

t meters and the aircraft/avionics interface are provided in Appen-

dices A and B, respectively.
1l

Chapter V presents the validation procedures used to check j

thero ram'and the Corresponding results.	 This ch apter also dis-P	 g	 P	 g	 P I
cusses the main differences between the IBM 360 SHARP program and

the STOLAND cockpit simulator system. 	 It is noted that thep resent

version of the SHARP program completely simulates the fully auto-

-matic mode of the STOLAND C-8 simulation. I'
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II. CAPABILITIES OF THE SHARP PROGRAM

Essentially, program SHARP ducplicates, in FORTRAN, the auto-

matic portion of the STOLAND simulator complex, for the C-8 aircraft.

E Software details and usage procedures are documented in the follow-

h ing chapters.	 This chapter is devoted to elaborating on the manner

in which this program can be used to conduct avionics research.

The SHARP software executive program has been set up to cycle

automatically through a prespecified set of runs in a Monte Carlo

mode and calculate statistics for a prespecified set of variables

of interest.	 Consequently, the package can be used to conduct a

number of comparative studies.	 Some of these are:,
k

(a)	 Comparative analysis of navigation systems - ILS (CAT I.

II, III), MLS, VOR/DME,	 Inertial.

4 (b)	 Control law performance - 3D, 4D, gust alleviation,

direct lift control (DLC), flare optimization.

(c)	 Mode transition studies - MLS/RNAV transition.

This automated simulation capability thus provides an. invaluable

f complement to the STOLAND computer complex.

Areas of software development which correspond to the compara-

tive study topics mentioned above include:

t (a)	 Navigation concept development - deadreckoning, air data,
kp, hybrid navigation (e.g., inertial blended with VOR/DAZE),

complementary filters, Kalman filters, etc.

(b) Control law development - autothrottle/autopilot design,

IN	 ^i

r^

flare' optimization, etc.
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(c)	 Guidance 	 pfiance conce t development 	 2D	 3D, 4D guidance, etc.

(d)	 Software/hardware trade off analysis - core space usage,

computation ti nme' hardware specification, etc.p	
,

I

The following sections present an outline of the Monte Carlo analy-

sis and software development procedures.

2.1	 MONTE CARLO ANALYSIS

r
The Monte Carlo analysis procedure essentially consists of

implementing in software the aircraft/avionics/ground system con-

figuration being studied and making a sufficiently large number of a

runs to generate significant statistics on a`prespecified set of

variables.

` For example, to obtain a quantitative measure of lateral nav-

igation performance, representative trajectories are defined, and

recursive formulae are used to compute the mean and variance; of

the error between the nominal and the actual for a prespecified

set of points'along the trajectory.	 Use of recursive formulae

significantly reduces the storage requirements for a large number

of Monte Carlo runs.	 The recursive formulae for the mean (r1k)

and the variance {Qk ) at the kth step are given by:
1

nk =	 {(k
- 1)nk - 1 + 

sk}	 no = 0	 k=1,2,3,...

crk =	 { (k- 2)ak(nk-sk) 2 }	 ; 'Q1 =0	 k=2,3,4,..-1+k-1

j where
G

sk ! , (Xk - Xk)

}
Xk	 actual state vector

Xk = nominal state vector

r

4;
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Monte Carlo simulation results for a typical trajectory are pre-
sented in Chapter IV, Section 4.5.

2.2 AVIONI_CS_SOFTWARE DEVELOPMENT.,

i ;	 a
The IBM 360/67 time-shared system (TSS) remote terminaledit/

debug feature's allow systematic development of well'documented	
j

programs. The TSS facility allows one to step through programs for
f	 debugging (e.g., checking for overflows), thus speedingup imple-

mentation of these programs.on typical airborne computers such as
`	 the Sperry avionics computer (1819A). In addition, useful estimates

are obtained for core space usage and computation. time.

A simple example illustrates the procedural steps for program

development. The program'NEWFL was first written in floating point

notation (FORTRAN), together with scaling (SCALN) sand "unsealing`
(USCAL) programs., These programs ensure that the fixed point
(integer arithmetic) main avionics program and the floating point	 '

portions of the software being developed are compatible. In other

words, thè p gram USCA L converts scaled quantities from thero 

avionics program to unsealed -floating point numbers and SCALN per-
forms the inverse of this process	 These programs are imbedded in

the STOL avionics executive (STLEXC) as shown in Fig. 2.1. Details
F	 on scale factors are documented in Appendix B, and the appropriate

Sperry documents.

After the program NEWFL has been debugged (e.g., Syntax errors

and computational algorithm errors), it is converted to a fixed

point integer version NEWFI and the scaling/unsealing routines are

removed. Debugging at this stage consists of checking for over-

flows and underflows. The TSS terminal facilities are very.valu-

able,. at this stage for-stepping through the program. Additional

information that can be generated at this point is core space

requirements and computation time.

_	 a
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NEWFL

it
STLEXC';

Avionics Software

(Integer Arithmetic
only)

E;
CALL NEWFL

i
E

• RETURN

END

FIGURE 2.1: FLOATING POINT VERSION OF NEW PROGRAMS (NEWEL)

The next step in program development-is to convert the integer

format program NEWFI to the assembly language (1819A) version and

to ,debug it on the STOLAND simulator.	 The time required to accomp-

lish this step is greatly reduced because of the earlier steps.

Moreover, the user can keep track of the state of program develop-.	 , _

ment,'since a mayor portion of it is being done in 'FORTRAN.

For purposes of illustration, a typical STOLAND assembly langu-

g	 g.	 correspondingage routine ZATINT is shown in Fig. 2.2. 	 The comes ondin	 FORTRAN

fixed point, program is given in Fig. 2.3.	 It can be seen that the

FORTRAN version of the program allows researchers to maintain ade-

quate documentation-for the corresponding assembly language program,
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FIGURE 2.2: TYPICAL STOLAND ASSEMBLY LANGUAGE PROGRAM
;o

FIGURE 2.3 FORTRAN (FIXED POINT) EQUIVALENT OF LATINT
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To summarize,- the program development steps are:

(1) Develop FORTRAN floating point program for the proposed

algorithm and debug it

(2) Convert program to fixed point version with proper scale

1
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IMPLEMENTATION OF SHARP

This chapter provides implementation details of SHARP. These^ r	 P	 p	 P

details are essential for maintaining, modifying, and using the

'	 avionics research package.

First, an overview of the STOLAND real time simulator is given

(Section 3.1).	 This is followe.d by a description of the TSS ver-	 f

-r sion of the simulator (Section 3.2). 	 The aircraft dependent rou-

tines and parameters have been identified (Appendix A); these will

aid in changing the aerodynamic characteristics of the aircraft in

the simulation.	 Section 3.3 details the avionics implementation

of SHARP.

:t 3.1	 STOLAND REAL TIME SIMULATION

The 1819/8400 STOLAND simulator system was developed to faci'li-

tate simulator research of V/STOL terminal area navigation, guid-

ance, and control concepts.	 The resultant research tool is an

integrated digital system using ARINC specified airborne hardware.

The simulated facility (Fig.	 3.1) uses the EAI 8400 digital compu-

ter to simulate the C-8A aircraft, ground-based navigation aids

(such as VOR/DME and MLS), and winds. 	 An avionics equipment rack

containing ARINC specified airborne hardware'.and an airborne hard-

+" ware simulator for transforming the NAVAID information generated on

the EAI 8400 to the form received by the airborne receivers is

' included.	 The'simulaton,cockpti(Fig. 	 3.2) contains standard

airborne instrumentation • together with advanced display and mode

select systems.	 In addition, an EAI 8800 analog and logic computer,

simulating the control surface servos and interlock logic, and a

t data conversion rack to electrically interface all these subsystems
i

are included in the system:

9
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A block diagram of the STOLAND airborne hardware which is used ;3

in the STOLAND simulator system is shown,in Fig.	 3.3.	 The data

adapter acts as the interface between various elements of the

STOLAND system and also among the system, the simulated aircraft,
r

and other internal devices.	 Communication with the computer is by.___

C
means of high speed parallel data transfer (18 and 36 bit).	 Serial

r,
data communication is used extensively to minimize interface wiring

difficulties.	 Interfaces contained in the data adapte r.	 meet: the

requirements of standard ARINC characteristics 547 (VHF/NAV receiv-

ers),	 SS2	 (radio altimeter),	 568	 (DME),	 and 561	 (INS), as well as °;

MLS receiver equipment which falls under the research or prototype

category.;

A key element of the STOLAND simulator is the airborne hard-

ware simulator (AHS), which provides an exact electrical interface

for all airborne sensors and subsystems that'interface with _.the data .'

adapter.	 The serial data is decoded, 	 stored, and transmitted to

the 1819A computer by circuit elements within the data adapter. ;a

The AHS allows an exact duplication of all airborne data traffic

that would enter and leave the STOLAND computer complex'in a .flight

situation.	 The hardware interfaces of the data adapter are "thor-

oughly exercised by this procedure, and all of the computer's
softiJare--for input/output, data acquisition,	 and analog/digital ` 	 j

_ conversion--is validated.	 To the extent that the entire real time

data flow is exactly duplicated, a validation run in the simulator &,i

is a true representative of areal flight, , insofar as the avionics }

computer complex is concerned.

g	 '	
ys-,Both the STOLAND	 round-based simulator and the airborne s

tem are equipped with command '(i.e., Electronic Attitude Director

Indicator - EADI) and_Qn,itoring (1.e. 	 Multifunction Display -

MFD) displays.	 These displays can be advantageously used to provide

the research pilot with adequate information regarding the perform:-- Y

ance'of the avionics system.

12
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.The STOL aircraft simulated is a prototype version of the

DeHavilland DHC-S. This aircraft was designated DV-7A by the U.S.

Army and later redesignated C-8A by the U.S. Air Force. See Fig.

3.4 for the various physical and performance specifications [1]. 	 O

The simulation model includes the six degree-of-freedom rnon-

linear equations of motion, the kinematic and nonlinear aerodynamic

equations, and a GET64-10 turbo-prop engine model.

3.2 TSS VERSION OF THE SIMULATION

The TSS	 360 version of the	 simulation	 is	 essentially similar

to	 the	 real	 time simulation with the	 exception that	 presently	 it

can operate only	 in the	 full	 automatic mode	 (i.e.,	 all manual/mode

commands are entered before	 the	 simulation	 is	 started).	 Like	 the

real	 time	 simulation,	 the	 360 version consists	 of	 two major modules.

One module corresponds 	 to the program that was	 in	 the	 1819A com-

puter,	 for navigation,	 guidance,	 and control.	 The	 other module	 is

composed of the set	 of programs	 that were	 in the	 8400 computer	 for
:J

simulating	 the C-8	 aircraft,	 the MLS and TACAN	 (VOR/DME)	 naviga-

tion	 signals,	 with noise error models and the environment. 	 On

the	 360 version,	 these two modules	 are	 run under an	 executive called

"BASIC	 DRIVER."	 A high level	 block diagram of the	 360	 simulation

is	 shown	 in	 Fig.	 3. S.

3.2.1 Conce p ts and Structure of the BASIC System

The BASIC system, developed under separate contract, groups

together those processes basic or common to most flight simulations.

The major function of this system is to provide a structure for

the solution of the equations of motion for a rigid-bod y vehicle.	 G
The equations of motion contained in the BASIC system are a ►modi-

fied set of the Fogerty-Howe equations [2] shown in Fig. 3.6.

Detailed information regarding these equations, as well as the

kinematics of the digital BASIC system, are contained in Ref. 6.

14
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Figures 3.7 through 3.10	 [4]	 illustrate the flow of execution

(solid lines)	 in LOOP2 and LOOP3 and the updating frequency of data

in^BASIC common (dotted-lines). The equations appearing :.n these

figures are those used 'within the subroutines LOOP2 and LOOP3'. 	 The T

remaining set of BASIC equations contained in the BASIC subroutines

called from LOOP2 and LOOP3	 (e.g.,	 BROTATE^,	 BTRANSFO,...,et.c.i) 	 are

not shown.	 A more detailed description of these subroutines and"

the complete set of; BASIC utility, routines contained in the LIB:

BASIC library under the FSGCET account may be found in Ref. 3

t
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The BASIC common is separated into two blocks. The XFLOAT,

A(500), block is reserved for floating point parameters and the
IFIXED, IA(200), block is reserved for fixed point parameters.

3.2.2 ,Aircraft Dependent Routines

l

	

	 The aircraft model, developed under separate . contract [4],

consists of routines CONTR2, CfONTR3, AER02, AER03, and ENGINE.

These are called by BASIC subroutines SLOOP2 and SLOOP3. A brief
description of subroutines called 'by_SLOOP2 follows:

t

i CONTR2: Model of the high frequency portions of the aircraft
fl control system (i.e.,, of the elevator control system

Where CONTR2 accepts auto-pilot elevator commands
and outputs elevator deflections).

ty
j , AER02: Model of the high frequency portions of the aircraft

r aerodynamics	 (i.e., the pitching moment model where
AER02 accepts control surface deflection-,-,and..air-_.
craft kinematic data and outputs aerodynamic moments).

WINDC: -
i

'	 hears and turbulent dis-Model:of the'mean winds or s
persions,	 in the model.	 WINDC-accepts-altitude and
outputs the corresponding magnitude and direction of
the mean wind and supplies the standard deviation
value to be used by BWIND (BASIC subroutine called
by WINDC) to generate the turbulence components for

r use in the aircraft kinematics.

UTIL2: Interfaces with the navigation, guidance and control
portion of the simulation (1819A package). 	 Performs
trimming and'dynamic checks.

Routinesi called in 'SLOpP3 are:	 -

CONTR3: Model of the low frequency portions of the aircraft
control system; this includes a model of the flap
control where CONTR3 accepts flap commands and out-
puts flap' deflection.

ENGINE:` Model of the GET 64-10 turbo-prop engine; the.model
accepts throttle position and outputs thrust levels.

I
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AER03:	 Model of the low frequency portions of"the aircraft
aerodynamics,	 It includes the lift model where AER03
accepts control surface deflections and aircraft
kinematic data and outputs aerodynamic forces.

The corresponding aircraft dependent parameters are listed in
Appendix A.

Other subroutines called by DRIVER are;

SETUP:	 Initialization routine which establishes the starting
(or I.C.) values of the user's parameters. 	 The BASIC :.
subroutine BSETUP is called from SETUP to establish.
initial conditions	 (I.C.) for the BASIC parameters.

" U•DATA:	 Subroutine to input data to the user common blocks.,

PRINT:	 Subroutine to print data pertinent to the initial
conditions	 the simulation (see Chapter IV) . 	 It,	 .nof
calls	 the BASIC	 fie .̀ BICPRTNT `14] from the
subroutine PRINT._

It should be noted that the Block Data routine EBLOCK$$ must
be loaded prior to the execution of a BASIC simulation to provide {

default values for the parameters in BASIC common.

-r

3.3	 SHARP AVIONICS IMPLEMENTATION

The Sperry C-8 avionics program was converted to the corres-
ponding fixed-point FORTRAN program. 	 A one-to-one correspondence

}as, been maintained between the two programs. 	 For example, the u`

labels in SHARP differ from those in STOLAND in that they begin

with "I".	 Consequently, all STOLAND documentation is usable for
r

SHARP.	 'Table 3.1 summarizes the routines that Caere converted from
STOLAND to SHARP.	 Table 3.2 lists the subroutine names in the

navigation; program NAVCOM, residing in bank 4 of the Sperry-avion-

ics program.
A

i
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BANK SUBROUTINE

0> N Assigned for , registers, etc.	 (128 NDRO)
Y Executive
N EXUTIL utility (Sim. STOLAND only)

I Y Autopilot executive
N Roll Flight Director
Y SAS	 (roll and , yaw SAS)
Y Roll Autopilot
Y Pitch SAS
Y Pitch Autopilot
Y Reversion Checking (between modes)
Y Autothrottle
Y Flap Control
N EADI
Y 4/D Autopilot

2, Y Data Reduction and I/O
N HSI
N Keyboard
N MSP	 (button lights, slew switches),
Y Mode Interlocks
N Mag Tape Output
N Monitors and Diagnostics -

3 Y Sq.	 Root,	 Arctan,	 Sin,,,Cos_,	 etc.
Y I/O Buffers, Variable Data;, and
Y Constant Data (2048 NDRO)

4 Y Navigation
Y Air Data
Y Integrators and Limiters

5 Y Reference Trajectory Data
N DDAS
Y Output to 8400
N Line Printer Output

j N Service Subroutines
I Y 4D Guidance

6 N MFD Processing and Data

T -_- N BITE '(1024 NDRO)
N Preflight-Tests



,

' TABLE 3.2:'STOLAND NAVIGATION ROUTINES CONVERTED TO
4i THE 360 VERSION

;i

tf NAVCOM$ $
1 AIRACC$$
r AUTONV$$

DIRCOS$$
FRMTO$

r	 9	 r ILSWND$$
INF.RAC$ $
INERGM$$> MLSTRY$ $
MODOFF$$
NAVOFF$$
SBILS$,$

k	 ' SBLGSN$$
{ TACAN$$ u

TACTRY $ $
TESXAN$$ 3w VHFILS$$
VLDNAV$$
VORDME$$
VORTAC$$

{ VORTRY $ $
WIND$$

,
d

As in the real time simulation, the 360 version of the 1819A

program uses integer arithmetic, and the same scale 'factors `are

used for variables to simulate the actual conditions.	 The program
1	 ^t

structure is exactly like the 1819A assembly language program
yy

structure, and variable names are also kept,the same.	 This aids in

incorporating modifications into the 1819A avionics -grogram that

tcheckedhave been	 out on the 360 version.

r The 360 version of the 1819 main program is called STLEXC,'

i; short for`STOL EXECUTIVE. 	 The flow diagram for STLEXC is shown in

?i Fig.	 3.11.	 The name in parenthesis in each`block,is; the subroutine

^	 r

name. A brief description of each block follows':

c
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(1) The INPUT subroutine is used for scaling the variable-s
which are picked up from the 8400 part of the simulation
(BASIC), such as barometric altitude. 	 It also checks if
touchdown altitude is reached and sets _a flag to termin-
ate the simulation.--

(2) One second and 100 millisecond flags are updated and
-reset.

(3)' The G4DBEG subroutine does 4D 'guidance computations
(Sperry version). 	 Five times every second the reference
speed is computed, using the position error in the 4D
trajectory.	 Once every 10 seconds the phantom position
is updated, and times of arrival at different•waypoints
are recomputed.	 All computations are done in one pass.
This is different fromthe 1819A, where computations are
done parasitically over more than one cycle.

(4)	 `The-INTEGN subroutine performs unity gain integration,
and INTEGC performs 1/10 gain integration.

(5) The MODEIL subroutine sets up conditions for switching
to different commanded modes.	 In a real time simulation,
a command is entered by pressing a button on the Mode

k Select Panel.	 In the 360, the pressing of a button
corresponds to setting a 'particul-ar entry in array ID(I) .

(6) The NAVCOM subroutine checks to see if navigation signals
are valid and selects the best Navaid.	 It does dead-

j reckoning if the ,navigation signals are not valid.'

(7) -The APEXFC subroutine checks for pitch arm, pitch engage,
roll arm', and roll engage flags.	 It arms or engages the
required longitudinal or lateral auto-pilot mode (eon-
.trot law).	 It also checks for auto-throttle modes and
calks the stability augmentation subroutines.

The aircraft/avionics interface is defined in subroutines,

UTIL2 and INPUT.	 The variables exchanged and scaled in UTIL2 cor-

respond to the actual variables exchanged between the 8400 and 1819A`

computers. In INPUT, certain variables such as airspeed and dy-

namic pressure are picked up from BASIC. 	 Detailed.parameter;lists

and scale factors are documented in Appendix B.

 ^i1

1{
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lEp
;I SCALE VARIABLES PICKED

UP FROM 5400	 (INPUT)

t,

UPDATE ONE SECOND
AND 100 IMSEC . FLAGS

CALL 4-D GUIDANCE -`
EXECUTIVE
(04I)BEG)

µ	 ,

i^
3CALL UNITY GAIN JV•4D 1/10 GAIN

f I` rEGRATION ROUTINES
{ (INTEGN,	 IITiGC)

CALL MODEINTERLOCK
` EXECUTIVE (M0DET L)

CALL NAVIGATION}{
EXECUTIVE

1
(NAVC(IM)

CALL CONTROL EXECUTIVE
(AUTO PILOT E^CECUTIVE)

(APEXEC)
i	 ^ I

3	 EX IT
r

FIGURE 3.11:	 FLOW DIAL•:RAM OF STLEXC
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I

Examples of UDATA and DATA commands can be seen in the
deck set-up for trimming shown in Table 4.1, <'

' (2) Initializing the Aircraft

The next step is	 the simulation in the I.C. mode. cycling
- to ensure proper initialization. 	 This is done by issuing

the ICRN command.	 The state to be initialized is speci-
fed by the en_in locations 230 to 240 in BASIC k
common:

(a)	 Euler angles

(b)	 Angular velocities in body axes
(c)	 X, Y, Z position in runway coordinates r

(d)	 Airpseed	
-

a

(e)	 Velocity vector orientation

(f)	 X	 Y, Z moments of inertia.

(3) -Trimming the Aircraft{

After cycling in the I.C. mode, the aircraft is trimmed {
at the desired state.	 Trimming needs to be done only
once.	 For subsequent runs, the aircraft can be initial-^
ized.(ICRN command) at the resultant trim state. 	 A
table of trim states isg iven in Table 4.2; other trim
states can be found in the listing of job decks starting
in Table 4.3. a

When the trim command is 'issued, the-BQUIET subroutine
(a BASIC subroutine) is called for trimming in the SETUP
subroutine	 (C-8 or 8400 subroutine). - The'call is of the t

- form:

CALL BQULT	 (NC -ONT, .	 . , DE-LTRIM, ... , PCLPq, ... , THETI C.,
...,DPTRIM,...,DELATT,...,PSIIC,...) 	 ==-

^ where:

j
i^

DELTRIM: Elevator trim parameter
Ii PCLP:	 Throttle position  a

THETIC:	 `Euler angle

€

DPTRIM:	 Rudder''trim parameter

DELATT	 Aileron trim parameter
i

PSIIC:	 Euler angle

z° NCONT:	 No. of variables to be trimmed
fr

"'
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, Dots in the subroutine argument are to indicate the trim-
ming limits for the preceding parameters. 	 Trimming of
all six variables is not necessary, since'NCONT specifies

4 the number of variables to be trimmed.

Table 4.1 contains a deck set-up for trimming.

r (4) Operating the Aircraft

Once the aircraft is ;initialized at a trim'state,	 it is
f ready to fly.	 By issuing_ OPRN command to BASIC DRIVER,

the simulation is cycled in the operate mode.

' During,the first cycle'in the operate mode, the STLINL
f subroutine is called in UTIL2, 	 STLINL initializes the

trajectory and precomputes some trajectory parameters
(WPINTZ), turns off auto-throttle, sets the standby mode
of the C-8 (MODE00) corresponding to the STANDBY button

^- on MFD, and initializes navigation filters. 	 In the
' second and following'cycles of the 'operate mode, the

STLEXC subroutine is called in UTIL2. 	 STLEXC calls the
j; MODEO subroutine in the first cycle to switch the STANDBY

mode to the ON mode and to do further initialization.

The 'simulation continues to cycle in the operate mode
;i until the time specified in the argument of the 'OPRN

command is reached.

i
^'LJ

4.2	 MODE INITIALIZATION AND SELECTION

The procedure for mode selection and initialization is dealt

with in this section.	 First, the control inputs are entered; in a 

similar fashion as in the real time simulation. 	 There is a one-to-

j one correspondence between the buttons and switches on the control

^I panel in the cockpit and the flags in the 360 simulation. 	 A; list

7i
of these flags is. given in Appendix B. 	 At present, the following

{ flags have been set for full auto flight:

'j

of (1) AUTO SWITCH	 (IDS 06)

;(2) SAS SWITCH	 (IDS 07)

(3) AUTO THROTTLE SWITCH	 (IDS 08)

{j (4) GO AROUND BUTTON	 (IDS 214)

# 35	
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the	 'imulationThe STANDBY/ON button is internally set` 	 simulation

when it is started.	 The other flags have to be set in thesame

s4quence as the corresponding buttons are pressed in real time

simulation.	 The pressing of a button on the Mode Sel,ect Panel in

the cockpit corresponds to setting one of the discretes ID(l),

IP(16)	 to -1.	 In example 2,, Cards 8 and 9 indicate that the INILS

button (ID(l.5)) is pressed during the tenth cycle of the simulation

and the FULL-AUTO (ID(2)) button is pressed in the thirtieth cycle.

The command on Card 8	 (QUALIFY MODEIL$$; AT 10;	 IF-11=30; SET

ID(2) = 01) means that when statement number 10 is executed the

thirtieth time (i.e., the simulation completes 29 cycles), the flag

for full auto mode is set.	 More information on QUALIFY can be

found in Ref. S.

Fora Monte Carlo simulation, when looping is required,:the

mode number and the time (or iteration number) , when the mode is to

be set, can be specified by initializing the array IMDSWT (2;5)

which is described in Appendix B. 	 If Mode 6 (altitude hold mode)

is to be set during the tenth iteration, the array could be initial-

ized as:

IMDSWT	 (l,l)	 6

IMDSWT	 (2 2 1)	 10

A sample  detk 1 o	 -e-Carlo runs has been included in the ex-.- ._T Mont

amples	 (Section 4.3).

For 4D guidance, to initialize the aircraft for capturing a

waypoint, the following conditions 'should be met:

The.initialposition should be.at least a distance of
1,000 ft plus the length of the next segment behind the
waypoint to be captured (see figure below):

36
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set IWPN to a	 waypoint to be captured (IWPNII)

Xa 61-W-1600 ft--a!-0--S-"—Xa+1-^—S---Xa+Z

a - waypoint number
aircraft initial position	 -	 S - segment length

^Y

(2)	 IWPN should be set to one less than the number of way -

point to be captured.

(3)	 The turn radii for both IWPN and the waypoint to be
captured (IWPNII)	 should be zero -(i..e.,-the aircraft can

it capture only straight segments).
4

The following conditions should be met for capturing the

glideslope:

(1)- The aircraft should be at least 600 ft above the runway, g
u otherwise the glideslope will not be captured.

(2)	 The F.P.A. hold mode should be seL-.
}

The x, y, z coordinates from BASIC are used to initialize the

filters in SIMIC subroutine.	 As the MLS EL l antenna is '100 ft from
t

the threshold of the runway, the	 x	 coordinate is corrected for

100 ft to avoid the filter transients.

When the simulation operates in the 4D guidance mode, the pre-

stored trajectory is used for guidance. 	 The trajectory parameters

` are in EBLOCK>block data subprogram; at present it contains the

AS trajectory.	 When a different trajectory. is required, EBLOCK

can be recompiled in another library.

When the simulation is run in the full_.auto mode, the best.

navigation aid is selected automatically.	 If-no navigation aid

is available, then dead reckoning is used.
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4.3	 EXAMPLE DECK SETUPS
a

The procedure for setting up the decks for some typical runs
is illustrated in this section.	 Specifically, the procedure for

trimming, flaring with and without the wind, 4D guidance in TACAN
and MLS regions, flight path and altitude hold, go around maneuver,
and the Monte Carlo option have been illustrated.

(1)	 Trimming

Table 4.1 is the deck set-up for trimming the aircraft.
The EBLOCK subroutine is loaded (Card 6) to initialize

E	 the common blocks; then the BASIC main program driver is 1
`	 loaded (Card 7) and its execution is started (Card 8).

The DATA command is issued to the DRIVER (Cardd--9) to
change the default values of some parameters.	 The format

3

for initializing the common blocks is described under
DATA in the next section.	 The slash (/) in Card 17 sig-
nifies the end of the-DATA command. 	 -Then the UDAT com-
mand (Card 18) is issued to initialize C-8 and 1819A,

.	 commons.	 The slash (/) in Card 24 terminates the UDAT a
command.

The ICRN command (Card 25) cycles the simulation for 200
times in the I.C. mode.	 PRNT (Card 26 prints the results

a	 of I.C., and the TRIM command 	 (Card 27)	 starts trimming-
at the initialized state.	 The final PRNT command (Cara

}	 28) prints the result of trimming, and END command (Card
29)- signifies the end of the command sequence to the
_DRIVER routine.	 Typical trim states are given in Table
4.2.

(2)	 Initialization on Final Approach
In-Table 4.3, the job deck for starting the aircraft
above 600 ft on the glideslope is presented.	 The command
sequence is the same as in the previous example, except
that the OPRN command near the bottom of the listing tells
the DRIVER to cycle the simulation in the operate 'mode for
five seconds.

(3)	 Initialization on Final Approach with STOLAND Wind

In Table 4.4, the job deck for starting the aircraft on
f

the-glideslope with the STOLAND wind is presented.
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(4) 4D Guidance In TACAN Region
r

The job deck for operating the aircraft in the TACAN
region with 4D guidance is listed in Table 4.5. 	 Note- £'
that the aircraft is initialized in the TACAN region, and
the navigation package automatically selects TACAN'forg	 P	 g	 Y_
navigation.

(5) 4`D Guidance in the MLS Region

f Table 4.6 contains the job.deck for starting the aircraft
in the MLS region.

E, (6) FPA Hold, Altitude Hold, Go Around

Table 4.7 contains the job deck for the Go Around mode._
If the first and second QUALIFY cards . in the deck were not
present, the aircraft would operate in the FPA hold mode.

r

For operating in the Altitude Hold Mode, as indicated in
the job deck, common cell 1307 should be set to -1 and
common cell 1309 to 0.

(7) Monte Carlo Runs

Table 4.8 contains a deck for Monte Carlo runs.

(8) Altitude Hold	 Heading Hold and Airspeed Hold

In the EBLOCK subprogram, the discretes corresponding
to altitude hold and heading hold modes (Appendix B-3) F
have been set as default autopilot modes.	 If the 4u.
simulation is switched from I.C. to operate without set-
ting any discretes, then the aircraft flies in altitude'

,t hold, airspeed hold and heading hold modes. 	 The airspeed
ft
" hold mode is automatically turned on as the autothrott,l'e 5

switch is assumed to be on.

( i d s (9) Initialization on Final Approach Below 600 Ft

The real time simulation checks if the aircraft is be- r
low 600 feet when the glidescope mode is aimed (sub-

`; routine PAMLS) and turns the glideslope mode off. 	 On
TSS this feature is kept, but a version of the subroutine
PAMLS is compiled in library LIB.GLID where this check
is not made.	 If the aircraft is to start below 600 feet
the job deck-is similar to the one shown in Table 4.4`
with the addition of the following command:

t JBLB 	 LIB. GLID

^f
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C (10)	 Changing Airspeed During Flight

f
The TSS'simulation can be started in any of the re-
quired modes.	 If after x/2=0 seconds	 the airspeed
is to'be changed to y knots, the following TSS com-
mands should be 'included in the job deck:

QUALIFY^APEXEC$$;AT 440;IF%=X;SET IATENG=3

G

QUALIFY TASS$$;AT 0(1)IF°=l;SET IASPSP=Y
."s

E

4.4	 INPUT/OUTPUT DETAILS

Batch.Driver

The BASIC batch driver (Fig. 4.1) 	 is a FORTRAN program de-
tt.

signed to control. the execution of a simulation using the concepts

and structure of the BASIC system, 	 The current driver accepts nine

command sets to perform program execution, BASIC data input:,--user

? designed data I/0, cycling in IC mode, cycling in operate mode,

message interspersing with printout, dynamic check operations,

trimming, and terminating a run session.
x	

j

Each of the nine command sets are described, and the resulting

action is discussed in the following paragraphs. 	 The command sets

may be in any order, and as many may appear as are required for

the run session.` 7

a

4`0
i
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UELTRINI = O.OSO RPNIP = 993.49 RPNIS = 993.49 TQ'TP = IS2.234 TQIS = IS2.234 (Card 26)

*	 *

TRIM MODE
*	 *

TRIM IS SUCCESSFUL AFTER 246 CYCLES
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TABLE 4.2: TRIM STATES

VE(^It' IIIC GANVIC IIIE.TI C PCLP DELTRIM IffIC
IDLEI3T/

IWEEL( KNOTS) (Fl-TT) DEGREES 1)F(;I)1:I:S DF.GREF.S DEGREES

69.8 2160 0 -3.95 48.S 0.141 40 1/1

72.1 200 -6.0 -8.235 21.3= 0.057 40 1/1

72.05 1271 -6.0 -8.21 22.08 0.0S8 40 1/1

72.05 2160 (1 -4.94 49.43 0.078 40 1/1

137.1 1500 0 2.22 32.72 0.017 0 0/0

140.1 1500 0 2.01 33.73 0.034 0 0/0

212.2 3220 (1 -1.17 66.8 -0.031 0 0/0

212.4 3300 -2.0 -3.17 S7.90 -0.032 0 0/0

72.15 600 fi.(1 -8.2S7 21.73 0.056 40 1/1
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TABLE 4.4 : FLARE WITH STOLAND WIND (EXAMPLE NO. 3)
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TABLE 4.5: 4D GUIDANCE IN TACAN REGION (EXAMPLE' NO. 4)
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TABLE 4.6 : 4D GUIDANCE IN MLS RE
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0

T,\BI.E 4.' : GO :\ROUND MANEUVER (EXA^IPI.E NO. 6)

,.RJ51A.T wmNe
LI+:.Uh FSCSCo.^^Iti1.vt',O(U)..A; r r,nNtthj^

r,T^Sr,
PL 	 FE MO VT 015C 04CM C^5TUL
JuLO L16,^IM
JbLd LIt5,HLi
LCiAU t;LOL,(ja

1.0 1, v U •lIvl.-^ , =

QU A LIfv MGDcILSS; s ) 0l1)I I F G=4215ET IG571u=,.I'.•sAk":j
QUV, I Pv "0^f.IL. ^ I S  '.(I)1	 I 	 . =4 11t; kT I 1): 1^i= !.I 1t A;;	 1k(10	 21:•3 1 f I I	 C.

C U A L I ^ T 0"JOL1L!-1 At 151 1 F 	-'. I StT Iu(15) - -1

	

0 U A L I k y `"UuEIr.53; t 	 10; IF :=231 S t T IU(2) = -1
kUh D;+IvLklS
DATA
3	 25e	 72,00	 vE.^IC	 IN 4AUTS
1	 c31	 .7,	 T-tT1C

1	 23	 GA MI, IC
1	 e33	 -5.0	 GAMVIC

1	 232	 -2.20	 P5IIC
2	 1?1	 1	 ITO-iH,FCR TAIMM1r-r, TO EE SET jh LbLOCr;
?	 10	 1	 10,EEL
1	 2'^	 -Sr?.r	 XIC IN FEET
1	 lLl0	 -12	 YIC I'+ FEET
I	 i:41	 02	 -+IC IN FLET

/
L'0cT
1	 32	 G.GaR	 0 E L T P
1	 35	 2b.2?	 oCLP
1	 13	 2	 I+IP+D
1	 4.9	 0,30	 VOS

1	 50	 0, :236	 A	 P

1	 10	 1,0	 IOLERT
1	 1c	 0,0	 T04yCF.

1	 3o	 X0,0	 DFIC

1	 51	 0.	 YHI:S
1	 52	 0.	 EI`1IA5
1	 S3	 0,	 E2yI.5
1	 5u	 0,	 Art A5

IC	 200

For Alt. Hold A9ode, Set: 1307 to -1
c:,;t	 3	 1309 to	 0
uD1.7
i	 15,17	 0^	 TUNw LFF a;,T j T'-'DE C OL 7 "CUE

3	 1304	 -1	 FLIGHT P A T ?, n , -6LE H ULL) rMUE
2	 7	 1	 IUvtiPri

/
G F f;^	 15.0

v;?r,T	 3
cur11	 u

ENO
LG6uFF

ORIGINAL F t >is .Nu .J

OF POUR QUALITY

sr
1
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TABLE 4.S : TYPICAL MONTE CARLO DECK SETUP (EXAMPLE No. ?)

.. 4 151-T	 ='rJ8
Lo	 J •:	 FaC	 C^. ^'i v lr c5 (l/)rr A i	 f.a,E^^iI

^T,4a^
P LEAT.	 P,T	 JItC C+3101.
JI%.I	 Lt
JnL •-	 ..!:
Jill	 - i ^.f ^.t 7L )
J.•L	 . I	 v- Ire

LDau	 c^f.0i.'(^i
LOA D 	 . vi1^:^*t

•^^/,	 fi t I ^ L H l

JarA
1	 ? ml 7^.J^ vc.IC	 I'•	 AfJUT^

1	 1 •j..4 1	 TIC

1	 %^< 4i .71 -'SiI:
1	 JjU a>.7 LA-..I(
L	 Iu 1 i	 :!L

1	 t's') • 1 5A06 . tC	 I	 F `W T

1	 ^J -111')! rIt;	 1'•	 Fccr
!	 c ^l 210;; r•I^	 ^'.	 F _k)

i

1	 >> ^+	 .^ ^-JL.'
1	 ii f).li74 CL Tk.t
c	 !J i.J I- r.	 T
i	 1	 ! J.P T•.	 .;F
1	 3o uJ^J ;IF	 if

3

3	 1	 >1'J q rl_-.	 OFF	 n r)G " ( )L i '	 hUOL	 (UtFJIJLT)

s	 !.: 1 It -i;.T .1•,	 r0	 •.e	 , -'r	 IN	 i;',LGC'1
t	

! C77 1 yr	 •^I4j	 K1_i lr r	 (T'c: :I
S	 1^ 1 7 il .u,)lV

1

i	 -^ ',. E1tij3S

z	 ^ ! I,.I	 ./li<
/

11 ;j T 1

i C -'1 20
....	 ; r c

r ill r U
I.... 20.1

1 1... , T S .

'•	 a r 1
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Basic Data Input
1

jj[[

..

j
fl The first card of the deck is: ;

DATA

000	 000000-0 a 0 0 00 0 0 000 0 000000000000000000a00 `000000000000a0000000000a00000000000a0 r	 i
a 1	 2	 2	 11	 6.	 1	 1	 1	 11 11	 17 13 it151{It11toif11.12is14Is16717111b113111It it 11 it31 40P4.11.111 3 g011 Itif1 1 12531. 9is11so511f11{26161111{tl p.61it1112;171tl41141fN '?
^^ 111111..111111111111111111111111	 7111111111111111111111111'1111111111'111111111111111

^ Following this card are the data ca rds required to enter data into

t{ the BASIC common blocks, MOAT and IFIXED. 	 The form of these cards'

is:

N;	 LLLLXXXXXXXXXX MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

00000000000000000000000000-000000000000000000000000000-00000000000'0000000000000000 k

I! _	 1	 1 . 1	 1	 S	 4	 1	 !	 1 1111 	 12 13 11 IS is ]111 if 71 11 I2 27 11 15 1{ 2l 11 i) 11 71.12 11 11 15 :5 71 71 11 10 11 11 At 11. 151{ 11 41.11 it $1 	 52 11 S. Ii $I 51 51 11 0`11 61 11 N 11 {1 ii it N 11 it	 It	 11 
11. 13 21 11	 'f	 'f. it

,^ 1111111111171117:11111;1111111111'111111111111111111111111	 111111111111111111111111

1	 a
si	 v `	 •	 —

x
1,

a
where

N = 1 indicates XFLOAT common

N = 2 indicates IFIXED common

LLLL is the cell number in the common block

..	 (integers must be right..XXXXX is ten columns of data	 g	 g

i ' justified) to be stored in cell

1	 !
2:

MM. .... NIM is: ,a sixty column alphanumeric message field., }

The end of this command set is signified by a card of the

form:

000 a 0000 a 000000000000000000a000000000a00a000000000000000000000a000o0000o00'a0000a

^

1	 7.]	 1	 S	 {	 1:- 1	 1	 U 11	 17	 11 11 15	 It 11 11 If 20 21	 22 11 21	 if t{ v 11 If 11 31 12 Il it 	 i1 1S	 1I 11 1511 P 1711 R is 1112 if if so it	 51 511. 55 56 " 11 It S1 {f 11 12 11 51 SS S{ 61 G 61-11 it 	 11	 13 11:.15 4 11	 1 1 aif

1L1.1111'1111111111111111111111111111tlilliii11111111111111111111111111.11111'111111
1
9	 ^
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,j A.s each of the data cards is read, the value of the particular

s parameter is inserted and the data • and message are printed on the

line printer.

User Data Input

This command set _consists of a card of the form:

UDAT

a	 0a	 000000 a 0000 a a 00 a 0 a 0 a 0.0 D 0 0 a 0 0 0 0 0 a 0 0 0 0 0 0 a 0 0-0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 a
:. 1	 1	 !	 1	 f.: 1.	 1	 1	 1	 II 1117 11 I/ is 16 11 11 11 11 21	 11 71 71 if it if fl 71 71 11 11 11 11 11 a 17 11 1111'/1 1t. 111111 71 U 1171 9 $1 i7 11 51. Si Si 51 11 0 it it 17 111111 ;11 , Q is is it	 77 11 i1 i1 it i f I t 1).11 5

This 'command causes a call to the routine UDATA for input. 	 Control
H

is returned to DRIVER which reads the next command card.
F

f As in DATA command, the input format is the same:
f

N = 1 IB,common
C-8

[ N = 2 BT common

N	 3 STL common	 1819A 3

User Data Output- s

I

This command set consists of a card of the form:
1

PRNT	 N N N

0aa0000a0000000000Go000a00'0a000000000000000a0oo.o0000000'0000000000000000000000000 ,.

. t.. , i	 1	 1	 1	 f	 t. 1	 1	 to II	 It	 11 II IS	 is if II it it 11	 21 71,14 ,1 if it 71 11 1
1
1 11 1113 11	 11 1S	 11 71 is 0 b	 11 11 11 11 16 11 41 11 10 . 11 17 11	 ii If 	 it S,11 to 61 67 11 If t1 6111 N if it 	 11	 17	 1 1 11 71 76 it	 4 11 111

1
6

,
}f

1

^:^

^
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I This command causes a call to the routine PRINT (NNN) for out-

put.	 Control is returned to DRIVER which reads the next command

card.

' NNN = 2	 Dump , BASIC commons

I' `
I 3	 IC Format Output

t _ 4	 Output of 1819A,variables for debugging

' Cycle in IC Mode

This command set consists of a card of the 'form:

I I;CRN	 NNN

y

00 a s 00 CA a 000000 a 00 a 0000000000000000000000a000a0000000000000a0a000000000000000a0a
x' ''... 1. !	 s	 t	 S	 {	 }	 1	 1	 0' 11 11 ,J II IS tt. It 11 11 s1-11 JS t1 is 1S it, i t N ii it it v is is SS is i t it 1l: 11 H t1 U ti .! .4 O 4141 31 `$I v $3 s. SS 16 SI sl '1! it it is 1164 0 it At p ti is 11 IS 11 ;4 1s It 11	 11 1 1 u

#^ ii11111111i'1111111111111111111111111111111111'111111111111111111.1111111111111111 E

ii where ,NNN (right justified)	 is the number of cycles to be executed. 'j

'This command causes NNN calls to SETUP, LOOP2 and LOOP3 in a
if

i cyclic fashion with IMODE < 0.

{ CI.
Trim Mode

a
I

This command set consists of a card of the form:

TRIM	 NNN f

00000000000000000 `00a 000000000000000000000000000000000a0000000000a000a0 CIO 0000a00a

I	 1	 )- i	 S	 t	 1	 A	 S	 4 It	 11 11 It IS	 :1 1(11 it is 11	 n 1s 1t IS it 1t. 11 1t 11 1t it 11 it is 1{ !1 11 1! 10 tl 4 tl U 15 11'11 U 
At 51 51:31 SI i. Si Si %1 so $1 ii tl t7 Q it iS it 11 it 11 11 X11	 11 11 1i 11 It It	 t l it 11

17i 111`11111111111111.1111111111`1111111111111111111111111111tii11111111111111111`11111

ai

}

^

i

G}i
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where NNN (right justified) is the maximum number of cycles the

trimming process is allowed. 	 If omitted, NNN is defaulted to S00

or the last specified value.

This command causes the trim command discrete, ITRMCN, to be

set to 1 and the simulation is cycled through SETUP, LOOP2 and

LOOP3 until the trim complete parameter (ITPROG) is ze r o or NNN

cycles have been completed.

Cycle in Operate Mode

This command set consists of a card of the form:

I

OPRN	 XXXXXXxxx

1	 1
0000000000000000000000000a000000a00000000000000000000000000000000000000a000000a0

a	 „,n r q ^,, ,n	 t:onrr',u ,:a,	 , ,11;'1711,,;,	 ;6'1	 , ,u

11111111111111111111111111111111111111111111111111111111111111111111111111111111

where XX ... XX is nine columns of data which specify the maximum

time in seconds allowed for the operate process.

This command causes the driver to perform a cyclic operation

in which LOOP2 is called twice and LOOP3 is called once per cycle

with IMODE=1 until TIME > XX ... XX.

Dynamic Check Diode

This command set consists of a card of the form:

fDYNC

1
000000000000000a0000000000a000000000000C00000a000a0000000a000a0a000000a000000000	 j

^r„t,^„^^r^^,^,,^•,,:^;,:::,:,:,.^...^•.;^,r,r u;^•^•,u:,.^^un.^^,,,^^.,,,,a,o•,,.,,,^,,,,,^e,ic:cu,-u,uni^^^t,,,,,i•i,u 	 ^

1111111111111111111111111111111111111111 1 1111 1 11111111i1111 111 11111111 1111111 1 11	^
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0

Upon receiving this command, the driver sets IDYNCH=1 and

0	
INIODE=-1 (d ynamic checks on, IC mode). The simulation is then

c ycled in the IC mode until the dynamic check routine (BDCHEK (31)

assumes mode control. BDCHEK maintains mode control through calls

to ICRTN, HLDRTN and OPRTN (which set IMODE), and the dynamic

checks are performed.

The user must supply all pertinent data for the dynamic checks

(XWECT(I), DTD, ICODE,...,etc.) by use of the DATA or UDAT com-

mand sets prior to invoking the DYNC command set.

Under the current driver, the user must allow for data output

during a dynamic check or cyclic process in the operate mode. One

p	 possibility is to perform this output as a print statement in one

of the utility routines (e.g., UTIL2).

Message Output

U

This command set consists of cards of the form:

MESS

Z
00000 a 0000000000 a 0000000000000000000000000a0a00000a00000000a00000000000000000C00
1 1 1 / s 1	 1 1 -1 11 '! 11 Its '{ '1 '1 X11 lilt 71 11 P nun 71 :1 11 1 1 17 11 )• is 3 11 SI ;1 10 1 1 11 H u n 4 11 n 11 11 5 1 57 51 .. 55 11 l' S1 f+ {1 H i; U N P: 8 1 , Y it '1 II 17 11 11 11 { 1	 '1 1 u

11111111111111111111111111111111111111111111111111111111111111111111111111111111

:e*::***** `* " `	 *	 * `^	 *ALPHANUMERIC DATA CARDS* *.I:.:***.*, ** : r.L*Y **J J.!.71. * ..L .:.* * I. ':;!:*w* 1.

000000000000000000000000000000 00000000 0000000 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 a 0

1 1 1 f { I 1 1 '1 n q 11 11 ,$ ',1 'I'I'I lilt 11 11 11 n 11 n 71	 M U 1711 H 35 Ic n ;1 S1 11 11 U 1! a 1S 1{ U a N 51 5 1 17 )1 r ti 1{ .' )1 S 1 N t' i1 P N {S N 1' 4 I1 '11 , 11 '1 V 9 t r '1 '1 N

111111111111111111111111	 111	 1lIt11lII	 1	 11	 111111111111111111111111111111111111

0000 a 00000000000000000a0000000a00000a00000000aa00000a00a000aC000000000000000000a
H	 '	 1	 :	 1	 1	 1	 '	 1	 1	 1 11 11 1 1 '1 1$ 4 11 1 1 11 11 11 71 '1 11 753 n 71 N 11: 1 ]111 11 is '4 !' 11 :+ 4 1 1 1! 11 11 IS /{ 11 11 11 )1 5	 S 1 51 i. 11 '.{ i 1 51 51 f • 11 i1 1: 11 {: ii 1' H {1 '1 1 i	 7 '1 '1 '1 1 I' '1	 111

111111111111111111111111111t1111111111111111111111111111111111111111111111111111
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Following the MESS command card are any number of cards with

alphanumeric data in any of the 80 columns. To terminate the mes-

sage, a card with a slash in column 1 is supplied. The alphanumeric

data is simply output on the line printer (one line per card) with-

out a top of form.

Terminating a Run Session

This command set consists of a card of the form:

END

000000000000000000000000000000000000000000000000000000000000a0a000000a0000001000
I ) 1	 1 1 I 1 1 '1 n 'i i] a '1 '1 '7 '1 '1 :1 )1 '} f1 }^ }5 }1 71 'I '1 A it 11 11 it A A " 11 :1 .1 1' C 11 u O 11 4 1 U N 11 Y 0 L 'r	 it ;' 11 11 V 11 11 U G L e 6 N H '1 '' } '} '4 '1 i I t '1 '1 11

This command notifies the driver that there are no remaining

command cards. Execution is subsequently terminated by the

driver.

4.5 PLOTTING OPTIONS AND DATA STATISTICS GENERATION

Output data plotting options are as follows:

(1) The output data can be written on DUMRUN tapes and these
tapes can be plotted at the computer facilities. Addi-
tional details are given in Ref. 4.

(2) 360 Plots: The output can be stored in data sets when
He ircraft is in the operate mode. Subsequently, these
data sets can be plotted on the remote 8 terminals using
ZETA plotting programs.

When the Monte Carlo runs are made, subroutine STAT is called

at specified intervals. At present it is set up to compute iter-

atively the mean and variance of five variables; it can easily be

recompiled for computing statistics of an y number of variables.

The program listing is given in Table 4.9.
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TABLE 4.9: SUBROUTINE STaT LISTING
BID

u

L

rr

5LbN(LTIkc 5taT

C

C

C	 Sr ► ;rLTI c Tr, r 	 p i, rc STATICI;CS irr NrnTE C. ai, LC w . 11 Cr,rvi,TES
C	 tt• E 5TA715TT(5 r r Ea	 AnC vA6TA•CE) iTE k ATIvEY, 17 1S C A LLL^	 Cr
C	 5t,tl 0 L t I k E I Ki- T Evf.uY 1L CVrLE CF 51 PO	 TICS,
C

........ * .................. * i ..... &* i•
C

CC""Cn /5rl/Iaflunn)

CC	 r	 L ^,	 IF 	 EC/Ir(20C)
P'	 f	 (20)/ ?TYRC/NT(100)

C

C .•
CI"EKsIrn Sr 5, 2,1nn).12n(r.1,T c(51

C
Ec.l,jvArE r 	 r xa,AO] t	 1.	 (Yw, Ar1].)	 ), (^^, A (1'o) )
1, f17 1•(1),I a fe32)	 ),	 (IE	 Y	 ,	 Ia(ol)	 ),	 (lr• Ew-G,	 1 a ( l 4ra J 	 )
2, (IvCE	 1af357)	 ),	 (IP r CC",I a (22 p )	 , I A (12^e)	 )

,larI2GS)	 ),	 (1E 51,IA(940)	 ),	 (I GCL T S,IA(12 u )	 )
C

C
LATE

C
C	 TAbLE,CESC^I;TICPt
C
C	 5(J,1,^)
C	 I n 1	 "Fay
C	 CE	 —
C
C	 Jz 1	 ALCnr, T ; A C	 C 
C	 2	 C.CS5 T.ACA	 ERRCR
C	 3	 at- T I TLCE EHI•C;^
C	 u	 AT 4 5cE ;-. r E^-Ca
C	 5	 a);;SREEC E ; k C R „ATE	 -•-
C
C
C	 h	 TIt E INJTAnT AP-E h	 STATISTICS AHE CC"r; L,TEC .- FCR
C	 EaCP. ;i +n,
C

C	 --
C	 Trp(I)	 C1.-'aENI STATE
C

C- 	 ---------	 _._

Oyu _C^'^TAu PAGE 13
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1	 p

0
TABI,E 4.9 (CONTINUED) : SUBROUTINE STAT LTSTING

c
C	 K	 ITt-i1TICN KL P eEF FLICrT tEI G REFE-%TEC•
C	 -

C
T	 I :I'LTS

T 	 (2)	 ItGRy

T" p (3)	 =	 IFFF2

IVCEPC;
T r ^(5)	 = i v P. Cc"	 ---	 —	 ----	 ---- ------ --

C
C	 cI^C ^^^^

— — —	 —

CC 1^ 	 Ial,i^

S(I,1, K )	 ( t',•1)•5(I,1^KI	 • TrFtI^	 )/h

10	 CC T I S LE ---

C

I^ t"•.EG.1) GC T 	 30

C	 FIkC	 I 	 CE

C

CC )0 I=1 ,1^

r5(Irl.^	 T " P (i)	 l•(9 ( Ii3. K I T"P(:)))/(^.1)

20	 CCI%TI^LE

C
C	 STCac.	 I% i.AT SET

C
C

3n	 K a ^+ 1
100	 itT11w1,	 ----	 -	 -	 -	 -

ENC

b -1



V. VALIDATION OF SHARP

'	 ka
_ r

( oneAs noted in-Chapter I,	 of the principal uses of the SHARP

simulation is to perform comparative studies of navigation, gluid-

^s. ance and control concepts for STOL aircraft_. 	 To assure the value

of these Monte Carlo type simulation results,	 it is necessary to

verify the equivalence of the SHARP and STOLAND simulations. 	 The

validation procedure and results are given in Section 5.1; t1le val-

idation data shows that the two simulations are essentially identi-

cal.	 Section 5.2 discusses some of the differences and the main

!! errors discovered in the STOLAND simulation during the process of

SHARP program development and debugging. 	 Section 5.3 documents

some of the flight control laws in unsealed form.	 The work done £,

under this effort is summarized in Section 5.4.

5.1	 VALIDATION PROCEDURE AND RESULTS 	 =

The sequence of steps to validate the SHARP simulation with

respect to the STOLAND simulation is outlined in this section.

The autopilot modes, namely: a
r^ a

(1)	 Heading Hold,

(2)	 Altitude Hold, u

(3)	 Flight Path Angle (FPA) Hold, and
YY

(4)	 Go Around

were debugged by checking the parameters in the printed output

^ry after;` every run.

The glideslope tracking mode was debugged by checking tyze

alideslope error.	 The full auto mode (4D guidance mode) was de-

t_ bugged by checking that the aircraft was tracking the trajectory in.

x
the straight section, turning section, and glide scope section, and
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Y	 n^

then switching to the glidesl.ope<track mode after reaching the last
waypoint. The IBM 360 simulation outputs for glideslope tracking,

	

iE	 full ,auto mode,_ and flare were compared with the 1819A output of

	

#	 the real time simulation (STOLAND)

3

f

	

	 From the output of the IBM 360 simulation and the 1819A out-

put listed in Tables 5.1 through 5.4, it can be seen that they
agree very closely except for the flare and touchdown location.

s This difference can be explained by the fact that in the real time
simulation there are transmission delays in commands from the 1819A

to the C-8 model on the 8400 and in responses from the aircraft	 t

model to the 1819A. In the IBM 360 version, events take place
instantaneously. These delays could be incorporated into the IBM

360 version, but it is very difficult to estimate them.

The transmission delay and its effects were first noticed when
the auto-throttle loop, which was being closed on the 8400,_w-as
closed on the 1819A. As there is no transmission delay in the IBM	 }

360 simulation, by comparing the errors (BETAGS) in the output of
i

the slideslope tracking mode in Table 5.1, it can be seen that there	 1
is much tighter control in the 360 'version of the simulation.

i

5.2 SIMULATION DIFFERENCES	 3

The aspects in which the SHARP and the STOLAND real time simu-

lations differ are described below:

(1) The simulation on the IBM 360 (SHARP) has been implemented
only for the full auto flight mode (i.e. there are no
manual or flight director modes) 	 The structure of-the
simulation is exactly like the real time simulations, so
other modes can be easily added. If the full auto mode
isinot turned on, the simulation can be run in modus like
heading hold, FPA hold, altitude hold, etc..

(2) The 'switches and buttons on the control panel in the cock-
pit have been replaced with corresponding discrete flags.
These are described in Appendix B.

	

a	 ,



b

TABLE 5.1: GLIDESLOPE- ; STOLAND-WIND (VARYING WITH ALTITUDE);

NO NAVIGATION BIAS

SHARP (IBM 360) _OUTPUT STOLAND OUTPUT

IBTAGS IZN(2) IZN(4) IZN(6) BETA,GS ZN(2) ZN(6)
360*DIEG FT./4 FT./4 4*FT.

I

FT./4 4*FT.

3 -14130 -3- -2445 1	 2 -1437 -2459

2 5 -1378 -2 -2357 2 -131187 -237-4

4 71 -1326 -2 -21268 2 -13136 -2289

6 8 -1274 -3 -21181 1 -12185 2204

8 9 -1223 -4 2094 1 -12134 -2120

10 9 -1172 W4- I -2!007 3 -1183 -2056

12 9 -1121 -4 -1921 6 -1131 -1953

14 9 -1070 -3 1,831 8 -1081, -1868

16 8 -1019 -2 1749 -1029 -1784

18 8 -968 -1 -1664 15- 978 -1701
20 8 -916 -1

1 

-1578 19 927 -1617

22 8' -865 -1 -1491 23 875 -1532

24 8 -1 -1405 27 823 -1446
26 7 -762 -1 -1318 31 772 -1360

28 7 -710 -1 - 2132 34 720 -1274

30 8 -658 0 -1-145 35 668 -1166'.

32 9 -607 0 -1058 36 616 7110,98

35 10 -555 0 -	 971 -	 36 -	 565 -1009
36 10: -503 0 -	 884 -	 35 -	 513 -	 921
38 !12 -451 0 797 -	 32 -	 461 -	 831

40 14. -399 0 1710 -	 29 409 -	 742

42 !17-- -348 0 622 -	 23 358-- -	 652
44 22 -296 0 -	 554 14 306 562

46 27 -243 0 - 1 446 254 472
48 36 -191 0 -.358 18 202 -	 381-

SO , -138 0 269 so -	 291
52 108 1- 85 1 179 +111 98 200

FLARE FLARE
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SHARP	 (IBM)	 OUTPUT STOLAND (1819A) OUTPUT

TIME IZN(2') IZN(6) IPSIA -ZN(2) ZN(6) PSIA

-67 -148 -1103 -72 -155 1064-

1.0 -54 -125 -1128

-40 -1'OS -1210 -46- -110 -1143

2.0 -27 -	 '89 -1822
-14 -	 77 -2203 ` .	 -2. 0 _	 78 -1309

3.0 -	 1 -	 69 -2219

13 63 -2401 6 -	 61 -2298

4.0 24 -	 `58 -2524

37 1 54 -2516 31 -	 52 -2529

5.0 49 -	 51 -2561

61 -	 58 _2608 54 -	 44 -2588

6.0 73 -	 44 -2602

85 -	 41 -2606 60 -	 42 -2574
TOUCHDOWN TOUCHDOWN
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SHARP	 ('IBAI 360) STOLAND (1819A)
OUTPUT OUTPUT

ELEV. ELEV. ELEV.
DEFL. COM. CONI.
(DE) (IDELCS) (DELECS)

- i .25 7 -1

_3.22 64 97

-7.95 135 165
-8.40 142 162
-7.22 122 116
-S'.42 89 68'

-4.69 72 40;
-4.35 64 43"
-4.29 61 49
-4.63 64 54
-4.69 65 S9;

_-4.58 62 57
-4.75	 7 _ 65 54;
-4.58 62 48'
-4.64 64	 _ 44.
-4.47 62 43

-4.69 64 46
-4.64 64 49!
-4.70 65 48
-4.76 67 50
-4.70: 65 54

-4.,87 69 57
-4.88 TO 60
-4.88 70 61
-4.49 73

62

-S.11 75 65
-5.34 78 68
-5.29 _ 78 70
-5.29
-5.58

79
84

77

-5.87
-6.28
-6.28
-6.75

89
94
96

102

TOUCHDOWN

3

y^^^	 ^S,`SdFa4$`LSyx kv'aw^f

a
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TABLE 5.3 FLARE WITH STOLAND WIND AND NILS BIAS



5fU\ItP	 (T•)I\( 3601	 o_UCPtII' STOLA\'0 ^1819A) otriyur

7'Dul 	11 19Y1 ,G`d 11 .11COMI IZDDRA IZN(5) I N(6) IiDC1IUM I'lO'Cal I ZI?T?IA'1 ZN(5) Z\(G)

-3802 4402 -169 -3763 113 -	 1.4 4477 -170-

-3392 543 106 ` 4407 -160 -3362 609 26 4480 -160

-3025 1051	 ' 161 4438 -151 -2999 1233 253 4510 -151

-2695 ' 1217 - 238 4462 -142 -2674 1559 50 4557 -142

-2406 1130 - 841 4465 -133 -2386 1497 577 4536 -132

1.0	 -2146 949 -13 .43 4228 -124 -2128 1.191 j -1295 ' 4376 -123;

-1913 7 63
-
1644

_
^95G J16

_	 8189u S 50' -1.306 4031 -1.11

-1705 634 -1742 3631 -108 -1692 651 -1030 3711 -106

-1520 551 -1637 3237 -1.01, -1503 536 -1863 '3330 -, 99

-1354 482 -1580 2951 - 94 -1344 477 -1706 2972 - 92

2.0	 -1208 407 -1473 2636 - 89 -1198 450 -1.512 2646 -	 36

-1077 331 -1.SG6 2342 - 34 -1065 422 -1342 2357- 41

- 959 297 -1205 2072 -	 79"- - 951 331 -1203 2097 -	 77;

- 854 270 -1047 1529 1	 -	 75 - 847 320 -1111 1860 -	 73

- 761 220 - 944 1616 - 72 - 754 274 -1003 1647 -	 69'

3.0	 - 67-7 -181 - 841 1426 - 69 - 671 229 -	 910 14517 -	 66'
--^

- ` 60s I	 187 - 655 1259' - 67 - 597 247 -	 740; 1.290 - (7537
- 537 179, - 573 1120 - 64 - 531 258 - 610 1153 - 60

- 477 185 - 472 1003 , -	 62` -	 472. 261 - 517 1041 -	 58'

- 424 170 - 418 903 - 60" - 419 239 ' - 412 951 - 56

4.0	 - 377 193 -	 313 823 -	 59 - 372 320 -	 321 330 - 54

- 335 195 - 260 758 , -.57 - 330 375 - 216 828 - 52

- 297 242 -	 1S6 706 -	 56 ' -'293 414 -	 149' 739' - Sl

- 263 266 - ` 102 669 - SS - 260 464 -	 31' 764 - 49

- 233 293 -	 49 ' 643 ' -	 54 ` - 230 497 -	 54 751 - 47

5. 0 	- 206 340 4 629` - 52 -.203 550 -	 13', 749 -	 16`

182 356 6 625 -- 51 -'179 597 15 752_ - 44

- 161 372 7 624 - S0 - 158 642 42 756 - 43

- 141 423 60 623 -, 49 - l38 718 103 764 i	 -	 41

- 125 481 113 631 - 48

6.0	 - 109 517 114 650 , - 47 TouaTDOWN

-	 96 595 167 _ 676 - 45
s	 84 '645 168 709 - 44

-	 72 737 220 746 - 43

-	 6 3 802 221 790' - 41 

TOM IDONN
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(3)	 There are transmission delays between command initiation
in the Sperry 1819A and the corresponding response-'from
the C-8 model in the EAI-8400; 	 in the IBM 360 simulation,

< events take place instantly.	 The delays could be - incor-
poratedporated in the IBM 360 version, but it is difficult to
obtain reliable estimates of these delays.

(4)	 Instead of modeling the pressure transducer	 as in the real Ck
time simulation, calibrated. dynamic pressure, true airy
speeds, and barn-altitude are taken directly from the A

E
BASI"C program on-the IBM 360. 	 If desired, a constant bias
can be added to the baro-altitude. =,

t (5)	 Because the IBM 360 version is completely duplicatable, I

a'
simulation 'runs with the same initial conditions will give
the same results.	 In the real time simulation, setting

F	 t; up the initial conditions is very inconvenient, and
results from run-to-run are not exactly alike. I

5.3	 FLIGHT CONTROL LAWS- stj'

As noted earlier, the SHARP and STOLAND simulations are e'ssen-

t'ially identical.	 For example, the control laws used in both simu-

lations are exactly the same in structure and have the same scale
F

factors.	 In the interest of comparing these STOLAND control laws

with those used by other flight control systems, unsealed versions

of the pitch axis control laws and the auto-throttle system are.;

d ' f described in this section.	 Fi gure -5.1 shows the longitudinal con-

trol system; the corresponding glideslope tracking law is shown in

Fig.	 5.2.	 The auto-throttle speed control law is presented in ;m

Fig.	 5.3 and the corresponding auto-throttl'	
j

g	 p	 g	 ^e servo loop	 .s shown in }

-' Fig.	 5.4.	 The principal reason for presenting these control laws

1i in unsealed form is to facilitate comparison with other airborne

'I flight control systems.

Errors discovered and corrected include the following:, 4

(1)	 When the navigation packa g e in the-360  version was being
debugged;	 it was discovered that the MILS azimuth valid

,4 discrete was incorrectly set to "not valid" as the air-
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craft passed over the first elevation antenna; this was
corrected in both the real time simulation and the 360
simulation.	

}

(2) The TACAN antenna locations on the EAI-8400 side and on
{ the 1819A -are not exactly the same; these have been cor-

rected on the 360 version, but apparently small differ-	 i
ences do not create large navigation errors in the real
time simulation.

3e	 (	 ) In the SB LGSN subroutine Burin 	 the computations of run-g	 P	 .
way coordinates from MLS navigation signals, the factor

C was scaled down by 2 -15 and the term	 /B _AC by 2 5 in
the equation

B-`-ACBV_XR -

In the 360 version, the computations were changed from
fixed point_ arithmetic to floating point arithmetic.
SBLGSN routine has been- rewritten in the real time simu-
lation.

(4) In the real time version,	 flaps, which are supposed to
' automatically adjust, are held fixed during the flight,

and flap deflection contribution to the pitch command is
set to_zero.	 In the 360 version,	 the flaps are also
held fixed.	 The existing	 subroutine in the 1819A.FLAPS
is quite complex and it has been duplicated in the 360
-version.

_(5) The interface in the---360 version,	 between the C-8-model
and the control programs, had a number of 'bugs 	 (e.g.,
the course was being transferred instead of the yaw angle)
and many scale factors were incorrect; all-these have been
corrected.

6 Initially,	 arts of function tables used in the ENGINE'
subroutine of the C-8 model were missing. 	 Consequently,
the aircraft was developing asymmetric thrust.` 	 The func-
tion tables were recompiled.

(7) When the real time simulation was running in the full
auto	 (4D guidance) mode, it was noted from the;1819A
printout that while switching modes near the last way-
poiht,	 the 1819A goes into the manual 'mode	 (CWS)	 for a
few seconds.	 !In the	 IBM-360 simulation,	 there'is no man-

. ual_mode and, thus, no such switching occurs.

(8) Finding the bugs in the original 1819A program was ,a very.
time-consuming process, as first the possibility of errors
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in conversion from 1819A code to FORTRAN had to be checked._
Some bugs-, such as assembly errors in the DECRAB routine,

.	 , were particularly difficult_ to correct. t

(9) The BASIC package is supposed to have a provision for
h stopping the simulation or setting a flag called IHIT as i

soon as the aircraft has touched down, but in the current
F version of BASIC on the 360, IHIT is not-being set in the

manner desired.	 Consequently, another parameter has been
added on the 1819A side; this is the altitude in bits
(-4* ft), below which the operate mode is terminated.

5.4	 PROCEDURAL DIFFERENCES

j The main features of the STOLAND routines converted to SHARP

r

and the associated_ operating procedural details are summarized in

this section:
x
a
a,

(1) Interface Definition and Programming: 	 In the real time fi

simulation, the airborne 	 ar ware simulator links the
1819A and 840-0 co-mputers, but in the 360 version of-the
simulation, 'a' very simple interface was defined between
the 1819A program and the aircraft model.	 The interface
consists of scaling the quantities as they are passed €

if
;. from one side'to another.	 Scaling is necessary as the
i, 1819A uses integer arithmetic and most of the variables

are scaled to increase accuracy.

;4 (2) Mode Interlock Executive:	 Commands for switching to dif-
ferent autopilot modes such as flight path angle hold,
altitude hold, etc., are entered via buttons which are
part of the real time simulation hardware.	 On the 360, €
the mode interlock executive was programmed so thatit
checks for ON/OFF flags corresponding to different modes.;
The subroutines for all the modes have been pr'o'grammed on
the 360.

(3) Auto-Pilot . :	 Only the full auto version of the auto-pilot
` as been programmed on the 360.	 Manual inputs :such: as

i f control 'wheel steering and stick force and their associ-
ated logic and control portions have,been removed. 	 All
the auto-pilot modes that are involved-in full auto flight F
have been programmed and debugged.	 Certain auto pilot
modes such as altitude hold, FPA hold, heading hold, and
go around, which are not used in full auto flight, have
also been debugged.

i 77__	 _ -	 -



4	 4DD Guidance:	 In the.	 1819A program, 4D guidance computa-
ti.ons were done parasitically over a few 50 millisecond

;f cycles.	 In the 360'version, the 4D computations are done
} in one cycle.	 The 4D guidance executive and all its sub-
{ routines have been converted to FORTRAN in the360 simula-

{I ti'n.	 These 'subroutines have been debugged.
r

(5) Navigation:iNavigation: The navigation executive in the 1819A and most
omits subroutines have been converted to FORTRA N	MLSS
and TACAN signal* generation'!subrou'tines on the 8400 side
have been converted and debugged. 	 The MLS navigation
routines on the 1819A side have also been debugged.	 The
complementary filters for navigation, in the 1-819A have
been checked out.	 The switch-over from TACAN to MLS as
the C-8 enters the MLS coverage region has been checked.

(6)	 Monte Carlo Ca abilit	 A looping capability has been
an	 Monteadded to the simu	 so that	 Carlo runs can be

made.
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VI.	 SUMMARY
a

This report documents the purpose, capabilities, implementa-

tion, operating details and validation of the SHARP program.	 The

purpose of this program is to allow Ames Researchers to conduct

realistic research and development projects in the area--of STOL

transport aircraft.	 More specifically the principal use of a•
this simulation package on the IBM 360-are to perform Monte Carlo

type system studies and development of novel avionics software

for the STOLAND system in an efficient manner.

This avionics research package -is capable of simulating in

accurate detail the 'entire STOLAND hardware/software system, 	 in

the fully automatic flight control mode. 	 The implementation de-

tails of this package are described-in this report.	 a key fea-

ture of this implementation is that the fixed Point arithmetic/

logical operations performed by the Sperry Avionics Computer

(1819A) are duplicated on the IBM 360.	 This `enables essentially

equivalent STOLAND and SHARP simulation results.

This report also documents the operating details, including

deck setups.	 The operating procedures_ are illustrated by several
f

examples for different portions of a typical flight profile.	 The
^

validation procedure- and results are documented in this report to

P, demonstrate the equivalence of the STOLAND and SHARP simulation

results-.	 Moreover key simulators and procedural differences bet- r

ween the two simulations are identified and discussed.	 Curreat

and proposed research projects using this simulator on the IBM

Fw_' 360 continue to demonstrate the value of this program to AMES

research personnel.
r
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Com. Alloc.
No.

Name Description Units

180 AREA Wing area ft

256 CG Center of gravity parts

295 CG DELT C.G.	 modification_- parts

294 CG ZER Basic C.G. position without
modification parts

182 CHORD Mean aerodynamic chord ft

370 DELAT Delta ambient-temperature degree C_

321 GDTIM Landing gear down transit
time sec

320 GUTIM Landing gear up transit
time sec

181 SPAN_ Wing span ft

177 WAIT_, Aircraft gross weight lbs

242 WAIT1 C Initial gross.weight of
aircraft lbs

199 XIE X-position o,'r inner 'engine ft
W/R/T	C.G,,'

116 XIXX; Vehicle X-moment of inertia slug-ft
243 XIXXIC Initial X moment of inertia slug-ft i

119 XIXZ -Vehicle XZ-moment of inertia slug -ft

246 XIXZIC' Initial XZ moment of inertia slug -ft

117 XIYY Vehicle Y-moment of inertia slug -ft

244 XIYYIC Initial Y moment of inertia slug -ft

118 XIZZ Vehicle Z-moment of inertia slug-ft

245 XIZZIC 'Initial Z moment of inertia slug-ft

193 XLG' X-position of left wheel
WRT C.G. ft

187 XNG .X-position of nose wheel
W/R/T C.G. ft

196 'XOE X-position of outer engine
W/R/T C.G. ft

171 XP X position of pilot with
respect to C.G. ft
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Com. Alloc.
No,

Name Description Units

190i XRG X-position of right wheel
W/R/T C.G. ft

184 XTAIL X-position of tail point
W/R/T C.G. ft

200 YIE Y-position of inner engine
(right) ft

1818 YNG Y-position of nose wheel
W/R/T C. G. ft

197 YPE Y-position of out er engine
(right) ft,

172: YP Y-position Of pilot with
respect to C.G.- ft

191 YRG Y-position of ri ght wheel
W/R/T C.G. ft,

198 ZOE Z-position of outer en g ine ft

173 ZP Z position of pilot with
respect to C.G. ft,

192 ZRG Z-position of right wheel
W/R/T C.G. ft

185 ZTAIL Z-position of tail point
W/R/T C.G. ft

201 ZIE Z-position of inner engine ft

•195 Z,LG Z-position of left wheel
IV/R/'T	 C. G. ft

189 ZNG_ Z-position of nose wheel
W/R/T C.G. ft

_W

BASIC FLOATING POINT COMMON (cont'd)
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Variable STL Description Scale Dimension
Common Factor (before scaling)
Cell

IDS45 77 Throttle not minimum discrete

IDS23 79 Flaps engaged discrete -

IDS411 435 Throttle not maximum discrete

IMODE 1300 IC	 (<0)/operate	 (>0) discrete

r

.Y

Variable STL Description Scale Dimension
Common Factor (after scaling)
Cell

IDELCS 47 !Elevator command 0.01654 degrees

IDLACS 55 Roll command 0.04893 degrees

IDLRCS 60 Yaw command 0.01728 degrees

ID'LTQC 62; Throttle rate 0.04 deg/sec
command

,i
K

+1;

Rr

B-4	 SUBROUTINE UTIL2: (Cont'd)	 -	 r"

Parameters Transferred from A/C Model (8400) to 1819A:

i
Parameters Transferred from 1819A to A/C Model (8400):

i Other Parameters Transferred from A/C Model to 1819A Package:'A

` 1.	 Navigation-discretes set in a) NAVMLS
" b) VORTC

See navi ation	 arameter listg	 P in STL common block R	 a
` (Section B.3)

'true2.	 Calibrated and	 airspeeds and barometric pressure'

picked; up in the input subroutine.

,

F

^r
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w

Common Quantity_ Fortran Definition Units From

BT(017) ( frad) 2 DFRSQ (r,ad) 2 AER02

BT(Q18) ae; command THMCE Commanded Elevator from 1819 *drum SCALE

BT (019) as command THMCN Commanded Aileron from 1819 °drum SCALE

BT(020) 6r command THNICP Commanded Rudder from 1819 *drum SCALE

ITYPE/IB(2 )'

IB(Ol) ISPOIL NA DATA

I B (0,2) I GUST NA DATA

IB(03) MO Set in -Engine NA ENGINE

IB(04) ITURB Set in WINDC -0 turbulence out NA DATA

-'1 turbulence in

I 	 OS ITNMIN
0-throttle min

Throttle--not min.	 1-throttle.>mn NA ENCTNF

IB 06) -_ ITNNtAX
0'-throttle>max.

Throttle not max.	 1-throttle<max. NA ENQTNE

IB(07) IhYNPR = 1 allows dynamic printing NA. DATA

IB(08) - IDYNTP = 1 allows dynamic	 tae write via NA DATA

DUZIRUN

I 	 (09) ITCLQS = 1 causes ' DUNIRIIN tape	 to be closed NA _ DATA

TB(1O) IDLEBT Blade Angle Stop Flag NA. DATA



Common Quantity Fortran Definition Units From

IB(11) IFLAP 1-}.flap has reached commanded pos.
0-fla	 has not reached commanded 12os,

IB 121 NTRY Default_

IB(13) IWIND
2 altitude variable wind, l zero wind,
4 fixed wind

IB (14) KF Setup

IB(l5) KDELAY UTIL21 UTIL2

LB(16) ICALL UTIL21 UTIL2

BTYPE

BT(40) default-1:5 DLTRML Lower limit for DELTRIM (ca llin

sequence for B UIET1

BT(41) default+l.5. DLTRMH Upper limit foT DELTRIM	 callin g rad DATA

sequence for BQUIETI)

BT(42) default 0., PCLPL Lower limit for throttle (callin-Q D

sequence for BQUIETI)	 (PCLP)

BT(43) default 7S.0 PCLPH Upper limit for throttle	 (calling, deg DATA

sequence for BQUIETI)

BT(44) -10. THTICL Lower limit for TIIETIC	 (calling DATA

sequence for BQUIET)



Common Quantity Fortran Definition Units From

BT(r45) +10. THTICH U	 er limit for THETIC(calling DATA

sequence for BQUIET)

Bl`(46) PCLPSP Incremental-throttle setting deg ENGINE

BT(47) DEIWND Wind magnitude H/rec. WIND

BT (48) PSIWND Direction (blowing to) _ relative to r;ad WIND

the Magi North

BT(49) -VOS Wind magnitude	 - ft/sec WIND

BT(50) "AMWP Direction '(turning from) relative to rad WIND

the runway.__

NAVAGATION PARAMETERS:

BT(51) RBLAS MLS noise parameters ft NAVMLS

BT(5 3)) E2BIAS TLS noise parameters deg NAVMLS'-

BT(54) ARIAS MLS noise parameters deg NAVMLS

BT(S5) VAKCRD TACAN noise parameters VORTC

BT(56) -DT12 TACAN noise parameters VORTC

BT(57) GBI1S TACAN noise parameters VORTC

— BT(58) ONIEGAL TACAN noise	 ^ara;^,etersL VORTC
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Common Quantity Fortran Definition Units From

BTYPE/BT 5 1

BT 021 ^f command DFC Commanded flap - osition from 1819-sim de SCALE

-.BT(022) the rate com. TSCRTE Commanded throttle rate from 1819-sim det/sec SCALE

BT(023) th rate TSRATE Throttle rate feedback for 1819-sim de /sec SCALE

BT(024) 6e DE Elevator deflection + T.E. down deg CONTR2

BT(025) Sr DR Rudder deflection + T.E. left deg CONTR2

BT(026) s`a DW -Aileron deflection + T.E. deg CONTR2

BT(027) of DF Flap deflection +'T.E.	 down deg CONTR3

BT(028) s'e rad DER rad CONTR2

BT(029) sr rad DRR rad CONTR2.

BT (030) a rad DWR rad CONTR2

BT(031) sf rad DFR — rad CONTR3

BT(032) etrim DELTRAI Input data or used to trim from rad
SETUP
DATA	 or

SETUP

BT(032) etrim limit d	 DIIPT Setrim Limited from flap interconnect rad CONTR3

BT(033) Sr trim DPTRTM Input data and limited in CONTR3 (DRT )	 rad. CONTR3

BT(034) satrim 'DELATT Input.--data and limited in CONTR3 (DWT rad CONTR3

BT(035) Power-lever PCLP Throttle quadrant(note:	 VPCLP= -PCLP de 9 DATA
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B-3: STOLAND AVIONICS (STL) COMMON BLOCK:

This subsection contains parameter lists and locations for, (1)
discretes for initializing different modes, (`2) common cells for

F s	 initializing Monte Carlo runs and (3) specific label and labeled

array location lists.

DISCRETES FOR INITIALIZING DIFFERENT MODE'S_

Discrete STL
Common
Cell

Subroutine Description

ID (1) 1301
i
MODEIL Mode D - standby/on mode

set by program

ID (2) 1302 MODEIL Model - full auto mode

ID (3) 1303 MODEIL Mode2'- F/D mode

ID ,(4) 1304 MODEIL Mode3 - IAS hold mode (not
required with auto-throttle)

ID (,5) 1305 MODEIL Mode4 - IAS select mode

ID (6) 1306 MODEIL ModeS - reference FP mode

ID (7) 1307 MODEIL M6de6 - altitude hold mode

ID (8) 1308 MODEIL Model - altitude select mode

ID (9) 1309 MODEIL Mode8 - FPA hold mode

ID (10)	 ! 1310 MODE'IL Mode9 - heading hold mode.

ID (11)	 ;. 1311 MODEIL N1ode10	 - FPA select mode

ID (12) 1312 MODEIL Modell - heading select mode

ID (13) 1313 MODE'IL* Model2-- HORNAV mode

ID (`14) 1314 MODEIL Mode113 - VOR/ILS mode

ID (15) 1315 MODEIL Niode14	 - NILS mode

ID (16) 1316 MODEIL ModelS	 -' TACAN mode

IZ 1297 INPUT When A/C descends to IZ
operate is terminated.	 (IZ
in -4 * feet).	 Used in Monte
Carlo runs and flare'.



B-3: STOLAND AVIONICS (STL) COMMON BLOCK'; (cont'd)

Discrete STL
Common
Cell

Subroutine Description

IDS 01 67 MODE13 DME valid

IDS 02 68 VOR/DME VOR valid

IDS 06 127 MODEIL auto switch

IDS 07 69 MODEIL SAS switch

IDS 08 1268 MODEIL auto throttle switch

IDS 12 74 TACAN TACAN bering not valid

IDS 13 75 TACAN TACAN range not.valid

IDS 14 1277 SBLGSN MLS elevation valid
IDS 16 70 MODE13 VOR/LOC super
IDS 18 71 MODE13 VOR/ILS super

IDS 112 72 MODE14 SB.	 LOC. valid

IDS 113 436 PMLS SB.	 G/S.,valid

IDS 23 79. FLAPS flap servo select

IDS	 21,4 76 MODEIL go around button

IDS 44 437 DISCTS touchdown flag

IDS	 45 77 TASH throttle not min.

IDS 411 435 TASH throttle not may.

COMMON CFT.ILS FOR INITIALIZING FOR MONTE CARLO RUNS

IMDSjVT (1, 1) 132.5 INPUT mode # to be set

IMDSWT (2,1) 13326 INPUT> desir=ed iteration #
setting the mode

IMDSWT (1,2)- 1327 INPUT mode #

IMDSWT (2,2) 1328 INPUT 'iteration #

IMDSIVT (1,3) 1329 INPUT' mode •#

IMDSIVT (2,3) 1330 INPUT iteration ` #

-IMDS1VT (1,4) 1331 INPUT mode #

IMDSWT (2,4) 1332 INPUT iteration '#

IMDSWT (l, 5)' 1333 INPUT mode #
IMDSWT (2-, 5) _ 1334 INPUT iteration -#

Y,	 Present limit on iteration number is 30.
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IIA IB IC

;.^ Name Cell Name Cell Name Cell
{ .

IACCXB 1 IB 24 ICAPK 33
r

IACLCYB 2 (BASE 25 ICAPKP 34
a

IACCZB 3 IBNM 446 ICLOKI 35

IAHICF 4 !IBNM1 26 ICMPEN 36

IAILSC S IIBRING 27 ICOSPH [ICSPHI] 37

I AL 6 'I BTAGS 28

IALT50 7 IBTAV [IBETAV] 30 ICOUNT 38

IALPMX 8
-
ICR 39

t!
IALTDS 9 IEVOLD 32 ICRADU 40

IALTRF 10 IBALT 1217 ICREF [ICRREF] 41

[IATREF] 11

IAL:TSA [IATSAM] 12 ICRSRF 42

IANh 445 ICRSPS [ICRSDS] 43

IANM1 13

"
IANOP 14 ICS"MCP ' 44

P
IAN01 15 ICSPSI 45

E IASDSP _16 ICSTHT 1200

IASREF	 [IZC1'8] 679 ^ ICSPHI 37

IASIVTC 18

IATENG 19

IATHNS 20

{ IATSNG 22
r; I AU 23

IALTNT 1214

1 IALFLG 1258

} IALT2 1274.Y^

ff IABIAS 13`50
1{;

fl I

i,

f	 i

f	 ^

}pFf

Ii

t	

if
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1

IP	 IR	 IS

Name	 Cell Name	 Cell Name	 Cell

fj IPSICR 1207 IRADSC 317 ISASFL 291

IPSICE 1208 LRADES 266 ISBYON 292

I'PTARM 257 IRAFLG 267 ISBGSD 293

IPTFD [IPITFD] 258 IRALTC 268 ISBLCD 189r

IRALTF 269 ISEALT 294
s

IPTFDA 259 IRANGE 270 ISMALK 295

}! 'IPTEND 260 IRDELX 271 ISNPSI 296
,
E IPTENG 261 IRDELY 272 ISRTON 297

€ IPVALD [IPVLLD] 2612 IRDSEL 273 ISRNVD [ISBNVD] 298

IREFP 274

IPSI 1249 IRFNAV 275 ISTDBY 300

IPLVFL 186 IRLARM 276 ISTDMS 301

IPSIPS 1254 IRLENG 277 ISTPTR 302

IRLERR 278, ISUBAP 303

I•RLFDA 279 ISUBA5 304

IRMINT 280` ISUMAX 305

IRNALT 1261 ISUMIN 306

IRNGFL 281 ISNPHI 1202
i

IROLFD 282 ISNTHT 1203 r

IQ IRVALD [IRVLID] 283 ISFRCE 1209

ISPDMS 1255

IQ 264 IRVERS 284

QGAIN 26.5 I'RRCMD 658

IRSBRA 287

IRSVOR 288

IRTL 289

IRUDSC 290
e

IRWYPT 299
^	 r

a

y

n^

f

3J

j 102 -

y
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RO.Pv	

.1 1
rr

WOM p 	,.
WPM ON"

E

ITIT	 IT	 IV

Name	 Cell	 Name	 Cell	 Name	 -Cell

ITACCL	 307	 ITMNAJ	 340	 IVAIRC	 355

ITAH-ITASH	 308	 ITMXAJ	 191	 IVCARF	 356

ITASS	 309	 ITMSPF 	 341	 IVCERR	 357

ITAUC2	 310	 ITNAV	 342	 IVCPFG	 358

ITAU13	 311	 ITNO	 343	 IVCREF	 359

ITAUIG	 312	 ITNOP	 344	 IVGPRM [IVPGRM]	 360

313	 ITOFRM	 345

3&	 '

ITCBER 	 3

ITCVLD	 314	 ITPDCB	 346	 IVHOLD'	 362	 r

LTCRNG	 315	 ITPDCI	 347	 IVHOLDI	 363	 3

ITCALT	 361	 ITPDC2:	 348	 IVK	 364

!(	 ITFLAP	 29	 ITPRIM'	 349	 IVMAX	 365

ITHAPR ['ITHTPR]	 316	 ITPRTM	 350	 IVMAXI	 366	 yr

ITROLL , 	351	 IVMAXH	 367

4	 ITHCObi	 .318	 ITVENA	 352	 IVMNH	 368

ITHCMX	 319	 ITYAW	 353	 IVMNHI	 369

it ITHDEL	 320	 ITWYPT	 443	 IVMXH11	 370

ITHDOT	 321	 IT	 1296	 IVMIN	 371

ITHERR	 322	 IVMINI	 372	 }

ITHETA	 323	 IVRFAG	 373	 n

ITHOLD	 324	 IVREFL	 374	 F	 a

ITHRLD [ITHVLD]	 329	 IVTARF	 375

IVTON	 376

j;	 IU	 IVtYYPT	 378

ITHRNL	 326	
IVELNT'	 1215	 3

LTHRTE	 327 2 IUHOLD	 354	 X

i	 ITHRTO	 328

i 	 ITHTCW	 518	 if
ITHTSN [iTHSNC]	 331

l
LTIMLF	 334

^s

ITKV	 335
 

I^TI^1P	 336^

IThiPO	 3'37

ITMP1	 338

!,	 LThiP2'	 339

T

G'

nw

at	 .

1030s



IW IX ce IY

Name Cell Name ?Cell Name Cell
1

} IWLCMD 379 IXBRA 410 IYDA 421

IWPC 444 IXDA 411 IYDAP 422

f IWPCDS 380 IXDAP 412 IYDDRA 423

IWPC1 381 IXDDRA 413 IYDDRI 424

f IWPC11 382 IXDDRI 414 IYERR 425

f IWPFLG [IGFRPS] 126 IXNPTH 415 IYRN 426

f IXNROL 416 IYTCAN 427

CIWPG 384 IXRN 417 IYVORI 377

( IWPGl 385 IXSBRA- 29 IYVALD [IYVLID] 429

f
IWPL __ 386 IXTCAN 418

IWPL1- 387 IXVORI 419 IYWYPT 430

f ItiVPM 388 IXWYPT 420 IYINT 1219
(3

IWPN 389' IXINT 1218 IYDOTN 1220.

IWPNOl 390 IXCG 1247 IYCG -1248

rIWPNP 1253 IX'PTIM 1252

IWPNPI 391

IWPNI 392` iY '

IWPPVI 393

IWPV1 394 1 

IWPRNG 395

! IWPRl 396

WPTl 397 IZDDRA 431

IWPXR 398 ZZGTMP 433

IWPXRI 399 IZRN 1213 s

IWPX1 400' IZRNSV 1212

IWPYR 401 IZDOTN 1221

IWPYR1 402 IZVOR,l 432'

I IWPY1. 403 IZWYPT 442

' IWPZ1 404 IZCG 1246

IWRD2- . 405_ IZPOS 1275

( IWRD29 406 IZ 1297

! IWFRCE 1210.

^f t

i

104'
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ARRAYS

Name First Cell

IANM ( 15) 450

IBNM (15) - 465

ICSKP2 ( 28) 480

ID	 (17) 1300

IMD	 (52) 1325

IDZC	 (18) 510

IDZG	 ( 14) 530

IDZN	 ( 12) `545

IDLTVC (4) 560

IFLANG (4) 564

IPHICL (2) 234

IPHIRL 	 (2) 236

IKFLAP (2) 568

i,SNKP2	 (28) 570

ITBNK2 (2) 600

ITWASH (15) 602

`	 IWASH (15) 617'

IZN	 (12') 632

IZG	 (14) 64T

IZC	 (18) 662

IZGTMP (14) 682

IYC	 (18) 1150
IY ` (14)	 [ZG`] 1168

IY	 (12)	 [ZN] 1182

IANMI	 (30) 700.

IBNMI	 (30) 730

IWPXI	 (30) 760

IWPYI	 (30) 790`

IWPZI	 (30) 820

IWPRI	 (30)	 _ _ -	 85.0__

IWPVI	 (30) 880

IWPTI	 (30) 910

IWPXRI`` (30) 940

IWPYRI	 (30)` 970

IWPGI	 (30) 1000

'E
s^

f
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