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ABSTRACT 

The mechanics of the oblique impingement of an axisymmetric 

jet have been investigated. The kinematic constraint of no penetration 

requires the jet to spread and/or to deflect vertically in order to provide 

a sufficient cross sectional a rea  for the mass flux. The selection between 

these two effects is established by the dynamical effects represented in 

the three-dimensional momentum equation. The velocity field, a s  

expressed by the convective acceleration of the mean flow is primarily 

balanced by the three-dimensional pressure distribution above the 

plate and tailored by the Reynolds s t r e s s  ,distribution. It is shown that 

an alternative description of the pertinent phenomena may be constructed 

by ccnsidering the vorticity transport equation. The gradients of the 

(easily measured) two-dimensional surface pressure field are  source 

terms for the lateral and longitudinal vorticity components and the 

azimuthal vorticity structure in the approaching jet i s  reoriented to 

create a deformation in the isotach pattern which is characteristic of 

secondary flows. 

The jet responds by deflecting vertically for a sufficiently slow 

approach to the plate; for this, the intersection of the conical free jet 

isotach with an imaginary reference plant! characterizes the interaction. 

The spreading effect is important for larger angles and/or closer 

spacings. The stagnation point i s  located near th t  upstream edge of the 

interaction and is physically displaced from the maximum pressure 

point on the plate. 



TABLE OF CONTENTS 

ABSTRACT 
page 
iii 

TABLE OF CONTENTS v 

LIST OF TABLES vii 

LIST OF FIGURES ix 

NOMENCLATURE xv 

1. INTRODUCTION 1 

2. EXPERIMENTAL FACILITY 3 

3. THE MAJOR PHENOMENA OF THE OBLIQUE 
IMPINGEMENT O F  AN AXISYMMETRIC JET 

3. 1 Problem Statement 
3.2. Spreading and Curvature Effects in  an  Obliquely 

Impinging Jet  
3.2.1. Jet spreading 
3.2.2. Curvature of the jet 

3. 3. Vorticity Considerations 
3.4. The Development of an Analytical Model 
3.5. Additional Phenomena 
3 . 6 .  Phenomena Identified in  the First Annual Report 

4. THE CENTERLINE PRESSURE DISTRIBUTIONS 22 

5. THE STAGNATION POINT 2 4 

5. 1. General Considerations 
5. 2. Analytical Considerations 

5.2.1. The orientation of the stagnation streamline 
5.2.2. Consequences of stagnation point at  or  . 

displaced f rom the nlaximum surface 
pressure  

5 . 2 .  3. Relationship between the stagnation and 
surface p re s su re  gradients near the 
stagnation streamline 

5. 3. Experimental Investigation of the Stagnation 
Phenomena 
5. 3.1. Technique and interpretation 
5. 3.2. Experimental results  
5. 3. 3. Summary and analysis of the stagnation 

point inve stigation 
6 .  SUMMARY 

7.  REFERENCES 

APPENDIX A. 

APPENDIX B. 



LIST OF TABLES 

page 
1. Radius r as a function of x/d to define the 0.1 isotach 

(u(x, r)/u(o) = 0.1) for the fully developed and uniform 
nozzle exit conditions. (The data shown are from those 
cases for which the measured x-component momentum flux 
was constant to within f 3 percent. ) 89 

2. Summary of percent widths, distance to maximum 
pressure and isobar which aligns with free isotach 
intersection. 

3. Ratio of 9 vorticity flux through the plate to the vorticity 
flux through a small height at the x location of the maximum 
pressure. Uniform nozzle exit condition. 2 0 

4. Data from the stagnation point investigation. 91 

P R S ~ D I G  PAGE B m  NOT 



LIST OF FIGURES 

la.  

lb. 

Externally blown flap STOL aircraf t  configuration 9 3 

The round- jet/plane-wall flow field, coordinate system 
and nomenclature. 9 3 

Detail of uniform flow nozzle. 9 4 

2 
I s  bar plot values shown a r e  p(x, y, 0)/ph u(0) sin a x 2 10 for the conditions 3, 0. 75, u. 95 

2 Isobar plot values shown a r e  p(x, y, 0)/p A u(0) sin a x 
lo2  for the conditions 3, 1, u. 96 

2 
Isobar plot values shown a r e  p(x, y, 0)b Au(0) s in  a x 
lo2 for the conditions 3, 0.5626, fd. 97 

2 
Isobar plot values shown a r e  p(x, y, 0)/p A u(0) sin a x 
102 for the conditions 3, 0.667, fd. 98 

2 Isobar plot values shown a r e  p(x, y, o ) / ~  Au(0) sin a x 
102 for the conditions 3, 0. 75, fd. 99 

2 
Isobar plot values shown a r e  p(x, y, o ) / ~  Au(0) sin a x 
lo2 for the conditions 3, 1, fd. 100 

2 
Isobar plot values shown a r e  p(x, y, 0)/p A u(0) sin a x 
lo2 for the conditions 6,O. 75, u. 10 1 

2 Isobar plot values shown a r e  p(x, y, O)/P Au(0) sin a x 
102 for the conditions 6 ,  1, u. 102 

2 Isobar plot values shown a r e  p(x, y, 0)/p X u(0) sin a x 
l o 2  for the conditions 6, 1.5, u. 10 3 

2 
Isobar plot values shown a r e  p(x, y, 0)/p Au(0) sin cr x 
102 for the conditions 6,  0.75, fd. 104 

2 I s  bar plot values shown a r e  p (x, y, 0)/p A u(0) sin a x e 10 for the conditions 6 , l ,  fd. 105 

14. Isobar plot values shown are p(x, y, 0)/p A ~ ( 6 ) '  sin a x 
102 for the conditions 6 , l .  5, fd. 106 

2 15. Is  bar plot values shown a r e  p(x, y, O)/p Au(0) sin a x % 10 for the conditions 8 , l ,  u. 107 

2 16. Isobar plot values shown a r e  p(x, y, 0)/p Au(0) sin a x 
102 for the conditions 9, 1. 5, u. 108 

PBDC13)INQ PAGE BUNK NOT NUEQ 
ix 



2 Isobar plot values shown a r e  p(x, y, 0)b Au(0) sin n 
x l o 2  for the conditions 9, 1, fd. 

2 Isobar plot values shown a r e  p(x, y, O),/p A u(0) sin a x 
102 for the conditions 9, 1. 5, fd. 

2 Isobar plot values shown a r e  p(x, y, 0)/p A u(0) sin a x 
lo2 for the conditions 9, 2, fd. 

2 
I s  bar plot values shown a r e  p(x, y, O)/p A u(0) sin a x e 10 for  the conditions 12, 1.5, u. 

Isobar plot values sho rn  a r e  p(x, y, 0)/p X U ( O ) ~  sin a x 
102 for  the conditions 12, 1.5, fd. 

2 Is bar  plot values shown are p(x, y, 0)/p X u(0) sin a x 3 10 for  the conditions 12, 2, fd. 

2 I s  bar  plot values shown a r e  p(x, y, O)/p A u(0) sin a x e 10 for  the conditions 15, 1, u. 

2 I s  bar  plot values shown a r e  p(x, y, 0)/p A u(0) sin a x 9 10 for  the conditions 15, 2, fd. 

Isobar plot values shown a r e  p(x, y, o ) / ~  X U ( O ) ~  sin a x 
l o2  for the conditions 30, 2, u. 

2 
Isobar plot values shown a r e  p(x, y, O)/p Au(0) sir* a x 
102 for the conditions 30, 3, u. 

2 
Isobar plot values ohown a r e  p(x, y, o ) / ~  A u(0) sin a x 
lo2 for  the conditions 60, 2, u. 

Isotach contours a = 3, h/d = 0. 75, uniform. 
a.  x/d = O  
b. x/d = 1 
c .  x / d = 2  
d. x/d = 3 
e .  x / d = 4  
f. x / d = 5  

Isotach contours a = 9, h/d = 1, uniform. 
a.  x / d = 0  
b. x/d = 1 
c ,  x / d = 2  
d. x / d = 3  
e.  x / d = 4  
f. x / d = 5  

Isotach contours a = 15, h/d=l, uniform. 
a ,  x / a = 0  
b. x/d = 1 
c ,  x/d = 2 



Control volume for the analysis of the round- jet/plane- 
wall flow field. 

2 Normalized centerline pressure p/p hu(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/sin a . The x/d origin for  each h/d value 
represents the intersection point of the 0.1 free isotach. 
a = 3 degrees, uniform exit condition 

Normalized centerline pressure p/p ~ U ( O ) ~  sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0.1 f ree  
isotach. a = 3 degrees, fully developed exit condition 

2 Normalized centerline pressure p/p hu(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/sin a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 free 
isotach. a = 6 degrees, uniform exit condition 

2 Normalized centerline pressure p/p Xu(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/sin cr . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 free 
isotach. a = 6 degrees, fully developed exit condition 

2 Norrnalized centerline preasure p/p Xu(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0 . 1  free 
isotach. a = 9 degrees, uniform exit condition 

Normalized centerline pressure p/p Xu(0: ' sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/ sin a . The x/d = 0 origin for each h/d. 
value represents the intersection point of the 0. 1 free 
isotach. a = 9 degrees, fully developed exit condition 

2 
Normalized centerline pressure p/p Xu(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/sin a The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 free 
isotach. a = 12 degrees, uniform exit condition 

2 Normalized centerline pressure p/p Xu(0) sin a and 
the normalized curvature of the jet1 e momentum flux 
centerline Kd/sin a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 free 
isotach. a = 12 degrees, fully developed exit condition 



2 Normalized centerline pressure  pip Au(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline Kd/sin a . The x/d = 0 origin for each h/d 
value represcnts the intersection point of the 0.1 free 
isotach. a = 1 5  degrees, uniform exit condition 

2 Normalized centerline pressure  p/p Au(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/cl = O  origin for each h/d 
value represent6 the intersection point of the 0. 1 f ree  
isotach. a = 1 5  degrees, fully developed exit condition 

2 Normalized centerline pressure  p/p Au(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 free 
isotach. a = 30 degrees, uniform exit condition 

2 
Normalized centerline pressure p/p Au(0) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0. 1 f ree  
isotach. a = 60 degrees, uniform exit condition 

Kd/sin a for the conditions a = 3 degrees, uniform, 
and the indicated h/d values. The abscis s a  of the separate 
curves has been shifted such that the intersection of the 
0.1 f ree  isotach occurs at the origin. 151 

Kd/sin ct for the conditions a = 3 degrees, fully developed, 
and the indicated h/d values. The abscisea of the 
separate curves has been shifted such that the intersection 
of the 0.1 f ree  isotach occurs at the origin. 1 5 2  

Kd/sin a for the conditions a = 3 degrees, fully developed 
and the indicated h/d values. The abscissa of the 
separate curves has  been shifted such that the intersection 
of the 0. 1 free isotach occurs at the origin. 1 5 3  

~ d / s i n  a for the conditions a = 6 degrees, fully developed, 
and the indicated h/d values. The abscissa of the separate 
curves has been shifted such that the intersection of the 
0.1 free isotach occurs at  the origin. 

Kd/sin a for the conditions a =9 degrees, uniform, and 
the indicated h/d values. The abscissa of the separate 
curves has been shifted such that the inbersection of the 
0.1 f ree  isotach occurs a t  the origin. 

Kd/sin a for the conditions o. = 9 degrees, fully developed, 
and the indicated h/d values. The abrcissa of the separate 
curves has been shifted such that the intersection of the 
0.1 free ieotach occurs a t  the origin. 



Page 
50. ~ d / s i n  a for the conditions a = 12 degrees, uniform, 

and the indicated h/d values. The abscissa of the separate 
curves has been shifted such that the intersection of the 
0.1 free isotach occurs a t  the origin. 157 

51, ~ d / s i n  a for the conditions a = 12 degrees, fully developed 
and the indicated h/d values. The abecissa of the separate 
curves has  been shifted such that the intersection of the 
0.1 free isotach occurs a t  the origin. 158 

52. ~ d / s i n  a for  the conditions a = 15 degrees, uniform, 
and the indicated h/d values. The abscis s a  of the 
separate curves has  been shifted such that the intersection 
of the 0.1 free isotach occurs at the origin. 159 

53. Kd/sin a for the conditions a = 15 degrees, fully developed, 
and the indicated h/d values. The abscissa of the separate 
curves has been shifted such that the intersection of the 
0.1 free isotach occurs a t  the origin. ; 60 

54. Kd/sin a for the conditions a = 30 degrees, uniform, 
and the indicated h/d values. The abscissa of the 
separate curves has been shifted such that the intersection 
of the 0. 1 f r ee  isotach occurs at  the o r i g i ~ .  16 1 

55. ~ d / s i n  a for the conditions a = 60 degrees, uniform, 
and the indicated h/d values. The abscissa of the separate 
curves has been shifted such that the inter section of the 
0.1 f ree  isotach occurs a t  the origin. 162 

56. Schematic representation of general isotach distribution 
showing the axisymmetric region in the undisturbed flow, 
the buffer region and the near wall region. 16 3 

57a. Flux of streamwise vorticity into the flow as a result  of 
the surface pressure distribution, fully developed cases  
(a degrees, h/d). Note, 15, 1, u i s  for the uniform 
exit condition. 164 

57b. Flux of streamwise vorticity into the flow as a result  of 
the surface preseure distribution, fully developed cases 
(a degrees, h/d). 

58. Vorticity, pressure relationships for  normal jet 
impingement. 

59. Physical characteristic s of oblique jet impingement. 

60. Experimental technique for  the acquisition of the 
velocity and surface static pressure data. 



Page 
6 1. Measured, vw, and equivalent stagnation streamline 

velocities (as inferred from the surface pressure),  v 
to determine the stagnation point for the conditione P' 
c+. = 3 degrees, h/d = 1, uniform. 169 

62. Measured, vw, and equivalent stagnation streamline 
velocities (as inferred from the surface pressure), v 
to determine the stagnation point for the conditions P ' 
a = 9 degrees, h/d = 1, uniform 1 70 

6 3. Measured, v and equivalent stagnation streamline 
velocities (ar inferred from the surface pressure), v 
to determine the stagnation point for the conditions P ' 
a = 15 degrees, h/d = 1, uniform. 

xiv 



NOMENCLATURE 

C. S. control surface 

C:. V. control volume 

d diameter of nozzle exit 

E 3 energy flux; J'S p u dydz 

F force 

2 x- c omponent unit vector 

3 2 momentum flux; JJp u dydz J (0) = momentum flux f rom nozzle 
2 

J~ 

momentum flux based on Q(O), p Q(0)  A. 
6 
J y- c omponent unit vector 
A 
k z-component unit vector 

K radius of curvature of jet, see  ( 5 )  

M mas  s flux, JJp u dydz 
A 
n outward drawn unit vector 

P pressure  
Q magnitude of the velocity vector, Q(0) 2 Q(O,O, 0)  

r radius for cylindrical coordinates 

R radius of the jet (arbitrari ly defined) 
j A 

u x-component velocity, v i, u(0) i u(0, 0,O) 

v -. 4 y-component velocity; v J 
-. 
v* % vector vclocity 

v 
W 

velocity recorded by hot-wire in the stagnation point experiment 

v 
P 

"velocity" calculated f r o m  t h e  wall p ressure  tap in the stagnation 
point analysis, see Figure 61. 

V volurne 
A 

w 1;-component velocity; v k 

X~ Y, caordinates (see Figure 1) 

2; 
C 

jet cer~terl ine defined by the center of the c i rcular  isotach 
pattern a t  a given x location 

2; m jet centerline defined by the moment-of-momentum equation (33) 

Super scr ipts  

(7 t ime average quantity 

( ' 1  fluctuating quantity 



Subecripte 

( )e entrainment 

( I j  pertaining to  the jet 

( 10 
condition at the norzle exit 

( IT t rue value 

( ) ( ) x and z component valuee 

Greek Symbols 

a inclination angle of the jet 

6 a ernall increment, used a s  62 and 6n, lengtha which a r e  small  
with respect to d 

8 azimuthal coordinate (r ,8 ,  x) 

hfd momentum i:u ratio characterizing the nozzle exit velocity 
distribution X - J(o) /J~ ,  X U  = 0.809, X -: 0 .676  c? 

v kinematic viscosity 

P density 

W vorticity vector 



1. INTRODUCTION 

The mechanics of the oblique intpingentent of an axisymmetric jet 

on a plane surface a r e  examined in detail in this report. F i g u r e  1 shows 

a schematic drawing of the problcn~ under consideration and the coordinate 

system used to describe the flow field. The kinLrnatic features of the 

flow above the plate a r e  examined in the context of the conservation of 

mass, the vorticity of the jet, and the vorticity introduced by the jet- 

plate interaction. The dynamic features of the flow a r e  examined in te rms 

af the surface pressure distribution and the cause-effect relationships 

which exist between the pressure and velocity/vorticity distributions. 

This report represents the primary results of the second year 's  activities 

supported by the NASA grant NGR 23-004-068. 

This study was motivated by the externally blown flap (e. b. f. ) , 
a configuration under consideration a s  a means of gaining large lift 

coefficients for STOL aircraft. For  this application problem the airfoil 

extends no more than five o r  six jet diameters beyond the jet; hence, the 

extensivt- data for the inclination angle a and the height above the plate 

h/d a r e  restricted to the limited streamwise domain of 0 5 x/d 5 6 for 

the static pressures. With the exception of the pressure data for a = 30, 

afid a = 60 degrees, the present investigation is relevant to the flow 

resulting from the interaction of the propulsion jet with the main airfoil. 

The information herein is appropriate to  an ,over- o r  unde- - wing configura- 

tion. A schematic of the latter is shown in Figure 1 The documented 

flow is an approximation of that which would be prediented to the wing- 

flap juncture. The 30 and 60 degree conditions are  representative of the 

direct interaction of the propulsion jet with the flap. 

The data base used to establish the mechanics of jet-plate inter- 

action is comprised of (1) surface static pressures measured a t  0.1 inch 

i~cremento  in y at discrete x locations, (2) velocity measurements from 

0.1 inch increments in y a t  discrete z positions and at integer x/d 

locations from 0 t c  5. These data have been used to crcate quantitative 

measures of the important phenomena occurring in ~e flow. Analytical 

considerations have been used to develop these nleasures and to infer 

significant relationships or implications which clernonatrate the nature of 

the phenomena occurring in this flow field. 

The data base which serves a s  the primary resource for this 



report was used in the First Annual Report to define measures of the 

flow field which were relevant to the externally blown flap problem. 

The measures and analyses of the present report a r e  to  define the b a s i ~  

character of the flow. This is considered to be complementary to the 

information of [ l j .  The identification of the oblique jet mechanics will 

contribute to several aspects of the externally blown flap development 

activity. Since the oblique jet ixningement is the simplest form of the 

e.b.f. flow field, the basic aspects of the two flows will be similar. The 

mechanics identified in the present study can serve a s  the basis for the 

interpretation of the e. b. f. flow field response to  the complicating factors 

of (I)  an e x t e r ~ a l  streaming flow, (2) the curvature and a finit-: extent of 

the impingement plate (the airfoil), and (3) the presence of the deflecting 

flap. The mechanics identified herein will also allow an inference of the 

minimum spacing for multiple jets such that thcir flow fields show no sig- 

nificant interaction. The turbulent motions wLch a r e  responsible for the 

acoustic emissions from the impingement region a r e  related to the mean 

flow field characteristics id~ntified herein. Subsequent studies of the 

turbulence structure will be guided by these results. 

A general review of the literature pertinent to this problem was 

presented in [ l ]  and no additional studies directly relevant to  this problem 

have been identified. Consequently, a literature review will not be inclvded 

herein. A brief description of the experimental facility is given in 

Section 2. Section 3 presents a comprehensive statement of the mechanics 

of the mean flow in the obliquely impinging axisyrnrnetric jet. Specifically, 

Section 3.2 identifies the spreading and curvature effects; Section 3.3 

considers the vorticity aspects of the motion; Section 3.4 identifies a 

generalized framework for the development of a computing scheme; 

Section 3.5 introduces the additional phenomena of the stagnation 

point and the y- component vorticity considerations; and Section 3.6. 

rei:erates the important characteristics identified in the First Annual 

Report. Section 4 presents the detailed information which can be extracted 

f rom a consideration of the centerline pressure values. Section 5 presems 

a detailed consideration of the stagnation point: specifically, Section 5 . 2  

presents the analytical considerations which demonstrate the consequences 

of separate physical locations for  the stagnation and the maximum pressure 

points; Section 5.3, the experimental results; and Section 5.4, the 

relationship of the isotachs and the stagnation point. The appendices a r e  



used to  communicate the pertinent results available in (1 1. 

2. EXPERIMENTAL FACILITY 

The large volume of data considered in this report (and in [l]) 

i s  essentially made possible by the on-line IBM 1800 digital computer 

facility. The quantitative evaluation of the severai measures of the 

experimental data, i. e. integrations and the preparation of level curves 

(isotachs and isobars) is made feasible by the availability of the hot-wire 

and pressure transducer data on punched card-:. This data processing 

facility and the experimental flow system a t e  described in detail in [I]. 

Two nozzle configurations were used to examine the influence of 

the initial conditions of the jet-plate interaction. A fully developed flow 

was developed in a 2 inch I. D., 12 f t  long tube; this is referred to  as the 

fully developed (f. d. ) conditicn. A second nozzle was used t o  approximate 

a uniform (u) flaw. A nominally flat-top velocity profile was created 

with this nozzle and these results will be referred to a s  the uniform (u) 

condition. Details of this nozzle a re  given in Figure 2 along with an 

exit velocity profile. 

The velocity data which were used to create the isotach natterns 

(selected isotachs have been reproduced in Appendix A for reference 

purposes) were obtained with a single vertical wire (parallel with 2). 

Consequently, these readings a re  most appropriac-ly ref e r red  to a s  

approximately (i. e. discounting pitch effects) the magnitude of the 

velocity in the x-y plane of the wire. Since the x-component i s  dominant 

except at the edge of the jet where u(x, y, z) < < u(x, o, z), the reasonable 

approximation i s  that the hot-wire reading is the x-component of velocity. 

This distinction i s  necessary when the various f lux  integrals a r e  formed 

or when the comparison with ~naly t ica l  flux predictions, e. g. the Reichardt 

model a re  examined. See Sections 4.3 and 4.4 of [l] ,  respectively, for 

these processed forms of the velocity data. 

A special ser ies  of experiments was performed to investigate 

the stagnation point. These experiments involved the flow, traverse, 

and data processing systems described in [I]. The appropriate iletails 

of the test  procedure will be covered along with the presentation of the 

experiments . 



3. THE MAJOR PHENOMENA OF THE OBLIQUE IMPINGEMENT OF AN 
AXISYMMETRIC JET 

3.1. Problem Statement 

The purpose of this section is to coneider the dominant phenomena 

which occur in the jet-plate interaction. Subsequent sections will consider 

appropriate details of the separate phenomena. 

A useful conceptualization of the jet-plate interaction is based 

upon the no-penetration constraint imposed .y the plate on the motion of 

the jet fluid. That is, there is no z component of velocity in the plane of 

the plate. In i t s  absence, the jet fluid which would have penetrated through 

the plane of the plate will pass a given x location by spreading laterally 

along th9 s u r f ~ c e  of the plate and by increasing the area available for rnass 

flux by causing the jet to curve upward. In the context of the kinematics 

of the problem, i t  is only necessary that the appropriate mass flux occurs 

across any x = constant location; the relative importance of spreading 

and curvature is dependent upon the dynamics of the jet-plate inter- 

r-ction. That is, the pressure distribution within the jet determines the 

curvature and spreading effects. It is  not possible to identify a cause 

and effect relationship based upon the conservation of mass equation 

since this is  not the governing phenomena for the problem. 

The above considerations allow a somewhat more precise 

statement of the desired description of jet-plate interaction mechanics. 

Specifically, it should identify the magnitude of (1) the jet spreading and 

(2) the curvaLure of upward deflection effects; and identify the factors 

which are responsible for the selection process which results in the 

balance between these two effects. Clearly, the surface pressure distri- 

bution is mechanistically related to these two aspects of the motion in the 

jet. However, the surface pressure distribution itself i s  also an impor- 

tant aspect of the interaction process. Somewhat less obvious is  the 

relationship between the surface pressure distribution and the x- 

component vorticity flux through an x = constant plane. This voriticity 

component is an important factor in the boundary layer control 

characteristics prwided by the flow which bleeds between the lower surface 

of the airfoil and the flaps. The relationship between the pressure 

and the x-component vorticity will be examined in detail. The 



curvature and spreading measures will f i rs t  be examined; a model of 

the jet-plate interaction will then be presented. 

3.2. Spreading and Curvature Effects in  an Obliquely Impinging Jet 

3.2.1. Jet spreading 

From conservation of mass consideration, it is argued in Section 

3.1 that the jet will both spread laterally along the surface of the plate, 

and curve upward. It is the purpose of this section to quantitatively 

evaluate these two effects. 

in order t o  evaluate the spreading effects, some knowledge or 

reliable estimate of a reference or  intersection contour of the jet on the 

plate is necessary. Such a reference contour can be established by the 

intersection of the free (uniform or  fully developed) jet with an imaginary 

plane in the same relative position a s  the plate. More specifically, if 

one considers the axisynmetric surface defined by the condition u(x, r) = 
constant, the intersection of this surface with the plane of the plate defines 

a contour. From the data of the present study, it is possible to  quite 

accurately determine the functional relationship for the average r(x) 

values such that u(r, x)/u(o) = 0.1, 0.3, 0.5, 0.7, 0.9; the average is 

based upon the large ensemble of experimental conditions with the following 

characteristics: (1) different a and h/d values, (2) an undisturbed 

isotach pattern, and (3) r v a l ~ ~ e s  which a re  themselves smoothed over 

multiple y traverses.  The 0. 1 isotach (u/u(o) = 0. 1) was chosen for this 

purpcse since it best describes the outer boundary cf the jet. Only the 

cases which demonstrated conservation of momentum were used to 

establish the radii of the 0. 1 isotach for the five downstream x/d locations. 

Table 1 presents these r (x) values. The linearly increasing values define 

a cone. The intersection of a cone with a plane defines an ellipse, 

parabola, or hyperbola depending upon the relative magnitudes of the 

cone and the intersection angles. These generated contours a r e  termed 

free isotach inter sections. The isobar and the free isotach inter section 

contours are  shown in Figures 3 to  27. The shape of the two curves is 

remarkably similar which allows several measures of the interaction t o  

be established. These a re  discussed below. 

The zero isobar i s  considered to be a significant measure of the 

outer jet boundary. That is, the zero isobar can be interpreted a s  the 



limiting extent of the dynamic effects in the flow, The small negative 

pressures beyond this isobar a re  a r c s u t  of the entrainment effects. It 

is reasonable to  assume, but i t  has not bccn shown, that the zcro isobar 

is related t o  the stagnation line where the jet fluid, flowing laterally 

outward along the plate, meets the entrained fluid. The stagnation pressure 

of the entrained fluid would be approximately (clearly no greater than) the 

atmospheric value. Since the free isotach intersection characterizes 

the size of the undisturbed jet in the plane of the plate, the ratio of this 

contour width to that of the eero isobar can be used to describe the 

relative jet width. If the isobar family of curves were parametric, then 

the x location used to  measure the relative width would not influence the 

magnitude of the ratio since the f ree  isotach intersection is defined by 

a cone and a plane. The isobars, especially the zero isobar, a r e  

apparently not members of a single family; therefore, there is some 

influence of x-location on the relati\ 3th measure. The arbitrary 

decision was made to evaluate the width measurements a t  the x locaticn 

of the maximum pressure. Since the zero free isotach grows a t  a 

different rate  than the 0. 1 free isotach, the distance from the appropriate 

point a t  the nozzle exit to the maximum pressure location is considered 

to be pertinent supplementary information. Table 2 presents the percent 

width and nozzle- to-plate data taken from the isobar contours. 

The relatively constant percentage width values in Table 2 for the 

three to  nine or tweive degree cases a r e  ctasidered to be quite significant. 

Contrary to what might be reasonably expected, it appears that there is 

very little ~ys temat ic  spreading of the jet with increasin: a values. 

Considering a nominal value of 0. 7 for the ratio of these t,vo jet width 

measures, the majority of the data for both nozzles is within * 0.05 or  

= * 7 percent. Within this domain of cases, there a re  some second order 

systematic and non-systematic variations. The systematic deviations a r e  

dependent upon the increasing a values and probably the distance to tne 

maximum pressure location. The scattered or non-systematic variations 

may be caused by geometric, flow, or measurement condition abnormali- 

ties (for example, an improper a value in the experiment or  a zero drift 

in the pressure transducers). The significant deviations from this 

cluster about 0.7 a re  cons;-dered to be the u: a = 12, h/d = 1. 5; a = 15, 

h/d = 1; a = 30, h/d = 2,3; and a = 60, h/d = 2 cases in which a 



pronounced and systematic trend is observed where the width of the jet 

i s  considerably larger than the free isotach intersection. These 

differences in the width ratios a re  apparently related to  the much different 

interaction phenomena. Specifically, based upon these ratios and based 

upon the available isotach information, the cases with a nominal width 

ratio vf 0.7 appear to preserve the basic axisymmetric character of the 

jet and to confine the interaction phenomena t o  the region below the 

center of the jet. For  the larger angle cases, the axisymmetric character 

of the jet is destroyed and the lateral flow along the surface of the plate 

is greatly enhanced as is the region of dynamic importance represented 

by the isobars. 

Table 2 also presents the magnitude of the normalized pressure 

of the isobar which aligns with the 0.1 free isotach intersection contour. 

The pattern in which these values a re  essentially constant from three 

to twelve degrees is again apparent. A nominal value of 0.27 and second 

order variations a re  indicated by the table. The percentage variations be- 

tween different cases in the magnitude of the isobar which aligns with the 

free isotach are  larger  than the percentage variations for the width 

measures. Also, the variations in the uniform cases a r e  greater than in 

the fully developed cases and it can be observed that a pattern of larger- 

pressure for smaller-distance-to-impact i s  established, These a r e  

considered to be mechanistically related to the relatively steep velocity 

gradient at  the edge of the uniiorm exit condition jet. The tabulated 

values a re  considered to be accurate within approximately * 10 percent; 

the correspondence of free isotach/isobar contour was not exact and 

the equivalent isobar value often had to  be obtained by interpolation. 

Large deviations from the nominal 0. 27 value a re  observed for 

the uniform cases of a = 15, 30, and 60. The significantly larger pressure 

magnitudes for these cases and the much smaller percentage width 

measures noted above both signify qualitatively different interaction 

phenomena compared to the smaller angles. These differences, then, 

a r e  to be related t o  the strength of the interaction. The strong interaction 

destroys the axisymmetric character of the upper portion of the jet; a 

weak interaction does not. 

A quite significant quantitative aspect of the isobar/free isotach 

alignment is that the factor of sin a , used to  normalize the pressures, 



allows the identification of a single nominal value over the range of 

a = 3 t o  15 degrees. This ia approximately a five-fold variation in the 

magnitude of sin a and hence a five-fold variation in the magnitude of 

the surface pressure.  This simple dependence of the pressure on the 

jet angle would suggest that the z-component of the momentum flux is 

responsible for the elevated pressure in this region; this is in contrast 

to  the center line pres sures which will show an additional effect associated 

with the overall jet and the local curvature effects. 

The isobars represent a measure of the dynamic widt!! of the jet. 

The isobar field could not be wider than the jet flow but the converse 

could occur. That i s ,  the inertia of the lateral  motion induced by the 

pressure gradient within the active region of the jet-plate interaction could 

move the jet fluid beyond the zero isobar. In this event, the isobar would 

unaer- estimate the jet width. Figures 28 to 30 have been prepared to  

compare the isotach contours with the la teral  pressure  distribution for 

the uniform cases: a = 3, h/d = 0.75; a = 9, h/d = 1; and a = 15, h/d = 1. 

These figures demonstrate that the jet does spread beyond the zero isobar; 

however, the velocity beyond this boundary is relatively small. The 

above considerations a r e  therefore restricted to the notion of the dynamic 

width of the jet. 

3.2.2. Curvature of the jet 

For  the cases of weak jet-plate interaction, there a r e  only minor 

changes in  the spread a s  a function of a and h/d. Consequently, it is 

concluded that any significant differences between cases  will be manifest 

in the curvature of the jet. The curvature of the entire jet can be c o m p ~ t e d  

f rom the surface pressure values. The assumptions and analytic3 1 

considerations which make this possible a r e  identified in the following; 

the curvature magnitudes will be examined following the analysis. 

Special experimental tes ts  and an estimate of the maximum 

plausible influence of the static pressure was used in [ l ]  to demonstrate 

that the x-component momentum flux was essentially constant for all  

cases.  As a consequence of this, control volume momentum and 

moment-of-momentum analyses may be used to define the height above the 

plate z (x) of the center of momentum flux Jx(P J ( o )  cos a = constant). m 
The quantity zm(x) can be considered to be the elevation of the jet (as if 

it were concentrated along a line). The curvature of the jet is given in 

t e rms  of the curvature of z,(x) by the relationship 



The expression for zm(x) developed in [ I ]  will  be used to evaluate the 

curvature. The expression from [l  ] was made incomplete by the exclusion 

of a t e rm which accounted for an entrainment effect. The corrected 

analysis is presented in Appendix B and the corrected form is 

2 F 
X - - 1 m - h + 5 9- - - tan a - J(o)eoa. JA$~u 

d d d J(o)cos a d plate 

where Q is the entrainment velocity a t  the control surface and the 
e 

control surface is defined in Figure 31. The bracketed t e rm is shown 

to be small for x/d 5 5 in Appendix B. The derivatives for the 

curvature a r e  evaluated as  

aD 
F dF /J(o) cos a 

- =  X 1 d2m dx 
J(o) cos a t a + - tan a - 3 I'dy J(o)cos a 

but since dF /dx = 
P 

dzm - =  1 
dx J(o)cos a 

- tan a 

and 



Consequently 

1- t P p d Y  J(0) toea ,, 
K = (5) {(L- J(o)cos a - tan a ) 2  + j 3'2 

Although the curvature involves the second derivative of z , it can be m 
evaluated in te rms of quantities which a r e  quite accurately known, a s  

shown by (5). 

An approximate relationship involving K is  pertinent to the 

interpretation of the curvature data; specifically, since the maximum 

magnitude of dzm/& is  -tan a , the largest coefficient mul' iplying the 

numerator of K i s  [ l  +tan a 1. -3'2 ~ i n c e O . ~ ~ ( l t t a n .  a )  -3/f for  oa 
2 3/zz1 a 115 degrees, the variation of the denominator is neglected and [I  +tan a J 

is considered to represent a satisfactory assumption. Consequently, 

The area  under the K(x) curve i e  then 

Area under K(x) 

Since dzm(.)/dx = 0, the total a rea  under the K(x) curve is approximately 

tan a . This may be used a s  a reference condition to compare the K(x) 

curves for a given a as  a function of h/d. 

A second general observation may be made concerning the K(x)  

distributions. Urtless the plate influences the jet at the eait of the nozzle, 

the curvature will vary from zero to a negative value ( i f  the entrainment 

eLact is important) to positive values (for a sufficient duration to allow 

the area under the K curve to be = tan  a ) and return to zero for large 

downstream distances. Thc centerline pressure will have the same 

general character; however, the pressure may be infiuenced by the local 



effects in  the flow whereas the curvature is a measure of the overall 

behavior of the jet. 

The curvature and the centerline pressure  a r e  presented together 

in  Figures 32 to  45,  The comparison of these two distributions is con- 

sidered to offer an effective measure of the curvature effects. If the 

two curves have the same character,  i t  i s  concluded that the local 
curvature effects a r e  not very important and that the jet i s  essentially 

turned en masse. The extent t o  which the two curves have a different 

character is used a s  an indication of the presence of local curvature o r  

a relatively rapid jet approach to the plate. A shift in the x/d location has 

been applied to these (and subsequent plots) t o  align the 0. 1 f ree  isotach 

intersection with the x/d = 0 location. This allows a better visual compar- 

ison between cases.  The &/d values to accomplish the shift a r e  

presented in Table 2. 

The most important characteristic of these data i s  their slope a s  

a function of the streamwise distance. The slopes were not evaluated 

since the usual e r r o r s  associated with differentiation of data would have 

been encountered; the reader i s  asked to mentally compare the slopes 

of the K and p (x, 0.0) curves. The trend indicated by the uniform, 

a = 3 degree cases  (h/d = 0.75 and 1) is characteristic of a l l  the data. 

That i s ,  the p(x, 0,O) distr4bution reaches a maximum a t  a smaller x/d 

than does K(x) and this differende betvreen the two curves is less  pro- 

nounced as h/d increases. This trend is  quite pronounced for the fully 

developed, a = 3 degree cases .  The condition wherein the centerline 

pressure reaches a maximum value before the curvature, reflects the 

dependence of p(x, 0,O) on the local flow condition. As h/d i s  decreased, 

t\e velocity gradients of the flow approaching the plate a r e  increased and 

the surface pressure required to turn the flow locally is increased. The 

quantitative character of thie observation ia demonstrated by the plots. 

Figures 44 to55 present a comparison of the curvatures for 

various h/d values a t  a given a . These plots a r e  prepared such that 

the 0.1 free isotach would be shifted to  x = 0. The purpose of this 

comparieon is to  demonstrate the accommodation of the curvature to the 

different geometries. That is, the jet curves more rapidly for smaller 

h/d values. 

3.2.3. Summary of spreading/curvature effect 

The original question addressed in this section can now be answered. 



It was noted that the constraints imposed by the conservation of mass  

required that the jet spread laterally along the plate and/or be curved 

upward because of the no penetration condition imposed by the plate. 

The relative o?reading measures indicate that for thp rclativcly s n ~ a l l  

angles, a 7 12 degrees, the lateral  spread of the jet is  a second order 

cffect. Fo r  these same cases,  the curvature is a strongly varying function 

of a and h/d; that is, the jet primarily responds to the presence of the 

plate by turning upward. 

The larger angle cases appear to  be qualitatively different. The 

upper portion of the jet daee not retain i ts  axisymmetric character and 

the relative width of the zero isobar to the 0. 1 f r ee  isotach is increased 

with respect to the smaller angle cases. The pressure  dietributions show 

a more peaked character with the relatively large maxima apparently 

accounting for  the strong turning of the fluid a t  the upstream edge of the 

jet. 

3.3. Vorticity Considerations 

The upward deflection of the jet can be expressed in te rms of the 

deviation of the z-component velocities in the jet f rom the equivalent 

values which would be realized if the platz were not present. Similarly, 

the spreading of the jet is associated with the excess y-component veloci- 

ties. The detailed velocity dietributions a r e  expected to be governed by 

the three-dimensional pres  sure distribution above the plate and tailored 

by the Reynolds shear s t r e s s  d.:.stribution. The consideration of the jet- 

plate interaction mechanics based upon tl ese aspects is  reasonable in 

the context of the nature of the flow but such a description is quite 

difficalt to relate to the extant or anticipate. cxperirnental data; i. e .  , 
there is a lack of p(x, y, z) data. An en;rivalent, but conceptually quite 

different approach is to consider the flow in termas of the vorticity prccesser  

occurring in the jet-plate interaction. This has the implicit benefit that 

the important x-component vorticity will be directly involved in  the desc rip- 

tion of the problem. It has the major benefit that the three-diniensional 

pressure distribution in the jet flow does not enter into the description 

o i  the problem; rather, the surface pressure distribution, which is accurately 

Known, enters  the description a s  a source of vorticity. These considerations 

require the control volume description of the vorticity equations; these 

relationships a r e  developed below. 

The Navier-Stokes equations for an incompressible flow can be 

operated upon to create the vorticity transport  equation; specifically, 



Dhl 1 
- [  = - -  Did 

P s + v + M I = I ~ = L ~ . ~ L + ~ ~ w ~  (8) 

Performing a volume integral of this differential equation for  a motion 

which ie steady in its time mean quantities and applying the Gauss 

Theorem to transform volume integrals of divergence t e r m s  into rrurface 

integrals yields (note that (-) denotes a time averaged value) 

The t e r m  on the left is the net flux of the vorticity f rom the control volume 
- A  - - A  - 

by the convective action of the velocity field, (u a O n  = k O n  + $ &*a 
where & and a r e  the turbulent fluctuations about the mean). The fir st 

t e rm on t h e  right hand side of equation 9 is the production of vorticity by 

the amplification effect of stretching o r  reorienting vortex filaments. 

The third t e r m  can be expected to  be important only a t  a solid surface 

where the viscous te rms  a r e  important in an otherwise turbulent t rans-  

port dominated flow field. The viscous t e rm may be expressed in t e r m s  

of the surface pressure  gradients; this is developeu in the following. 

Since wx = (a x/a y - a V/B Z )  and w = (a u/a z - a V/B x), the vorticity 
Y 

t e rms  a t  the surface of the plate may be written a s  

These quantities may, in turn, be expressed in t e rms  of the surface 

pressure  distributions a s  



and 

Consequently, using (;Za) and (12b) in ( 9 )  and noting that a negative 

sign will precede the last  t e r m  since n < 0, 

A 

" a z  dA (1 3) 

plate 

The mathematical framework for the model of the jet-plate interaction 

j.8 represented by equation 13. The physical cha rac t e r~s t i c s  required of 

the model can be inferred by an examination of the data already presented. 

The pertinent features of thebe data a r e  considered in the following. 

In the description of tht8 physical nature of the jet-plate interaction, 

i t  will he useful to  speak in general term6 about a llnon-destructive" 

interaction between the jet and the plate. The t e r m  non-destructive i., 

t o  imply that the upper portion of the jet retains i ts  axCsyrnrnetric 

character and the influence of the plate is confined to a portion of the 

flow near  the plate. The isotachs of Figures  2 8  to 20, the isotachs of 



Appendix A and the photographs of the dusty jet, Figures 3b and c of [ l ]  

all demonstrate this effect. This non- destructive case is distinguished 

from the condition in which the approach to the plate is so abrupt that 

no portion 01 the jet retains its axisyrnmetric form. The influence of &ese 

two interaction conditions on the spread/curvature isotach patterns ( a 1 1 5  

degrees) reveals that within the x/d range investigated (x/dlS) the non-de- 

structive description is applicable to all cases except a =15, h/d=l, x/d=4,5 

-and possibly a = 12, h/d = 1. x/d = 5. The projected centerline of the 

jet passes through the plane of the plate a t  x/d = 3.75 and 4.75 for these 

two cases respectively. It is not possible to determine whether the non- 

destructive character i s  maintained for large x/d values where the projected 

centerline of the shallower angle cases would penetrate the plane of the 

plate. However, one could reasonably anticipate that for sufficiently small 

a and sufficiently large h/d, the curvature of the jet would allow the 

oblique jet to approach the character of an a xisymr~ietric, parallel flow, 

wall jet. In this regard, the three-dimensional wall jet studies by Sforza 

and Herbst [2] are  quite instructive. The upper portion of the isotach 

pattern of a rectangular wall jet does approach an a ~ i s ~ e t r i c  form at  

sufficiently large downstream distances; hence, the same behavior is 

---ea sonable for +he shallow angle, obliquely impinging jet. 

The conceptual model of the jet-plate interactior~ is based upon 

vorticity considerations and will be developed from the observations oi 

the non-destructive interaction cases. The larger angle cases a re  more 

complex and additional effects must be included for their description. 

For the streamwise domain in which the jet-plate interaction is  

non-destructive the influence of the plate on the jet is manifest in two 

rather distinct regions. The phenomena occurring in these regions allow 

them to be distinguished from each other and from the appr0achir.g jet. 

In the immediate vicinity of the plate 0 5 z < 62 (where 6z/d << 1) the 

velocity distribution can apparently be characterized by iaotachs which 

a r e  nearly parallel to the plate and quite closely spaced. Such a condition 

i s  inferred from the isotach presentations of [I], see Appendix A, in which 

the experimentkl data of the y traverses indicate quite large velocities 

near the surface of the plate, and it i s  shown schematically in Figure 56. 

Since each lower valued isotach must lie between the measl;; 3 isotach 

location and the plane of the plate, it can be inferred t';?t u v ry close 



isotach spacing exists in this region of the flow. The region of the flow 

defined by 0 5 z S6z will be termed the near wall region. The second 

region lies between the near wall region and the axisymrnetric portion of 

the flow. The boundary between the upper portion (of the second region) 

and the axisyrnmetric jet is diffuse, the two regions rather merge 

together. For  convenience, this will be termed the buffer region. 

The conditions leading to the est~blishment  of a near wall region 

a r e  easily visualized in te rms of equation 13 and the recognition that the 

isobar patterns of Figures 3 t o  27 a r e  reasonable manifestations of the 

jet-plate interaction. That is, with a pressure distribution such that 

p(x, 0,O) forms a maximum in the p(y) distribution at a given x location, 

i3 p/a y will be such a s  to cause a flux of x-component vorticity into the 

flow. Also, the w vorticity present a t  the surface, a s  a result  of the 
Y 

jet flow over the plate, will experience a a u/a y reorientation effect such 

that the te rms w a u/a y and l/p a p/a y of (7) both cause a flux of at  
Y 

a given x location. (The signs a r e  -wx for y > 0 and +wx for y < 0. ) It 

is reasonable to expect that both of these effects will only influence the 

flow near the plate. The net effect i s  shown by the particular form of 

(13) for the spatial region defined h y  the limits en the integrals 

where the w entering the control volume at  x = 0 i s  considered to be zero 
X 

ox i3 u/8 x < < w a u/a u, and the signs on t b  r .  h. s. terms indicate 
Y 

that negative % i s  carried out of the control valume. 

One of the contributions of equation (13) and the vortic y consider- 

ations is that the iocalized nature of these effects is easilv accepted. 

That is, the identification of the vorticity transport effects a s  the 

controlling phenomenon makes the existence of a near wall region a 

reasonable result. 

Figure 56 also shows the buffer zone; this observed region i s  

similarly compatible with a description of the flow in which vorticity 

transport effects govern the motion. The w e  of the approach flow is 

essentially converted to w in the near wall region; this, in turn, results 
Y 

in some production of wx in the near wall region as  noted atuve. The vor- 

ticity in the axisymmetric portion remains essentially unchanged. The 



juncture of these two regions, which occurs a t  6 and increasing y values 
2 

for decreasing isotach magnitudes, results in a large and localized pro- 

duction of % That is, the w production te rm w g  a u/a 0 is clearly 
X 

large a t  the location where the isotach makes a sharp bend to pass  between 

the plate and the "undisturbed" jet. This wx vorticity is of opposite sign 

t o  that produced by the two effects operative in the nearwall region. The 

upper portion of the buffer region is not sharply defined. The isotachs 

change gradually from their circular shape in the axisymmetric region. 

This characteristic supports the implicit feature of the model in  which 

the governing effects a r e  concentrated near the surface. The upper portion 

of the buffer region is the (passive) effect caused by the vortex reorien- 

tation near the plate. 

The utilizatior. of the vorticity transport  equation has allowed 

rational explanations for the observed near wall, buffer and axisymrnetric 

regions of tae flow field. The same observations could be related to the 

momentum equatioaa; however, the relationship of the acceleration, 

pressure  gradient and net shear  s t r e s s  to  the observed three regions, with 

their  particular spatial extents, woald have to be argued in such a manner 

that the t w ~  a r e  simply compatible. It does not seem possible to provide 

an  aprior i  argument fcr the qualitative nature of a pressure distribution 

which would create  a maximum y-component velocity quite near the sur-  

face and leave the central core of the flow in an axisymmetric form. 

3.4. The Development of an Analytical Model 

In a d d i t i ~ n  to its use in describing the physical nature of the jet- 

plate interaction, the model presented in 3.3 is considered to offer an 

excellent f r amewo~k  for the development of a numerical computation 

scheme to describe this flow. Lighthill [3] has presented sever 1 

arguments in favor of a calculation technique based upon the governing 

equations for vorticity and not velocity. The diffusive nature of the 

vorticity equations a s  opposed to the action of a pressure a t  a distance 

allows a forward stepping soluticn to he more easily developed. It is 

anticipated that such a consideration would be most  important for the 

present problem. As the jet approaches and impacts the plate, a 

description which allows the interaction to be calculated on the basis 

of the behavior a t  the surface and its  subsequent influence on the interior 



of the flow field is clearly superior t o  the alternative formulation requiring 

a construction of the three- dimensional pressure field with its consequent 

upstream effect. The development of such a nur,lerical computation 

scheme is simply noted here; there is no immediate activity nor plan to  

pursue such a development. 

3.5. Additional Phenomena 

The principal or governinirg phenomena of the flow field a re  

represented by the discussion in Section 3.3; however, there a r e  adtiitional 

features of the flow which a r e  considered significant. The lacation and 

character of the stagnation point and vonle quantitative aspects of the 

flux of w vorticity into the flow are considered in this section- 
Y 

The vortirity considerations (3.3) tacitly assumed that the 

vorticity above the plate had a positive w component, i- e., the flaw in 
Y 

the jet at  (x, y, 62) is in the streamwise direction. This is vaiid for the 

region downstream of the stagnation point (x,, 0,O).  The stagnation poitit 

will occur at  y=O from the syrn~netry of the problem; the symmetry of the 

problem also demands that ; (x.< x < xs, 0, 6 z ) <  0 (where 62  is a small 
f 

z value) and x. is the upstream boundary of the jet fluid near the plate. 
J 

This region of reversed flow need not exist instantaneously if the stag- 

nation point moves about laterally but the mean value of u must have 

this character. The three-dimensional pattern near x is not easily s 
visualized since u > 0 can be expected a t k .  < x < x *by, 62) for 

J S' 
relativeiy small by. From the isobars,  i t  is clear that this region of 

reversed flow i s  relatively extensive if the stagnation point occurs a t  the 

maximum pressure location. The stagtiation point for an obliquely 

impinging axisymrnetric jet is not a t  the location of the maximum 

pressure; it i s  near the upstream edge of the interaction region defined 

by the isobar pattern. The support for  this observation is given in a 

later section; its implications for the flow model a r e  of concern here. 

The factors which cause the flow to  select the location of the 

stagnation point a re  apparently the geometric condition that the 

stagnation streamline he located near the lower edge of the jet and the 

accommodation of the vorticity in the approach flow to that about the 

stagnation pcint. For  example, the vorticity at the stagnation point is 

zero but its x gradient irfluences the orientation of the stagnation 



streamline. Directly upstream of the stagnation point the vorticity i s  

negative and of opposite sign to that of the approach flow. Directly down- 

stream, the vorticity is- positive and in the same sense as that of the 

approach flow. The selection of the stagnation point is  clearly a compli- 

cated physical process and it would be a difficult thing to predict. It is 

upclear what difficulties this might pose for the numerical calculation 

scheme discussed in 3.4 in terms of formulating the forward stepping 

ochene. 

Only the x-component vorticity was considered i n  Section 3. 3 since 

the qualitative behavior of the flow can be described in terms of this 

variable. A quantitative description would necessitate an accurate 

assessment of w as well since this component does contribute to wx 
Y 

in the form of w 8u/8 y . 
Y 

The isobar patterns clearly show that the dominant vorticity flux 

into the flax is %; however, along the centerline only w is  introduced 
Y 

through the surface. It i s  possible to compare the magnitude of the flux 

through the plate to the flux through a small section of 62  height at some 

x location. The enalytical considerations for this are shown below. 

The flux per unit width of w through an area of height 6 2  at any 
Y 

x lloca+,ion can be expressed as  

w iidz = 
So"-y o a~ 

- - 2  - u - 
2 

(1 5) 

The flux of w per .anit width through the plate surface from x = 0 to x = x 
Y 

is given as (from (9) and (22b)) 

These two quantities can be normalized using the centerline velocity at 



the exit plane of the jet and their ratio can be fornrcci to dcmonstratc 

the relative magnitude of the vorticity flux through the surface as 

compared with that in the flow field. It should be noted that the two a re  

of opposite sign for x I x  S x  (max pressure) 
8 

vorticity flux through surface from 0 to x - - 
-.-orticity flux through area of height 6e at  x 

Measurements of p(x, 0,O) and 3 (x, 0, 6 t )  were made to evaluate 

the location of the stagnation point; the measurements and the conclusions 

regarding the stagnation point location will be presented in a later section. 

The pertinent results from this study a re  cited in Table 3 to evaluate the 

ratio given by (17). 

Table 3. Ratio of w vorticity f lux through the plate to the 
vorticity #ux through a small height a t  the 
x location of the maximum pressure. Uniform 
nozzle exit condition 

These ratios show that a significant amount of - w  is  added to the 
Y 

t w  vorticity near the plate for al l  cases. The vorticity so added increases 
Y 

rather strongly as a increases; this is reasonable based upon the observation 

of the centerlinc pressure relationship to the overall and local jet curvature 

effects. The data shows that the t w  vorticity flux through 6 2  increases 
Y 

in magnitude even as the -o vorticity flux increases. This result is 
Y 

attributed to the importance of the production term due to stretching 

(w avb y). Consequently the production term is quite impor a n t  in the 
Y 

description of the vorticity processes occurring in the flow. Since 



av/ay  is related to  the wx distribution, i. e. .  v(x,yB6z) = [ a v ( x , y , ~ ) / a  zj6z = 

-wx6z, an analytical model would have to consider the simultaneous 

solution of the x and y components of vorticity. 

3.6.  Phenomena Identified in the F i r s t  Annual Report 

Several important phenomena were identified and presented in 

[I]. A summary of these phenomena i s  presented here for completeness. 

A control volume a s  shown in Figure 31, with boundaries extending 

over the exit plane of the jet and the downstream plane of constant x,  the 

plane of the plate, and the sides of the flow field in the entrainment region 

will be used for this discussion. A special experiment t o  evaluate the 

shear force on the plate and an evaluation of the maximum probable 

pressure force acting in the negative x direction hi+-,re been used to 

show that the x-component momentum flux i s  essentially constant for the 

oblique jet impingement problem (see (1 1). 
The impingement process has the effect of suppressing the 

entrainment of mass into the jet flow. The constant momentum flux 

combined with the decreased mass  flux cause a decreased rate of energy 

dissipation. Analytically, this is described a s  a constant value of 

u dA and a less-than normal increase in u dA which results in a S 2  S 3  f 
less-than-normal decrease in u dA, where the integration i s  over a 

plane normal to  the axis of the jet. Mechanistically, it is inferred that 

the decreasing energy flux i s  a measure of the work done by the jet fluid 

to  accelerate the ambient fluid a s  it i s  entrained into the jet flow. Since 

the plate inhibits this entrainment process , the relatively high velocity fluid 

in the jet is protected from the decelerating effects of the entrainment 

process and the only energy decrement incurred in this region is that as- 

sociated with the boundary layer in the near wall region (0 Cz 562). The mass  

and energy flux values a re  shown in Appendix C. The data for the 

uniform and fully developed nozzle conditions a r e  shown separately 

and the data a re  segregated with respect t o  how well the measured 

x-component momentum flux agrees with the quantity S(o)cos 8. 

The data for which the measured momentum flux i s  within three percent 

of that at  the exit plane i s  considered to be quantitatively valid. That which 

differs by more than three percent from the constant value is considered 

to be qualitatively instructive in that it shows the appropriate trends for 



thc .  innus and cxncrpy flux v a l u t * ~ .  

An interesting difference brtwc*cn thc  mif for ti\ and fully dcvclopcd 

exit plane conditions is the greater rate of entrainment of ambient fluid 

for the fully developed condition. It is  inferred that this greater entrain- 

ment rate is related to  the large scale motions in the initial region of 

this flow. The mass rates of flow for the two nozzles of the present 

study and for several other studies which have been reported a r e  also 

presented in Appendix C. A comprehensive study of the initial condition 

effects on the near field of an axisymmetric jet is presently being 

conducted a s  a part of the continuing activity under this grant. 

The jet-plate interaction can be considered complete in  rome sense 

when the total z-component momentum of the initial jet is destroyed. 

Therefore, the degree of comp1;teness of the interaction is shown in 

terms of the ratio of the net force on the plate to the initial z-component 
X a 

momentum flux. Curves of Jo la p dy dx/lzlo) a r e  presented in [I]. 

Alternatively (and less graphically) the z-component momentum flux, 

normalized by the initial z-component momentum flux, provides a measure 

of the degree of completeness of the interaction. The tabular 

representation of these values taken directly from [1 ] is presented in 

Appendix D. 

4. THE CENTERLINE PRESSURE DISTRIBUTIONS 

From a mechanistic viewpoint, the surface pressure i s  the agent 

which causes the spreading and jet curvature imposed upon the jet by the 

no-penetration condition through the plane of the plate. On this basis, 

the only apriori constraint on the surface pressures is that the pressure 

integral over the plate surface i s  equal to the z-component momentum flux 

from the jet. One aspect of the total pressure distribution is the pres- 

sure along the line (x, 0,O); that is, the centerline pressure distribution. 

In Section 3 . 2  the centerline pressures were compared with the curvature 

of the jet to demonstrate the local, in addition to the global, effects of 

the curvature. The essential point i s  that the centerline pressure distri- 

bution is governed by the geometric and, to some degree, the initial flow 

structure conditions of the jet. In this sense it is an effect, the no- 

penetration condition is the cause. 



A different condition exists for the streamwise vort'city. The 

centerline pressure can be interpreted as the cause of the amount of x- 

component vorticity added to the flow by the "flux through the piate surface. " 
Equation 18 provides the basis for this statement; specifically, 

ox introduced through the 

differential a rea  dxdy via = v r  dydx = - L  P *dydx a~ (18) 

the pressure distribution 

The flux through a given area  of the plate cannot be directly related to  the 

flux through a specific y-z a rea  a t  some x location. The reason for this is 

that the velocity field r e a r  the plate will convect and the velocity gradients 

will amplify or reorient vorticity which enters the flow field through this 

mechanism. However, it i s  possible t o  identify the total vorticity which 

enters the flow and to  attach some meaning to  this meaaure of the ox 

vorticity f l u .  Consequently, (18) i s  integrated over the region from 

y=O to + (or - )  a and from 0 to x. The resulting value is that total 

introduced into the flow via this mechanism; specifically 

introduced via the pressure 

distribution = -g si $ % d y d x  

Equation 19 demonstrates the importance of the centerline pressure 

distribtuion to the flux of wx. These integrated values a r e  presented in 

a composite form in Figure 57. Only the fully developed cases a r e  

shown for a < 15 degrees, the uniform ones a r e  essentially the same. 

The strong dependence of the vorticity flux upon a , afid h/d for  

a given a , i s  evident. The strong differences shown for the various 

a and h/d cases  suggest that the flows near the plate surface a r e  

strongly dependent upon these two parameters. However, the data of 



Table 2 show that the width of the flow field and the pressures  in the 

neighborhood of the 0.1 f ree  isotach intcreection a r e  weakly dependent 

upon these two parameters  for the non-destructive interaction cases.  

Therefore, it i s  inferred that the differences in the flow st ructure  

associated with the flux of w, a r e  confined to the central  region of the 

flow field. 

5. THE STAGNATION POINT 

5.1. General Considerations 

An important characterist ic of the oblique jet impingement which 

must  be established for a complete description of the flow field is the 

location of, and local beha:-ior around, the stagnation point. The 

identification of the stagnation point characterist ic i s  considered to  be  of 

particular importance f o r  those characterist ics which depend upon the 

details of the flow field near the surface such a s  the heat t ransfer ,  

acoustic noise generation, and the production of streamwise vorticity. 

The stagnation streamline is defined a s  the locus of points 

everywhere tangent t o  the velocity field with a terminus on the impact 

plate. The stagnation point i s  the location of the terminal  point. The 

possibility of a finite length stagnation line will be suggested by the 

experimental data and i t  cannot be excluded by analytical considerations. 

The possibility of a finite length stagnation line is also suggo,sted by the 

following considerations. An infinitely long stagnation line exists in s 

two-dimensional f!ow and a stagnation point o r  c i rcular  stagnation 

line exists in an axisymmetric flow. Similarly, an open conduit of any 

shape placed with i ts  axis parallel  to a uniform s t ream will result  in a 

closed, stagnation line around i t s  upstream circumference. 

The three-dimensional flow may be qualitatively different f rom the 

axisyrnmetric or  two-dimensional condition. F o r  example, consider the 

open conduit placed in a uniform s t r eam and consider a sawcut to  be 

made through the surface parallel  to  the axis. If the only possible 

stagnation states a r e  a point o r  a closed line curve, then a single 

stagnation point would have to exist  opposite the sawcut. Since the flow 

will still  pass inside and outside the contour defined by the previously 

closed body, the s yrnmetry would demand that an azimuthal flow exis t  



f rom the stagnation point, around the upstream surface and exhaust down 

the gap of the sawcut. The alternative i s  to  conceptualize a three- 

dimensional stagnation line extending par t  way around the upstream surface. 

This aside f rom the oblique jet impingement problem is to demol~stra te ,  

by analogy, the possibility of a finite length stagnation line. The oblique 

jet impingement is a three-dimensional flow. The possibility of a finite 

length, non-. closed, stagnation line would seem to exist. 

Another characterist ic of the stagnation point is i t s  relationship 

to  the location of the maximum pressure  point. Fo r  a vertical  

(a = 90 degrees] jet impingement condition, it is c lear  that a stagnation 

point exists a t  the terminus of the center streamline and a t  the locakion 

of the maximum pressure.  The centerline pressure  data shown in the 

previously discussed figures indicate that the maximum plate p re s su re  is 

not a t  the projected location of the center streamline; these figures a lso 

suggest that the maximum pressure  may not be located a t  the stagnation 

point. The analytical considerations which can he made for the stagnation 

point a r e  presented in the next subsection. An experimental technique 

to  evaluate the stagnation condition and the resul ts  of this evaluation 

for three cases  a r e  presented in th i s  section. 

5.2. Analytical Considerations* 

The equations of motion (Navier-Stokes and continuity) can be 

evaluated in the neighborhood of the stagnation point in order  to 

establish certain characteribtice of the stagnation streamline. These 

analytical considerations a r e  presented in this subsection (5.2). 

5.2.1. The orientation of the stagnation streamline 

Let (6x, 0, 62) be the coordinates of a position on the stagnation 

streamline. The stagnation point will be designated (O,0,0) for the 

purposes of this analysis and the symbol 6 s  will designate an incremental 

*The remainder of Section 5 is adapted f rom t h e  second semi annual 
rep  3rt [4]. A portion of the analytical considerations was incomplete 
although the results  were not affected and the experimental data have been 
more  completely analyzed. F o r  these reasons,  and because of the limited 
distribution of the semi annual report ,  these subsections a r e  repeated 
herein. 



length along the streamline where 6 s  = [6x2 + 6z2]1/2 and 

6x/dh, 6z/d << 1 i s  understood. The slope of the stagnation streamline 

a t  the stagnation point i s  given as 

slope of stagnation = lim 6 z - 
streamline a t  (0,0,0) 6 6 4  0 6x 

and this slope can be expressed in  t e r m s  of the velocity field ae  

lirn 6 z - = l im w(6x, 0,6 z) 

6 s -  0 6x 6134 0 u(6x, 0 ,6  z) 

Assuming that the u and w components a r e  analytic functions, the limit of 

the velocity ratio can be expressed in t e rms  of the Taylor expansion of 

the velocities. Only the lowc. : w d e r ,  non-zero te rme of the expansion 

need be retained in anticipation taking the limit. ,411 partial  

derivatives a r e  understood to be evaluated at (0, 0,Oj; a u/a x = a w/a x = 0 

because of the no sl ip condition and a w/a 2 = 0 by continuity. 

2 2 dz B w +  - -  
w ( ~ x , o ,  62) - a~ 2 " '  

l im - .- 
6 x+O u(6x, O,6z) a u a 2 u  2 

62 - + %  - a z 2 t... t 6x52 ,xez 
a z 

= o for a u/a z # o 

>,<,= o f o r a ~ / a z  = o 

Condition (22a) shows that i f  the vortjcity a t  a point i s  non- zer;, then the 

streamline a t  that point (in the direction perpendicular to the VOI-ticity) 

l ies in the plane of thz plate and hence cannot be a stagnation streamline. 

Equation 22 can be operated upon to provide a more  easily intermeted 

form when (22 b) i s  applicable. Dividing by 6x62 yields 

2 
1 6 2  B w  ---  

2 t . . .  
6 2  = lim 6x t)z 

6s+O 6x 2 1 6 ~ 3 ~  2 - - -  
2 6x ax2 a u  + . . .  

+ a 5  



The second derivative of u with respect to x and z can be expressed in 

t e rms  of w from the continuity equation a s  

2 and since 8 v/a z8 y = 0 by symmetry, 

Consequently (23) can be written a s  

l im 
6 8 - 4  

Equation 2 5  can be examined for the orientation of the stagnation 

streamline for the condition that (1) the stagnation point occurs a t  the 

maximum pressure  point and ( 2 )  that the stagnation point occurs a t  a 

location where the streamwise pressure  gradient i s  positive. The 
2 2 8 u,/a z derivative can be related to  the pressure  gradient by the 

x-component momentum equation evaluated in the plane of the surface; 

spc cifically, 

7 2 
Consequently, for the condition a "u/a z lo = B ~ / a  x lo = 0, equation 

25  becomes 

which i s  only possible if lim dz/6x = 0 or a. A zero  value cannot 



represent a stagnation point; hence, the s tagnation streamline intersects 

the plate at  an angle of rr/2 when the sta7nation point occurs at  the 

nlaximum pressure .  This would occur for the a = n/2 c.>ndition. 

F o r  a p / 8 x  # 0, equation 25 can be expressed a s  

62 - 
6 z l im - = 6x - 

6 6-0 6x 2 a u - 
3 

and (27b) shows that (note that the denominator must  be equal t o  unity) 

Using (24) and noting that 

The streamline orien1:ation a t  the stagnation point i s  

a *v 

62 - l im - - - V  ax 
6 8-00 6x r i k  

P a x  

That i s ,  the orientation of the stagnation streamline can be expressed in 

te rms  of the pressure  and aurtace vorticity gradients a t  the stagnation 

point. 

5.2.2. Consequences of stagnation point at o r  displaced from the 
maximum surface pressure  

The relatio~lehip between the vorticity which i s  introduced into 

the flow field by the viscoue shear  a t  the wall and the static p ressure  on 



the plate has been presented in Section 3. 3, viz. , 

a a ( 1 ~ b )  - u 1 and - 
a z  Y z=o 

(1  La) 
z=o 

Since the solenoidal condition on vorticity demands that it appear in closed 

loops (i. e., V e = 0), it is of interest to note the relationship between 

the created vorticity and the stagnation point considerations. 

Consider the case of vertical jet impingement. In this condition, 

the stagnation point is centered in the axisymmetric flow field and the 

stagnation point is clearly a t  the maximum pressure. That is 

lim 6 z 4  0 i5x4 0 w/u = -9 and ap/ax  = 0 = ap/ay. A fluid element 

immediately adjacent to the stagnation streamline will possess vorticity 

in the sense indicated by Figure 58. The vorticity of such an element must 

change sign along its trajectory from above the plate to a location in the 

boundary layer flow along the plate. This vorticity sign change is accomplished 

by the viscous diffusion term of the vorticity transport equation, viz., 

from (8) 

(1) convective transport and local time rate of change of vorticity, 

(2) ':pro&-1ctic?nu of vorticity by vortex filament stretching and re-  
orientation, 

(3) diffusion of vorticity, 

(4) production of vorticity from the fluctuating vorticity-velocity 
interaction, 

(5) vorticity transport by the turbulent motion. 

As shown by Figure 58, the flux of vorticity at  z=0 is symmetric 

about the stagnation point, that is, the new vorticity introduced into the 

flow i s  created in symmetric loops about the stagnation point. Also, the 

fluid which originally comprised a vortex loop will remain in the same 

loop (on the time average) a s  the sign of the vorticity i s  changed along the 

trajectory. This rather straight forward condition provides a useful 

reference for the considerations of oblique jet impingement. 



F o r  an oblique impingement, the center streamline will not, in 

general, be the stagnation streamline; hence the vortirity structvrc nc-ar 

the stagnation point will bc quite difft*rc.nt fronr thc. t~orlrlal i~r \p inge*n~t*~~t  

case. This i s  shown schematically in Figure 59. Fo r  example, 

the fluid in the original loop 1- l a  is  not in a common vortex loop 

following the impingement; that i s ,  the vorticity uf the fluid a t  1 changes 

sign, the vorticity of the fluid a t  l a  does not. Consequently, the vortex 

and mater ia l  lines a r e  different for the oblique jet impingement case. The 

= 0 surface will be non-symmetric and strongly three-dimensionalfor 

this flow. It is not obvious what shape this surface will assume away 

f rom the centerplane. Smoke flow visualization studies have shown tnat 

the entrained flow stagnates and then separates  f rom the surface a s  

s h o w  in the sketch. 

It is not c lear  what geometric configuration is assumed by the 

closed vortex loop involving the fluid a t  1 when it has  progressed to  a 

position juet upstream of the stagnation point. It seems likely that these 

loops which a r e  created following the stagnation process on the adjacent 

streamline a r e  somewhat symmetric about the stagnation point. In this 

regard,  the production of the new vorticity would be similar t o  the 

processes occurring in the normal impingement case. 

5.2. 3. Aelationship between the stagnation and surface pressure  gradients 
near the stagnation streamline 

An analysis of the surface and stagnation pressure  gradients will 

be necessary for the proper interpretation of the experimental 

rneasuremcnts. Specifically, we will show that thc surface pressure  in the 

backflow region near the stagnation point i s  l ess  than the stagnation 

pressure  of the streamline in the neighborhood of and located upstream of 

the stagnation streamline. Figure 59 shows t h e  t e rms  for the analysis. 

Point A l ies along the stagnation streamline point B i s  the intersection 

of the normal a t  A and the second streamline of interest  and point C i s  

a t  the intersection of the second streamline and the contour which lies 

along the normal trajectory of the streamlines f rom xs - Lx to the 

streamline passing through B. 



The pressure at (x - 6x, 0, 0) can be written as  s 

where L i s  the distance from C to (x - bx, 0, 0). The stagnation pressure s 
and the velocity at  C can be used to express p(c) a s  

and the integral along n can be written as  

The maximum modulus theorem can be used to express this integral 

value as  1 

min 

and since Qmnx = Q(c) equation (26) becomes 

and 

p(xs-6x.O.O) < ps(c) if R/L > 2 .  

The dimension I, i s  related to the displacement of B with respect to A 

and consequently can be made as  small as desired. Hence, the condition 

R > 2L i s  assured, since R is finite as L-- 0. (Note,R+b~ as  L -, 0. ) 

It is now necessary to show that this result is general; that is, 

that it applies for all small bz. For sufficiently small L, the stagnation 

pressure at C (or B) and the pressure at (xs-6x,0,0) can be related 

to the values s t  A and (xs, 0,O) respectively using a first  order Taylor 

series. Hence the inequality of (28) can be used to express an inequality 

between these pressure gradients. Specifically, assuming the stagnation 

pressure changes to be negligible over these small displacements, 



and 

Since p(xs* O,O;  = ps(A) and psW) > p(xs-6x. 0,O) 

geometrically, it can be sho-m a s  in Figure  59 that 6x > bn for smal l  

6x. Consequently a p/i3 x > a Ps/B r.. 

The important resul t  of these considerations is that the surface 

pressure  i s  always less  than the equivalent stagnation p re s su re  except 

a t  the stagnation point. This is a necessary result  for the proper 

interpretation of the stagnation point. 

5. 3. Experimental Investigation of the Stagnation Phenomena 

5. 3. I .  Techrique and interpretation 

Stagnation phenomena for the oblique jet a r e  difficult t o  investigate 

because the phenomena a r e  basically unsteady and hence a suitable 

averaging process is required. Various schemes to  determine the time- 

mean stagnation streamline by use of i t s  singular characterist ic a s  the only 

streamline to  intersect  the plate were unsuccessfully investigated. Holographic 

interferometry with a dense gas t racer  and a heated jet with a platinum 

resistance temperature sensor (high frequency response = 3khz) were 

used to attempt this discrimination. The resul ts  f rom the attempts were 

not decisive. The common and often successful technique of attempting 

to locate the position of zero  shear s t r e s s  was not attempted because the 

expected s t ress  magnitudes for these small  angles would be quite small  

an3 hence difficult to discriminate and because this flow is strongly 

three-dimensional which would necessitate a measurement over a smal l  

length and width amparnding the sensitivity requirements . Also, a suitable 

averaging would have to be inherent in the transducer or in the subsequent 



signal processing in order that the time variation would be properly accounted 

for. 

An experimental techaique involving simultaneous hot-wire and surface 

static pressure ctistributions was developed and successfully employed. 

For  this technique, the hot-wire probe was positioned close to the plate 

(m. I 5  cm, z/d C. 04) and the velocity magnitude was recorded as a 

function of the distmce from the jet vW(x). A pressure survey for the 

same conditions allowed the calculation of a velocity a s  if the surface 

pressure was the stagnation pressure for that streamline, this value was 

designated v . A linear shift bx of the hot-wire velocity data to  the z-value 
P 

of the plate,*along the line defined by the wire position z and &a jet angle 

a plus the divergence angle 8 of the 0.1 isotach, was then used to provide 

a comparison between v and vw. The equation for this shift is 
- 1 P 

Ax = Az tan (a + $). The rtagnation point is considered to  he a t  the 

intersection of these two curves. A sketch of this technique is shown in 

Figure 60. 

5. 3.2. Experimenhl results 

Three cases were selecter! for comprehensive evaluation of the 

stagnation point location, h/d = 1 and a = 3, 6, 9 degrees for t h e n ? ~ i f o r r n  

nozzle" configuration. The results of the special t raverses to determine 

v and v a r e  shown in Figures 61 to 63. . LI general, two traverses 
W P 

were made at  different z!d values. The results from the hr.i t raverses were ill 

reasonable agreement for the three different angles; the mcct completc 

set (i. e. ,  z/d value) was used for these results. The data themselves 

a r e  presented in Table 4. The results for these three conditions show 

that the stagnation point does not occur at the location of the maximu= 

surface pressure. The vU- and v data for a = 3 degrees, h/d = 1, 
P 

(see Figure 61), did not indicate that a stagnation point existed. However, 

when the velocity data from the hot-wire probe were shifted an additional 

distance of 0. 57d a stagnation region i s  evidecced. The requirzd ehift if! 

interpreted as an rlpward deflection of the jet by the increased static 

presaure on the plate. The location of the jet's center, based upor, 

momentum flux considerations (zm of the fir s t  annual report), dces not 

show a shift above the geometric trajectory for the condition a = 3 degrees, 

h/d = 1, uniform; such shifts a re  indicated for a = 3 degrees and h/d = 

0.75 and 0.5. However, it is  reasonable that the low velocity fluid along 



the stagnation streamline could be affected by the surface p re s su re  for the 

h/d = 1 case. 

The location of the stagnation point is quite difficult t o  infer f rom 

these results .  Apparently a more  accurate description is to  identify a 

stagnation region in  the neighborhood of x/d Z 3.8. The flow field is 

considere4 to  possess  a single stagnation st reamline a t  a n  instant; however, 

the inherent unsteadiness of the flow could well produce an  a ~ p a r e n t  stagna- 

tion regior* even though the  t ime mean flow fie!d will a l so  possess ,  by assump- 

tion, a unique stagnation streamline. If viscous effects reduced the stagna- 

tion pressure  between the velocity measurement location and the surface, 

then this additional shift would not be a s  large a s  is indicated. A shift of 

&/d = 1. 5 for the hot-wire velocity data (vw) would cause the stagnation 

and maximum surface p re s su re  locations to  be coincident. However, 

this would result  i n  a condition in which the local surface pressure  would 

exceed the equivalent stagnation pressure;  th is  condition is shownto represent  

a physically impossible situation in equation 59. It should be noted that 

a l inear shift of the data oyer a net distance of Ax/d = 1. 20 is too great  

t o  allow detailed comparison between the v and vw results .  
P 

The data for  the case  a = 9 degrees,  h/d = 1, u, see  Figure  62 ,  

appear io be quite straightforward i n  t e r m s  of locating the stagnation 

point, x//d 1.9, and demonstrating chat the stagnation point does not 

occur a t  the nlaximum pres su re  location. The absence of a vert ical  

deflection is compatible with the z and zm resul ts  fc r  this ca se  (see Figure  
C 

45d, First Annual Report) and represents  a reasonable t rend a s  compared 

with the three  degree ca se  since the jet approaches the plate with a l e s s  

glancing trajectory.  A slight negative shift is suggested (but not shqwn) t o  

provide a tangential condition bemeen  the v and v curves. 
P W 

The mraeured v and the measured-shifted vw distributions for 
P 

a = 15 degrees a r e  shown in Figure 6 3 .  These resul ts  suggest that the 

jet trajectory i s  cteeper than 19 degrees in the region between the plane 

of the measured velocities (z/d = 0.0303) and the surface;  hence, the 

indicated shift i s  too great .  This obsc~va t ion  i s  based upon equation 39 

i n  which i t  was shown that the surface p re s su re  should not exceed the 

equivalent stagnation pressure .  The solid line on  Figure 6 3 presents  the 

estimated upstream shift appropriate for this case.  The resulting 

tangent poi:;t betwaen v and v is ifi t5e neighborhood df x/d - 1. 3. 
P W 



5. 3. 3. Summary and analysis ol the stagnation point investigation 

The determination of the stagnation point by the special traverses 

discussed above allow the relationship between the general velocity field 

and the stagnation point to  be examined. The approximate locations of the 

stagnation points for the three cases a r e  

uniform, h/d = 1, a = 3 x/d 3.8 
9 1.9 

15 1. 3 

A comparison of these results to the isotach plots of Figures 28 to 30 

shows that the stagnation point i s  in the vicinity of the intersection 

of the jet edge (U/U(O) = 0.1 isobar) with the plate. 

There a re  two physical effects which could cause the inferred 

stagnation point to be in error;  they a r e  self-compensating and their 

magnitudes a re  difficult to estimate although they a re  certainly too small 

to affect the qualitative nature of the above conclusions. Shear effects 

will degrade the magnitude of the stagnation pressure between the measure- 

ment location and the surface of the plate. To the extent that this occurs, 

the measured velocity represents an excessive stagnation velocity and the 

v magnitudes would be corrected by subtracting a prescribed 6v value. 
W W 

The physical proximity of the velocity measurement and the surface 

pressure measurement would cause this to be a relatively small error .  

If the velocity were measured at a z location where p > p 
ambieft' then 

the stagnation pressure is larger than that indicated by the pvw/2 value. 

Hence a correction of adding a separately prescribed 6vw would be required 

to relate the hot-wire and surface pressure data. It i s  difficult to estimate 

reasonable values for 6vw for the static pressure correction; however, it 

can reasonably be assumed that this correction increases a s  the wall 

pressure increases, that is,  d(6vw)/dx > 0 .  Consequently, the alignment 

of the vw and v curves would always occur a t  a point farther upstream, 
P 

allowing for this correction, and this reinforces the result that the 

maximum pressure and the stagnation point are  physically displaced. 

6. SUMMARY 

The kinematic, no penetration constraint requires that the fluid in 

the jet spread laterally o r  deflect verticxlly upward to provide the required 

cross sectional area for the jet mass f lux .  



The selection between these two responses i s  based upon the 

dynamics of the jet-plate interaction a s  characterized by the momenturn 

equation. 

Analytical and experimental considerations are  used to demonstrate 

that for sufficiently small angles, the primary response of the jet is an 

upward curvature; however, a complex interaction between curvature and 

spreading is suggested for angles larger than (nominally) 12 degrees a s  

would be encountered in the interaction between the jet and the deflecting 

flaps of a STOL configuration. 

The description of the jet-plate interaction in terms of vorticity 

is well motivated by both analytical and experimental considerations. 

Such a description provides a rational framework to model the three- 

dimensional character of the flow in which the upper portion retains i ts 

axisymmetric structure and the distortion of the jet occurs primarily near 

the surface. Streamwise vorticity i s  introduced into the flow field by the 

lateral surface pressure gradient and the reorientation of the azimuthal 

vorticity of the approaching jet. 

Similarly, there is a surface flux and a production by stretching 

of the lateral vorticity. Such phenomena account for the localized jet 

distortion. The sicreamwise vorticity could be used to provide enhanced 

boundary layer control i f  properly accounted for in the flap gap design 

for an externally blown flap airfoil. 

The physical displacement between the stagnation point and the 

maximum pressure point i s  examined analytically and demonstrated from 

the experimental data for  incidence angles of 15 degrees and less.  The 

possibility of a finite length stagnation line i s  demonstrated for a non- 

analytic velocity distribution and the relationship between the incidence 

angle at impact and the surface vorticity and pressure gradients i s  

established assuming an analytic velocity field. 
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APPENDIX A. Sclcctt~d Isotachs from the F irs t  Annual Report 
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Figure 14. Isotach contour0 a = 3, h/d = 0 .  75, fully developed. 
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Figure 18. Isotach contours a = 6, h/d = 0. 75, uniform. 
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Figure 21. Isotach contours a = 9, h/d = 1 ,  fully developed. 
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#e 22. Isotach contours a = 12, h/d = 1 ,  fully developed. 
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Figure 24. Isotach contours a = 15, h/d = 1, fully developed. 
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Figure  25. Isotach contours  a = 15, h/d = 1. 5, fully developed. 
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APPENDIX E. Corrections to  the Center of Momentum z Analysis, 
Section 4 . 5 . 2  of [:I m 

Following equation 30, the expression = - 2 Q results in e e 

A +  A 2 A  (2 k) (ve n) = t Qe n k (A- 1 )  

and hence equation (31) ~hould  be (the c following the equation number 

denotes "corrected") 

J z pdA = - 
J(0) 

(x) + s ina  + - 
P C 

The effect of the low pressure in the entrainment region was 

omitted from the moment- of- momentum equation (32). Including this t e rm 

results in the following expression for the negative y-component equation 

evaluated with r measured f rom tSc -fer of the exit nozzle 

The remark that "the entrainment integral is zero except for the 

plane x = 0" is incorrect. Consequently, this t e rm must be included in 

equation 33. The integrand ~f the entrainment integral may be written 

aa 

and combined with the integrand of the pressure integral over the 

entrainment area as shown by the foilowing. The integrand of the pressure 

integral is -. A  /? A A  A A  
pe(r x n )  e j = pe[z n 0 i - x n 0 k] 

2 
or, using (29) (i.  e. . (p ) = - p Qe/2i  

e & 



and combining this with the inlegrand of the other entrainment i n t e ~ r a l  of 

(3Zc)  results in 

The corrected form for equation (33) can now be developed 

F x/d p ~ ;  7 A  K n A d~ - If + X P - 2 t a n a  - 
2J(O)cosa - d d J(0) cosa d 

e 

I X 1 A 

- J(0,cosa 1, ; r p d A -  2 J(0)cos a 
P 

Reasonable approximations can be made to this moment- of-momentum 

equation. Specifically, in the region where the jet i s  curving because of 
A h  the plate presence, the term z n 0 i can be c~nsiderecl small with respect 

A A 
to the term x n k. Consequently, the bracketed term in the above equation 

can be approximated as 



.'* iurther simplification is possible on the basis  of the numerical 

magriitude of this t e r m  with respect  to zm/d The jet will be deflected 

upward in such a manner that the zm/d values will be of the order 

0.25 or  greater.  (See the calculations of the F i r s t  Annual Report [1] 

which, although in  e r r o r ,  are of the correc: order oi magnitude. ) The ra t io  

of the entrainment velocity at  the edge of the jet to the jet exit velocity 

can be evaluated i rom the maas flux evaluations of the First Annual 

Report [ I ] .  In order  to estimate the 01 der  of magnitude of the 

entrainment integral t e r m  we use the result  for the value of 

r l [ $ / ( ~  A )  1/2p u(o) A ]/dx f rom Figure 34 3f f e ear l ie r  report. The 
0 

values a r e  
d 
--[&/(k .AX h)1/2pc(o) A ] = 0.171 fully developed nozzle (A. 4) 

0 

d 
- [$ (k~) ' /~  dx p u(o) A ~ ]  = 0. 134 uniform nozzle (A. 5) 

where k and A  a r e  coefficients to  cor rec t  the mornentum flux and t o  

allow u(o) t o  be used a s  a normalizing velocity respectively, s ee  [I].  

The valtie of k can be considered to be unity. The velocity magnitude 

Q can be relate-d t o  the fi values by the relationship e 

where R i s  the radius a; which Qe i s  evaluated. Since the ra t io  

2 A 'b " 2 J(0)cosa 0 k dA i s  desired it i s  only important to accurately 
A A 

model Q where the prodact n * k is appreciable. This i s  fortunate since 
e 

the isotachs of the F i r s t  Annual Report indicate that the :pper portion of 

the jet i s  unaffecled by the jet-plate interaction e x c e ~ t  for a sufficiently 

large combination of rl and x/d and even then the upper portion of the 

jet tends to  retain a c i rcular  appearance. Also, since the control volume 

is a semi circular a r c  above the plate and since the entrainment in  the 
A A 

bottom of the jet enters the la teral  sides where n 0 k = 0 it i s  only 

necessary to accurately model the epper pcrtion. The magnitude of 

R can then be evaluated f rom (A. 6) a s  (note that the linear d f i  /dx 
e 



implies d ~ ~ / d x  = 0) 

Recognizing that ( d / 2 ~ )  ? 1, the magnitude of the t e r m  in equation 

(A. 7) can be estimated a s  

1 A x (&) (0 .7 )nRx  
2A0cosa 2d 

e 

A A  
where (0.7) i s  considered to be the aversge value of n 0 k and the 

- 3 
combination of the rumerical  values i s  rounded to 10 . 

These considcrztions show that the entrainment effects a r e  

smal l  for the x1.1 ,O  5 x/d 5 5) domain of interest .  Hence, the integral 

representing the entrainrr-ent effects can safely be neglected for  the 

purposes of compl~ting z (x) and the quantities which depend upon it. 
rn 



APPENDIX C .  M a s s ,  Momentum, and Energy Flux Values 



Figure 30. Normalized mass and energy flux values, utiform, 0 S I k - 11 5 0. 03 
7 9  
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Figure 31. Normalized mass and energy flux values, uniform. I k - 11 > 0. 03. 



x /d 
Figure 32. Normalized m a s s  and energy  flux values ,  fully developed, 



- 
k : fully developed 
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A 15 I 0. 758 1.064 1. 0'7 1.091 1. 054 

I5 I .  5 0.949 1.090 1.073 1. 176 1. 101 

15 L 1. 139 - 1. LO7 - 0. 962 

Figure 33.  Normalized m a s s  and energy  flux values ,  filly developed, 

I k - 11 > 0.03. 



Comment: The data of Hill  1191, cbtained with 
a porous cylinder,  indicate that thr slope of the 
I:lasc, flux curve i s  not constant in thia region. 
The relat ive accuracy of the porous cylinder 
v e r s u s  the integration of the velocity readings 
is indeterminate s ince  they a r e  influenced by 
different  e r r o r s .  The slope values of [19] a r e  

4. 25 5. 5 7. 1 10 

0. 11 0. 19 0. 24  0. 27 0. 3 -0. 32  

- - - uniform, p resen t  study 

- , - fully developed, 
present  study 

Figure  1. Normalized mass flw values as evaluated f r o m  references  
[12], [ I  4 j ,  ?nd [2  1 1  (Data f o r  Crow and Champagne [2?] not 
not shown, a l  = 0. 136 f o r  0 5 x/d 4 2 ;  a = 0. 292 for  x/d > 6 . )  1 





APPENDIX D. Normalized J Values to Der;lonstrate the Effective Extent 
1. 

of the Interaction Region 



Z-CIWIPOMEW ~ N T U W / S I N ( A L P H A ~  
15e060 - O m  99999 - 0.99999 
12 moo0 - 1.00000 

ALPHA 9.000 - 0.99999 
6 .OOO 
3. O M  

x/d = 1 0.000 

2-COMPONENT rrOlr€NTUlr/SXN(ALPHA) 
15e060 - Om80419 - 1.00529 
12 a000 - 1 a00951 

ALPHA 9.000 - 0.99999 - 1.00192 
6 a000 - Om99999 

2-CIWIPONENT mYIENTUM/SlNtALPMAl 
15.000 - 0.39684 - 1.01222 
12 1000 - 1 moo922 

ALPHA 9.000 - 0m86W - 1e00471 
6 e000 - 0.99999 - 0.99999 - 0.99938 
3.000 - 1.00000 - la00000 
0 a000 oeooooo o.00oao 

Z-COIIPONENT ROMENTUM/SIN(ALPHA) 
lSm000 - 0.10517 
12.000 - 0.92929 

ALPHA 9.000 - 00611% - 1.00701 
6 0000 - 0.60765 - 0. 9245 - 0.99814 
3.000 - Om74821 - 0.96427 

~ / d  = 4 0 1000 Om00000 Om00000 

2-COMPONENT W E N T  UM/SI N(  ALPMA) 
15.000 
12 0000 - 0.68396 

ALPHA 9.000 - 0.94577 
6.000 - 0aU323 - 1.23213 - la00061 
3.000 - Om50039 - Om87697 
0 a000 0.00000 0.00000 

Table 1. a. Normalized JZ values to show the effective development 
length for the uniform nozzle exit condition (J=/J(o) .in a ) .  
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2-COMPOMENT MCNTUM/flNtALPnAl 
15.000 
12 .000 

ALPHA 9.000 
6 0000 - 0.99999 - 0.99999 
3.000- 1.00000 - 1.000QO 

x/d : 1 0 0000 0.000(10 

0e50000 0.75000 1.00000 1 .SO000 2.00000 
H I D  

2-C(lMPONEN1 HQWENTUW/Sf Nt ALPHA 
15.000 - 0 e99999 
12.000 - 0.99999 - 1.00000 

ALPHA 9 000 - 0.99999 - 0.99999 - 1.00000 
6 e000 - 0.94906 - 1.14371 - 0.99999 
3.300- 0.78155 - 1.06855 - 0.99999 

x/d = 2 0.000 0.00000 

0.50000 0.75000 1.00000 1.50000 2000000 
HID 

2-CWPOIIENT ~ € N T W I / S I H t A L l M A )  
15~000 - 1.00657 
12 oOc10 - 1.01113 - lo00790 

ALPHA 9.000 - 0.67519 - 1.01432 - lo01000 
6 0000 - 0.75191 - 1013051 - 1.02154 
3.000- 0.59022 - 0.99070 - 1.07225 

x/d = 3 0 .OOO 0 .00000 0.00000 

2-COMPONENT MOMENT UM/SINf ALPMA) 
15.000 - lo00085 
12.000 - 0.94033 - 1.01273 

ALPHA 9.000 - 0.62151 - lo00971 - 1001775 
6.000 - 0.55041 - 0.99402 - 1.03662 
3.000- 0.39153 - 0.84778 - 1.06332 

x/d = 4 0.000 0.00000 0.60000 

2-COMPONENT MOWENTUM/SIN( ALPMA) 
15.000 - 0,87263 
L 2 -000 - 0.72149 - 0.99729 

ALPHA 9.000 - 0.37006 - 0.92051 - 1.02847 
6.000 - 0.34967 - 0.78143 - 1.03995 
3.000- 0.18936 - 0.67969 - 0.97979 

x/d = 5 0.000 0.00000 0.00000 

2-CQMPONENT MOMENTUH/SIN( ALPHA) 
15.000 - 0.59647 
12 0000 - 0.46072 - 0.88841 

ALPHA 9 000 - 0.15981 - 0.73887 - 1.01775 
6 -000 - 0.17319 - 0.55339 - 0.99001 
3.000 0.00816 - 0.50772 - 0.83373 

x/d = 6 0.000 0.00000 0.00000 

0.s0000 0.75000 1.00000 1.50000 2.00000 
n/o 

Table 1. bm Normalized J values to show the effective development length 
e 

for the fully developed nozzle exit condition (J=/J(O) sin a ) .  



Table 1. Radius r a s  a function of x/d to define the 0.1 isotach 
(u (x, r)  / u (0) = 0.1) for  the fully developed and uniform 
nozzle exit  conditions. (The data shown a r e  f rom those caees  
for which the mea$urrd x-component momentum flux was 
constant to within - 3%. ) 

Fully Developed 

Average 1.23 1.41 1.63 1.83 2.02 

Uniform 

6 1.5 0.91 1.03 1.17 1.30 - - 
9 1 0.92 1.03 1.16 1.30 - - 
1 5  1 0.93 1.02 - - - - - - 
Average -- 0.91 1.02 1.15 1.28 1.39 



Table 2. Summary of percent widths, distance to maximum pressure 
and isobar which aligns with free isotach intersection. 

Width of 0. 1 x/d distance PagreeZ x/d dis t itnce 
free isotach from x=o to k p u(0) fin a from x=C' to 
intersection p max all x 10' 0.1 free 
contour as  a isotach 
percentage of inter section 
the zero isobar 
width recorded 
at the x-location 
of the maximum 
pressure 



Table 4. Data from the Stagnation Point Investigation. Uniform Exit Condition v (z 0, 0)  = 
X Z P d' 

{$IP(x,o.O) - pat_$ l h  . vw 9, 0, 3) recorded from the hot-wire anenometer. 

X Z A: of traverse and A: to align v and vw are indicated A3 = Ax (tan o + p)-'. 
P 

a = 3 degrees, h/d = 1 

A: = 0.0328 A; = 0.249 
a = 9 degrees, h/d = 1 

A: = 0.0395. A; = 0.164 

a = 15 degrees, h/d = 1 
A$ = 0 . 0 3 0 8 , ~ $  = 0.0871 
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2 2 
Figure 5. Isobar plot values shown are p (x, y, o)/~ k u(0) sin o x 10 for the conditions 3, 0. 5626, fd. 
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2 2 Figure 12. Isobar plot values shown are p(x, y, o ) / ~  Xu(0) sin a x 10 for the conditions 
6 ,  0 . 7 5 ,  fd. 





0. l free  ieotach / 
inter section contour 

2 2 Figure 14. Isobar plot values shown are p (x, y, o)/~ Xu (0) sin a x 10 for the conditions 6, 1 .  5, fd. 
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Symbol 

u/u(o) . 9 7 . 9  0.8 0.7 0.6 0 . 5  0.4 0 . 3  0.2 0.1 P.05 

t = s location of the 
C - iaotach-circle center 

Figure 28. Isotach contours a = 3, h/d = 0. 75, uniform. 
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8, = s location of the .. irotach-circls center 

Figure 29.  Iaotach contours a = 9,  h/d = 1, uniform. 
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s = s location of the - irotach-cizcle center 

Figure 30. Iaotach contour8 a = 15, h/d = 1, uniform. 
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TOP 

SIDE FRONT 
Figure 31. Control volume for the analysis of the round- jet/~lane -wall 

flow field. 



2 Figure 3 2 .  Xormalized centerline pressure p/p A u(o) s in a and 
the normalized curvature of the jet's  momentum flux 
centerline ~ d / s i n a  . The x/d origin for each h/d value 
represents the intersection point of the 0. 1 free isotach. 

a = 3 degrees uniform exit condition 



2 Figure 33 .  Normalized centerline pressure p/p X u(o) sin a and 
the normalized curvature of the jet's momentum flux 
centerlirre Kd/sina . The x/d = 0 ori in for each h/d value 
repra~ents  the intersection oint of tfie 0.  1 free ilotach. 

a = 3 degrees f u l h  developed exit cond~tion 



2 
Figure 34 .  Normalized ccntcrline pres sure  p/p h u(o) s in  a and 

the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d value 
represents  the intersection point of the 0 .  1 f r e e  isotach. 

a - 6 d e g r e e s  uni formexi tcondi t ion  



Figure 35 . Normalized centerline pressure p/p A a(@'. sin o and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / a i n  a . The x/d = 0 origin for each h/d value 
represents the intersection point of the 0 . 1  free ieotach. 

a = 6 degrees fully developed exit condition 



Figllrt. 36. Normalized centerline pressure p/p h u(o)'  sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d value 
represents the intersection point of the 0 . 1  f r e e  isotach. 

a = 9 degrees uniform exit condition 



h/d = 1.0 

I I 1 I 1 -- 
0 1 2 3 4 5 6 

x/d 2 
Figure 37. Normalized centerline pressure p/p A u(o) sin a and 

the normalized curvature of the jet's momentnm ilux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d value 
represents the intersectim point of the 0 . 1  free isotach. 

il = 9 degrees fully developed exit condition 



Figure 3 8  Normalized centerline pressure p/p h ~ ( 0 ) '  sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~d/'sin a . The x/d = 0 origin for each h/d value 
represents the intersection point of the o. 1 free isotach. 

a = 12 degrees uniform exit condition 



2 Figure 39. Normalized centerline pressure p/p A u(o) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = C origin for each h/d value 
represents the intersection point of the (3.1 free isotach. 

a = 12 degrees fully developed exit condition 



2 
Figure 40. Normalized centerline pressure p/p h u(o) sin a and 

the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d value 
represents the intersection point of the 0. I free isotach. 

a = 15 degrees uniform exit condition 



2 Figure 41. Normalized centerline pressure p/p X u(o) sin a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d / s i n  a . The x/d = 0 origin for each h/d 
value represents the intersection point of the 0 . 1  free isotac 

a = 1 5  degrees fully developed exit condition 





2 Figure 43. Normalized centerline pressure P , / ~  X u(o) s in a and 
the normalized curvature of the jet's momentum flux 
centerline ~ d j s i n  a . The x/d = 0 origin for each h/d value 
represents the intersection point of the 0 . 1  free  isotach. 

a = 60 degrees uniform exit condition 



Kd - 
s ina 

1 1 1 I I I L b 
0 1 2 x/d 4 5 6 7 8 
Figure 44. ~ d / s i n  a for the conditiorts a = 3 degrees, uniform, and the indicated h/d values. 

The abscissa of the separate curves has been shifted such that the intersection 
of the 0 .  1 free iaotach occurs at the origin. 



Kd - 
sin 00. 

I I I I 1 I b 
0 1 2 x/d 4 5 6 7 8 
Figure 45. ~ d / s i n  a for the conditions a = 3 degrees, fully developed, and the indicated h/d 

values. The abscissa of the separate curves has been ahifted such that the 
intersection of the 0 . 1  free isotach occurs at the origin. 



Kd - 
sin a 

Figure 46. ~ d / s i n  a for the conditions a = 3 degrees,  fully developed, and the indicated h/d 
values. The abscissa of the separate curves has been shifted such that the 
intersection of the 0 .  1 free  isotach occurs at the origin. 



Kd - 
sin a 

h/d = 1 . 5  

.-I- & 0 2 I x/d 4 t S 1 6 n 7 t 8 A 

Figure 47. ~ t l / s i n  a tor the conditions a = 6 degrees, fully developed, and the indicated b/d 
1:alues. The abscissa of the separate curves has been shifted such that the 
intersection cf  tile 0 .  1 free isotach occurs at the origin. 



0 1 L. 3 4 5 6 7 8 3 

x/d 
Figure 48. Kd/sin a for the conditions a = 9 Gegrees, uniform, and the indicated h/d values. 

The abscissa of the separate curves has been shifted such that the intersection 
of the 0. 1 free isotach occurs at the origin. 



Kd 
sin a 

0 . 2  - 

I I I 4 I I 

0 1 2 x/d 4 5 6 7 4 
Figure 49. Kd/sin a for the conditions a = 9 degrees, fully developed, and the indicated h/d 

values. The abscissa of the separate clirves has been shifted such that the 
i~tersectiori of the 0. 1 free isotach occurs at the origin. 



Figure 50. ~ d / s i n  a for the conditions a = 12 degrees,  uciform, and the indicated h/d values. 
The abscissa of the i~eparate curves has been shifted such that the intersection 
of the 0. 1 free  isotach occurs at the origin. 



K d  h/d = 1.5 
C-l - 
V, sin a 
30 

0 1 1 I 

o 1 2 x/d 4 5 b  ; Q 
Figure 51 .  Kd/sin a for the conditions a = 12 degrees, fully deveioped, and the indicated h/d 

values. The abscissa of the separate curves has been shifted such that the 
intersection of the 0. 1 free isotach occurs at the origin. 





"'I- 

Figure 53.  ~ d / s i n  o for the conditions o. = 1 5  degrees, fully developed, and the indicated h/d 
values. The abscissa of the separate curves has been shifted such that the 
intersection of the 0 .  1 f ?  isotach occurs at the origin. 



Kd - 
sin a 

Figure 5 4 .  ~ d / s i n  a for  the conditions a = 30 degrees ,  uniform, and the indicated h/d values. 
The absc i s sa  of the separate curves  has been shifted such that the intersection 
of the 0 .  1 free isotach occurs at the origin. 



sin a 
C 

- -, 
Figure 55. ~ d / s i n  a for the conditions a = 60 degrees, uniform, and the indicated h/d values. 

The abscissa of the separate curves has been shifted such that the intersection 
of the 0 .  1 free isotach occurs at the origin. 



Axisymmetric  region, azimuthal  vorticity of the  approaching jet flow. 

Buffer region, Strearnwise vorticity production f r o m  reorientat ion of the 
azimuthal  vort ici ty f ield ( w e  8 u/a0 ). 

Near  wall  region, s t r eamwise  vorticity f r o m  f l u x  a t  wall ( v i3 w /a z) 
and vortex stretching (w a u/a y). X 

Y 

F igure  56. Schematic representa t ion  of genera l  isotach distr ibution 
showing the axisymmetr ic  region i n  the undisturbed flow, 
the buffer region and the nea r  -.vall region. 



Normalized f l u  of streamwise vorticit 

contributes to net 1 
vorticity flux .(0)2d 

Figure 57a. Flux of streamwise vorticity into the flow a s  a result of the 
surface pressure distribution, fully developed c a s e s  (a degrees ,  h/d). 
Note, 15 ,  1, u is for the uniform exit condition. 

NOTE: Abscissa for data shifted such that 0 . 1  free  isotach aligns with the 
position x/d = 0 .  



Normalized flux of stresmwise 

6 ,  

vortic ity flux 

I 
0 1 2 3 4 5 6 

Figure 5 7  b.  Flux of streamwise vorticity into the flow a s  a result of the 
surface pressure distribution, fully developed cases  (a degrees ,  h/d). 

NOTE: Abscissa for data shifted such that 0 . 1  free  isotach aligns with 
the position x/d = 0 .  
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Figure 58. Vorticity, pres sure  relationships for normal jet impingement. 
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stagnation streamline 

r--6x-c# 
= o surfirce 1 * s 

Figure 59.  Physical characteristics of oblique jet impingement. 
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Note: For the comparison of the hot-wire and pressure data, vw was 
shifted in x by an amount vW(x, z) = vW(xtAx,  0)  where A x  = zw/tan o t p. 

t 

Figure 60. Ex?erimentai technique for the acquioition of the velocity and 
surface static pressure data. 
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