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PREFACE

This report was prepared by Battelle-Columbus Laboratories under
Contract NAS8-31007, "Study of Growth of Single-Crystal Ribbon in Space",
for the George C. Marshall Space Flight Center of the National Aeronautics
and Space Administration.

The report was written by Dr. Van E. Wood, Solid State and Optical
Sciences Section, and Dr. Alan J. Markworth, Metal Science Section, Others
contributing to the work were Dr. R, P. Kenan and Dr, A. E. Austin of Battelle-
Columbus, and Dr. William Oldfield, consultant from Materials Research and
Computer Simulation, Westerville, Ohio. The program's technical monitor (COR)
at NASA-MSFC was Rudolph C. Ruff,



SUMMARY

A study is presented of the technical feasibility of growing single-
crystal silicon ribbon in space environment. Electromagnetic shaping and
other shaping processes are considered in separate tasks Procedures are
described for calculating the electromagnetic fields produced in a silicon
ribbon by an rf shaping coll. From a knowledge of these fields, the forces
on the ribbon and the degree of shaping to be expected are determined. 1l.ae
expected steady-state temperature distribution in the ribbon is calculated
in the one-dimensional approximation. It is indicated that shaping coil
current required has in the past frequently been underestimated, currents
in 100 A range heing needed to produce ribbon of 0.4 mm thickness, even with
very small shaping coils very close to the melt. The power requirements for
shaping an isolated ribbon are rather large,by the standards of near-term
space missions, but for shaping to 0.4 mm a ribbon being drawn from a free-
floating spherical melt, the power required is in the range of a few kilo-
watts which does not seem excessive. Calculations on simplified models
indicate, however, that lack of flatness of the shaped ribbon and excessive
heating of the melt by the eddy currents induced by the shaping fields may
pose problems An analysis of the relative effects of various kinds of forces
other than electromagnetic showed that in the space environment capillarity
forces would dominate, and that the shape of the melt 1s thus principally
determined by the shape of any solids with which it comes in contact This
suggests that ribbon may be produced simply by drawing between parallel wires
A concept has been developed for a process of off-angle growth, in which the
ribbon is pulled at an angle to the solidification front. 1If it could be
implemented, such a process promises to offer increased growth rate, better
homogeneity, and thinner ribbon. While we recommend that work on development
of concepts for space processing of silicon ribbon be continued to the extent
consistent with the overall goals of the space-processing program, we do not
recommend further terrestrial experimental work because of the highly space-

oriented nature of the most promising concepts.
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1. INTRODUCTION

1.1 Background

From almost every aspect, the least satisfactory part of the process
of manufacturing silicon single-crystal wafers, whether for integrated-circuit
or solar-cell application, is the cutting and polishing of the wafers from
the crystal boules. The process is expensive, requires skilled hand work,
wastes at least half the crystal, and introduces strain and heavy-metal
impurities into the finished wafers. Consequently, there has been consider-
able interest in developing methods of producing single-crystal ribbons or
films directiy. In this report, we describe investigations into some aspects
of whether processing in & space environment might be a feagible and useful
method of producing silicon single-crystal ribbon, A little interest also
attaches to other semiconductors, but inasmuch as silicon is by far the most
widely used material for integrated circuits and is the prime candidate for
photovoltaic cells for large-scale power conversion, it will be the only

material specifically discussed. Some other work has been done along these



)

lines. A program at Texas Instruments looked into electromagnetic shaping

of silicon ribbon,; it involved some terrestrial experiments which were not

(2)

too successful. A more recent program at McDonnell-Douglas i{s devoted to
a conceptual and economic study of an overall space processing system. In
this proposed system, electromagnetic shaping is again used, but the

ribbon is drawn from a continually repelenished levitated sphere. Thls con-
cept is very nicely adapted to space processing. We shall describe aspects

of these programs in some more detail later.

1.2 Organization of Program and of Report

This is the final report on a program involving three separate
tasks, the first two of which were carried out separately. The first task
was a study of electromagnetic shaping, including developwment of methods of
calculation of the electromagnetic fields, forces, and power requirements,
and thermal effects involved. This work is described in Section 2, where
we show among other things that the current needed for electromagnetic shaping
has generally been rather underestimated in previous work. In the second
task, we examined other possible space-processing methods and isolated the
principal factors involved in space growth of single-crystal ribbon. The
results of this investigation and a suggested method for drawing ribbon in
space are described in Section 3. The third task, discussed in Section 4,
was an assessment of the overall technical prospects for space production of
silicon ribbon and a recommendation of the directions future work might
profitablv take.

Several areas were specifically excluded from consideration because
1t was felt investigation of them would be premature:

1. mechanical stability against dynamic perturbations,
2. degree of crystallinity and perfection of ribbon produced (except for
a few general comments),

3. economic feasibility of any process.

e e akncan
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In this report, equations and figures are numbered separately
for each section, using a multiple decimal system, in order to avoid
excessive renumbering. Thus, Eq. (2.2.1) refer: to the first equation
of section 2.3. The references, on the other hand, are numbered consecutively
for the whole report to avoid excessive repetition. Since there are only a

few tables, they too are numbered consecutively through the whole report.

1.3 Physical Properties of Silicon

In Table 1 we have collected, fo: convenience, representative data
on the physical properties of silicon which are potentially useful in the
study of crystallization and electromagnetic shaping in this material. Not
all the data in Table 1 are essential to the calculations presented in this
report, though. We have not attempted to make a complete literature survey
or to determine a '"best" value for the parameters, but we have insofar as
possible selected experimental results determined near the melting temperature
in both the solid and liquid phases. These data will be entirely accurate
enough for the present studies. Here,and throughout the report, SI units
will be used.

We shall adopt the following convention for the symbols referring
to these data: cymbols without a subscript will refer to the liquid phase;
symbols referring to the solid phase will have a subscript "s".

The thermal diffusivities, » = K/CA, calculated from rine Table I

6

data are #® = 3.0 x 107° m’/sec in the liquid state and »_ = 9.9 x 10°° o?/sec

for the solid. The latter value can be compared with an extrapnlated estimate

(13). These diffusivities are

of 9.4 x 10"6 mz/sec given by Touloukian et al
large, considering the small dimensions over which shaping of a ribbon is
liable to take place; so in investigating thermal properties, it will not be
necessary to consider other -han cteady-state conditionms.

The svrface tension, and consequently power required for shaping,
might be reduced by heating the melt above the melting temperature, particularly

(2

ac reduced pressure . We will not consider this possibility in our numerical

calculations, though.
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TABLE 1. TYPICAL VALUES OF PHYSICAL PROPERTIES OF
SOLID AND LIQUID SILICON NEAR THE MELTING TEMPERATURE

Proparty and Symbol Value Refs,

Liquid Solid
Melting temperature, Tm 1685 K 3
Latent heat ot fusfion, L 1.80 MJ kg~1 3
Density, & 2,49 x 103 kg o3 2.29 x 103 kg o3 4
Thermal conductivity, K 67. W n K"1 22.0 W . 5,6

I 2 1.1

Specific heat, C 9.12 x 1027 kg 'k~ ' [9.73 x 10° 7 kg k|3
Resistivity, p 8.3 x 10-7 ohm m 1.7 x 10—5 ohm m 7
Surface tension, vy 1 1
(or surface free energy) | 0.72 N m 1.23 N m ({111}plane’ }8.9
Viscosity, u 2.0 x 10_3 N sec m-2 10
Emissivity, ¢ 0.5 (rough estimate)|0.6 (extrapolation) 11,12

e



2, ELECTROMAGNETIC SHAPING

2.1 Statement of Problem

The objectives of this portion of the program are the development
of analytical techniques and calculational procedures, including computer
programs, for determining electromagnetic fields and forces and temperature
changes within a column of molten silicon being shaped into a thin ribbon by
eddy-current forcas induced in the silicon by an external shaping coil:
determining the power requirements and degree of shaping that may be obtained
for given coafigurations and dimensions of the shaping coil: and assessing
effects of the freezing o: the shaped ribbon near the shaping position.
Electromagnetic shaping is obviously attractive as a potentiully contamination-
free shaping method, and appears particularly attractive for use in space,
where there will be no difficulties with convection in the melt, Moreover,
it has generally been consideredia;pparently on the baais of the early
(

estimates of Gaule’ and Pastore , that the power requirements for electro-
magnetic shaping to submillimeter thickness were quite moderate. 1If the
ribbon were drawn in space from a large levitated sphere, as in th: ~Nonnell-

(2)

Douglas concept , further savings in required power might be anticipated
because of the removal of the constraint of constant cross-sectional area of
the molten zone which the gravitational field effectively imposes on earth.
One might in principle attempt to solve the electromagnetic problem
in a completely general way for a given coll configuration by assuming
some reqasonable shape for the molten ribbon, calculating the eddy currents
and force distribution for this shape, allowing the shape of the melt tc be
modified slightly in the direction indicated by the force distribution,
recalculating the currents and forces, and so forth, until the increase in
surface free energy of the melt on further shaping just balances the electro-

magnetic work necessary to achieve that shaping. Actually we shall follow a
program rather like this, but to aveid having to solve an extremely complicated

three-dimensional eddy-current problem, in conjunction with a free variational

problem to determine the shape ot the melt, we will make what we believe are



reasonable assumptions about the geometry of both the shaper and the ribbon.
This will also enable us to identify more readily the factors of primary
importance in determining the effectiveness of the shaping process. 1In
return, we give up in principle, though not in practice, since the exact
problem would eurely prove wholly intractable, some knowledge about the
exact shape of the frozen ribbon.

As far as the shaping coil goes, it is clear that it is sufficient
to consider it as made up of pairs of straight wires running parallel to the
flattened surfaces of the ribbon and perpendicular to the pulling direction,
and symmetrically disposed across the melt, since wires running in any other
directions will not be effective in producing ribbon of the desired shape.
Moreover, it will be adequate to consider one pair of such wires, since the
field distribution from a group of shaping wires can be obtained by adding
vect .1ally the fields from each constituent. Thus we shall largely
concentrate our attention on a single hairpin-shaped coil, with the bend
sufficiently remote from the ribbon to have negligible influence, disposed
as described above (and illustrated in Figs, 2.3.1, 2.3.2, and 2.4.1).

We will neglect any effects of the induced fields back on the shaper, which
after all carries a very high current., The single hairpin shaping -oil is

also very important as a limiting case; for a given total input current and

a given distance b of closest approach of coil to melt, it is easy to see

that no greater degree of shaping can be obtained than can be gotten by putting
all the current into single coil at the distance b, Some more complex
configuration may have some other desirable feature, such as shaping effectively
over a greater ribbon length, but for a given ribbon thickness, it will

take more current.

As for the ribbon, we shall assume that it is drawn in such a way
that in the critical shaping region its broad sides are reasonably flat and
"vertical'--that is, perpendicular to the plane of the shaping coil. Calcu-

(11,14)

lations on surface energy of melt-ribbon configurations seem to

ind.icet. that such a configuration can be olitained with a shaping coil similar



to that described above. Of course the coil must then be interacting
significantly with the non-"vertical' port?on of the liquid, but we must ignore
this in the interests of simplicity. 1t does seem(ll) that there are circumstances
where this is not at ail a bad approximation. Another approximation is that

any possible change of ribbon shape between the plane of the shaper, where

the electromagnetic force is greatest, and the freezing plane is ignored.

It might be possible under some circumstances to arrange the pull rate so

that the flat ribbon shape was ...intained, but one would not wish to -ely

on chis. Finally, we assume the ribbon is very broad in comparison to its

(2)

thickness, as it appears it will have to be for satisfactory productivity;
so it will be a good approximation to assume that the fields, forces, etc.,
do not vary along the broad dimension of the ribbon. This is a tremendous
simplification, since it reduces a fully three-dimensional problem to a two-
dimensional one, (There may still be field components in all directions, but
they do not vary along one). To our knowledge, no three-dimensional eddy
current problem of comparable complexity has ever been solved, numerically

or otherwise. The flat ribbon would presumably be terminated by little

caps of semicircular cross-section (Fig. 2.4.1); although these may te
important in determining the surface energy, the shaping field effects un
them can be neglected. Originally we attempted to avoid the flat ribbon
assumption by assuming the ribbon cross section was that ¢f an elongated
ellipse. Eventually, however, we realized that this only complicated the
problem withont giving much in return; in particular, it is mucn harder to
consider the effects of the freezing interface if the ribbon is not flat.

The effects of the various approximations are discussed qualitatively, and

to some extent quantitatively, elsewhere in the report.

When specific ribbon dimersions are needed for purposes of numerical
calculation, we shall assume a ribbon width of 6 cm and thickness 400 um. The
same values are generally used for illustration in the McDonnell-Douglas report(z).
For solar cell applications, somewhat thinner ribbon-say 250 um--would be
desirahle; in the ribbon-from-levitated-sphere setup, though, the amount of
e tra power required to achieve the lesser thickness does not ordinarily appear

to he verv great,
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2.2 Basic Electromagnetic Equations

In this section we give, without derivations, the basic equations
for determining the eddy current density in and induced force aistribution
on a metallic melt in the field of external shaping coils., SI (mksA) units
are used, A single exciting frequency will be assumed; generalization is
straightforward., A superscript 0 will be used to indicate values of various
qu.atitities in the "vacuum" region outside the molten zone; no superscript
will indicate values inside the melt. We discuss first the molten ribbon
and the space around it. When we come to discuss the solidified ribbon and
the solid-liquid interface, we will use a superscript "g" for fields and
forces within the solid region. A tilde (~) underneath a letter will bc
used to designate a vector quantity,

For a single driving frequency f = w/2n, and neglecting, as usual
in eddy-current problems, small displacement current terms, the independent

Maxwell equations to be solved are:

Inside Outside
i . 0 0
Vx E =-1u0q§ VxE = -iuaqg (2.2.1a,b)
0
Vx H=0FE VxH =0 (2.2.2a,b)
0
VeE =0 (2.2.3)

where o is the conductivity of the molten material, and E and B denote the
steady parts of the electric and magnetic fields; that is, E(t)= Egiwt,for
example. The vsual prucedure of taking the curl of the curl equations leads

to the vector Helmholtz equations (inside) and vector Laplace equationms

(outside)
2 2
VE = Qi/8T)E v - o (2.2.4a,b)
‘vzﬂ = (21/62)ﬂ VZHO =0 (2.2,5a,b)

1/
where the skin depth & = Q/gona) 2,



In the solid, the corresponding Maxwell and Helmholtz equations will
naturally be of the same form as (2.2.1a,2a,4a,5a), but with ¢ replaced by
Tg the solid conductivity, and 8§ by 68. the skin depth in the solid.

The ski.. depths § and 6s are among the most important physical
parameters of our problem (or of any eddy-current problem). To provide an

1dea of orders of magnitude, we note the numerical relationship
6, 2
4,737f = 106 , (2.2.6)

where f is in MHz and 8 in ym. Thus for example for an operating frequency
of 21.1 MHz, the skin depth in the melt will be 100 um. At the same frequency,
the skin depth 68 in the solid will be about 455 ym., The boundary conditions

to be satisfied at the melt-vacuum interface are

For the electric fieid For the magnetic field
= 0 = 0 7.
E =k B =B (2.7.7a,b)
- 0 0 2 9
(VxE) = ("xE) (VxH) =0 (2.2.8a,b)
g =g H =H° (2.2.9a,b)
~n ~n ~m ~n

where subscripts t and n denote as usual components tangential and normal
to the surface, respectively, Not all these conditions are independent. At
the solid-liquid boundary, the same equations hold if superscript "0" is
replaced by "s", Additional boundary conditions, at large distances from the
ribbon and at the ribbon's center, are discussed where they are specifically
needed.

The eddy current density in the melt may be determined from Ohm's
law

1=0E (2.2.10)

and the steady force density on the melt found from

£=5 Re (Jx W) . (2.2.11)
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If we define a complex Poynting vector by

S=1/2 (ExH) (2.2.12)

~

and then define

= - 5 n dA , (2.2.13)

~

where the integral is taken over the surface of the ribbon and n denotes

an outward normal to that surface, then Re [ is the steady Ohmic power loss
in the ribbon and Im [l is 2 w times the average magnetic energy stored in the
ribbon(ls). At the input of the shaper coil, the effect of the eddy currents
is thus to provide an additional impedance Ze = ZH/IZ, where I is the peak

current in the coil.

2.3 Fields and Forces in Uniform Ribbon

In this section we investigate the forces exerted on a semi.
infinite region of a uniform metallic material (such as liquid Si) by a single
long straight wire carrying alternating current of peak value I. The wire is
parallel to the surface of the metallic half-space, which we shall refer to as
the melt, although a real molten metal would of course be deformed away from
the wire. Thus, the principal assumption in addition to those made previously
is that the liquid-solid interface is far enough away from the shaping region
that it can be ignored. Techniques to avoid having to make this assumption
are described in Section 2.6, and its region of validity is discussed in
Section 2.7. Also, since we are really primarily interested in a thin ribbon
ratne. than a semi-infinite region, the results of this section will only be
strictly valid when the skin depth is small compared to the plate thickness
t say & < t/3. This approximation will also he removed in Section ?.6. As
we shall see, there may be conditions under which a relatively large skin
depth »ay be desirable; but the results of this section will still be good
first approximations at any reasonable operating frequencies.

Aspects of this problem have been studied before, particularly by
(16), and by St011(17).

Paitsky and Jerrard The force distributions were not

stralicd, though. Qur simple method for obtaining the fields and forces at
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the surface of the melt is zlso new. Furthermore, Stoll's account contains

a good dea’ of incorrect mathematics. We have tried to clarify this part of
the d scwi'ion. This relatively simple problem is very instructive in show-
ing the § neral nature of the force distributions and the relevant combinations
of raremetzrs of interest.

The notation to be used is illustrated in Fig. 2.3.1. We call the
wire-to-melt perpendicular distance b, The direction along which the melt
ie deing d -awn is x; this is made more apparent in Fig. 2.3.2, where the two-
wire thin -ibbon case 18 illustrated. By the assumed symmetry of the problem.
nc quantii ites can vary with z. The problem to be solved is therefore two-
dimensional.

We also note that the magnetic field of the isolated straight wire
has no com:onent along the direction of current flow, (the z direction) and
that the presence of the molten zone, with no variation along z either, can-
not alter this, Thus our Maexwell equation ¥V x H = o E inside the melt reduces
to k[2 ! /ox - AHxlay] = oE. So E inside the melt and, by continuity, outside

has only a z-component. We can write the Maxwell equations in component

form a
3E
~1 e oy =_a_:2. (2.3.1a)
JE
1y WHy =__2 2.3.1b
Koty =55 ( )
aqx - dH,, {z oE, inside (2.3.2a)
dn 3?“% 0 outside (2.3.2b)

Rather than using these equations and the associated boundary conditions
directly, it will be ci¢ venient to follow Stoll and introduce the magnetic
vector potential K, iefined by B = “oﬁ =vxA. For H not to vary in the 2z
direction, the »- and y- components of A must be constants, which can be taken

without logs- of generality to be zero. Thus, we are left with

oA

=L —2 (2.3.3a

I 5 . . )
2A

po. o222 and trom (2.3.1a) (2.3.3b)
y Ue O

P - - ‘l'qu , (2.3.3¢)
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where again an unimportant constant term has been dropped. Differentiating (3a)
with respect to v, (3b) with respect to x, and using (2) and (3c) we get the
Helmholtz equations for Az’

2 2
9_%; + é_ﬁi = Q2A3 inside the melt, (2.3.4a)
A% dy2

2 2

04 1 34 . 0 outside, (2.3.4b)
32 3y

where we have indicated by A3 the value of Az insfide the melt (region (3) in

Fig. 2.3.2) and by A2
2
az = 21/4°. The boundary conditions at the surface of the melt (y = 0) can

the corresponding value just outside. 1In (2,3.4a),

readily be obtained from those for E and H. Continuity of Ez yields

Ay=hAypy=0 (2.3.52"
Continuity of Hx gives
AA
?f_Z =_3.,y=0 (2.3.5b)
3y oy

Continuity of Hy provides no additional information. Az(x,y) must equal
Az(~x,y) in order that Hx(x,y) = Hx (-x,y) and Hy (x,y) = - Hy(-x,y), as in
the case of the isolated wire. Thus also BAZ/BX =0 at x = 0.

We will solve Eqs. (2.3.4), together with boundary conditions (2.3.5)
ind appropriate conditions at infinity, by the Fourier transform method.
efore doing this, however, it will be helpful to discuss the vector potential
of the isolated current-carrying straight wire.

+(1is)

The vector potential A at (x,y) due to an isolated wire at (0,b)

is given by

K(is)(x,y) = 7 + (y-b)z) F K ,

where K is an arbitrary constant vector, independent of x and y. It is

easily shown that this yields the usual formulas for the components of the
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magnetic field of the isolated wire. As with the electrostatic potential,
a constant term may be added since only differences in potential have
rhysical significance. The difference im vector potential between two

points of different y but the same x is clearly

2

+(18) =(18) woIf | x3 (1-b)

A (x, - A (X,yp)= 2 _ 1In 2.3.6
YD AP TN (2.3.6)

18)

Consultation of a table of integrals (for instance, Eq. 1.4(2) of Exdelyi‘ ')

shows that (2.3.6) can also be written in the form

2(®) (xoyp) - X“”(x,yg) . p;.‘lﬁ ‘;?a(; %5 coakx(ek(yl-b)_ek(yg-b))

for y) and yp < b, This integral is perfectly well behaved, but the separate
exp 'nential terms both diverge at the lower limit. However, we will not
get into difficulty using such integrals to represent the vector potential

of the isolated wire at a given pouint--that is,

k(y-b)

Kis(x-}') = Holk ‘o di cos kx e s

m—.
m 0k
so long as we remember that only potential differences are physically
significant.
Since A is an even function of x, & cosine transform on this
variable is appropriate. We define

I

Ki(k,y) = .; Ai (x,y) coskx dx, 1 = 2,3

Multiplying Eq. (2.3.4) by cos kx and integrating on x, we find

2

37A2 2 -

—- =k A ' (2.3.78)
3y

3283 _ k2 L el a

—= = a")A, (2.3.7b)
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O ky ~ky
A2 C2 e + D2 e
and
- a/kz + zy _Vk +ay
A3- C3 e + D3 e

where it must be borne in mind that the coefficients C2, C3, Dz, D3 can

depend on k. In order that the solution be finite as y - — =, we must

have D, = 0, The Fourier Inversion Theorem thus gives

3

Az(x,y)-% J; [Cz(k)eky + Dz(k)e-ky] cos kx dk

2 @ c
Aa(x,y) *m.0%3 (k) e
When o -~ O-that is, when the skin depth § becomes infinite_these

results must go over to those for the isolated wire; that is

Lol o ¢

e ky
i onm J0Xx

A e

This can be achieved if

D2 -0,a—-0 ;

C3 - Cz, o~ 0; and
-kb
C. (k) = pol e
2 T x

&kz + uzy

cos kx dk, ¢ - 0,

cos kx dk

i=2,3.

(2.3.84a)

(2.3.8b)

(2.3.9a)

(2.3.9b)

Cz(k) must be independent of o for the vector potential to approach that for

the isolated wire at large b.

C2 + D2 - C3 .

——— - —

3 2
k(C,-D,) = Jk* +a” ¢

3 .

Inserting (2.3.9) into (2.3.5), we see
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Thus, we finally obtain

pI . - k(y-b) =k(y+b) -
0o |*® e e k- yk +0° |
Ay = o Jo Lk TR T e ks ) o8 kx dk,
uol o sz + azy-kb

Ay(x,y) = 3 Jo kv K2+ o2 dk.

(2.3.10a)

(2.3.10b)

From Eqs. (2.3.10), all the fields forces, ~tc., of interest can be calculated

if the integrals can be evsluated. The integrands of A2 3

and integrable everywhere in the range of integrationm.
From (2.3.3) and (2.3.10b) we can find the field romponents

inside the metallic region

“lpwIng j;: + @y-kb

E, = cos kx dk H
z n [“27+ d + k
2 2
W L1 {k? s aedd H AR e dk .
u ——— ===
x mdio [P
ny.;l-r[‘; ok FUYK yosin e ak .

vk +¢2+k

By multiplying the integrand byﬁ-"—l‘ , the alternative forms
+ &F -k

T b Jk +e y-kbCOskx(k-Jk2+02) &

z N J0
2 0 2.2
I Lol g T L R Y I A
x 21 40
a2 T2
B .1—5-[“ etk + @ y-kb ainkx(kz-kjk2+az) K
y 2miJo

can be obtained,

and A, are finite

(2.3.11)

2.3.12)

(2.3.13)

(2.3.11%

(2.3.12%

(2.3.13%)



ot s et gt o at £

B

18

These forms are useful when b/8 is large. Numerical cnlculationa(16’17)

show that the fields fall off very rapidly (fasi.sr than exp (-.ly[/b)) inside
the melt. The force distribution, depending on a product of electric and
magnetic fields, falls off more rapidly still. Thus it seems appropriate to
concentrate our attention on the fields and forces at the surface of the melt,
where they are largest; however, by (2.2.13), these fields are all that are

needed to calculate the power requirements.

At the surface, we have

i pwl -k
¢ s ; (2.3.14)
k

- b
E (0)- ‘h—— cos kx dk :
z L L

[ e-kb coskx \kz +a_! dk

1
H (0) == |
x mJo \‘[FT-H:'Z + K
LLife e coskx dk - [ e cos kx k ko . 2.3.15)
nUo JO +af +k ! (2.3.
~kb
1l (we k sinkx dk . (2,.3.16)
(0 =2 [° ;
y W +a® +k

where Ez (0) is short for Ez(x,y-O), etc, These integrals can be evaluated
in terms of certain generalizations of Bessel functions known as Struve
functions(lg), Bessel functions of the second kind, and elementary functions
by writing the cos kx and sin kx terms in exponential form and using the

known results(ls)
-pk
dk e P n 1
= >— (4, (ap) - Y,(ap)) - =5 , (2.3.17)
E“k“ 2ap ~1 1 .2p2
and
e coskx dke S (2.3.18)

Ao e i

e



together with the result, obtained from (2.3,17) by differentiating with

respect to the parameter p,

k

fw dk k e P " 1 3
= a7~ (H (ap) - Y, (ap)) - 3 - . (2.3.19)
k +k” + a (2ap "2 2 3 .3paf
Eqs, (2.3.17) and (2.3.19) are valid tor Re p > 0, larg u| < 1/2, conditions
which are always fulfiiled in the problem of interest here. 1In these

equations, i and H are the Struve functions of the first and second orders.

~l
Thiay should not be confused with Hankel functions which are also frequenty
denotad by H's but without the tilde. (Also, although we used the tilde else-
where to denote vectors, the Struve functions are of course not vectors),

We find that the fields at the surface can be expressed aa

@l 2 - -
1 1 - mT1 1
E, (0) = =% -L——B—z-;f; - @0y - A0y ¢ sy Raer, o))
(2.3.20)
r (LB (TH (A - Ya()  Hy(A )-Ya(A)
“‘°"‘n¥u+g? 5 {EL"L——E— + 2 % ]
21 o3e2, 2.3,21
-5 ] (2.3.20
and
2 2
_;_ (i C (1-0TB T Hy (A )-7a(A))  B2(A+)-Y,(\y)
H () =552 25 553353} 3-Zl——-,,2 = e }] , (2.3.22)
where
A, = BL(1-E) + 1(1+5)) (2.3.230)
Ao = B((1+8) + 1(1-D)] , (2,3.23b)
B=b/t (2.3.23¢)
and

£ =x/b (2.3.234)
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The variation in the complex variables A+, A- as € increases from zero is
sketched in Fig. 2.3.3. 1t should be notad that we have expressed each field
in terms of the product of a coefficient which is s’—ilar to the field for
the isolated wire and a function ot the dimensionleas variables § and .
Thus the most appropriate combinations of variables for studying the problem
have been identified. Also, we may make use of the known properties of the
Struve and Bessel functions to obtain in a straightforvard way useful
numerical results,

We could now write down general expressions for the force distribution
at the surface, but we find it more convenient to consider first the fields :a
the large and small B regioms.

For large 8 (f >> 1), A+ and A- will always be large in magnitude,

and we may use the asymptotic expressions(lg)

. S Ims 1Y2)
R (2) - Y. (2 =5 é;o M'(n-m + 1/2)(1/2)2m-ﬂ 1

These expansions are valid on the entire first sheet of the complex plane
except for the negative real axis, which, as Fig. 2.3., shows, is never crossed,
Altematively, we can set y = 0 in Eqs. (2,3.11'-13’), and expand the remaining

square roots., Either way, we obtain the asymptotic expansions

2 2
E (0) ~ -1 [ 11-€ 1 1.3 1 1-3¢2

- 2 2 2 N
~——1 1 ' .1— 1- P 1-£ 1 _1- .
o ~T e li-5 (G T -gade] o e

and

2
1 (0~ g | 11 (-1 %éﬂ} : (2.3.26)

=)

The next term in Hy(O) is of order 8'3.
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¢‘L'..A A-PLONE

FIG. 2.3.3.

’
A ~ RA

THE COMPL.EX A-PLANE CUT ALONG THE NEGATIVE REAL
AXIS, SHOWING THE VARIATION OF THE FUNCTIONS
., A_. (EQS. 2,3.23a,b) WITH THE PARAMETER E.

FOR ¢ LESS THAN ZERO, A, and \_ ARE INTERCHANGED.

e R



R
—i
e
S
S

22

For small p—that is, for the wire very close to the melt—we can

(19,20)

use expansions of the H's and Y's valid for small values of the

argument to obtain

p WI l Y] ~
Ez(O)- ;n [.-%+%B0 1<1“BV1—;E_+/\Y";'/J+ s (2.3.27)
1 1 =) '
Hx(O) =T m) + -3~ + 1 \%}] + . (2.3.28)
o) = Lo —2
Hy( ) = 576 E:Ef . (2.3.29)

In this case we have only displayed terms through B; the first neglected
terms are proportional to 82. Through terms in B, Hy(O) is real.

Now by using the relation (Eq. (2.2.11))
2By L.
f’z—Re[ij*] >

where

—

i=cE
we may find the force distribution at the surface in the two situations

(large B and small B) for which we have given expressions for the field

components. Since

E=E X and B* = u* T+ W ﬁ' ’
z X y

the force distribution has in general two components, one normal to the
surface

W

= -2 *
fn = Re (Esz) s (2.3.30)

and one tangential to the surface

uoo *
foo ke EH) (2.3.31)
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In the asymptotic (B >> 1) regime, we find from Eqs. (2.3.24-26),
(2.3.30) and (2.3.31), that

2
-+ I - 2 5
£(0) ~—2— L [, _1 R G N L , 2.3.32
" s (ued)? [-3C §2/ 28 1t (2:3.39
b 128
£(0) ~2— —5_ [, L |
t RS X [ 25 " §7 _l (2.3.33)

There are several general observations that can be made about these force

distributions:

1, fn, as would be expected, is a force on thc melt, tending to deform it
away from the wire.

2. tt is a stretching force, tending to pull the surface of the melt away
from the line of closest approach.

3. Both force components fall off rapidly when IEI becomes large.

4, The coefficients of 8-1, 8-2, etc., are bounded for large £; so it is

clear the expansion is valid for large 8 for all values of ¥,

5. The maximum value of Iftl occurs approximately at lEI = 1//7;

the maximum of fn is of course at € = 0,

6. For large B, the ratio of the tangential force to the normal force is

very small, To be specific,

O max 337 )
£(0) max 409 B B

80 f max is less than 1 percent of f max for B 2 5.

In Fig. (2.3.4), we have plotted £ (0)/(u01 /nb 8) as a function
of the normalized distance along the pulling direction £ for § = 5 and
B= . It is obvious from the curves that this quantity depends only very
weakly on B for § = 5, and tabulation or plotcing for other R values in the

asymptotic range is unnecessary. Im Fig. (2.3.5), we plot £ (0)/(u012/n2b4)
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F1G. 2.3.4.

NORMAL FO: JE DENS1TY AT MELT SURFACE, FOR TWO VALUES OF

B = b/6, AS A FUNCTION OF € = x'b, THE NORMALIZEL DISTANCE
ALONG THE MELT AWAY FROM THE LINE OF CLOSEST APPROACH

(€ = 0) OF THE SHAPING WIRE. CURVES ARE SYMMETRICAL ABOUT
£ = 0.
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FIG. 2.3..

TANGENTIAL FORCE DENSITY AT MELT SURFACE, FOR TWO VALUES
OF B = b/8, AS A FUNCTION OF £ = x/b, THE NORMALIZED
DISTANCE ALONG THE MELT AWAY FROM THE LINE OF CLOSEST
APPROACH (F = 0) OF THE SHAPING WIRE, CURVES ARE ANTI-
SYMMETRICAL ABOUT € = 0.

-
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vs. £, again for 8 = 5 and B = ». The same weak dependence on B is observed.
While we have normalized the curves so as to plot quantities that are finite
for large B, actually f - » and f - 0 as f - = for fixed b. In Fig. (2.3.6),
we plot on the same axes f (0)/(u01 /n b ) and f (0)/(u01 /ﬂ b ) vs. £ for

B = 5. In this graph, the forces are normalized to the magnitude of the total
force exerted by the isolated wire on a test current at the corresponding
point. fhe relative smallness of the tangential force is obvious.

In the small B (B << 1) regime, we find from Eqs. (2.3.27-31)

2 N
VS § 2 r 3
_ Ml g2 ¢t e
£a(0) - my 4 l. A(LES ¢ - STT) B - 3ﬂ \1+'£‘2+ In b‘ o '
(2.3.34)
2
Wl 2,
Mol mp? s 88
ft(O) T 16 \1 -3 Toe (2.3.35)
We notice the following features of these expressions:
1. The forces are in the same directions as they were for large B.
2. For given fixed values of b and £, the forces are much smaller for a
given small value of B8 (say B = 1/5) than they were for a corresponding large

value of B (say R = 5). This is simply because in the small-p case the force
distributions extend into the melt.

3. The logarithmic term in fn indicates that the expression (2.3.34) may

not be valid for large E£.

4, For moderately large €'s, the tangential! force may be relatively large,
even larger than the normal force.

5. For fixed § and very small b, the shaping force f 2 max only increases

as 1/b; while it increased as 1/b in the region where b was larger(Eq. (2.3.32)).
Thus it seems probable that there is a point such that moving the wires in
further to get a larger force will not be worthwhile, since the problems
arising from any mechanical instabilities will be great, and the gain in
shaping forces not so large. These remarks sufficiently describe the small-f
situation so graphs of the force distributions will not be necessary, particu-
larly since the regime where Eqs. (2.3.34-35) hold is not of great practical
interest. Values of fields and forces for intermediate values of B could

readily be obtained numericallv if needed,

e e
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FIG. 2.3.6.

NORMAL AND TANGENTiAL FORCE DENSITIES, NORMALIZED TO
MAGNITUDE OF FORCE ON TEST CURRENT AT £ = O, FOR B = 5.
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2.4 Determination of Degree of Shaping

2.4.1 Introduction

In this section, which for greater clarity will be divided into
several subsections, we will develop expresaions for the electromagnetic
work done in changing the ribbon thickness, for the surface energy change
with thickness, and for the shaper current required to shape the ribbon to
a selected thickness. Power required for shaping is discussed in the fol-
lowing section. We shall consider first an isolated ribbon--a strip of
liquid metal of fixed cross-sectional area extending a long way in both

(2>

directions from the shaper--and then the McDonnell-Douglas RMGS setup
where the ribbon is pulled from a sphere of molten Si near the shaper.

Agide from its analytical simplicity, the isolated ribbon case is important
for several reasoms:

1. The critical ithickness-limiting factor for the isolated ribbon is the
sharpening of the melt curvature at the ribbon edges. It has been necessary,
owing to the complexity of the problem, to ignore this in the RMGS calcu-

lation(ll)

; so the isolated ribbon provides an opposit:-limit approximation
to the true intermediate situation.
2. 1In terrestrial experiments(l), gravity will tend to inhibit shape changes
along the meniscus between the ribbon and the molten silicon supply. Thus,
the cross-sectional area at the shaping level will be difficult to change
and the shaping should be rather similar to that in the isolated ribbon.
3. Suggestions have been made for shaping thin ribbon by passing it through
a series of progressively narrower coils, or by preliminariiy shaping it
by some other method and then finally thinning it electromagnetically. The
isolated ribbon is clearly a good approximation to these situations.

The ultimate thickness of the ribbon is conveniently calculated by
the energy balance method. As the ribbon becomes thinmer, the change in
surface free energy to shape it further increases--that is, it becomes more

and more difficult to shape the thinner it gets, Meanwhile, the normal
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electromagnetic force on the ribbon is less, the thinner it is, and there
will be less and less electromagnetic energy available to do the work of
further shaping. The thickness at which the free energy required for an
infinitesimal further thinning 1s just equal to the electromagnetic work
required to do this thinning will be the actual thickness of the ribbon in

a given field. We first determine this ultimate thickness for a flat ribbon
of finite width with circular-cylindrical terminations, such as discussed

in previous work(l’la).

2.4.2 Surface Free Energy for Isolated Ribbon

We consider a ribbon of width W and thickness t, with curved
enis of semicircular cross-section of radius t/2, as shown in Fig, 2.4.1.
Most of the increase in surface energy on shaping comes from the end regions,
which is why they must be included. If the central portion of the ribbon is
indeed flat, this configuration with the semicircular ends will be that of
lowest free energy. We will assume that the shaping takes place uniformly
over a region of height H in the pulling direction; the shape of the normal
force vs, distance curve along this direction (Fig. 2.3.4) ensures that this
approximation(made implicitly by Gaule’ and Pnltore(la)) will be reasonably
good. Then if we consider the ribbon being shaped from a width w1 and thick-
ness t, to a width w2 and thickness t2, the change in surface free energy is

AE =Y H[(zw2 + ﬂtz) - (zw1 + "tl)] , (2.4.1)

with the constraint

wiuere v is the surface tension. If we let t2 =t - At (so At is a positive
quantity), and take the limit of AES/At as At goes to zero, we find

s 2yWW (2.4.2)

— e e
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2.4.1. ASSUMED CONFIGURATION AND NOMENCLATURE FOR DETERMINATION
OF DEGREE OF SHAPING OF MOLTEN RIBBON BY HAIRFIN COIL
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2.4.3 Electromagnetic Pressure

Although the eddy current force is a volume force, other dis-

cussions(l’z’ll’la)

have assumed it could be considered as a pressure at the
surface of the melt, For purposes of comparison with the volume force
equations which follow, we will discuss this approximation briefly., If p(t)

is the electromagnetic pressure exerted when the ribbon thickness is t, the
electromagnetic force on the shaping region is p(t)WH, neglecting the small
total force on the semicircular regions. Then the work done on one half of
the melt in compressing it from thickness t/2 to (t - At)/2 is PWHAt/2, where
P is the averrge pressure exerted over the range At/2. (Also W is the

average width, but we may ignore the weak dependence of W on t). If At {is
small, p 18 substantially constant between t and t - At, and the total electro-

magnetic work done on both faces is

AWk = pWHAt ,

or in the limit

K-pWH ’

If ve imagine the ribbon being squeezed thinner and thinner by
the field, the process will continue until the work required for an
infinitesimal further reduction in thickness is just equal to that available,
that is when

dE
s duk -
= e 0 . (2.4.3)
41)

I1f this occurs gt a thickness of, say, tes then shaping stops whe

- 2J ~
plE) =5, (2.4.4)
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2.4,4 Electromagnetic Work-Volume Forces

If we describe the situation in terms of fn’ the normal component
of the volume force on the melt, then the pressure in the above equations

is replaced by the integral of fn--in particular,

duk

0
act " WH Tm £,(y)dy (both Laces) . (2.4.5)

(14)

This formula was derived by Gaule’ and Pastore ; we obtained it independently,
but omit the proof. The lower limit on the integral should more properly be
~t/2, but because of the rapid falloff of the force inside the melt, taking

the limit to —» 18 an excellent approximation as long as the ribbon is at

least 3 or 4 skin-depths thick. Ag-in, the small contribution from the semi-

circular regions has been neglected.

2.4.5 1solated Ribbon--Large § Approximaticn

To proceed, the integral in Eq. (2.4.5) must be evaluated. This
can be readily done in the regime where the parameter 8, the ratio of the
distance of the wire from the melt to the skin depth, is large. The type of
approximations required have been already discussed (Section 2.3); we only
have to generalize slightly to obtain approximations valid for y rot equal
to zero. On the assumption that £ is large enough that only the firsgt terms
of the asymptotic expansions contribute, we get from Eqs. (2.3.11) and (2.3.12),

after expanding the square roots,

-1 i+1 BN(1+1)
EZ(X.Y) znch 1 2 e

N

, (2.4.6)

aud

1 1 BI(L1+i)
Hx(X,y) ~7p Tl © R (2.4.7)
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vhere we recall £ = x/b and N = y/b, Higher-order terms can be obtained 1f
desired in terms of error functions of complex argument, but a more - _..factory
procedure for obtaining the deg-ee of shaping for moderate 8's is described

in the next subsection, Then since

wal

0 *

fn--—z—Re (Ez Hx)
we find

2

£ -0).~u01 287 (2.4.8a)

n(8700) = ZrpTy e ’ 4.8
or

£,(E=0,y) = fqo e‘z(ly/”) » (2.4.8b)

in an obvious notation. In agreement with our previous approximation we only

need f, for € » 0, so for the integral of Eq. (2.4.5) we obtain

-0
" fn dy = fno 6/2 .

Thus shaping may be considered to proceed until

Z!W = w}lfnob

(2.4.9)
tf 2
or
2
v o,
tg 4m bf ' (2.4.10)
with the coastraint t, + 2bf = 2B, where 2B is the distance across the shap-
ing coil (Fig.2.4.1). Eq. (2.4.10) may be rewritten
2 t. o
= - = - f
tf K bf K(B -—3-) (2.4,11a)
vhere the parameter
2
8y
K==—"5 (2.6.11)

UOI
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has the dimensions of an inverse length. Inserting the value(8) appropriate
to liquid eilicon, v = 0,72 N/m, we find

4,52 x 10' 1
K = ——-—2—-———— m ,
I
vhere 1 is the peak coil current in amperes. Sinca t_will be a fraction of

f
a millimeter and since the rms current will commonly be given, we also write

2,26 x 10° -1 K 2
K = -__?f—_-TZ moz T , say.
rms s
where K. = 150 A/(mm)1/2,
Eq. (2.4.11a) 18 readily solved for tf:
- /T v 2
e = op [ B K (2.4.12)

Alternatively, we can consider we know the ribbon thickness we want to obtain

and solve for the current irequired to achieve it, given the size of the

shaping coil:

L
Irms - Kl-;_T77 =K RN (2.4.13)

where the lengths B, b, and - are all to be expressed in millimeters. We
repeat the conditions under which these equations can be used to predict the
degree of shaping or current required:

1. B = b/8 should be large (say 5 or more).

2. & must be considersbly less than t (say no mcre than t/3).

These requirements may be met by operating at a high enough frequency; we shall
see in the following section that total power required increases gradually
with frequency, but even at the lowest frequencies liable to be used, the
approximations are likely to be satisfactory in any practical situation. It
should be noticed that in this regime the current (though not the power) required
for shaping to a given thickness is independent of the skin depth, and thus of

the operating frequency.
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To provide some numerical examples, if one wants a ribbon 0.4 mm
thick, then if b is about 2.8 mm, as in the suallest coil discussed in Reference
1, the rms current required is around 660 A, while {f the wires can be brought
in so that b is only .25 mm, the current required is 59 A. Clearly the trade-
off of greatest importance is that betw:en getting the wire close enough to
get the current down and having it large emough to carry the current without
melting. (Note that b is the distance from the melt to the center of the wire).
Of course if the wire comes extremely close to the melt, the preasence of the
eddy currents will affect the current distribution in the wire; we will not
pursue this extremely complicated problem, but just point out that Lenz's Law
shows that this effect will reduce the force on the melt, and that a somewhat
higher current will be required for a given ribbon thickness than would be
expected on the basis of the theory preaented here. A sharp-pointed con-

(14)

centrator may be a good way to get ine current close to the mel:; it will

still clearly have tc reach at least as close as the distance b, though.

(1%) d(Z)to estimate

The work of Gaule’ and Pastore has been use
power and .urrent requirements for electromagnetic shaping. Their approach

and assumed physical situation are rather different from ours, but a comparison
insofar as is possible shows the following:

1. They do not discuss the distance of the coil from the melt, and because

of the nature of their approximations apparently did not realize the importance

of this parameter.

2. They assume HX(O,O) = %l, and § = t/4. From Eq. (2.4.7), we see
HX(O,O) = i;. By comparing these equations, we see that their assumptions

amount to taking 8 = 2/m. But otherwise their equations are similar to those
based on the asymptotic expansions discussed above, Thus it appears that they
are using asymptotic formulas in a region (B not >>1) where they do not apply.
3. The fact that they considered Ge, with a surface tension about 0.6 N/m,
rather than Si; a factor of 2 error in their equation for the pressure; and
their other approximations enabled Gaule’ and Pastore to find the rather small

value of 12 A required for shaping to .3 mm thickness.

‘i
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2.4.6 1solated Ribbon--Arbitrary B

By evaluating an integral numerically, we may extent the results
of the previous section to smaller B's and determine the range of validity
of the asymptotic approximation used there.

Eq. (2.4.5) may be rewritten

dwk WHuoo ro ,
—_— ! *
at 5 Re E__‘(O.Y)Hx (0,y)dy . (2.4.5")

. -}

Introducing the integral expressions (eqs. (2.3.11) and (2.3,12)) for

Ez and Hx’ we may write this as

2 0
vk WHaw  wl T T gy 1,1, (2.4.14a)
dt 2 \ n.) | ’
where
[~}
kb« /K + o2
1= dk e ety (2.4.14b)
0 k -~ /i(z + O
and
K — 7
1,=  dg QG0 rVat -ty T2 ) (2.4.14c)
0 q + /9% = a2

Changing variables of this triple integral to 1 = y/b, u = 8k and v = §q, and

doing the T integral, which is a simple exponential, we find

2
Wk Bl pp) , (2.4.15a)
dt 4 n262
where
F(B) " dudve BV fuw) (2.4.15b)
00
and
T
fu,v) = =< =2 (2.4,15¢)

(u +/uZ + 200 (v + V2 = 28) (Ju? v 28 + /v o 2d)

BS. e, - L
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The quantity f(u,v) can, if desired, be separated algebraically into its real
and imaginary parts, but it is easier and faster computationally to let the
computer take care of this, The function Im f(u,v) varies smoothly and is
generally well-behaved in the first quadrant of the u,v-plane. It has a

value of unity at the origin and falls smoothly with finite slope in all
directions from there. The function becomes slightly negative near the u-axis
for u greater than about 0,75, but this introduces no difficulty in evaluation
of the integral. It is simpler for comparison with previous calculations to

change variables again to s = Bu and t = Bv; then

2
R i 10

dt & nipZ ’ (2.4.16a)
68 = [ dsat e® " Prngass,e/p) , (2.4.16b)
“0%0

with f as given above. Comparison with Eqs. (2.4.5) and (2.4.9) shows our
previous asymptotic approximation amounts to taking G(B) = 1, independent of
5.
Since the integrand of (2.4.16b) is in the form of a double Laplace
transform, it seems natural to try to evaluate by means of a product Gauss-

(21). Such a routine was written and

lLaguerre numerical integration routine
used to evaluate G(B) in the range 0.5 < 8 < 44, Fig. 2.4.2 shows results
for B between 0.5 and 6. At B = 44, G(B) = 0.9770. The evaluation used the
first 16 x 16 points of a 28 x 28 Gauss-Laguerre scheme. (Because of the
generally decreasing nature of the integrand, points further from the origin
do not contribute appreciably to the integral, and it is a waste of time to
evaluate them). The accuracy of the integration routine was tested by trying
some invegrands which could be integrated numerically, and also by redoing
the integral of interest here for several B's by 16 x 16 point Gauss-iegendre
quadrature in 36 or 81 subintervals, In the latter procedure, appropriate
upper-limit cutoffs to tue integral must be introduced; there is no problem
.1 doing this so that the remainder is negligible, It was found that the

simple Gauss-Laguerre procedure could be relied on to 5 decimal places for
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AND (2.4.15¢)



39

B 2 2.5, and gave an error in G(8) of only 0.77 percent for 6 = 0.5. The
error as a function of A is graphed in Fig. 2.4.3. The value returned by the
Gauss-Laguerre quadrature program is invariably slightly higher than the true
value. The quadrature scheme will be rather inaccurate for very small B's,
but the small B8 region is not of much physical interest,

It is apparent that the asymptotic approximation is not very accurate
for B8's in the range discussed earlier. For the problem of shaping at con-
stant volume discussed there, all that needs to be done to make the theorv

correct for any 8 is to replace bf in Eq. (2.4.10) by bf/(G(B))l/z. Thus, the

current required to achieve a given degree of shaping will be a factor (G(B))-]'/2
larger than would be calculated from the asymptotic expansion. For B = 2/m,
the current required for shaping to a given thickness is 2.1 times larger than

the asymptotic value,

2.4,7 Degree of Shaping in RMGS Configuratiom

@ at McDonnell-Douglas of potentialities for

In a recent study
space manufacture of Si, a technique termed Ribbon from Melt Growth in Space,
or RMGS, has been described. It is discussed briefly elsewhere in the report;
the salient idea as far as the present discussion is concerned is that the
ribbon is drawn through the shaper from a freely floating sphere of molten
Si, The constraint of constant cross-section then no longer operates; one
may look at the process as one in which the excess Si is squeezed back into
the sphere when the coil current is turned up to thin the ribbon. Since the
sphere radius is large, one might anticipate that the free energy change on
shaping would be less than that calculated previously. We wish to assess the
effect of this change in configuration on the degree of shaping for a given
coil current,

(b has recently been made by R, Rochat of McDomnell-

An analysis
Douglas of the expected shape of the meniscus from the ribbon to the sphere
and of shaping pressure, assumed applied uniformly over a height H, required
to shape the ribbon to a given final thickness. Numerical methods were

required for this analysis and the results have been presented graphically.
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We have not had an opportunity to check this work independently, but find no
reason to doubt its correctness. The effects of the curvature at the edge
of the ribbon have not been included, but this may not be a severe approrimation
in these circumstances. One parameter entering the calculation is the ratio
of the height of the region being shaped to the total vertical height of the
wmeniscus region. The present discussion will be most appropriate when this
ratio is not too large--say 1/2 or less; however, the results of the surface
stress analysis do not depend strongly on this parameter.

The principal result of the analysis is that the shaping pressure
is given, instead of by Eq. (2.4.4), by

p = vE/H , (2.4.17)
where f is a dimensionless function* of the ribbon thickness t, the sphere
radius R, the ratio N discussed above, and H. The principal properties
of the function f for our purposes are
1. f is always greater than one.
2. for any reasonable set of parameters, the value of /T , which we
will see to be the parameter of greatest interest, will lie between 1 and 2,
Generally it will be rather close to 1.
From Eqs. (2.4.3), 2.4.16) and (2.4.17), we find the peak current required
for shaping to thickness t under these circumstances is given by

_ ___12__;,1/2
Towes = 2P ( wICP, . (2.4.18)

It is interesting to compare this to the current required for shaping of an
isolated ribbon, IR’ which can be found from Eqs. (2.4.2), (2.4.3) and (2.4.16) ,
We obtain

TpMGS ¢ vz (2...19)

=, £t _£
1 G/

Elsewhere in the report, f denotes frequency. This dimensionless

function £ will only be used in this subsection.
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£f/G will be greater than unity. t/2H wmight be small, but if H is large so
are b and, consequently, IR. To pursue this further, we need a specific
relationship between H, the height effectively shaped, and b, the distance
of the wire from the melt. A reasonable approximation may be obtained by
averaging the normal force, given by Eq. (2.3.32) for large B's, over g,

the normalized distance along the ribbon. One obtains

H = % b " (B) , (2.4.20a)
where
re) =1 - ;—B . 5%2 . (2.4.20b)

Now let us specialize to the case we have frequently discussed,
where 6§ = t/4. (One can readily generalize to other ratios; taiis is
discussed qualitatively below). Then we can express the cuirent ratio
almost completely (except for J¥_) in terms of the dimensionless parameter
B:

1
RMGS . a(p) /f , (2.4.21a)
1
R
where
$(B) =(a/rr81“c;)”2 . (2.4.21b)

$(B) is plotted in Fig. 2.4.4. We see that for small enough B--P less than
2.5 for ,/f =~ l--the ratio IRMGS/IR will be greater thamn unity; so for small
B it will be more difficult to shape the ribbon when it is attached to the
spherical melt. For larger B's, though, there will be a diminution of current
required for shaping to a given thickness from a given distance when the
presence of the spherical melt is considered.

IR will also depend on B of course; so more current will be

required when b is larger. Again assuming t/§ = &4, we can write

] 12,
1R = 18 (26'\(/u-0) ’

80

1/

Loce =7 2bviug) /2 B ae) vt . (2.4.22)

RMGS
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B & (B) is also plotted in Fig. 2.4.4 and is seen to increase slowly with B.
Thus the advantage to be gained by bringing the wire in close to the melt

is not extremely large; on the other hand, the penalty for moving the wire
further away is not so great. To give a specific numerical example, suppose
6 = 100 um. Then the rms current required for shaping a 400 um ribbon

is given by

1 = 23,8 B %(B) /A . (2.4.23)

rms
RMGS
Taking /f = 1.03 as a not untypical value, we find the current required
for various distances from the shaper to the melt as in the following

table:

TABLE II. rms CURRENT AT 21 MHz REQUIRED TO
SHAPE S1 RIBBON TO 400 um THICKNESS

Shaper-to melt rms current
distance, b(ym) (A)
200 59
500 73
1000 95
1200 102

1f we had assumed a ratio t/§ = T, say, instead of 4, we would obtain a
factor of (4/7)1/2 on the right side of (2.4.23). Thus some saving in cur-
rent required can be obtained by reducing é. But the only way to do this

-1/2, I = w-l/h; so the

is to increase the operating frequency. Since 6§ = w
frequency must be increased by a factor of 16, to over 330 MHz in the
situation described above, to cut the current required by half* The ac
resistance of both the shaper coil and the melt will also increase with w;

the combined effects of all these changes are discussed in Section 2.5.

* or less, if the frequency dependence of 8 ¢ (B) is considered.



2,4.8 Degree of Flatness

We have assumed to this point that the ribbon was essentially flat,
its cross section at the plane of the shaper being a rectangle terminated by
two semicircles as in Fig., 2.4.1. While the physical situation surely
indicates that the ribbon will be fairly flat, it would be useful to have
some measure of what the departure from flatness might be., In this section,
we estimate this quantity for the case of large B where the departure from
flatness is most likely to be significant. To make such an estimate, we have
to make some assumption as to the shape of the ribbon cross section, since
we do not know what the shape of lowa2st total energy will be. We will take
the cross section to be an ellipse of the same area as the flat ribbon. Then
by trying ellipses of different eccentricities, we can determine the elliptical
shape of least total energy, which should be good approximation to the actual
shape taken up by the ribbon at the plane of the shaper.

The geometry of the situation is illustrated in Fig. 2.4.5. The

equation of the melt surface is

2 2
l—-“r.z—.l s
2 2
P q

where the area of the cross section is
2
A=mpqg=Wt+nt /4 .

Since A is fixed, if we select a trial value for the semi-minor axis p
(presumably a little more than t/2), q is determined; so there is just one
free parameter to vary.

Again assuming the shaping takes place uniformly over a height H,
the change in surface energy on going from the flat to the ellijtical cross

section is

SE, = vHl4q E(/q2 ~ p2/q) - (W 1 m)] (2.4.24)
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vhere E denotes a complete elliptic 1ntosrnl(22). The corresponding change

in electromagnetic energy may be approximatad by assuming that each small
element Az of the melt is part of a very wide flat plate of thickness t(z)
and distance b(t) from the shaper. Since the shape of the melt cnly chi.es
gradually, this should be a 300d approximation, Then the change in electro-
magnetic energy on going from the flat to the elliptical configuration is
obtained by calculating the energy change for each region of width Az

using Eqs. (2.4.5) and (2.4,8), and summing over all the strips from z = .W/?
to z = +W/2. For consistency with the previous approximati ns we again
neglect, if possible, the electromagnetic forces on the very edges of the

ribbon. Thus we have

o = 21 (ugt? /e[y gz [162 ac’ ben? (2.4 25)

where

u = min [W/2, q}

The current I is fixed at the value that was calculated necessary to shape

a flat ribbon of thickness t, so it is given by Eq. (2.4.10):
u012/4n2 = 2ybf2/t ,

where bf denotes the value of b for a flat ribbon. What we want to do is to

calculete the total energy change AE = AEB + AWk as a function of the

amount of ''bulge" in the ribbon (2 1£°;:;. 2.4.5), and the other parameters,
and to see whether there is some value of £ for which the energy change is a
winimum and negative--if there is, a configuration similar to that elliptical
one will probably be taken up by the ribbon. The integrals in Eq. (2.4.25)
can bte done analyticzlly, but since the results are rather complicated, we
shall just present some results graphically. It will be convenienc to divide
both AE, and AWk by the factor (2 y WH/m), and to compare the dimensionlass
quantities resulting. 1If we also take as a dimensionless independent variable

the fractional bulge at the ribbon center* o : 24/t, we find there are only

* This a should not be confused with the o that was used in section 2.3
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tvo dimensionless parameters in the problem:

1. 8 = nmt/4W, a quantitv depending on the aspect of the flat :sibbon. 8oth
LEg and AWk depena only very weakly on this parameter, but we will assum" a
large but finite aspect ratio, W/t = 150, for purposes of caiculation.

2, r= 2b£/t, a measure of the relative size of the shaping coil. AEg of
course is independent of this parametar. For our usual assumed condit{ions,
vhere t = 4§, r is related to our usual parameter B by r = B/2.

Some calculated results are shown in Fig. 2.4.6, It appears tuat
although there is no small change {rom flat ribbon for which the departure
results in a decreased total energy, this is primarily because a large hulge
is necessary for the surface energy to decrease, and it does appear that for
some increas~ in thickness in excess of 30 percent, an elliptical cross
section will be more stsble. We have not made calculations to determine the
minimum energy configuration for this region though, since with further
increases in thickness, we are getting rapdily into the region where the
asymptotic approximation breaks down. Even .f more ¢laborate calculations
(which could be carried out numerically) showed that the total energy change
was never quite negative, but only reached a minimum, the presence of such
a low-energy configuration could be important in determining the ecaoility
of the system against vibrations or other mechanical perturbations. Finally,
we wish to re-emphasize that there are liable to be changes in ribbon shape
between the shaper plane and the level of the freeze, which we have not con-

sidered in this section,

2.5 Power Requirements

In this section we estimate the rtotal power needed for shaping to
a specified thickness, with a coil f given dimensions, in bnth the iso.ated
ribbon and RMGS situations.




AE, in units of (2YHW/ w)
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The total steady power Pt needed at the input to the shaper coil
will be the sum of the power dissipated in the melt, P, and that dissipated
in the coil, P.. The power dissipated in the melt is given by the real part
of the integral of the Poynting vector over the ribbon surface, Eq. (2.2.13).
In the asymptotic (large ) regime, we find, using just the first terms of
(2.3.20) and (2.3.21),

P =ul fwB s (2.5.1

where we recall W is the ribbon width and f is the operating frequency. Use
of the asymptotic values for the fields is not as severe an approximation as
it was for determining degree of shaping, and (2.5.1) will be correct to
within 10 percent at § = 5 and more accurate for larger B8's.

If we take the coil to have a circular cross sectioa cf radius a,

then the power dissipated in the coil is given by(23)
P. =1 2R 2.5.2a)
¢~ “rms “ac ’ (2.5.
where
RAc = (a/28:)Ry. . (2.5.2b)
2 -
Rge = (#¢ L/ma”) , (2.5 20)

where p¢ is the —esfrtivity of the coil material and L is the total length
of the coil. &, is the skin depth in the coil, determined by Pe and the
operating frequency. and we have msde the generally very good assumption that
a >> §.. The power dissipated in the coil will frequently be comparable to
that dissipated in the welt 3o ic must be included in any realistic estimate,

Adding (2.5.1) and (2.5.2), we obtain

i W L
Pt=

%o 2a § _

Inserting the value of the current obtained from Eq. (2.4.10), we find for

the isolated ribbon

" '
p IR _ 4n’yeenie}

oz
-
N
o'o-
(g]

1 2£617+-—'6—-Q_‘ . (2.5.%)
Irms . b

(2.5.4)
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1/2 /2

In this form it is clear that Pt « £7'7) or Pt x 6-1 . Thus fer a specified
ribbon thickness and coil dimension, the power required may be reduced
somewhac by running at a larger skin depth. Of course with too large a
skin depth the normel shaping force on one face of the ribbon will be re-
duced by the force coming through from the other side, and the shaping
effect will be reduced. Presumably the optimum & for given conditions could
be established by a numerical procedure such as that described in Section 2.6,
Furthermore, we can see from the discussion of Section 2.4.6 that the current
required will increase somewhat with decrease in frequency. Selection of
suitable operating voltage and frequency cannot therefore be made quite
independently.

The necessity of avoiding contact between the ribbon and the
shaper will doubtless lead to some minimum clearance that can be allowed
between the shaper and the melt. While this will naturally depend on the
other parameters of the problem, let us assume that it can be taken as an
independent design variable and call it ¢. Thus ¢ = b-a. In the isolated
ribbon situation, it is easy to show that there is an optimum value of the
ratio ¢/b for which the power required is winimum. If we assume, as in
some of the McDonnell-Douglas calculations, that L = 3W, and further assume
that the coil is copper, of resistivity 1.7 x 10-8

value of ¢/b is 0.704, and roughly 40% of the power is dissipated in the

ohm m, then the optimum

coil and 60% in the melt. If we assume our usual operating conditions
f=21.1MHz, t = 400 pm, W = 6 cm, then the total power required is simply
given by

PtIR(kw) -22.06 ¢ @2 5.5)

where the clearance ¢ is in millimeters. For any reasonable value of c,
this is quite a substantial power requirement, enough to make electro-
magnetic shaping of an isolated ribbon relatively unattractive.

In the RMGS situation, if we take as unity the function £ dis-
- ssed in Section 2.4.7, we have

R M CIC) L 2.5.6)

where §¢(B) was given by (2.4.21b) and we must remember that we have already

specialized to the case 6§ = t/4. In this case we find that rather than
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there being an optimum ¢b, for fixed c the power required approaches
a minimum as b—~», Explicitly,

PtRMGS(min) = 4nnyJ(1+(L/2W)(6C/6)) . 2.5.7)

For the same conditions as used above for the isolated ribbon, we find

RMGS (min) = 1.4 kW. Of course the

that this minimum power is omnly P,
actual power required will be more than this, since b cannot be too large
for the current to be reasonable--a few values are given in Table III--;
but in any event the total power requirement in these circumstances seems
quite moderate, and much less than for the isolated ribbon in similar
circumstances. Thus although the current required in the RMGS configura-
tion is higher than that which might be expected from naive considerations,
the power requirements are such that the process appears from this stand-
point rather attractive. Of course the interaction with the meniscus
region, which would certainly increase the power required, haz not been
included. A realistic calculation of this effect appears extraordinarily
difficult, though,.

TABLE III, POWER (IN kW) REQUIRED FOR SHAPING RMGS
CONFIGURATION AS FUNCTION OF DISTANCE b FROM
MELT SURFACE TO CENTER OF SHAPER AND OF CLEAR-
ANCE ¢ BETWEEN SHAPER AND MELT.

|

gié;§§§f?m) 0.25 0.5 1.0 1.5 2.0
.8 1.84 2.20
1.2 1.66 1.79 2.99
1.6 1.59 1.66 1.99 5.61
2.0 1.54 1.59 1.77 2.30
2.4 1.51 1.55 1.67 1.92 2.80
2.8 1.50 1.53 1.62 1.77 2.12
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2.6 Effects of Freezing Interface
and of Finite Ribbon Thickness

It will be shown in Section 2.7 that the liquid-solid interface
will typically be well away from the shaping region; thus treating this region
as all liquid silicon will generally be a very good approximation. It is
possible, though, that the interface might be brought closer to the shaping
level by some auxiliary cooling method, and it would be of interest to know
quantitatively what changes the presence of the solid region would make to
the fields, forces, degree of shaping, etc. In this section, we outline a
numerical procedure which would enable one to determine the electric field
distribution in the situation described. From this, the magnetic field,
forces, etc., can be estimated by standard numerical techniques. I° there
is negligible time delay in the shaping coil, a strict boundary condition at
the center plane of the ribbon (solid or liquid) is that the electric field
be zero. By adopting *this boundary condition, we are also enabled to investigate
effects resulting from the ribbon being thinner than a few skin depths (though
at least one skin depth thick) by such a numerical technique. While computer
subroutines have been written to handle most aspects of the numerical procedures
involved, lack of time at the conclusion of the program has prevented us from
running these programs to any great extent.

The method adopted is a modification of one due to Stoll.(za)

This
method is essentially one of finite-difference approximation to the scalar
Helmholtz equations for the complex electric field. Stoll has ingenuously
modified this equation, however, to take the magnetic field boundary conditions
into account, by assuming a smoothed spatjal variation of the magnetic
permeability. The method is applicable to fields which depend on two dimensions
only and to regions with rectangular boundaries. Extension to more general
regions might be possible, but would be quite difficult. On the other hand,
the method is readily applied to any number of subregions of different materials
and to any number of current sources, either distributed or infinitesimal.

To solve the Helmholtz equations by a finite-difference method, it
is necessary to fix the field on some suitable boundary of the region within which
a mesh of sample points is to be defined. In the problems discussed by Stoll,(za)
it is possible to rhoose a boundary on which the electric field is negligibly

small, and may be taken to be zero. Even in these cases, many points outside
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the eddy current region must be included in the mesh, though. In ou 3itu-
ation, where there is a current source in the vacuum region outside the melt,
including enough points in the vacuum region that the field be negligible
is out of the question. We can, however, find a boundary in the vacuum
region where the real part of the field 1is negligible and the imaginary part
is close to that of the problem previously solved with the ribbon assumed
thick and entirely liquid. Thus by having solved the previous problem, we
can obtain a suitable starting point from which we can bootstrap our way to
a solution in the present more complex case.

It is possible again, as in Sec, 2.3, to normalize all distances
to b, the distance of the shaping wire from the melt., Thus the only paraa-
eters entering the problem are B, the ratio of the shaper distance b to the
skin depth in the liquid §; €p = xolb, the relative distance to the solid-
liquid interface from the shaping plane; P = p/ps, the ratio of the resistivi-
ties in the liquid and the solid, and the exciting current 1. We will see
that the numerical procedure will only be reliable, with a mesh of reasonable
size, for rather large B's—-say B 2 10. The setup of the region over which
the finite-difference mesh is to be described is showr in Fig. 2.6.1. We
recall that € = x/b and T} = y/b. By consideration of our previous res:lts

(24)

and of numerical results ou simpler problems, we judge that a mesh size

of A€ = .2 and AT} = .26_1 in the liquid and solid, AT = .2 in the vacuum
out to T = 4, and A7) = 1 for T > 4 should be sufficient to determine the
fields to within a few percent. A portion of this mesh is also shown in
Fig. 2.6.1.

From Eqs. (2.3.3c) and (2.3.10a), we can show, using the 1dentity(16)

Kla? + oM s a8+ DYy s s s ADYYH 2.6

that %tli2 unperturbed electric field in the vacuum region is given, for large

8, by

—iuowl 52 + (T\+1)2 .
By = o M2 mm a2 X ey (2.6.2)
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where

u = B(WY), v = E/(+1))2, and

x (u,v) = u-l"-l:-1 Y 1 3+ 1-3v N
’ 14y u (1+v2)2 7u (1+V.T)3

By evaluating this expression for large B's and by numerical calculation of
an integral for x in a way similar to that of Sec. 2.4.6, we found, for

instance, that for 8 2 10: 1) the real part of x would be no more than 7%
of the magnitude of the field at the origin at T = 14, 2) the imaginary
part of x would be more than one order of magnitude smaller than the real
part, and 3) Re x is no more than 5% of the logarithmic term. The situation
would of course be improved if we tookthe skin depth as that of the solid.
Thus if we take T = 14 as the right-hand boundary of the sample region, and
fix the electric field there as that due to the logarithmic term (which will
be the same regardless of go), we might anticipate reasonably accurate results
(though possibly 5 to 10% off) in the region of interest near the ribbon surface.
A similar analysis along the ribbon-vacuum interface (where the logarithmic
term is zero) indicates that even for go = 0, similar accuracy could be obtained
by going from € = -4 to £ = +6, again fixing E along these lines as the value
of the logarithmic term. Interior to the ribbon, it will be satisfactory to
take E = 0 on the horizontal boundaries as well as at the ribbon mid-plane.
With the mesh described above, there are 1911 interior pecints at which the
field must be determined if these limits on £ and T are adopted. Of course
it is prudent to make the limits variable in computer programming in order
to allow for possible poor convergence or for future refinement, but the
amount of computer time and memory required mount rapidly.

By hypothesis the exciting current wire (which we shall take to be
of infinitesimal size) lies on a mesh point. Since the mesh points are closely
spaced, it will be satisfactory to assume that the interface plane £ = go

passes through & row of mesh points. Ome parameter of the problem is eliminated
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if we define all fields in terms of a reference field Eg = pI/(2n62). Then

the field at a given mesh point E  is given in terms of fields at adjoining

0
mesh points EI'EA (Fig. 2.6.2), for each of the regions of Fig. 2.6.1, by

the following equatioms:

in region Voo
E, = (E1+EJ+25(E2+EA))/52 : (2.6.3)
on the V-V boundary,
Eg = (E1+5E3+15(E2+Ea))/36 ; (2.6.4)

in region Vi

Ej = (EI+EZ+E3+54-1n6(§)6(n-l))/4 : (2.6.5)

in the liquid,

2
B (E1+E3)+E2+E4
Eo = 73 : (2.6.6)
2 (L+8°+1p°/25)
in the solid,
2
B“(E,+E ) +E_+E
Eo = L 3 2 4 H (2.6.7)

2 (1+8° _3%p/25)

on the liquid-vacuum boundary,

25E1+232E3+(1+B)(E2+Ea)

EO—

7 3 H (2.6.8)
2 ((1+B)“+1B7/25)
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F1G. 2.6.2. NOTATION FOR MESH POINTS ADJOINING A GIVEN MESH POINT
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on the solid-vacuum boundary,

ZBE1+282E3+(1+B)(E2+E4)
E. =

0 H (2.6.9)

2 ((1+8) 2+18%p/25)

on the solid-liquid boundary,

2*Ey
2 2 2
(1+8°)+1(1+P)B“/25

2
) 8 (E1+E3)+E

E (2.6.10)

0

and at the point where solid, liquid and vacuum meet,

i 23E1+282E3+(1+B)(EZ+E4)

E (2.6.11)

0 5 (1+8)2+1(1+P) P/ 25

together with the conditions at the points on the boundary:

£ . (12

2

Ew-{In 2
£o+(N-1

(2.6.12)

on the external boundary; and
E=0 (2.6.13)

on the boundary inside the riocbon. 1In (2.6.5), the deltas are defined by
$(x) =1 1if x = 0, 6(x) = 0 otherwise.

There are a number of ways of looking at the problem of solving the
very large set of coupled equations represented by (2.6.3) - (2.6.13). One
might for instance, consider it simply as inversion of a very large sparse
matrix, albeit a complex and not nmecessarily square one. A better approach
seems to be to consider it a problem in adaptive control, or so-called "machine

(24)

learning''. Such a process, described by Stoll, involves first of all the

usual procadure of successive over-relaxation-~that is, the mesh is repeatedly
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scanned by columns and the value of E at each point modified according to the
above equations, without regard to whether some neighboring values have been
modified on the current scan or not. If this process converges, it can be carried
on until some convergence criterion is satisfied; Stoll suggests the maximum
difference in E's at any point between successive scans be less than some selected
value. In the present problem, it might be better to have a more stringent
condition applying to the region of greatest interest near the origin than
elsewhere, The criterion might apply to the real and imaginary parts
separately, or might just be made to apply to the modulus. This simple
process can be greatly speeded up by increasing the field change after every
scan by some (complex) convergence factor of modulus greater than unity.
After every few s~ans, this factor can be modified according to the results
so far obtained. Implementing such an adaptive control technique for a com-
plex field is rather tricky, but a surprisingly simple method which has worked
successfully on a number of problems has been developed by Stoll. It is
attractive to consider also the possibility of gradually varying some of the
other parameters in the problem simultaneously. For instance, one might
gradually vary the resistivity ratio P from an initial value of one, for
which the solutions have been determined in Section 2.3, down to its actual
value of .05. We have prepared computer subroutines for evaluating the electric
fields at the mesh points in the above equations, for cycling through the
relaxation procedure with arbitrary convergence factor, for initialization,
and for suitable input and output, but we have not programmed the adaptive
control techniques just described.

It might be possible to modify the techniques described in this
section to estimate the fields in the RMGS configuration by replacing the
meniscus by a right-angled bend.
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2.7 Thermal Effects
In this section we shall consider separately heating effecte

arising from the eddy currents in the siliccn and those resulting from the

current in the shaping coil.

2.7.1 Eddy Current Heating in Si Ribbon

Eddy currents strong enough to shape a thin ribbon will also be
strong enough to heat it significantly. 1In this section we consider the
effect of this heating on the position of the solid-liquid {nterface and on
the maximum steady-state terperature in the ribbon.

The statement made in Section 1,3 that only steady-state temperature
conditione need be considered requires some additional support in view or the
presence of the liquid-solid interface, which cannot be moved withou* supplying
the latent heat of 1.8 MI/kg (Table I). From Tecble III, we see that the
power input will be around 2-3 kW. Anticipating some later results of this
section, we find the amount of reradiated power is at the most .5 kW, and
might be somewhat smaller. The small dimensions of the ribbon, the high
temperature of the melt, and the lower thermal conductivity of the soiid will
1imit conduction losses (thisc again may be justified a posteriori from
results below); so most of 1.5 kW net iuput power should be available to
move the interface. The initial velocity of the interface can tc determines

from

where 1,, the latent heat per unit volume, is aboutsh.g GJ m_3. and the
ribbon cross-sectional area A is taken as 2.4 x 107 m". ihus up = 1.5
cm/sec., Since this is much larger than anticipated pull rates,(z) ve
anticipate that the interface, if initially at the shaper plane, would very
rapidly move to its steady-state position. It is interesting to note thar
this position does not depend on the latent heat, which only affects the

dynamics of the interface.

D
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Because the ribbon is so thin, the temperature variation across
it can easily be neglected. Also since there will be little radiation froum
the ribbon edges, the temperature will vary but little across the breadth
of the ribbon. Thus we have a problem of steady-state heat transfer in one
dimension--the pulling direction, with rediation from the ribbon surface
and heat produced within it. To avoid analytical complexity we shall
ar ,.me that the heat is produced uniformly within a region of width H, as
we assumed in discussing the degree of shaping. The bulk of the melt, t here
the temperature will ve tixed at Tm’ the .elting temperature, vill be taken
as at a distance L from the plane of the shaper. The change in ribbon
thickness near this point will be neglected; this can be shown to be insig-
nificant. At large distances along the solid ribbon, the temperature will
approach the ambient, which since it will be relatively low we shall take
as zero. The overall situation is thus as depicted in Fig. 2.7.1.

The power radiated from a strip of ribbon of height Ax is given
by Prad = 2W EE(T-TO)A, where £ is the Stefan-Boltzmann constant and T,
the temperature of the surroundings. The heat transfer problem may be
simply solved analytically i: we can make a linear approximation to the
quadratic temperature dependence. When the temperature change from the
ambient 1s small, the approximation

(T-TO)L‘ ~ 4T°3 (T-T,)
is frequently used, but in the present situation, where the temperature
change is large and To &~ 0, this is clearly inadequate. The linear approxi-
r.ation can still be used, though, ii we define a fictitious temperature ™
such that

T“
where we have set TO = 0, and where T* is determined self-consistently in
such a way that the radiation at tempzratures nes. the actual maximum
operating temperature is given accurately. If T* is chosen sucu that
radiation at the maximum temperature anywhere in the ribbon is given
correctly then the overall radiation loss is slightly overestimated. The
numerical prccedure for obtaining the maximum temperature will be seen to

be quite straightforward.

*
~ 4, 2.7

)
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Thus in the four regions indicsted in r4g. 2.7.1, the heat

conduction equations to be solved are simply

BZTI
=T =9 TI =9 , -L < x < -H/2 H 2.7.3)
bZT
HTo =T *te, =0 , -H2<x<W2 ; (2.7.4)
azTnI
- =c TIII =0 , H/R2 . x< X, 3 2.7.5)
azTIV
w2 STy =0 o X X, (2.7.6)
where
¢, =2 ™ 2.7.7)
*
¢, = 2L e T K, (2.7.8)
and
c, = 012/ (2mub8tK) (2.7.9a)
or if Eq. (2.4.10) holds
-1 - 2
c. = 4niyin K E(a/t) . (2.7.9b)

2
For numerical work we will use (2.7.9b) with t = 46, £ = 21.1 MHz, and
H = nb/2., The implicit assumption of these equations that the interface
position X >H/2 will be seen to be well justified.

Egqs. (2.7.3)-(2.7.6) together with the boundary conditions

TI = Tm , X = -L ; 2.7.10)
Tp = Ty aTI/ax = 3T /3%, X =-H/2 (2.7.11)
Ty = Top aT,I/ax = arnl/ax, x = H/2 2.7.12)
Trrp = Tpye K aTHI/ax =K DT x, x= X (2.7.13)
and
T,,~ 0, x=o , (2.7.16)

v
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are readily solved. We shall not present the general solution, but just
give the temperature at the solid-liquid interface
T + 2R sinh ZH sinh ZL
+
S sinh (Zo + ZL) + cosh (Zo ﬁ‘)

T =T(X=Xo)=

i (2.7.15)

and the maximum temperature in the ribbon

Tmax = T(x = 0) = R(1 - cosh Z}? + Ti(S sinh Zo + cosh Zo) . (2.7.16)

In these equations,

*
R = myE/GE eT) (2.7.17)
5= e k) -o0.63 (2.7.18)
2
=L, (2.7.19)
z, = c11/2 W2 , end (2.7.20)
1/2
Zc = <::L Xo . (2.7.21)
If T* = 103 K, then with the other assumptions as before, R = 4.21 x 105 K
and c:ll"2 = 0.92 cm-l. Because of the asymmetry of the problem, Tmax

might actually be slightly away from X = 0, but we can safely ignore this.
To solve (2.7.15) and (2.7.16), we assume a value of T , calculate
. max
* 1/5
T =T /4
max
assuming there is no supercooling so T, = Tm’ and calculate Tmax from

i
(2.7.16). The true Tmax will lie between that assumed and that calculated,

, deteraiine R and 3, determine Zo numerically from (2.7.15)

and can be found with only a few guesses. We carried this procedure out for
L=4cmand L= 0.4 cm (about the largest and the smallest values one might

wish to consider(ll))and for b = 0.5 nm and 2 mm. Even for the smaller value
of b, we found xo ~ 0.3 cm for both values of L and Tmax of 3700-3800 K, well
above the silicon boiling point (at 1 atmosphere) of 3060 K. Thus it appears
that the interface will generally be well out of the heating region, and

also that some auxiliary cooling method will be necessary to keep the silicon
at a reasonable temperature. Such cooling would bring the interface closer

to, but probably not into, the heating region.

B
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2.7.2 Thermal Balance in Shaper Coil

In this section, we consider the problem »f heat production and
dissipation in the fine shaping coil, which we will consider to be a sim.le
hairpin. We will show that wires small enough to put close enough to the
melt for effectiv: shaping will not be able to lose enough heat by radiation
to keep from melting at the current densities required. We will also con-
sider the possibility of cooling the wire by making it a hollow tube with
fluid flowing through it, and show that there is some possibility of cooling
with flowing gas. We were not able to make a realistic estimate for cooling
with a liquid flowing through the tube, but believe it might be feasible.
Cooling might also be accomplished by partially embedding the coil in a
high-thermal-conductivity, low-electrical-conductivity heat-pipe material;
this possibility has not been investigated in any detail.

We will make the following assumptions:

1) We will neglect the large incident thermal flux from the ribbcn itself,
and only consider the heating by the current in the wire. Although in some
circumstances a good part of the incident flux (peaked around 1 to 1.7 pm)
might be reflected, in general the only justification for this assumption is
that it makes the problem much easier to solve, and in a more complete
analysis it ought to be included.
2) The radial dependence of the ac current density can be ignored as far as
the thermal, rather than electromagnetic, part of the analysis ies considered.
This can be shown to be a very small effect.
3) The temperature dependence of the resistivity and thermal conductiv:’ -
of the shaper wire can be neglected. It car be seen that if these effec
are not negligible, they will make the wire more difficult to cool.
4) The wire radius a is much larger than the skin depth in the wire. The
bend in the coil can be ignored. These are safe assumptions.
5) The wire is made of copper, of nominal properties as follows:

melting point, Tm = 1356 K,

resistivity p, = 1.7 x 10°8 ohin-m,

skin depth ﬁCu = 14.3 um (at ?721.1 MHz),

thermal conductivity KCu =3.9x100 wolxl
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We will suppress the subscripts ("dc" and "Cu") in the equations. [t is
doubt ful that a better metal than copper can be found for the wire. As
frequently mentioned, a practical shaper may also include some sort of
graphite or similar concentrator, whose thermal properties should be fin-
cluded in the overall analysis; but it is instructive to see just what is
required of the coil itself.

The steady-state temperature in the wire will be given by an

equation of the form(zs) 2
Agr
T=A+Blnr- K . (2.7.22)
where r is the radial distance from the center of the wire and AO is the
power generated per unit volume. For a >> §,
A __(__._L_Llr:aaz ; (2.7.23)
2n"a” §
this equation is valid whether the wire is hollowed into a tube or not.
A and B are constants to be determined from the boundary conditions. We
will examine in turn the two limiting (and relatively simple) cases of
cooling by radiation only and cooling by forced convection in a tube.
I. Solid Wire Cooled by Radiation at Surface. In this case, B
must be zero and A is determined from
Kgele o ameT @ 0% (2.7.24)

where ¢ is the emissivity of the copper surface, ¥ is the Stefan-Boltzmann
constant, and we have assumed radiation into a med‘um at zero temperature.

We readily obtain

Ao(a2 - r2) /Boa \1/4

T = " + \262 (2.7.25)
The raximum temperature at the center of the wire may be written as

Tmax = T1 + Ts , (2.7.26a)
whe re

Tl = A0a2/4K , (2.7.26b)

1/4

and Ts’ the surface temperature, = (Aoa/2e2) (2.7.26¢)
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It is not hard to show that for the situations of in.erest T1 will be less

than one degree and can safely be neglected. (To be explicit,

T, = 3.83 x 10712,

where T1 is in K, s

copper surface (€ =.02), the wire will immediately fuse at any power levels

in A, and a in mm). Also we find that for a shiny

we have considered; so we will assume the surface is oxidized (¢ =.6) or
covered with some highly emitting material (¢ < 1). This of course will

make the surface a better absorber of radiation from the molten Si, but as
previously stated, we will not attempt to take this into account. by setting
T = Tm, we can calculate roughly the minimum wire radius a

s mi
current. The current, in turn, can be related to the wire-~to-melt distance

for a given
n g

b for shaping the ribbon to 400 um thickness at 21.1 MHz, the conditions
principally discussed in earlier sections. The results are shown in

Fig. 2.7.2. Of course unless a < b, the wire cannot be fitted in next to
the melt. It is apparent that even for ¢ ~ 1, the wire must be made quite
large and moved rather far away from the melt if it is not to melt itself.
The overall power requirements for the various situations were discussed

in Sec. 2.5. Since all our assumptions have been such as to neglect effects
that would tend to raise the temperature more than we have calculated, it
appears that it will not be possible to rely on radiative cooling of the
shaper wire.

II. Hollow Tube with Internal Fluid Cooling. We assume the

shaper is a cylindrical tube of interior radius a, and exterior radius a.

1
We will now assumne there is negligible radiation at the outer surface (¢ = 0),
to simplify the discussion. At the inner surface, we will take as the

boundary condition

4T _h - (2.7.27a)
dr|r =a, K (Tr = 3 Tf\ ’
1 1
where the heat transfer coefficient
h = KfNu/Za1 , (2.7.27b)

K¢ being the thermal conductivity of the cooling fluid and Nu being the

Nusselt number, a dimensionless parameter which we discuss below. Tf can

[ —
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be taken as the average temperature of the cooling fluid, provided the
(26)

outlet absolute temperature is not more than 3 times that at the inlet
Evaluating A and B from the boundary conditions, we find

2 2 2
Aja 2K a r r-a
-1 [ (- )+ - ] @.7.28)

From this equation, we can show that the temperature difference across
the wall,

T(r=a) - T(r=a1) < Tl’ where T., defined by (2.7.26b), is less than

1’
one degree. Thus we consider only the temperature at the inner wall, and

write
= - = = 2——. - (:l)z
T(r-aP Tf AT T1 K:Nu Il a l . 2.7.29)

If the temperature variation of the viscosity is not too strong, the
Nusselt number for most gasses is well approximated by(26’27)

N = .013 Re¥'83 | (2.7.30)

in the turbulent flow regim: (Reynolds numbers Re > 3 x 103). The
Reynolds number is given by

Re = 2 alv/U , (2.7.31)

where v is the average flow rate of the gas and v is its viscosity at the

average temperature. Defining the ratio A = al/a, we see we can write

A’2=_2_'_1_71< (_9_)’83&1_2 . (2.7.32)
1 ,013 Kf av k‘83

A must be chosen to make the shaper sufficiently strong; let us assume
a=1mmand A = .5. Also let us assume that the gas is air, precooled so
that the average temperature is room temperature (294K). Then K/Kf & 1.6 x 104

and v =~ ,16 cmz/sec; so

where v is given in m/sec. For turbulent flow, v will have to be at least

about 50 m/sec. At that rate, AT/T1 = 2.3 x 103. For a= 1 mm and b = 1.4 om,

R TR
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Ti ~ .46 K, hence the wall temperature would rise to 1336 K, or just a bit
below the melting point. Since this might be brought down by hizuer flow
rates and by conduction and radiation losses, it seems as if cooling with
a gas might be possible for a shaping wire of the dimensions assumed. It
is not likely that smaller wires closer to the melt could be cooled this
way though, despite their carrying smaller currents. We attempted to make
a similar analysis for cooling by a liquid, but found ourselves in an
inconsistent range of parameters for use of the appropriate generalization
of (2.7.30). One would expect, though, that if cooling with a gas is

feasible, cooling with a liquid at lower flow rates would also work.

et v
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2.8 Summary and Conclusion

We have described methods of calculating fields and forces
induced in a silicon ribbon by a simple hairpin-shaped coil. We have
determined the current and power necessary to produce ribbon of a speci-
fied thickness by electromagnetic shaping, both for an isolated ribbon
and for a ribbon being drawn from a nearby levitated spherical melt In
both cases the current required for shaping to .4 mm thickness is larger
than has been previously thought--in the range of 100 A. For the isolated
ribbon, the power required 1is also large, but fcr the ribbon drawn from
the levitated sphere, the total power is only a few kilowatts., Departure
of the melt from a flat ribbon shape, location of the freezing interface
far from the shaping plane, and excessive heating of the ribbon by the
eddy currents may all be severe problems which will have to be overcome
in any practical system. Numerous simplifications and approximations have
been made in the course of these calculations, but it is extremely doubtful
that more accurate calculations would alter qualitatively any of the con-

clusions presented here.
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3. OTHER INNOVATIVE PROCEDURES

3.1 Introduction

The object of this task ..as been the evaluation of possible means
for shaping silicon ribbon other than using electromagnetic forces, and making
a detailed analysis of those methods which appear most feasible from the stand-
point of space production. Emphasis was placed more on developing understand-
ing of the physical mechanisms of importance and on establishing hlgh;féasi-
bility concepts for shaping than on engineering design.

By way of introduction, we shall describe three techniques used for
shaping materials (terrestrially) from the melt: the web-dendrite, the EFG
(Edge-Defined Film-Fed Growth), and the Pilkington Float Glass methods.

Web Dendrites

In this process, a seed crystal is iaduced to form two dendrite arms,
which are curved down into the melt by surface forces imposed by the liquid
materfial. Soon after the start of growth, the two dendrites form what is
essentially a parallel frame, supporting a web of liquid which freezes shortly
above the surface of the liquid. The web material has a twinned structure,
and the crystallographic orientation in the plane of the sheet is off a close-
packed orjentation as a consequence of the dendritic growth process. Growth
rates are of the order of 5 cm/sec. One of the probleme associated with this
method is that, as a result of liquid drainage induced by gravity, the material
does not have a uniform thickness, Hence, the cooling rate is not uniform,
and thermal stresses are induced unless cooling rates are extremely well con-
trolled. Generally, at web widths of about 3 cm the dislocation structure
induced by thermal stresses is so great that the web becomes polycrystalline,
Furthermore, the dendritic growth process results in variations in the con-
centration of alloying elements across the width of the web. In addition,
becanse dendritic growth is unconstrained, the process is rather delicate to

control,
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EFG

Liquid material is drawn into a dfe by capillarity forces. From the
pool in the top of the die, it is drawn out by a seed crystal in a manner
analogous to the Czochralski method. The liquid departs from the die with
a shape defined by bounding vertical (in the direction of pulling) surfaces.

In principle, {f this method were developed properly, the material
would have properties closely comparable with the best Czochralski material.
In this case, it would suffer from two main drawbacks. First, the amount
of yield would be limited by stability considerations, This drawback {s over-
come, to some degree, by using multiple growth slots. Second, the dies wear
excessively, and the die cost forms a significant amount of the materfal cost.
We see another possible disadvantage for future development, i.e., there
is a lower limit to the ribbon thickness produced by this method, which we
estimate to be about 120 um.

Pilkingtou Float Glass Process

Molten glass flows out of the melting tank, over the surface of a
tank of molten tin. As it flows over the tin its temperature gradually falls
until 1t becomes solid. It then passes over a weir, onto a conveyer, where

it is cut into convenient lengths.

3.2 Factors Affecting Ribbon Formation

Let us now consider the relarive importance of the various factors
which affect ribbon formation in space. In particular, we include (1)
capillarity effects, which tend to alter the shape of the liquid until mini-
mization of net interfacial energy of the entire system is achieved, (2) viscous
effects which tend to retard the flow of the liq 'd, (3) flow forces resulting
from the fact that the liquid is in motion,and (4) accelerational effects with-
in the liquid. We shall demonstrate that, for liquid silicon, the first of

these factors is dominant over the last three.
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3,2.1 Capillarity Forces Versus Viscous Forces

Let us first compare the relative influence of capillarity forces
in a liquid-silicon system, as opposed by viscous forces. We shall consider
a relatively simple example for which a quantitative treatment {s available,
i.e., the spreading of a viscous liquid drop on & planar solid surface under
the action of interfacial forces, We use here the results of the theory of

"wetting' kinetics developed by Sttella(28)

and extended by Markworth and
Glnuser(zg). They considered the problem of a liquid drop, initially
sphericel and touching the planar surface at only one point, as it subsequetly
spreads over the surface, finally attaining its equilibrium configuration. In

particular, they showed that

4 = £(8,8) . (3.2.1)
41/3 1R

o

where & is the surface tension of the drop, 7 its viscosity, Ro its initial
radius, t i3 the time measured relative to the initial condition, for which

t = 0. 6 is the instantaneous contact angle between the drop and the surface
and is measured relative to the planar surface not in contact with the drop,
and 6, is *he equilibrium contact angle. (The contact angle 6 approaches

8, in the limit as t approaches infinity(za’zgl It can be seen, from Eq. (3.2.1),
that, as expected, high values of o lead to correspondingly high rates of
approach to cquilibrium, whereas high 7 leads to slow rates. The functional
form of £(8,6_) is unimportant for the present wotk(zg) but one could show,
with the help of results reported in Refs.(28) aad (29), that the spreading
process is generally largely complzte at times such that this function has

a value of roughly 5. Hence, definirg . as the time required for the function

to attain this value, we find,

T=5 " a1/3T]Ro/0!
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Using the values Ro a1 zm, M= 0.02 potse, and a ~ 720 dyne/cm, we find that
r 18 of the order of 10 second, so that surface forces in 'fquid silicon
generally overcome retarding viscous forces extremely quickly. The. this is
so is, however, not surprising in view of the relatively high su.“ace tension
of liquid silicon and its relatively low viscosity-—for example,the viscosity
of water is only abcut a factor of two smaller than the valuec used here for
liquid silicon.

3.2.2 Capillarity Forces Versus Accelerational and Flow Forces

We shall use a somewhat different approach to evaluate th: com-
parative effects of capillarity forces varsus accelerational and flow forces.
In particular, we consider two of the various dimensionless parameters that
are commonly used to identify behavior similarities amoug systers of different
size and also to define different regimes of behavior; these twvu ,.rameters
are the Bond number, Bo, and the Weber number, We. defined as

Bo paLZ/Y

We = pLV2/y

where p {8 the fluid density, a its acceleration, V its velocity, L a
characteristic length, and v the fluid surface tension. The Bond number
defines regimes in which either acceleration or capillarity forces dominate,

whereas the Weber number compares flow forces and capillarity forces. The
appropriate hydrodynamic regimes can be illustrated graphically (see Reynold:(jo)

and Otto(jl)\on a plot of Bo versus We, as shown in Fig. 3.2.1. Assuming,

for liquid silicon, order-of-magnitude.estimated values for o, a, L, V, and

33\, 1 em, 107 ‘cm/sec (roughly the anticipated

7 and Bo -~ 10'3.

The point in Fig. 3.2.1 characterized by these numbers can be seen to lie d«eply

vy of 1 gm/cmB, 1 gm/sec2(~ 107
pull rate), and 103 dyne/cm, respectively, we find We ~ 10°

within the '"cap:’lary-dominated' region, indicating again that capillarity
forces in low gravity play a dominant role in controlling the instantaneous

shape of the liquid-silicon system.
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3.3 Use of Capillarity Forces to
Shape Silicon Ribbon

3.3.1 Capillarity-Induced Interaction Between
Solids and Liquids

From a very general point of view, the shaping of liquid silicon
into ribbun. via capillarity forces, would be achieved through the interaction
of the liquid with an appropriate arrangement of solid surfaces. Assuming
that interfacial forces control the shape of the liquid, the shape would be
that for which the net interfacial ¢nergy of the system (liquid plus solids
with which the liquid comes into contact) is minimized. Unfortumately, the
problems that one encounters in determining the minimum-energy configuration
for a relatively complex syscem are generally exceedingly difficult, Tndeed,

it has beer. pointed out by Nitsche(az)

that only in 1951 was it proven that
a spheie-like surface (certainly a simple system from the point of view of
the more complex arraugements needed for ribbon shaping) having constant
nean curvature must in fact be a sphere. To illustrate the appruach that
one can take in calculating capillarity-driven equilibrium solid-liquid
configurations, we sha’l consider here the simple, but important and pertinent,
aroblem of calculating the equiiibrium configuration of a quantity of liquid
situated on a rigid, spherical solid surface.

The system we are considering is illustrated schematically in Fig.
3.3.1. Th: droplet shape, along the liquid-vapor surface, is characterized
by constant curvature, and the locus of points describing the boundary between
the solid-vapor surface and the solid-liquid interface is a circle. All
angles and radii of curvature are taken as positive for the specific con-
figuration il .trated in Fig. 3.3.1, and their signs would be altered in
appropriate fashion for concave interfaces. Let us suppose that the radius
of the liquid system in a free, and therefore spherical, configuration is
r. Thea, it is relatively easy to show that the change of interfacial energy,
AEi’ brought about by "attachment" of the liquid to the surface, is given by

[ RO RN
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2
AE, = 2mp Yiv {1 - cos (8 + a)]

2 2
+ 2nR s - sty'(l - cos @) - 4nr Yiv (3.3.
where p is the radius of curvatur: of the liquid-vapor interface after
attachment to the solid has occurred, R is the radius of curvature of the solid,

and Yo Yoy and Yy are the re. sective free energies per unit area associated

with the liquid-vapor, the solid-vapor, and the solid-liquid interface:z. The
angles & and @ are defined in Fig. 3.3.1, from which we note that § is the
"contact angle' between the liquid and the solid. The angles are all taken
as positive Jor the configuration illustrated in the figure.

Now the equilibrium configuration of the system is that for which
AE‘.i is minimry (we are assuming zero gravity) subject to the constraint that
the volume «f the liquid remains constant upon attachment to the surface.
To evaluate the nature of this comnfiguration, we employ Lagrange's method

of undetermined multipliers and define a quantity Y such that

Y= AE + AV, - V] (3.3.

where A\ is a Lagrange multiplier, Va is the volume of the attached liquid,

and V_ is the volume of the free liquid. Now, ome can readily show that

f
3 3
v, =Y cer - g (3.3

3
1 S
Vf =3 ; (3.3.

where

F(x) = 1/2 (1 - % cos x + 1/2 cos3 x).

1))

2)

.3)

4)
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I addition, we see from Fig. 3.3.1 that
Rsinc =p sin {§ + @) . (3.3.5)

Combiniug Eqs.(3.3.3) and (3.3.5),

- 4nR3 5sin3a

a 3 . gin (6+a)

v g +a) - £ (3.3.6)

Next, combining Eqs.(3.3.1) and (3.3.5},

2
2 Ypy sin” o
AEi = 2nR ifi“EF"""‘ [1 =~ cos (B + a)])
sin” (8+a)
Y (1 )y - et 7
\Yv = Vau/ -cos )} ~br Yy, . (3.3.7)

Eqs. (3.3.2), (3.3.4), (3.3.6), and (3.3.7) can be combined to yield an
expression for Y entirely in terms of the variables o and 6 (treating r, R,
and the interfacial energies as fixed parameters).

The minimum value of AEi is determined by setting

Y oY _

aY = 50 de + v da =0 . (3.3.8)
and hence by equating each of the partial derivatives in (3.3.8) to zero.
Fiivst, setting 3Y/30 = O and solving for A\, we obtain

- -2y 8in (8 + @)
A R sin o . (3.3.9)

It is interestiry here to observe that Egs. (3.3.5) and (3.3.9) can be com-
b'ned to yield

A=< 2v/p
so that A is simply the negative of the "Laplace pressure" associated with
the attached liquid. Next, we set AY/Ax = 0 and subsequently eliminate

A in the resulting expression by means of (3.3.9). We thus obtain

VSV = Y!s + va cos © . (3.3.10)
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Eq. (3.3.10) which is identical to the familiar equation of Young and
Dupre’, describes the relation between the equilibrium contact angle and the
various interfacial energies. This expression has been derived here for the
special case in which the solid surface is spherical, a'though the same form
for this relationship has been obtained for other situations as well (e.g.,
liquids contained within closed axisymmetric containers(33)). It will prove
to be essential for use in evaluating the equilibrium configuration associated
with the more complex systems which would be used to shape liquid silicon
into ribbon.

We note, in concluding this analysis, that Darbro(3b’35) has
discussed a number of important concepts relative to phenomena associated
with the nature (particularly under low gravity conditioms) of such things
as liquids, liquid films, liquid-solid interactions, and the solidification
of liquids.

3.3.2 Melt Containment

For the shaping of ribbon from a bulk melt, it will be important
to control the shape ot the liquid-vapor interface at the melt surface.
Because of the dominance of capillarity forces, the shape of the interface
is controlled by the shape of the container as well as; the contact angle 6.
To illustrate the manner in which shape control can be achieved, we consider
the problem of obtaining a flat liquid-vapor interface, although the procedures
we describe apply equally well to obtaining interfaces having non-zero curva-
ture. We shall assume that the Young-Dupre’ equation, as derived above for
the interaction of a liquid with a spherical (concave or convex) solid surface,
applies to other curved surfaces as well (33{

One possible configuration, for which the container ‘s spherical,
is illustrated in Fig. 3.3.2. The principal drawback here is that a flat
l1iquid-vaper .aterface can be obtained for only one depth of liquid, as
illustrated in the figure. If the container holds either more or less tnen

this particular amount of liquid, then the liquid-vapor interface will be
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h= R( | -cosh)

FIG. 3.3.2. RELATION BETWEEN DEPTH L AND CONTACT ANGLE & IN ORDER TO

ACHIEVE A FLAT LIQUID-VAPOR INTERFACE INSIDE A SPHERICAL
CONTAINZR OF RADIUS R.
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curved (concave upward for the former case, convex upward for the latter).
A more practical arrangement is shown in Fig. 3.3.3. Here the container is
a surface of revolution, the walls forming a circular cone over at least
some region, the apex angle ¢ of the cone, as illustrated in the figure,
being m - 20. For this situation, the liquid-vapor interface will be flat
for any liquid depth as long as the interface intersects the container with-
in the region that is circularly conical.

The above examples illustrate the importance of container shape
in obtaining liquid-vapor interfaces having given desired curvature. It is
clear, however, that the problem is one which can be met by suitable choice

of container material and shape.

3.3.3 Capillarity-Driven Ribbon Formation

We shall now describe a general concept for ribbon formation based
on the assumption that interfacial-energy effects control the shaping process.
In particular, we shall utilize a crystallization process which is "constrained"*,
so that the material produced canm, in principle, be of the highest quality.
The two key features of the process are the following:

1. A framework is used to draw liquid sheet from a bath in a manner

analogous to the role played by the dendrites in the web process.

2. Constrained growth is coupled with rapid rate of production by pulling

the crystal in a direction aligned at an angle to the growth direction,.

(We nnte that the benefits offered by the low gravity environment of an
orbiting spacecraft relative to constrained crystal growth have been discussad

(36)

elsewhere for the particuler case of the growth of beta alumina from the

melt under low-g conditions.)

* Constrained crystal growth is the’ ,»r which the molten material ahead
of the solid-melt interface is - . e, i.e., above the melting p.int, as
opposed to the case of unconstre - . crystal growth for which the liquid
ahead of the growirg crystal is metastable, i.e., below its equilibrium
freezing tempera-uvre. Freezing occurs in the constrained-growth situation
as a result of the isotherm corresponding to the freezing temperature being
moved relative to the melt. Maintenance of constrained growth prevents the
solid-melt interface rrom breaking down. If, bowever, the growth rate be-
comes too fast, the interface becomes cellular; and in the limit of even
faster growth rates, it becomes dendritic. If, however, the growth rate
becomes too fast, the interface becomes cellular; and in the limit of even

faster growth rates, it becomes dendritic.



—

85

FIG. 3.3.3. RELATION BETWEEN APEX ANGLE ¢ AND CONTACT AMGLE 6 IN ORDER
TO ACHIEVE A FLAT LIQUID-VAPOR INTERFACE INSIDE A CONTAINER
WHICH IS A RIGHT CIRCULAR CONE OVER A PORTION OF ITS SURFACE,
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Aspects of this process are discussed belov in more detail together
with our view of some of the attendant problems. The concept of "off-angle"
growth, mentioned under (2), above, is sufficiently important in its own
right to be described in a separate section, which follows below.

The basic procedure for utilizing capillarity forces to produce
ribbon is illustrated schematically in Fig. 3.3.4. The melt is drawn up in “he
desired ribbon shape, along a frame which defines its boundaries. The frame
could, in principle, either be stationary or move with the liquid at a rate
such that the liquid ribbon does not move relative to the frame. A stationary
frame would result in a simpler experimental apparatus, but a movable frame
would undergo less wear due to frictional effects resulting from the surrounding
moving liquid; in additiocn, deleterious boundary-layer eftects in the moving
1iquid would be minimized if the frame is also moving. Solidificaticn of
the liquid could be induced either before or after the ribbon is separated
from the frame, Some particular aspects of this concept that would require

further consideration are described below:

Film Stability. Viscous forces, as we have shown, tend to be

small compared to capillarity forces; but they do exist and do tend to oppuse
film formation, and the zxtent to which these forces constitute a threat to
film stability const.cutes a problem which must be analyzed. For the web
dendrite process, which in this respect is a close analogz of the proposed
process, pull rates of about 5 cm/sec have been attained despite the super-
cooled (and thus more viscous) melt. We anticipate, for the space process,
that pull rates of the order of .0l to .02 cm/sec will be attained.

A second stability question is involved with the stability of a
thin film or sheet. Without externally applied forces, the liquid film
supported by a framework should be stable. If subjected to external
vibrations, it could support limited amounts of longitudinal and/or transverse
standing-wave systems; these waves would be damped, of course, by viscous
flow of material. We did not consider this problem, but the 1imits of applied
vibrations, beyond which the 1iquid sheet becomes unstable, mus: eventually
be determined as a function of sheet dimensions. The success of the web
dendrite method gives us svme confidence that the potential stability problems

associated with our process can be satisfactorily resolved.
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FIG. 3.3.4. SCHEMATIC ILLUSTRATION OF METHOD FOR UTILIZING CAPILLARITY
FORCES TO SHAPE LI1QUID SILICON INTO RIBBON., THE PLANE OF
THE RIBBON, IN THIS DRAWING, L1ES IN THE PLANE OF THE APER.
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Materials for Frame and Crucible. Materials developed for the EFG
process should be directly applicable to our work. The most successful has
been graphite, which seems to be an obvious first-choice materisl. Other
materials which have been successful are silica and silicon carbide. These
materials may need surface treatment in order that they may be '"wetted" by
the liquid silicon.

Mechanical Stresses. The greatest concern regarding the concept
we have developed is related to the mismatch in thermal-expansion properties
between the frame and the single crystal formed within it. Our concerns on
this ground have been reinforced by the experience of the web-dendrite crystal
growers. Qur reaponse to this problem is twofold: First, an examination is
called for of the difference in the stress distribution between a very thin,
wide, film and the less flexihle thick, narrow web crystal. Second, some
potential practical solutions to this problem exist. These solutions include
cutting away the frame ciosely above the solid-liquid interface region by
some mechanical procedure, and the alternative in which the frame is drawn
away just before the freezing interface region. The latter method would
provide a less flat sheet than one formed between a frame, but wouid com-
pletely remove the thermal-stress problem.

Provided that the frame-stress probiems can be sacisfactorily
removed, other potential sources of stress _eem to be less important. For
example, since the web crystal growers coiled their crystals continuously or
a 90 cm reel, the crystals formed in the space process, which should be

thinner, may be coiled at least as tightly.
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3.4 Off-Angle Growth

The concept of off-angle growth, mentioned briefly above, offers
some important advanteges for the production of single-crystal ribbon in
space. Suppose a single-crystal ribbon is peing grown such that the pull
velocity and growth velocity are aligned in diZferent directions. let V
be the pull velocity, V8 the growth velocity, and € the angle between the
pull and growth directions., (The quantity v defined here is distinct from
che "contact angle" discussed above, which was also denoted by ©). This
concept is illustratcd schematically in Fig, 3.4.1. For the configuration
shown here, as well as for those illustrated in Figs. 3.4.2 and 3.4.4, it is
assumed that the pull direction lies in the plane of the mwlten sheet; this
need not be the case, however, as we shall discuss below (and ss is shown
in Fig. 3.4.3).

We can use Fig. 3.4.2 to help derive the relationship between
Vp, Vg, and 8. Let us define Ag as the actnal area of the solid-melt inter-
face (i.e., thot normal to the growth direction) and Ap as the interface

area pro jected normal to Vp. In order that mass be conserved, we require

that
VA =VA .
g8 8 PP

But, one can readily see that
A = A_cos 6
P 8

so that
vV =V cos 6
& P

Hence, non-zero ' .lue of 8 would rasult in an c¢nhancement of pull rate,

1.e., V. >V,
K g

Two possible approaches to achieving off-angle growth are shown
in Fig. 3..... In one of these, the growth velocity vecvor is aligned at
an angle to the plane of the molten ribbon; in the other, it lies within
this plane. (Fig. 3.4.1 and 3.4.2 correspond tc the former case.) The
latter siruation is probably simpler to achieve experimentally, since heat

flow within the molten ribbon would occur along the plane of the ribbon.
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Other problems would exist, however, such as those resulting from the
manner in which heat is radiate¢ from various portions of the system;
these would have to be treated in subsequent studies.

Advantages to be gained from utilizing off~angle growth for
ribbon production include the following:

(1) Enhancement of pull rate.

(2) More homogeneous crystal. Defects (e.g., spiral dislocations) tend
to propagate along the growth direction and hence would terminate at the
ribbon surface for off-angle growth.

(3) Thinner ribbon. For the case illustrated in Fig. 3.4.2, for which
the solidified ribbon and molten ribbon are not coplanar, the solidified
material is thinner than the molten ribbon.

(4) Well suited to space processing. The off-angle growth process would
be difficult to maintain stably on earth.

The portion of the solidified ribbon which, at the melt-solid
interface, is most pointed, has some of the properties of a growing
dendrite, and existing dendritic-growth theory is applicable. A sharply
pointed surface would be unstable, because of the Gibbs-Thomson effect,
and it would tend to become rounded as illustrated in an exaggerated
manner in Fig. 3.4.4. The degree of rounding cepends, in some measure,
upon such factors as the rate of advance of the crystal and upon the
crystal-melt interfacial energy. We expect the radius of curvature to lie
in the range 1 to 5 pym. Cne would normally expect an interface of this
nature to become irregular; however, thermal constraints would prevent this
from happcuing in the present situation.

It should also be noted that our concept of off-angle growth
would lead to a surface exposed along the plane of the sheet which may not
be a close-packed orientation. Such an orientation is obtained from web
material.

Off-angle grewth is thus a potentially useful means for enhancing
the rate of ribbon production in space as well as the homogeneity of the

material. It should be emphasized, however, that this process is not
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essential to the concept described above involving the use of capillarity
forces for ribbon shaping. It would be used only if found to be feasible
within available technology.

3.5 Conclusion

The processes described above, i.e., the use of capillarity forces
to shape silicon ribbon and the application of off-angle growth to produce
ribbon at faster rates and greater degree of homogeneity, appear to be
feasible from a :onceptual point of view. Engineering design problems do
exist, such as maintenance of a stable configuration during off-angle
growth, and these must be considered as part of further developments.
Certainly, the low-gravity environment would have considerable influence
upon design considerations.

Additional shaping concepts that also appear to be feasible need
to be evaluated against the processes proposed herein. (Indeed, we have
considered a number of possible concepts, subsequently discarding them
in favor of those described above.) For example, one potential process
would involve zone melting, utilizing a spatially fixed molten zone. Poly-
crystalline sheet would be fed along a given direction, melted within the
zone, and single crystal ribbon pulled out from the molten zone. This
concept could lead to problems, however, in obtaining a flat solidified
sheet. It should be noted that off-angle growth could be utilized with
this type of procedure.
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4. CONCLUSIONS AND RECOMMENDATIONS

As part of our overall assessment of the prospects for space
production of silicon single crystal ribbon, we reviewed the recent liter-
ature relating to potential large-scale use of silicon for solar cells and
had discussions with a number of researchers active in this field. The
results of this survey have been considered in arriving st the following
conclusions:

1. There is no doubt that the need exists for much better methods of
producing silicon ribbon for solar cells, if photovoltaic conversion is

ever to emerge as a viable means of producing large amounts of electricity.
Not only are much lower costs required, at almost every stage of the process,
but also minimally low energy expenditures, in comparison to the total energy
produced by the material over its useful 1ife.

2. There exist a number of competing technologies for production of Si
ribbon. Some of these were described in Section 3.1, and others are under
development. No process or concept at present has demonstrated any clear
superiority, though,

3. No material other than silicon is given serious consideration for large-
scale terrestrial solar power conversion, because of 1) availability of raw
mater fal, ii) good conversion efficiency, and 1ii) overall knowledge of and
experience with the material.

4. As far as production of silicon wafers for integrated circuits goes, it
appears that any new process will have to be justified strictly on economir
grounds, and moreover will have to dislodge an entrenched, i{f rather awxward,
technology.

5. Current requirements for electromagnetic shaping of silicon ribbon are
substantial even if small shaping coils very close to the melt are used
Currents in the 100 A range will be required for shaping to 0.4 mm thickness
6. Power requirements for drawing an electromagnetically shaped ribbon from
a levitated spherical melt are moderate--a few YW, including losses in both
the shaping coil and in the molten silicon, if the shaping coil is swmall.
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. 7. Power requirements for thinning to a few hundred microns a ribbon which
has been previously drawn by some other process are high. Such processes
do not at present appear feasible with the amount of shaping power that ie
likely to be available in a space processing facility.
8. It cannot be expected that electromagnetically shaped ribbon will be of
uniform thickness. The thickness near the ribbon center could essily be twice
that near the edges. This might not lead to major problems in spplications,
but could be a problem in keeping the ribbon from touching the shaping coils.
9. Shaping coils could be cooled satisfactorily by convective rransfer to
fluid flowing through a hollowed wire, and possibly by other means.
10. Eddy-current heating of the molten silicon will raise its temperature
significantly and will move the liquid-solid interface rather far from the
region of maximum shaping force, under typical shaping conditiong, unless
some form of substantial auxiliary cooling of the ribbon can be provided.
11. In the absence of electromagnetic forces, the principal mechanism
determining the shape of liquid silicon in the space environment is capillarity,
- which dominates over viscous, accelerational, or flow forces. The morphology
of the 1iquid silicon is thus principally dependent on the shape of any
solids with which it comes into contact and the equilibrium contact angles
between the silicon and the materials of these solids. Ribbon could in
principle be produced simply by drawing between parallel wires.
12. The rate of ribbon production, the homogeneity of the solid material
produced, and the thinness of the shaped ribbon can all be enhanced by a
process of off-angle growth in which the ribbon is pulled at an angle to the
direction of solidification.
On the basis of these findings, we make the following recommendations:

1. Although a number of possible difficulties in and drawbacks to space
production of sflicon single-crystal ribboa have been identified, nothing

has been found which definitely nullifies the technical feasibility of such a
process. Therefore we do not recommend that work in this area be halted.

In view of the overall importance of being able to produce high-quality silicon
ribbon at reasonabtle expense, : recommend that work along these lines con-
tinue to the extent justifiea by the overall goals of the space-processing

program.
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2. The concepts of greatest promise, both with regard to electromagnetic
shaping and to other methods, are very 'space-oriented" and there is no
reason to believe they can be convincingly demonstrated or modeled on earth.
Obviously, therefore, terrestrial experiments cannot be generally recommended,
although some experiments to test a particular point might be desirable. For
example, it appears that a realistic investigation and test of many aspects
of the capillarity-driven shaping concept described in Sec. 3.3 could be
carried out on earth using immiscible liquids of similar densities, as in

the classic experiments of Plateau.(32)
3. A number of specific problems associated both with electromagnetic and
non-electromagnetic shaping of ribbon have been pointed out in the conclusions
above and elsewhere in the report, The primary need at the present time is
for innovative conceptualization to develop practicable ways these problems
might be dealt with. If and when such ideas are formulated, further modeling
to obtain a more quantitative assessment of their validity would be called
for, Only after development of a demonstrably sound procedure for ribbon
shaping would further design of the overall space processing system appear

appropriate.
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