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ABSTRACT

This report summarizes the progress achieved to data under NASA Grant

NSG 1213. In Section I, some observations on the perfect noninteraction

for a discrete parameter set is given. Section II investigates the sensi-

tivity of a decoupled flight control system with respect to system parameter

variations. In Section III, a brief description of a set of computer

programs developed for this project is given. The program listings will

be furnished upon request.

- 1 -



I. Perfect noninteraction for a discrete parameter set

When parameter variations are defined over a discrete set of parameter

values, it may be possible to compute a fixed control law which yields

decoupled behavior for all admissible parameter values. This possibility

was pursued as a first step to the decoupling problem since when a solution

exists, it may be obtained by some fairly simple computations.

It has been shown by Gilbert [1] that the class of all feedback control

laws of the form,

u = Fx + Gv,

which decouple the system,

it = Ax + Bu, y = Cx,

must have the following structure for F and G,

ki
F = -D-'A * + ,j l k£1 talk - 7T	 Ji

m
G=

jEl
X. G^,

where the matrices A ,D,Ji and G, and the scalers 
7T 

are determined from

the given matrices A,B and C, while ask and X  are free design parameters.

In addition ask determine the poles of the closed-loop decoupled system,

while X  determine the scalar gain factor of each diagonal element in the

closed-loop transfer matrix. For each system parameter set A i , Bi , there

is a corresponding i i , Gi with free parameter 
a  

and Xi The idea is then

to seek values of ask and X i such that

F1 = F2 = F3 = ...... ,

Cn =Ge =G3 = ...... .

This yields a system of linear equations in the free parameters. If a solu-

tion to these linear equations exists, then a fixed control law exists

which decouples the system for all possible values of A, B and C. Computer

programs are being developed for the generation of the appropriate linear

equations and their solution. If no solution exists, perfect decoupling
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is not possible over the given parameter set and one must proceed to a more

complex design algorithm, such as the guaranteed-cost procedure described

in the original proposal. The requirement of stability of the closed-loop

system places further constraints on the existence of a solution. Finally

the requirement of invariant closed-loop poles may be imposed by requir-ing

that the same values of a^ and Xi be used in each F i and Gi . However

the places even more constraints on the existence of solutions.

An abstract geometric approach to the problem of perfect decoupling

over a discrete parameter set has recently been developed by Asher and

Mulholland in [2]. However the approach presented here is more direct and

easier to compute.
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II. Sensitivity of decoupled system

The following example is taken from Pope 131, and involves the lineari-
zed longitudinal equations for a landing maneuver ( STOL aircraft with a

trim speed of 60 knots and a 7j degree angle of attack). Let x denote the

system state with components,

xl = forward speed

x2 = pitch angle

x3 = pitch rate

X4 = vertical velocity

and let u denote the control vector with components,

uz = elevator deflection

u2 = thrust change.

Then the system dynamics are given by (see page 23 of [31)

x = Ax + Bu, y = Cx, 	 (1)

where

-.032 -32.2 0 .133

0 0 1 0

A = (2)
.00137 0 -.743 -.00l4

-.02 4.2 96.5 -.3

0 .65E-3

0 0 0	 0	 1	 0

B - C =	 (3)

-•989 -.7E-5 1	 0	 0	 0

3.0 -.87E-3
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In [2] a state feedback control law of the form u = Fx + Gv is

determined which decouples pitch rate and forward speed. The decoupling

values of matrices F and G are computed from computer programs developed

by Gilbert and Pivichny [4]. For the nominal parameter values given in

(2) and (3), the following values are computed for F and G, see page 40 of

[31%

.01193	 .6605	 .8665	 .3E-4

	F =
	

(4)

-1.4892E3 4.9538E4 0	 -204.615

-.088	 -.0229

	G =
	

(5)
0	 3.23o8E3

A computer program was developed for the computation of the closed-

loop transfer matrix H(s), with elements h ij (s). The computer program was

used to verify that the matrices given by (4) and (5) did indeed decouple

the nominal system. The theory was verified with diagonal elements,

h(s) = 
2.1

	

11	 sa +1.6s+1	 24	 s+1

as predicted in [3]. Off diagonal elements, while not identically zero,

were smaller than the diagonal elements by a factor of 1E -5. The closed-

loop characteristic polynomial is (s + 1.6s + 1)(s + 1)(s + .12199).

However contrary to the claims in [3], the solution appears to be very

sensitive to parameter variations. For example, if the system parameter

values are rounded off to two significant figures and the same values of

F and G are used, the transfer element hal(s), which couples elevator

deflection to forward speed, is no longer negligibly small. In particular,

for the parameter variations corresponding to the above round-off modifica-

tion of system parameters,

* The values of F and G given on page 40 are evidently in error. Correct

values are given here. 	 - 5 -

F

h (s) =
	 0.0878



The coupling between thrust and pitch rate remained essentially zero (119(s)

was smaller than remaining elements by a factor of lE-5). The closed-loop

system is unstable, with a pole at s = 0.33•
If the system parameters are modified to reflect a new trim speed of

55 knots, the A and B matrices become* (page 88 of [31),

-•02912 -32.2 0 .12103

0 0 1 u

A =

.00125 0 -.676 -.00127

-.0182 4.2 89.829 -.273

0	 .55E-3

0	 0

B =
-.831	 -.6E-5

f
E

2.52	 -.73E-3
This corresponds to parameter variations of approximately 10%. If the

nominal values of F and G are used for this new flight condition, decoupling

between elevator deflection and forward speed is again destroyed. In this

case ha i (s) becomes,

hzi(s) _ -.0397(sa + 70.15s + 19.75)

s 4 + 1.76183 + 1 . 098? - 0.09738 - o.1654



As in the previous case, parameter variations result in ar. unstable closed-

loop system, In this case the unstable closed-loop pole is located at

s - 0.2$. This numerical example will be used to test the design procedure

developed in this study.
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III. Computer Programs

In this section, we describe the set of computer programs developed

for this research project. This set of computer programs falls into two

catagories (i) a digital simulation package and (ii) numerical optimization

programs. All these programs are written in standard Fortran IV language.

Hence they can be run on almost any computer installations. Some of these

programs could be very time consumming when applied to high-order systems.

It is -planned to run most of them on Hewlett-Packard 2104 minicomputer

which is owned by the University of Colorado at Colorado :';rings. With

proper arrangement of the operating system of the minicompi,Aer, these

program can be running in an interactive mode.

A brief description of these progras is given below.

(i) Digital simulation package

This program is based on the Runge-Kutta fourth-order algorithm.

The input data to the program is the parameter of the plant, observer,noises

feedback and feedforward control laws, command input v, initial states

xo, 2. 1 initial and final time to and tl . The over-all system configuration

is shown below. The output of this program is the time history of - the system

outputs, which can be either printed in the graph form or stored in an array

to be used in conjunction with the optimization programs described later.

Plant IN
W.

X = Ax+Bu t LWu 
Y,. Cx + 

Ws	 Cx

,Yc=Dx	 +

Obwver

Ym X ° (A
+Be U_4-	 x^ Ŷ t

^t

v	 F ,

t

K
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(ii) Optimization programs

Two programs are included here, Box Complex Algorithm and Rosenbrock

Hill Algorithm. Both algorithms find the maximum or minimum of a multi-

variable, nonlinear function subject to nonlinear inequality constraints:

Optimize	 F(X1) X2 , ... , XN)

Subject to	 Gk s X  s H  , k = 1, 2, ..., M

The implicit variables xN+1 , ..., X  are dependent functions of the

explicit independent variables, X1,X2 , ..., XN. The upper and lower

constraints Hk and Gk are either constants or functions of the independent

variables.

The Box Complex Algorithm is a sequential search technique which has

proven effective in solving problems with nonlinear objective functions

subject to nonlinear inequality constraints. No derivatives are required.

The procedure should tend to find the global maximum due to the fact that

the initial set of points are randomly scattered t:.roughout the feasible

region. The Rosenbrock Hill Algorithm proceeds per the unconstrained

Rosenbrock procedure until convergence is reached or a boundary zone in the

vicinity of the constraints is entered. Both of these two programs are

taken from [51, which contains detailed information.
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