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ABSTRACT

The mechanics of the oblique impingement of an axisymmetric
jet have been investigated. The kinematic constraint of no penetration
requires the jet to spread and/or to deflect vertically in order to provide
a sufficient cross sectional area for the mass flux. The selection between
these two effects is established by the dynamical effects represented in
the three-dimensional momentum equation. The velocity field, as
expressed by the convective acceleration of the mean flow is primarily
talanced by the three-dimensional pressure distribution above the
plate and tailored by the Reynolds stress distribution. It is shown that
an alternative description of the pertinent phenomena may be constructed
by ccnsidering the vorticity transport equation. The gradients of the
(easily measured) two-dimensional surface pressure field are source
terms for the lateral and longitudinal vorticity components and the
azimuthal vorticity structure in the approaching jet is reoriented to
create a deformation in the isotach pattern which is characteristic of
secondary flows.

The jet responds by deflecting vertically for a sufficiently slow
approach to the plate; for this, the intersection of the conical free jet
isotach with an imaginary reference plane characterizes the interaction.
The spreading effect is important for larger angles and/or closer
spacings. The stagnation point is located near the upstream edge of the
interaction and is physically displaced from the maximum pressure

point on the plate.
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NOMENCLATURE

control surface

control volume

diameter of nozzle exit

energy flux; ff p u3 dydz

force

x-component unit vector

momentum flux; [[p uzdydr. J(0) = momentum flux from nozzle
momentum flux based on Q(0), p Q(O)ZAO
y-component unit vector

z-component unit vector

radius of curvature of jet, see (5)

mass flux, ffpu dydz

outward drawn unit vector

pressure

magnitude of the velocity vector, Q(0)= Q(0,0,0)
radius for cylindrical coordinates

radius of the jet (arbitrarily defined)
x-component velocity, v e /i\, u(0) =u(0,0,0)
y-component velocity; v e J

vector velocity

velocity recorded by hot-wire in the stagnation point experiment

"'velocity' calculated from the wall pressure tap in the stagnation
point analysis, see Figure 61.

volurne

- A
z-component velocity; v ¢ k
coordinates (see Figure 1)

jet centerline defined by the center of the circular isotach
pattern at a given x location

jet centerline defined by the moment-of-momentum equation (33)

Superscripts
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()

time average quantity

fluctuating quantity
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1. INTRODUCTION

The mechanics of the oblique impingement of an axisymmetric jet
on a plane surface are examined in detail in this report. Figure 1 shows
a schematic drawing of the problem under consideration and the coordinate
system used to describe the flow field. The kinumatic features of the
flow above the plate are examined in the context of the conservation of
mass, the vorticity of the jet, and the vorticity introduced by the jet-
plate interaction. The dynamic features of the flow are examined in terms
of the surface pressure distribution and the cause-effect relationships
which exist between the pressure and velocity /vorticity distributions.
This report represents the primary results of the second year's activities
supported by the NASA grant NGR 23-004-068.

This study was motivated by the externally blown flap (e.b.f.),

a configuration under consideration as a means of gaining large lift
coefficients for STOL aircraft. For this application problem the airfoil
extends no more than five or six jet diameters beyond the jet; hence, the
extensiv-. data for the inclination angle a and the height above the plate
h/d are restricted to the limited streamwise domain of 0 < x/d < 6 for
the static pressures. With the exception of the pressure data for a = 30,
and a = 60 degrees, the present investigation is relevant to the flow
resulting from the interaction of the propulsion jet with the main airfoil.
The information herein is appropriate to an over- or unde- - wing configura-
tion. A schematic of the latter is shown in Figure 1 The documented
flow is an approximation of that which would be pre-ented to the wing-
flap juncture. The 30 and 60 degree conditions are representative of the
direct interaction of the pronulsion jet with the flap.

The data base used to establish the mechanics of jet-plate inter-
action is comprised of (1) surface static pressures measured at 0.1 inch
increments in y at discrete x locations, (2) velocity measurements from
0.1 inch increments in y at discrete z positions and at integer x/d
locations from 0 tc 5. These data have been used to crcate quantitative
measures of the important phenomena occurring in the flow. Analytical
congiderations have been used to develop these measures and to infer
significant relationships or implications which demonatrate the nature of
the phenomena occurring in thic flow field.

The data base which serves as the primary resource for this



report was used in the First Annual Report to define measures of the

flow field which were relevant to the externally blown flap problem.

The ineasures and analyses of the present report are to define the basic
character of the flow. This is considered to be complementary to the
information of [1]. The identification of the oblique jet mechanics will
contribute to several aspects of the externally blown flap development
activity. Since the oblique jet iminingement is the simplest form of the
e.b.f. flow field, the basic aspects of the two flows will be similar. The
mechanics identified in the present study can serve as the basis for the
interpretation of the e.b.f. flow field response to the complicating factors
of (1) an external strearning flow, (2) the curvature and a finit: extent of
the impingement plate (the airfoil), and (3) the presence of the deflecting
flap. The mechanics identified herein will also allow an inference of the
minimum spacing for multiple jets such that their flow fields show no sig-
nificant interaction. The turbulent motions wmuch are responsible for the
acoustic emissions from the impingement region are related to the mean
flow field characteristics id=ntified herein. Subsequent studies of the
turbulence structure will be guided by these results.

A general review of the literature pertinent to this problem was
presented in [1] and no additional studies directly relevant to this problem
have been identified. Consequently, a literature review will not be inclvded
herein. A brief description of the experimental facility is given in
Section 2. Section 3 presents a comprehensive statement of the mechanics
of the mean flow in the obliquely impinging axisymmetric jet. Specifically,
Section 3.2 identifies the spreading and curvature effects; Section 3.3
considers the vorticity aspects of the motion; Section 3. 4 identifies a
generalized framework for the development of a computing scheme;

Section 3.5 introduces the additional phenomena of the stagnation

point and the y-component vorticity considerations; and Section 3. 6.
reiterates the important characteristics identified in the First Annual
Report. Section 4 presents the detailed information which can be extracted
{rom a consideration of the centerline pressure values. Section 5 presens
a detailed consideration of the stagnation point: specifically, Section 5.2
presents the analytical considerations which demonstrate the consequences
of separate physical locations for the stagnation and the maximum pressure
points; Section 5.3, the experimental results; and Section 5.4, the

relationship of the isotachs and the stagnation point. The appendices are



used to communicate the pertinent results available in [1].

2. EXPERIMENTAL FACILITY

The large volume of data considered in this report (and in (1))
is essentially made possible by the on-line IBM 1800 digital computer
facility. The quantitative evaluation of the severai measures of the
experimental data, i.e. integrations and the preparation of level curves
(isotachs and isobars) is made feasible by the availability of the hot-wire
and pressure transducer data on punched card:. This data processing
facility and the experimental flow system are described in detail in [1].

Two nozzle configurations were used to examine the influence of
the initial conditions of the jet-plate interaction. A fully developed flow
was developed in a 2 inch I. D., 12 ft long tube; this is referred to as the
fully developed (f.d.) conditicn. A second nozzle was used to approximate
a uniform (u) flow. A nominally flat-top velocity profile was created
with this nozzle and these results will be referred to as the uniform (u)
condition. Details of this nozzle are given in Figure 2 along with an
exit velocity profile.

The velocity data which were used tc create the isotach natterns
(selected isotachs have been reproduced in Appendix A for reference
purposes) were obtained with a single vertical wire (parallel with z).
Consequently, these readings are most appropria.~ly referred to as
approximately (i. e. discounting pitch effects) the magnitude of the
velocity in the x-y plane of the wire. Since the x-component is dominant
except at the edge of the jet where u(x,y, z) << u(x,o0, z), the reasonable
approximation is that the hot-wire reading is the x~component of velocity.
This distinction is necessary when the various flux integrals are formed
or when the comparison with analytical flux predictions, e.g. the Reichardt
model are examined. See Sections 4.3 and 4.4 of [1], respectively, for
these processed forms of the velocity data.

A special series of experiments was performed to investigate
the stagnation point. These experiments involved the flow, traverse,
and data processing systems described in [1]. The appropriate cetails
of the test procedure will be covered along with the presentation of the

experiments.



3. THE MAJOR PHENOMENA OF THE OBLIQUE IMPINGEMENT OF AN
AXISYMMETRIC JET

3.1. Problem Statement

The purpose of this section is to consider the dominant phenomena
which occur in the jet-plate interaction. Subsequent sections will consider
appropriate details of the separate phenomena.

A useful conceptualization of the jet-plate interaction is based
upon the no-penetration constraint imposed .y the plate on the motion of
the jet fluid. That is, there is no z component of velocity in the plane of
the plate. In its absence, the jet fluid which would have penetrated through
the plane of the plate will pass a given x location by spreading laterally
along the surf_.ce of the plate and by increasing the area available for 1nass
flux by causing the jet to curve upward. In the context of the kinematics
of the problem, it 1s only necessary that the appropriate mass flux occurs
across any x = constant location; the relative importance of spreading
and curvature is dependent upon the dynamics of the jet-plate inter-
zction. That is, the pressure distribution within the jet determines the
curvature and spreading effects. It is not possible to identify a cause
and effect relationship based upon the conservation of mass equation
since this is not the governing phenomena for the problem.

The above considerations allow a somewhat more precise
statement of the desired description of jet-plate interaction mechanics.
Specifically, it should identify the magnitude of (1) the jet spreading and
(2) the curvawure of upward deflection effects; and identify the factors
which are responsible for the selection process which results in the
balance Letween these two effects. Clearly, the surface pressure distri-
bution is mechanistically related to these two aspects of the motion in the
jet. However, the surface pressure distribution itself is also an impor-
tant aspect of the interaction process. Somewhat less obvious is the
relationship between the surface pressure distribution and the x-
component vorticity flux through an x = constant plane. This voriticity
component is an important factor in the boundary layer control
characteristics provided by the flow which bleeds between the lower surface
of the airfoil and the flaps. The relationship between the pressure
and the x-component vorticity will be examined in detail. The



curvature and spreading measures will first be examined; a model of

the jet-plate interaction will then be presented.

3.2. Spreading and Curvature Effects in an Obliquely Impinging Jet
3.2.1. Jet spreading

From conservation of mass consideration, it is argued in Section
3.1 that the jet will both spread laterally along the surface of the plate,
and curve upward. It is the purpose of this section to quantitatively
evaluate these two effects.

In order to evaluate the spreading effects, some knowledge or
reliable estimate of a reference or intersection contour of the jet on the
plate is necessary. Such a reference contour can be established by the
intersection of the free (uniform or fully developed) jet with an imaginary
plane in the same relative position as the plate. More specifically, if
one considers the axisymmetric surface defined by the condition u(x, r) =
constant, the intersection of this surface with the plane of the plate defines
a contour. From the data of the present study, it is possible to quite
accurately determine the functional relationship for the average r(x)
values such that u(r,x)/u(o) = 0.1, 0.3, 0.5, 0.7, 0.9; the average is
based upon the large ensemble of experimental conditions with the following
characteristics: (1) different a and h/d values, (2) an undisturbed
isotach pattern, and (3) r values which are themselves smoothed over
multiple y traverses. The 0.1 isotach (u/u(o) = 0.1) was chosen for this
purpc3se since it best describes the outer boundary cf the jet. Only the
cases which demonstrated conservation of momentum were used to
establish the radii of the 0.1 isotach for the five downstream x/d locations.
Table 1 presents these r(x) values. The linearly increasing values define
a cone. The intersection of a cone with a plane defines an ellipse,
parabola, or hyperbola depending upon the relative magnitudes of the
cone and the intersection angles. These generated contours are termed
free isctach intersections. The isobar and the free isotach intersection
contours are shown in Figures 3 to 27 The shape of the two curves is
remarkably similar which allows several measures of the interaction to
be established. These are discussed below.

The zero isobar is considered to be a significant measure of the

outer jet boundary. That is, the zero isobar can be interpreted as the



limiting extent of the dynamic effects in the flow. The small negative
pressures beyond this isobar are a resu’t of the entrainment effects. It
is rcasonable to assume, but it has not been shown, that the zero isobar
is related to the stagnation line where the jet fluid, flowing laterally
outward along the plate, meets the entrained fluid. The stagnation pressure
of the entrained fluid would be approximately (clearly no greater than) the
atmospheric value. Since the free isotach intersection characterizes
the size of the undisturbed jct in the plane of the plate, the ratio of this
contour width to that of the zero isobar can be used to describe the
relative jet width. If thé isobar family of curves were parametric, then
the x location used to measure the relative width would not influence the
magnitude of the ratio since the free isotach intersection is defined by

a cone and a plane. The isobars, especially the zero isobar, are
apparently not members of a single family; therefore, there is some
influence of x-location on the relatiy ‘dth measure. The arbitrary
decision was made to evaluate the width measurements at the x locaticn
of the maximum pressure. Since the zero free isotach grows at a
different rate than the 0.1 free isotach, the distance from the appropriate
point at the nozzle exit to the maximum pressure location is considered
to be pertinent supplementary information. Table 2 presents the percent
width and nozzle-to-plate data taken from the isobar contours.

The relatively constant percentage width values in Table 2 for the
three to nine or tweive degree cases are ccnsidered to be quite significant.
Contrary to what might be reasonably expected, it appears that there is
very little systematic spreading of the jet with increasiny a values.
Considering a nominal value of 0. 7 for the ratio of these twvo jet width
measures, the majority of the data for both nozzles is within % 0.05 or
=% 7 percent. Within this domain of cases, there are some second order
systematic and non-systematic variations. The systematic deviations are
dependent upon the increasing a values and probably the distance to tne
maximum pressure location. The scattered or non-systematic variations
may be caused by geometric, flow, or measurement condition abnormali-
ties (for example, an improper a value in the experiment or a zero drift
in the pressure transducers). The significant deviations from this
cluster about 0.7 are considered to be the u: a =12, h/d=1.5;a = 15,
h/d=1;a =30, h/d=2,3; unda = 60, h/d = 2 cases in which a



pronounced and systematic trend is observed where the width of the iet
is considerably larger than the free isotach intersection. These
differences in the width ratios are apparcntly related to the much different
interaction phenomena. Specifically, based upon these ratios and based
upon the available isotach information, the cases with a nominal width
ratio of 0.7 appear to preserve the basic axisymmetric character of the
jet and to confine the interaction phenomena to the region below the
center of the jet. For the larger angle cases, the axisymmetric character
of the jet is destroyed and the lateral flow along the surface of the plate
is greatly enhanced as is the region of dynamic importance represented
by the isobars.

Table 2 also presents the magnitude of the normalized pressure
of the isobar which aligns with the 0.1 free isotach intersection contour.
The pattern in which these values are essentially constant from three
to twelve degrees is again apparent. A nominal value of 0.27 and second
order variations are indicated by the table. The percentage variations be-
tween different cases in the magnitude of the isobar which aligns with the
free isotach are larger than the percentage variations for the width
measures. Also, the variations in the uniform cases are greater than in
the fully developed cases and it can be observed that a pattern of larger-
pressure for smaller-distance-to-impact is established, These are
considered to be mechanistically related to the relatively steep velocity
gradient at the edge of the uniform exit condition jet. The tabulated
values are considered to be accurate within approximately * 10 percent;
the correspondence of free isotach/isobar contour was not exact and
the equivalent isobar value often had to be obtained by interpolation.

Large deviations from the nominal 0. 27 value are observed for
the uniform cases of a =15, 30, and 60. The significantly larger pressure
magnitudes for these cases and the much smaller percentage width
measures noted above both signify qualitatively different interaction
phenomena compared to the smaller angles. These differences, then,
are to be related to the strength of the interaction. The strong interaction
destroys the axisymmetric character of the upper portion of the jet; a
weak interaction does not.

A quite significant Quantitative aspect of the isobar/free isotach

alignment is that the factor of sin a , used to normalize the pressures,



allows the identification of a single nominal value over the range of

a = 3to 15 degrees. This is approximately a five-fold variation in the
magnitude of sin a and hence a five-fold variation in the magnitude of

the surface pressure. This simple dependence of the pressure on the

jet angle would suggest that the z-component of the momentum flux is
responsible for the elevated pressure in this region; this is in contrast
to the centerline pressures which will show an additional effect associated
with the overall jet and the local curvature effects.

The isobars represent a measure of the dynamic width of the jet.
The isobar field could not be wider than the jet flow but the converse
could occur. That is, the inertia of the lateral motion induced by the
pressure gradient within the active region of the jet-plate interaction could
move the jet fluid beyond the zero isobar. In this event, the isobar would
under-estimate the jet width. Figures 28 to 30 have been prepared to
compare the isotach contours with the lateral pressure distribution for
the uniform cases: a =3, h/d=0.75,a =9, h/d=1;anda =15, h/d= 1.
These figures demonstrate that the jet does spread beyond the zero isobar;
however, the velocity beyond this boundary is relatively small. The
above considerations are therefore restricted to the notion of the dynamic
width of the jet.

3.2.2. Curvature of the jet

For the cases of weak jet-plate interaction, there are only minor
changes in the spread as a function of a and h/d. Consequently, it is
concluded that any significant differences between cases will be manifest
in the curvature of the jet. The curvature of the entire jet can be computed
from the surface pressure values. The assumptions and analyticzl
considerations which make this possible are identified in the following;
the curvature magnitudes will be examined following the analysis.

Special experimental tests and an estimate of the maximum
plausible influence of the static pressure was used in [1] to demonstrate
that the x-component momentum flux was essentially constant for all
cases. As a consequence of this, control volume momentum and
moment- of-momentum analyses may be used to define the height above the
plate zm(x) of the center of momentum flux JX(E J{(o) cos a = constant).
The quantity zm(x) can be considered to be the elevation of the jet (as if
it were concentrated along a line). The curvature of the jet is given in

terms of the curvature of zm(x) by the relationship
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The expression for zm(x) developed in [1] will be used to evaluate the
curvature. The expression from [1] was made incomplete by the exclusion
of a term which accounted for an entrainment effect. The corrected

analysis is presented in Appendix B and the corrected form is
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where Qe is the entrainment velocity at the control surface and the
control surface is defined in Figure 31. The bracketed term is shown
to be small for x/d £ 5 in Appendix B. The derivatives for the

curvature are evalvated as
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Consequently
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Although the curvature involves the second derivative of z m’ it can be
evaluated in terms of quantities which are quite accurately known, as
shown by (5).

An approximate relationship involving K is pertinent to the
interpretation of the curvature data; specifically, since the maximum
magnitude of dz /dx is -tan a , the largest coeff1c1ent mul’ iplying the
numerator of K is [1+tan I 3/2 Since 0.9 <(l1+tan. u) /41 for 0=
a =15 degrees, the variation of the denominator is neglected and [1+tan QT3/Z=1

is considered to represent a satisfactory assumption. Consequently,

K = dzzm/dxz (6)

The area under the K(x) curve is then

x
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dzm ]
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dx Jx
Since dzm(w)/dx = 0, the total area under the K(x) curve is approximately

tan a . This may be used as a reference condition to compare the K(x)
curves for a given a as a function of h/d.

A second general observation may be made concerning the K(x)
distributions. Unless the plate influences the jet at the exit of the nozzle,
the curvature will vary from zero to a negative value (if the entrainment
efiect is important) to positive values (for a sufficient duration to allow
the area under the K curve to be =tan a ) and return to zero for large
downstream distances. Th( centerline pressure will have the same

general character; however, the pressure may be infiuenced by the local
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effects in the flow whereas the curvature is a measure of the overall
behavior of the jet.

The curvature and the centerline pressure are presented together
in Figures 32 to 45. The comparison of these two distributions is con-
sidered to offer an effective measure of the curvature effects. If the

two curves have the same character, it is concluded that the local
curvature effects are not very important and that the jet is essentially

turned en masse. The extent to which the two curves have a different
character is used as an indication of the presence of local curvature or
a relatively rapid jet approach to the plate. A shift in the x/d location has
been applied to these (and subsequent plots) to align the 0.1 free isotach
intersection with the x/d = 0 location. This allows a better visual compar-
ison between cases. The Ax/d values to accomplish the shift are
presented in Table 2.
The most important characteristic of these data is their slope as
a function of the streamwise distance. The slopes were not evaluated
since the usual errors associated with differentiation of data would have
been encountered; the reader is asked to mentally compare the slopes
of the K and p (x,0,0) curves. The trend indicated by the uniform,
a = 3 degree cases (h/d = 0.75 and 1) is characteristic of all the data.
That is, the p(x,0,0) distribution reaches a maximum at a smaller x/d
than does K(x) and this difference betvieen the two curves is less pro-
nounced as h/d increases. This trend is quite pronounced for the fully
developed, a = 3 degree cases., The condition wherein the centerline
pressure reaches a maximum value before the curvature, reflects the
dependence of p(x, 0,0) on the local flow condition. As h/d is decreased,
the velocity gradients of the flow approaching the plate are increased and
the surface pressure required to turn the flow locally is increased. The
quantitative character of this observation is demonstrated by the plots.
Figures 44 to55 present a comparison of the curvatures for
various h/d values at a given a . These plots are prepared such that
the 0.1 free isotach would be shifted to x = 0. The purpose of this
comparison is to demonstrate the accommodation of the curvature to the
different geometries. That is, the jet curves more rapidly for smaller
h/d values.
3.2.3. Summary of spreading/curvature effect

The original question addressed in this section can now be answered.

11



It was noted that the constraints imposed by the conservation of mass
required that the jet spread laterally along the plate and/or be curved
upward because of the no penetration condition imposed by the plate.

The relative snreading measures indicate that for the relatively small
angles, a T 12 degrees, the latcral spread of the jet is a second order
effect. For these same cases, thc curvature is a strongly varying function
of a and h/d; that is, the jet primarily responds to the presence of the
plate by turning upward.

The larger angle cases appear to be qualitatively different. The
upper portion of the jet does not retain its axisymmetric character and
the relative width of the zero isobar to the 0.1 free isotach is jncreased
with respect to the smaller angle cases. The pressure distributions show
a more peaked character with the relatively large maxima apparently
accounting for the strong turniang of the fluid at the upstream edge of the

jet.

3.3. Vorticity Considerations

The upward deflection of the jet can be expressed in terms of the
deviation of the z-component velocities in the jet from the equivalent
values which would be realized if the plate were not present. Similarly,
the spreading of the jet is associated with the excess y~component veloci-
ties. The detailed velocity distributions are expected to be governed by
the three-dimensional pressure distribution above the plate and tailored
by the Reynolds shear stress distribution. The consideration of the jet-
plate interaction mechanics based upon t} ese aspects is reasonable in
the context of the nature of the flow but such a description is quite
difficult to relate to the extant or anticipate.. cxperimental data; i.e.,
there is a lack of p(x,y, z) data. An enuivalent, but conceptually quite
different approach is to consider the flow in terms of the vorticity prccesses
occurring in the jet-plate interaction. This has the implicit benefit that
the important x-component vorticity will be directly involved in the descrip-
tion of the problem. It has the major benefit that the three-dimensional
pressure distribution in the jet flow does not enter into the description
of the problem; rather, the surface pressure distribution, which is accurately
«nown, enters the description as a source of vorticity. These considerations
require the control volume description of the vorticity equations; these
relationships are developed below.

The Navier-Stokes equations for an incompressible flow can be

operated upon to create the vorticity tranaport equation; specifically,
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Performing a volume integral of this differential equation for a motion
which is steady in its time mean quantities and applying the Gauss
Theorem to transform volume integrals of divergence terms into surface

integrals yields (note that (T ) denotes a time averaged value)

{
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The term on the left is the net flux of the vorticity from the control volume
by the convective action of the velocity field, (E-E"ﬁ S E'?i +5 Ref
where ) and § are the turbulent fluctuations about the mean). The first
terin on the right hand side of equation 9 is the production of vorticity by
the amplification effect of stretching or reorienting vortex filaments.

The third term can be expected to be important only at a solid surface
where the viscous terms are important in an otherwise turbulent trans-
port dominated flow field. The viscous term may be expressed in terms

of the surface pressure gradients; this is developed in the following.

o 9 W ::1 9 w,
n S iTez tigy tok 3y (10)
Since w_ = (9 x/8y - 8v/dz) and wy = (du/d8z - dv/dx), the vorticity
terms at the surface of the plate may be written as
A4
wx(x) Y, 0) - - 9z (lla)
z-0
du
W (X,Y,O) = A (11b)
Y 0z 20

These quantities may, in turn, be expressed in terms of the surface

pressure distributions as
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Consequently, using (:2a) and (12b) in (9) and noting that a negative
sign will precede the last term since VY °* n< 0,

§

C.8

A
W@ da = im' dav +iS (%%-g)d.«
. . Ve Aplate

A Al Juw
\( L2 S z

-JSA( 52) dA - k NED aa  (13)
plate plate

The mathematical framework for the model of the jet-plate interaction

is represented by equation 13. The physical characteristics required of
the model can be inferred by an examination of the data already presented.
The pertinent features of these data are considered in the following.

In the description of the physical nature of the jet-plate interaction,
it will be useful to speak in general terms about a '"'non-destructive"
interaction between the jet and the plate. The term non-destructive is
to imply that the upper portion of the jet retains its axisymmetric
character and the influence of the plate is confined to a portion of the

flow near the plate. The isotachs of Figures 28 to 20, the isotachs of
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Appendix A and the photographs of the dusty jet, Figures 3b and c of [1]

all demonstrate this effect. This non-destructive case is distinguished
from the condition in which the approach to the plate is so abrupt that

no portion of the jet retains its axisymmetric form. The influence of these
two interaction conditions on the spread/curvature isotach patterns (a <15
degrees) reveals that within the x/d range investigated (x/d<5) the non-de-
structive description is applicable to all cases except a =15, h/d=1, x/d=4,5
and possibly @ =12, h/d = 1, x/d = 5. The projected centerline of the

jet passes through the plane of the plate at x/d = 3. 75 and 4. 75 for these
two cases respectively. It is not possible to determine whether the non-
destructive character is maintained for large x/d values where the projected
centerline of the shallower angle cases would penetrate the plane of the
plate. However, one could reasonably anticipate that for sufficiently small
a and sufficiently large h/d, the curvature of the jet would allow the

oblique jet to approach the character of anaxisymnietric, parallel flow,
wall jet. In this regard, the three-dimensiona! wall jet studies by Sforza
and Herbst [2] are quite instructive. The upper portion of the isotach
pattern of a rectangular wall jet does approach an axisymmetric form at
sufficiently large downstream distances; hence, the same behavior is
veasonable for the shallow angle, obliquely impinging jet.

The conceptual model of the jet-plate interaction is based upon
vorticity considerations and will be developed from the observations of
the non-destructive interaction cases. The larger angle cases are more
complex and additional effects must be included for their description.

For the streamwise domain in which the jet-plate interaction is
non-destructive the influence of ithe plate on the jet is manifest in two
rather distinct regions. The phenomena occurring in these regions allow
them to be distinguished from each other and from the approachirng jet.

In the immediate vicinity of the plate 0 <z < 6z (where 6§z/d << 1) the
velocity distribution can apparently be characterized by isotachs which

are nearly parallel to the plate and quite closely spaced. Such a condition
is inferred from the isotach presentations of [1], see Appendix A, in which
the experiment.l data of the y traverses indicate quite large velocities
near the surface of the plate, and it is shown schematically in Figure 56.
Since each lower valued isotach must lie between the measux 1 isotach

location and the plane of the plate, it can be inferred t"zt a v' ry close
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isotach spacing exists in this region of the flow. The region of the flow
defined by 0 <z =6z will be termed the near wall region. The second
region lies between the near wall region and the axisymmetric portion of
the flow. The boundary between the upper portion (of the second region)
and the axisymmetric jet is diffuse, the two regions rather merge

together. For convenience, this will be termed the buffer region.

The conditions leading to the establishment of a near wall region
are easily visualized in terms of equation 13 and the recognition that the
isobar patterns of Figures 3 to27 are reasonable manifestations of the
jet-plate interaction. That is, with a pressure distribution such that
pix, 0, 0) forms a maximum in the p(y) distribution at a given x location,
dp/dy will be such as to cause a flux of x-component vorticity into the
flow. Also, the wy vorticity present at the surface, as a result of the
jet flow over the plate, will experience a du/3dy reorientation effect such
that the terms wya u/dy and 1/p 3p/dy of (7) both cause a flux of w, at
a given x location. (The signs are —w, for y >0 and +wx fory<0.) It
is reasonable to expect that both of these effects will only influence the
flow near the plate. The net effect is shown by the particular form of

(13) for the spatial region defined by the limits c¢n the integrals

z
S‘Dyw u dzdy
0o Yo *

where the W, entering the control volume at x = 0 is considered to be zero

Sz po © 1 3
= S S S‘xu du/oy dxdy +S S"— B-P- dxdy (14)
x oY YoV ovo P %Y

wxau/ax << wya u/du, and the signs on th. r.h.s. terms indicate
that negative W, is carried out of the control volume.

One of the contributions of equation (13) and the vortic y consider-~
ations is that the iocalized nature of these effects is easily accepted.

That is, the identification of the vorticity transport effects as the
controlling phenomenon makes the existence of a near wall region a
reasonable result.

Figure 56 also shows the buffer zone; this observed region is
similarly compatible with a description of the flow in which vorticity
transport effects govern the motion. The wg of the approach flow is
essentially converted to w_ in the near wall region; this, in turn, results
in some production of W, in the near wall region as noted akuve. The vor-

ticity in the axisymmetric portion remains essentially unchanged. The
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juncture of these two regions, which occurs at 62 and increasing y values
for decreasing isotach magnitudes, results in a large and localized pro-
duction of W, - That is, the W production term Wg du/d0 is clearly

large at the location where the isotach makes a sharp bend to pass between
the plate and the ''undisturbed' jet. This W, vorticity is of opposite sign
to that produced by the two effects operative in the nearwall region. The
upper portion of the buffer region is not sharply defined. The isotachs
change gradually from their circular shape in the axisymmetric region.
This characteristic supports the implicit feature of the model in which

the governing effects are concentrated near the surface. The upper portion
of the buffer region is the (passive) effect caused by the vortex reorien-
tation near the plate.

The utilizatior of the vorticity transport equation has allowed
rational explanations for the observed near wall, buffer and axisymmetric
regions of the flow field. The same observations could be related to the
momentum eqQuations; however, the relationship of the acceleration,
pressure gradient and net shear stress to the observed three regions, with
their particular spatial extents, would have to be argued in such a manner
that the two are simply compatible. It does not seem possibie to provide
an apriori argument fcr the qualitative nature of a pressure distribution
which would create a maximum y-component velocity qQuite near the sur-~

face and leave the central core of the flow in an axisymmetric form.

3.4. The Development of an Analytical Model

In addition to its use in describing the physical nature of the jet-
plate interaction, the model presented in 3.3 is considered to offer an
excellent framework for the development of a numerical computation
scheme to describe this flow. Lighthill [3] has presented sever !
arguments in favor of a calculation technique based upon the governing
equations for vorticity and not velocity. The diffusive nature of the
vorticity equations as opposed to the action of a pressure at a distance
allows a forward stepping solutica to he more easily developed. 1Itis
anticipated that such a consideration would be most important for the

present problem. As the jet approaches and impacts the plate, a

description which allows the interaction to be calculated on the basis

of the behavior at the surface and its subsequent influence on the interior
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of the flow field is clearly superior to the alternative formulation requiring
a construction of the three-dimensional pressure field with its consequent
upstream effect. The development of suck a nurierical computation
scheme is simply noted here; there is ne immediate activity nor plan to

pursue such a development.

3.5. Additional Phenomena

The principal or governirg phenomena of the flow field are
represented by the discussion in Section 3. 3; however, there are additional
features of the flow which are considered significant. The location and
character of the stagnation point and soeme quantitative aspects of the
flux of wy vorticity into the flow are considered in this section.

The vorticity considerations (3. 3) tacitly assumead that the
vorticity above the plate had a positive wy component, i.e., the flow irn
the jet at (x, y, 6z) is in the streamwise direction. 7This is vaiid for the
region downstream of the stagnation peint (xg,0,0}. The stagnation point
will occur at y=0 from the symmetry of the problem; the symmetry of the
problem also demands that u (xj< x < X s 0, 6z)< 0 (where 6z is a small
z value) and ).:j is the upstream boundary of the jet fluid near the plate.
This region of reversed flow need not exist instantaneously if the stag-
nation point moves about laterally but the mean value of u must have
this character. The three-dimensional pattern near x_ is not easily
visualized since u > 0 can be expected at (xj <x< X &y, 6z) for
relatively small 6y. From the isobars, it is clear that this region of
reversed flow is relatively extensive if the stagnation point occurs at the
maximum pressure location. The stagnation point for an obliquely
impinging axisymmetric jet is not at the location of the maximum
pressure; it is near the upstream edge of the interaction region defined
by the isobar pattern. The support for this observation is given in a
later section; its implications for the flow model are of concern here.

The factors which cause the flow to select the location of the
stagnation point are apparently the geometric condition that the
stagnation streamline he located near the lower edge of the jet and the
accommodation of the vorticity in the approach flow to that about the
stagnation point. For example, the vorticity at the stagnation point is

zero but its x gradient influences the orientation of the stagnation
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streamline. Directly upstream of the stagnation point the vorticity is
negative and of opposite sign to that of the approach flow. Directly down-
stream, the vorticity is. positive and in the same sense as that of the
approach flow. The seclection of the stagnation point is clearly a compli-
cated physical process and it would be a difficult thing to predict. Itis
unclear what difficulties this might pose for the numerical calculation
scheme discussed in 3. 4 in terms of formulating the forward stepping
scheme.

Only the x-component vorticity was considered in Section 3. 3 since
the qualitative behavior of the flow can be described in terms of this
variable. A quantitative description would necessitate an accurate
assessment of w_as well since this component does contribute to Wy
in the form of w 3u/8 Y.

The 1sobar patterns clearly show that the dominant vorticity flux
into the flow is W, however, along the centerline only w, is introduced
through the surface. It is possible to compare the magnitude of the flux
through the plate to the flux through a small section of 6z height at some
x location. The analytical considerations for this are shown below.

The flux per unit width of wy through an area of height 6z at any

% location can te expressed as

5z
S w ddz =
0 Yy

s:l

adud
9z

56 9 ‘B dz
02 9z

o~

(15)

~|el

The flux of Uy per unit width through the plate surface fromx=0tox =x

is given as (from (9} and (12b))

X X

9 1 &
SO,, 2, ax - -50 L3R ax - -% [pix, 0,0)-p(0,0,0)]  (16)

These two quantities can be normalized using the centerline velocity at
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the exit plane of the jet and their ratio can be formed to demonstrate
the relative magnitude of the vorticity flux through the surface as
compared with that in the flow field. It should be noted that the two are

of opposite sign for szx =x (max pressure)

vorticity flux through surface from 0 to x
vorticity flux through area of height 6§z at x

2]p(0,0,0) - p(x,0,0 uzo

17
T(x, 0, éz)z/uz(o)
Measurements of p(x,0,0) and © (x,1, §z) were made to evaluate
the location of the stagnation point; the measurements and the conclusions
regarding the stagnation point location will be presented in a later section.

The pertinent results from this study are cited in Table 3 to evaluate the
ratio given by (17),

Table 3. Ratio of w_ vorticity flux through the plate to the
vorticity Mux through a small height at the
x location of the maximum pressure. Uniform
nozzle exit condition

a  h/d  x/d 6z/d {% [p(x, 0, 0)-p(0,0,0)} /{u(x,0,52)%}
1 4,08 0.0328 14.54/46.2 = 0.315
1 2.13 --- 27.4 /49.9 = 0.35

15 1 1. 25 - 46.2 /63.6 = 0.73

These ratios show that a significant amount of -w_ is added to the
+wy vorticity near the plate for all cases. The vorticity so added increases
rather strongly as a increases; this is reasonable based upon the observation
of the centerlinc pressure relationship to the overall and local jet curvature
effects. The data shows that the +wy vorticity flux through 6z increases
in magnitude even as the -wy vorticity flux increases. This resultis
attributed to the importance of the production term due to stretching
(wyav/c) y). Consequently the production term is quite imporiant in the

description of the vorticity processes occurring in the flow. Since
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dv/dy is related to the w, distribution, i.e., v(x,y,5z) = [ v(x,y, 0)/3z)6z =
-w,5z, an analytical model would have to consider the simultaneous

solution of the x and y components of vorticity.

3.6. Phenomena Identified in the First Annual Keport

Several important phenomena were identified and presented in
[1]. A summary of these phenomena is presented here for completeness.

A control volume as shown in Figure 31, with boundaries extending
over the exit plane of the jet and the downstream plane of constant x, the
plane of the plate, and the sides of the flow field in the entrainment region
will be used for this discussion. A special experiment to evaluate the
shear force on the plate and an evaluation of the maximum probable
pressure force acting in the negative x direction have been used to
show that the x-component momentum flux is essentially constant for the
oblique jet impingement problem (see [1]).

The impingement process has the effect of suppressing the
entrainment of mass into the jet flow. The constant momentum flux
combined with the decreased mass flux cause a decreased rate of energy
dissipation. Analytically, this is described as a constant value of

uz dA and a less-than normal increase in \ u dA which results in a
less-than-normal decrease in u3 dA, where the integration is over a
plane normal to the axis of the jet. Mechanistically, it is inferred that
the decreasing energy flux is a measure of the work done by the jet fluid
to accelerate the ambient fluid as it is entrained into the jet flow. Since
the plate inhibits this entrainment process, the relatively high velocity fluid
in the jet is protected from the decelerating effects of the entrainment
process and the only energy decrement incurred in this region is that as-
sociated with the boundary layer in the near wall region (0 Sz =6z). The mass
and energy flux values are shown in Appendix C. The data for the
uniform and fully developed nozzle conditions are shown separately
and the data are segregated with respect to how well the measured
x-component momentum flux agrees with the quantity J(o)cos 6.

The data for which the measured momentum flux is within three percent
of that at the exit plane is considered to be quantitatively valid. That which
differs by more than three percent from the constant value is considered

to be qualitatively instructive in that it shows the appropriate trends for
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the mass and encrpy flux values.

An interesting difference between the uniform and fully developed
exit plane conditions is the greater rate of entrainment of ambient fluid
for the fully developed condition. It is inferred that this greater entrain-
ment rate is related to the large scale motions in the initial region of
this flow. The mass rates of flow for the two nozzles of the present
study and for several other studies which have been reported are also
presented in Appendix C. A comprehensive study of the initial condition
effects on the near field of an axisymmetric jet is presently being
conducted as a part of the continuing activity under this grant.

The jet-plate interaction can be considered complete in some sense
when the total z-component momentum of the initial jet is destroyed.
Therefore, the degree of comp!_.teness of the interaction is shown in

terms of the ratio of the net force on the plate to the initial z-component
X @

momentum flux. Curves of 5 S p dy dx/Jz(o) are presented in {1}].
0 “-o

Alternatively (and less graphically) the z-component momentum flux,
normalized by the initial z-component momentum flux, provides a measure
of the degree of completeness of the interaction. The tabular
representation of these values taken directly from [1] is presented in

Appendix D.

4., THE CENTERLINE PRESSURE DISTRIBUTIONS

From a mechanistic viewpoint, the surface pressure is the agent
which causes the spreading and jet curvature imposed upon the jet by the
no-penetration condition through the plane of the plate. On this basis,
the only apriori constraint on the surface pressures is that the pressure
integral over the plate surface is equal to the z-component momentum flux
from the jet. One aspect of the total pressure distribution is the pres-
sure along the line (x,0, 0); that is, the centerline pressure distribution.
In Section 3. 2 the centerline pressures were compared with the curvature
of the jet to demonstrate the local, in addition to the global, effects of
the curvature. The essential point is that the centerline pressure distri-
bution is governed by the geometric and, to some degree, the initial flow
structure conditions of the jet. In this sense it is an effect, the no-

penetration condition is the cause.
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A different condition exists for the streamwise vorticity. The
centerline pressure can be interpreted as the cause of the amount of x-
component vorticity added to the flow by the ''flux through the piate surface."
Equation 18 provides the basis for this statemerit; specifically,

W, introduced through the dw
X dydx = -

O [

= 2p
differential area dxdy via Y3z gy dydx (18)

the pressure distribution

The flux through a given area of the plate cannot be directly related to the
flux through a specific y-z area at some x location. The reason for this is
that the velocity field rear the plate will convect and the velocity gradients
will amplify or reorient vorticity which enters the flow field through this
mechanism. However, it is possible to identify the total vorticity which
enters the flow and to attach some meaning to this meaaure of the Wy
vorticity flux, Consequently, (18) is integrated over the region from

y=0 to + (or =) « and from 0 to x. The resulting value is that total

Wy introduced into the flow via this mechanism; specifically

W, introduced via the pressure Sx Sy
0

1 3p dy dx
distribution P

0 dy

|
N -S = [p(x,90) - p(x,0,0)] dx
0 P

3 +§‘" n(’_c,P_O._m_ dx (19)
0

Equation 19 demonstrates the importance of the centerline pressure

distribtuion to the flux of W These integrated values are presented in

a composite form in Figure 57. Only the fully developed cases are

shown for a < 15 degrees, the uniform ones are essentially the same.
The strong dependence of the vorticity flux upon a , and h/d for

a given a , is evident. The strong differences shown for the various

a and h/d cases suggest that the flows near the plate surface are

strongly dependent upon these two parameters. However, the data of
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Table 2 show that the width of the flow field and the pressures in the
neighborhood of the 0.1 free isotach intvrsection are weakly dependent
upon these two parameters for tne non-destructive interaction cases.
Therefore, it is inferred that the differences in the flow structure
associated with the flux of w, are confined to the central region of the
flow field.

5. THZ STAGNATION POINT
5.1. General Considerations

An important characteristic of the oblique jet impingement which
must be established for a complete description of the flow field is the
location of, and local behasior around, the stagnation point. The
identification of the stagnation pecint characteristic is considered to be of
particular importance for those characteristics which depend upon the
details of the flow field near the surface such as the heat transfer,
acoustic noise generation, and the production of streamwise vorticity.

The stagnation streamline is defined as the locus of points
everywhere tangent to the velocity field with a terminus on the impact
plate. The stagnation point is the location of the terminal point. The
possibility of a finite length stagnation line will be suggested by the
experimental data and it cannot be excluded by analytical considerations.
The possibility of a finite length stagnation line is also suggested by the
following considerations. An infinitely long stagnation line exists in a
two-dimensional flow and a stagnation point or circular stagnation
line exists in an axisymmetric flow. Similarly, an open conduit of any
shape placed with its axis parallel to a uniform stream will result in a
closed, stagnation line around its upstream circumference.
The three-dimensional flow may be qualitatively different from the
axisymmetric or two-dimensional condition. For example, consider the
open conduit placed in a uniform stream and consider a sawcut to be
made through the surface parallel to the axis. If the only possible
stagnation states are a point or a closed line curve, then a single
stagnation point would have to exist opposite the sawcut. Since the flow
will still pass inside and outside the contour defined by the previously

closed body, the symmetry would demand that an azimuthal flow exist
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from the stagnation point, around the upstream surface and exhaust down
the gap of the sawcut. The alternative is to conceptualize a three-
dimensional stagnation line extending part way around the upstream surface.
This aside from the oblique jet impingement problem is to demonstrate,
by analogy, the possibility of a finite length stagnation line. The oblique
jet impingement is a three-dimensional flow. The possibility of a finite
length, non-closed, stagnation line would seem to exist.

Another characteristic of the stagnation point is its relationship
to the location of the maximum pressure point. For a vertical
(a = 90 degrees) jet impingement condition, it is clear that a stagnation
point exists at the terminus of the center streamline and at the locat*ion
of the maximum pressure. The centerline pressure data shown in the
previously discussed figures indicate that the maximum plate pressure is
not at the projected location of the center streamline; these figures also
suggest that the maximum pressure may not be located at the stagnation
point. The analytical considerations which can he made for the stagnation
point are presented in the next subsection. An experimental technique
to evaluate the stagnation condition and the results of this evaluation

for three cases are presented in this section.

5.2. Analytical Considerations¥*

The equations of motion (Navier-Stokes and continuity) can be
evaluated in the neighborhood of the stagnation point in order to
establish certain characteristics of the stagnation streamline. These
analytical considerations are presented in this subsection (5. 2).

5.2.1. The orientation of the stagnation streamline

Let (6x, 0, 6z) be the coordinates of a position on the stagnation

streamline. The stagnation point will be designated (0,0, 0) for the

purposes of this analysis and the symbol §s will designate an incremental

*The remainder of Section 5 is adapted from the second semi annual
report [4]. A portion of the analytical considerations was incomplete
although the results were not affected and the experimental data have been
more completely analyzed. For these reasons, and because of the limited
distribution of the semi annual report, these subsections are repeated
herein.
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length along the streamline where 6s = [6xZ + tizz]l/2 and
6x/d~ 6z/d << 1 is understood. The slope of the stagnation streamline
at the stagnation point is given as

slope of stagnation = lim Sz (20)

streamline at (0,0, 0) 68—+ 0 bx

and this slope can be expressed in terms of the velocity field as

lim 22 - 1im

6s—=0 °X 58—~ 0

w(bx,0,62)
u(bx, 0,562)

(21)
Assuming that the u and w components are analytic functions, the limit of
the velocity ratio can be expressed in terms of the Taylor expansion of
the velocities. Only the lowe.: order, non-zero terms of the expansion
need be retained in anticipation .f taking the limit. All partial
derivatives are understood to be cvaluated at (0,0,0); du/dx = dw/9x =0

because of the no slip condition and dw/8z = 0 by continuity.

6z B "w
7 T2t
lim w(bx,0, 6z) - 9z
5x=0 u(6x, 0, 62) o5z 8u + 622 : + 6x652 z“ +
9z 2 2 9 x2
(22)
= 0fordu/dz # 0 (22a)
><,= 0fordufdz = 0 (22b)

Condition (22a) shows that if the vorticity at a point is non-zero then the
streamline at that point (ir the direction perpendicular to the vorticity)
lies in the plane of the plate and hence cannot be a stagnation streamline.
Equation 22 can be operated upon to provide a more easily interureted

form when (22b) is applicable. Dividing by 6x6z yields

1l 86z 8 w +
lim 6z = 2 0% 4,2 (23)
58—~0 6x 1 8z aZu a2u
2 6x 3 2 0 x0 z
x
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The second derivative of u with respect to x and z can be expressed in

terms of w from the continuity equation as

_ 9 | 8u dv o w
az[ax +8y +az]

82\1 + 9 v + azw
9z 98y 2

o
1

92

and since Bzv/a z8y = 0 by symmetry,

9 "u d w (24)

1 8z 8w
6z = Ox 5,2 (25)
lim = 2= = 2 )
580 18z 2%
2 ox L. 2 2
dx z

Equation 25 can be examined for the orientation of the stagnation
streamline for the condition that (1) the stagnation point occurs at the
maximum pressure point and (2) that the stagnation point occurs at a
location where the streamwise pressure gradient is positive. The

82

x-component momentum equation evaluated in the plane of the surface;

u/d z2 derivative can be related to the pressure gradient by the

spoecifically,

5% ) forz =0 (26)
z

,
Consequently, for the condition 8 “u/38 zz]o = dp/ax ]0 = 0, equation

25 becomes

lim _g_z_ - 1 g_z forg-P— = 0 (27a)
6x+0 °X X |g
§z—~0

which is only possible if lim §z/6x = 0 or . A zero value cannot
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represent a stagnation point; hence, the stagnation streamline intersects
the plate at an angle of /2 when the staqnation point occurs at the
maximum pressure. This would occur for the a = m/2 condition.

For 9p/3x # 0, equation 25 can be expressed as

5z
bz 5x
lim - = (27b)
50 OX a2y
2
9z 5z
- =)+ 2
azw (Bx)
822

9 "w

2

6z _ 9z
x 52 (28)

u

azz

Using (24) and noting that

2w _ 2 Gu )
Bzz 9x \dz
_ i)
R @9)

The streamline orientation at the stagnation point is

ow
<) "V ax
. z _
lim T - T3 (30)
68—0 i LR
p 9x

That is, the orientation of the stagnation streamline can be expressed in
terms of the pressure and surtface vorticity gradients at the stagnation
point.

5.2.2. Consequences of stagnation point at or displaced from the
maximum surface pressure

The relationship between the vorticity which is introduced into
the flow field by the viscous shear at the wall and the static pressure on
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the plate has been presented in Section 3. 3, viz.,

{12b)
(12a)

and 19-2
u oy

iw
X{,-0 3z Ty

Wl

1
u z=0

Since the solenoidal condition on vorticity demands that it appear in closed
loops (i.e., Ve gy = 0), it is of interest to note the relationship between
the created vorticity and the stagnation point considerations.
Consider the case of vertical jet impingement. In this condition,
the stagnation point is centered in the axisymmetric flow field and the
stagnation point is clearly at the maximum pressure. That is
lim 6z ~0 6x—~ 0 w/u=-g and dp/dx =0 =3p/dy. A fluid element
immediately adjacent to the stagnation streamline will possess vorticity
in the sense indicated by Figure58. The vorticity of such an element must
change sign along its trajectory from above the plate to a location in the
boundary layer flow along the plate. This vorticity sign change is accomplished
by the viscous diffusion term of the vorticity transport equation, viz.,
from (8)
P2 -G VRt W RHTIVES & eV (8)
Dt
(1) (2) (3) (4) (5)

(1) convective transport and local tirne rate of change of vorticity,

(2) "prodiction' of vorticity by vortex filament stretching and re-
orientation,

(3) diffusion of vorticity,

(4) production of vorticity from the fluctuating vorticity-velocity
interaction,

(5) vorticity transport by the turbulent motion.

As shown by Figure 58, the flux of vorticity at z=0 is symmetric
about the stagnation point, that is, the new vorticity introduced into the
flow is created in symmetric loops about the stagnation point. Also, the
fluid which originally comprised a vortex loop will remain in the same
loop (on the time average) as the sign of the vorticity is changed along the
trajectory. This rather straight forward condition provides a useful

reference for the considerations of oblique jet impingement.
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For an oblique impingement, the center streamline will not, in
general, be the stagnation streamline;: hence the vorticity structere near
the stagnation point will be quite different from the normal impingement
casc. This is shown schematically in Figure 59. For example,
the fluid in the original loop 1-1a is not in a common vortex loop
following the impingement; that is, the vorticity of the fluid at 1 changes
sign, the vorticity of the fluid at la does not. Consequently, the vortex
and material lines are different for the oblique jet impingement case. The
® = 0 surface will be non-symmetric and strongly three-dimensional for
this flow. It is not obvious what shape this surface will assume away
from the centerplane. Smoke flow visualization studies have shown tnat
the entrained flow stagnates and then separates from the surface as
shown in the sketch.

It is not clear what geometric configuration is assumed by the
closed vortex loop involving the fluid at 1 when it has progressed to a
position just upstream of the stagnation point. It seems likely that these
loops which are created following the stagnation process on the adjacent
streamline are somewhat symmetric about the stagnation point. In this
regard, the production of the new vorticity would be similar to the
processes occurring in the normal impingement case.

5.2.3. Relationship between the stagnation and surface pressure gradients
near the stagnation streamline

An analysis of the surface and stagnation pressure gradients will
be necessary for the proper interpretation of the experimental
measurements. Specifically, we will show that the surface pressure in the
backflow region near the stagnation point is less than the stagnation
pressure of the strcamline in the neighborhood of and located upstream of
the stagnation streamline. Figure 59 shows the terms for the analysis.
Point A lies along the stagnation streamline point B is the intersection
of the normal at A and the second streamline of interest and point C is
at the intersection of the second streamline and the contour which lies
along the normal trajectory of the streamlines from x, - éx to the

streamline passing through B.
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The pressure at (xs - 6x, 0, 0) can be written as
L

- - 3p
p(xs 6x, 0,0) = p(c) + SO n dn (31)

where L is the distance from C to (xs - 6x, 0, 0). The stagnation pressure

and the velocity at C can be used to express p(c) as

plc) = plc) - -P—%-@- (32)

and the integral along n can be written as

L 1 2
dp dn = 2Q dn (33)
So on o R/L) L

The maximum modulus theorem can be used to express this integral

value as 2
1 2 Q")
£Q" dn < f___rni.x. (34)
o®/L) b Rr/LY_
and since Q = Q(c) equation (26) becomes
max
2 2 c
S s 2 R/x")min
and
p(x,-6x,0,0) < p_(c) if R/L > 2. (35b)

The dimension L is related to the displacement of B with respect to A
and consequently can be made as small as desired. Hence, the condition
R > 2L is assured, since R is finite as L=~ 0.(Note,R+® as L ~ Q.)

It is now necessary to show that this result is general; that is,
that it applies for all small §z. For sufficiently small L, the stagnation
pressure at C (or B) and the pressure at (xs-bx,0,0) can be related
to the values at A and (xs, 0,0) respectively using a first order Taylor
series, Hence the inequality of (28) can be used to express an inequality
between these pressure gradients. Specifically, assuming the stagnation

pressure changes to be negligible over these small displacements,
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PS(B) = PS(C) PS(A) * T bn (36)

and
()

p(xs-ﬁx.0,0) = p(xs.O,O)-g}P:— 5x (37)
Since p(xs,0.0) = ps(A) and ps(C) > p(xs-6x,0,0) (38)

ap

s op
5o " x X (39)

gecmetrically, it can be shown as in Figure 59 that 6x > 6n for small
6x. Consequently 3p/dx > aps/a n.

The important result of these considerations is that the surface
pressure is always less than the equivalent stagnation pressure except
at the stagnation point. This is a necessary result for the proper

interpretation of the stagnation point.

5.3. Experimental Investigation of the Stagnation Phenomena
5.3.1. Techrique and interpretation

Stagnation phenomena for the oblique jet are difficult to investigate
because the phenomena are basically unsteady and hence a suitable
averaging process is required. Various schemes to determine the time-
mean stagnation streamline by use of its singular characteristic as the only
streamline to intersect the plate were unsuccessfully investigated. Holographic
interferometry with a dense gas tracer and a heated jet with a platinum
resistance temperature sensor (high frequency response = 3khz) were
used to attempt this discrimination. The results from the attempts were
not decisive. The common and often successful technique of attempting
to locate the position of zero shear stress was not attempted because the
expected stress magnitudes for these small angles would be quite smalil
and hence difficult to discriminate and because this flow is strongly
three-dimensional which would necessitate a measurement over a small
length and width canpounding the sensitivity requirements. Also, a suitable

averaging would have to be inherent in the transducer or in the subsequent



signal processing in order that the time variation would be properly accounted
for. |

An experimental technique involving simultaneous hot-wire and surface
static pressure distributions was developed and successfully employed.
For this technique, the hot-wire probe was positioned close to the plate
(220.15 cm, z/d = C.04) and the velocity magnitude was recorded as a
function of the distance from the jet vw(x). A pressure survey for the
same conditions allowed the calculation of a velocity as if the surface
pressure was the stagnation pressure for that streamline, this value was
designated v_. A linear shift §x of the hot-wire velocity data to the z-value
of the plate, along the line defined by the wire position z and tke jet angle
a plus the divergence angle § of the 0.1 isotach, was then used to provide
a comparison between v_ and Ve The equation for this shift is
Ax = Az tan 1 (a +B). The ctagnation point is considered tc he at the
intersection of these two curves. A sketch of this technique is shown in
Figure 690.
5.3.2. Experimen:al results

Three cases were selected for comprehensive evaluation of the
stagnation point location, h/d =1anda =3, 6, 9 degrees for the''uniform
nozzle' configuration. The results of the special traverses to determine
Ve and vp are shown in Figures €1 to 63. . Ia general, two Ve traverses

were made at different z,/d values. The results from the tws traverses were in
reasonable agreement for the three different angles; the mcst complete

set (i.e., z/d value) was used for these results. The data themselves

are presented in Table 4. The results for these three conditions show

that the stagnation point does not occur at the location of the maximum

surface pressure. The Vo and vp data for a = 3 degrees, h/d =1,

(see Figure 61), did not indicate that a stagnation point existed. However,
when the velocity data from the hot-wire probe were shifted an additionzl
distance of 0. 57d a stagnation region is evidenrced. The requira2d shift is
interpreted as an upward deflection of the jet by the increased static
presaure on the plate. The location of the jet's center, based upon
momentum flux consideraticns (zm of the first annual report), dces not
show a shift above the geometric trajectory for the condition a = 3 degrees,
h/d = 1, uniform; such shifts are indicated for a = 3 degrees and h/d =

0.75 and 0.5. However, it is reasonable that the low velocity fluid along
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the stagnation streamline could be affected by the surface pressure for the
h/d = 1 case.

The location of the stagnation point is quite difficult to infer from
these results. Apparently a more accurate description is to identify a
stagnation region in the neighborhood of x/d = 3. 8. The flow field is
considered to possess a single stagnation streamline at an instant; however,
the inherent unsteadiness of the flow could well produce an apparent stagna-
tion regior. even though the time mean flow field will also possess, by assump-
tion, a unique stagnation streamline. If viscous effects reduced the stagna-
tion pressure between the velocity measurement location and the surface,
then this additional shift would not be as large as is indicated. A shift of
Ax/d = 1.5 for the hot-wire velocity data (vw) would cause the stagnation
and maximum surface pressure locations to be coincident. However,
this would result in a condition in which the local surface pressure would
exceed the equivalent stagnation pressure; this condition is shownto represent
a physically impossible situation in equation 39. It should be noted that
a linear shift of the data over a net distance of Ax/d = 1. 20 is too great
to allow detailed comparison between the vp and Ve results.

The data for the case a = 9 degrees, h/d = 1, u, see Figure 62,
appear to be quite straightforward in terms of locating the stagnation
point,x/d = 1.9, and demonstrating that the stagnation point does not
occur at tile maximum pressure location. The absence of a vertical
deilection is compatible with the z, and z results fcr this case (see Figure
45d, First Annual Report) and represents a reasonable trend as compared
with the three degree case since the jet approaches the plate with a less
glancing trajectory. A slight negative shift is suggested (but not shown) to
provide a tangential condition between the v_ and V., Curves.

The measured v_ and the measured-shifted Ve distributions for
a = 15 degrees are shown in Figure 65. These results suggest that the
jet trajectory is cteeper than 19 degrees in the region between the plane
of the measured velocities (z/d = 0.0308) and the surface; hence, the
indicated shift is too great. This obscrvation is based upon equation 39
in which it was shown that the surface pressure should not exceed the
equivalent stagnation pressure. The solid line on Figure 63 presents the
estimated upstream shift appropriate for this case. The resulting

tangent poist between Vp and Ve is in the neighborhood of x/d = 1. 3.
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5.3.3. Summary and analysis ot the stagnation point investigation

The determination of the stagnation point by the special traverses
discussed above allow the relationship between the general velocity field
and the stagnation point to be examined. The approximate locations of the

stagnation points for the three cases are

uniform, h/d =1, a =3 x/d=3.8
9 1.9
15 1.3

A comparison of these results to the isotach plots of Figures 28 to 30
shows that the stagnation point is in the vicinity of the intersection
of the jet edge (u/u(0) = 0.1 isobar) with the plate.

There are two physical effects which could cause the inferred
stagnation point to be in error; they are self-compensating and their
magnitudes are difficult to estimate although they are certainly too small
to affect the qualitative nature of the above conclusions. Shear effects
will degrade the magnitude of the stagnation pressure between the measure-
ment location and the surface of the plate. To the extent that this occurs,
the measured velocity represents an excessive stagnation velocity and the
Ve magnitudes would be corrected by subtracting a prescribed va value.
The physical proximity of the velocity measurement and the surface
pressure measurement would cause this to be a relatively small error.

If the velocity were measured at a z location where p>p ¢ then

ambie

5/2 value.

Hence a correction of adding a separately prescribed 6vW would be required

the stagnation pressure is larger than that indicated by the pv

to relate the hot-wire and surface pressure data. It is difficult to estimate
reasonable values for 6vw for the static pressure correction; however, it
can reasonably be assumed that this correction increases as the wall
pressure increases, that is, d(5vw)/dx > 0. Consequently, the alignment
of the A and v_ curves would always occur at a point farther upstream,
allowing for this correction, and this reinforces the result that the

maximum pressure and the stagnation point are physically displaced.

6. SUMMARY

The kinematic, no penetration constraint requires that the fluid in
the jet spread laterally or deflect verticully upward to provide the required

cross sectional area for the jet mass flux.
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The selection between these two responses is based upon the
dynamics of the jet-plate interaction as characterized by the momentum
equation.

Analytical and experimental considerations are used to demonstrate
that for sufficiently small angles, the primary response of the jet is an
upward curvature; however, a complex interaction between curvature and
spreading is suggested for angles larger than (nominally) 12 degrees as
would be encountered in the interaction between the jet and the deflecting
flaps of a STOL configuration.

The description of the jet-plate interaction in terms of vorticity
is well motivated by both analytical and experimental considerations.
Such a description provides a rational framework to model the three-
dimensional character of the flow in which the upper portion retains its
axisymmetric structure and the distortion of the jet occurs primarily near
the surface. Streamwise vorticity is introduced into the flow field by the
lateral surface pressure gradient and the reorientation of the azimuthal
vorticity of the approaching jet.

Similarly, there is a surface flux and a production by stretching
of the lateral vorticity. Such phenomena account for the localized jet
distortion. The stireamwise vorticity could be used to provide enhanced
boundary layer control if properly accounted for in the flap gap design
for an externally blown flap airfoil.

The physical displacement between the stagnation point and the
maximum pressure point is examined analytically and demonstrated from
the experimental data for incidence angles of 15 degrees and less. The
possibility of a finite length stagnation line is demonstrated for a non-
analytic velocity distribution and the relationship between the incidence
angle at impact and the surface vorticity and pressure gradients is
established assuming an analytic velocity field.
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APPENDIX A. Selected Isotachs from the First Annual Report
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Figure 14. Isotach contours a = 3, h/d = 0. 75, fully developed.
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Figure 18. Isotach contours a = 6, h/d = 0. 75, uniform.
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Figure 21. Isotach contours a = 9, h/d = 1, fully developed.
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Figure 22. Isotach contours a = 12, h/d = 1, fully developed.
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Figure 24. Isotach contours a = 15, h/d = 1, fully developed.
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Figure

25. lsotach contours a = 15, h/d = 1. 5, fully developed.
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APPENDIX E. Corrections to the Center of Momentum L Analysis,
Section 4.5.2 of [1]

Following equation 30, the expression ‘_;e = - & Qe results in

2 A
n

A
. 0 °k (A.1)

- A — A
(veok) (ve °n) = +0Q
and hence equation (31) should be (the c following the equation number

denotes ''corrected')

F_(x) J A A

p . 1 S’ .oz \ 1 S 24 .

3 300) . pdA T00) (x) + sina + 37(0) er k e n dA
o Ap Ac

(31c)

The effect of the low pressure in the entrainment region was
omitted from the moment- of-momentum equation (32). Including this term
results in the following expression for the negative y-component equation

evaluated with r measured from the ~ver of the exit nozzle

— - A - - A
S pxdA = (h‘zm)']x+x‘]z - Sp(rxve)-j(ve—qi dA-Sp(rx’ﬁ).jdA
Ap A, A

(32¢)

The remark that ""the entrainment integral is zero except for the
plane x = 0" is incorrect. Consequently, this term must be included in
equation 33. The integrand of the entrainment integral may be written

ao

N

- - Ao A A
plFxVy) « J1IE ™) = pl-(z5 i - x5 <WQ ][-Q]

A A A A
p[zn°i-xn°k]Qz (A. 2)

]

and combined with the integrand of the pressure integral over the
entrainment area as shown by the foilowing. The integrand of the pressure

integral is

- A A A A AA
P T xn)ojzpe[znol-xnok
or, using (29) (i.e., (pe)g = - PQE/Z)
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2
-~ A AN Q. A A A A
p(r x'n) < r-p—z—-[znox-xn-k]

and combining this with the integrand of the other entrainment integral of

(32c¢) results in

) /.
-%S pai[z’r‘u’i‘-x’x‘aok)dA (A. 3)
A
€

The corrected form for equation (33) can now be developed

m _h ,x’z 1 SidA-——l—SQ[pe Aekjaa
d "~ 4 d J(0)cosa ~ J(0)cosa Apd 2J(0)cosa g zZrel-xme
) e
F
_h  x _"p _x _.zLS 248 A
=3 1 d T0) cosa ~d 3% 2 - 77(0)cosa A PQ Kk *n dA
e
1 x 1 2, A A A N
- J{0jcosa SAdeA‘ 27(0)cos a S"Qe("“”'x" ° k) dA
p
F
_h _x_ p__ x 1 x
=3t AT0)cosa ~ d " ° " T(0)cosa SAdeA
p
r
z’\ A x AN X 2
ZJ(O)cosn ig pQ (2n+7-%h.da+2 AerkondA
(] s
(33¢)

Reasonable approximations can be made to this moment-of-momentum
equation. Specifically, in the region where the jet is curving because of
the plate precence, the term z a o,; can be considered small with respect
to the term x ,1\1 ° Il\c Consequently, the bracketed term in the above equation

can be approximated as

ZA A x A A 1
ZJ(O)cosu {S‘pQ (En°1 a0 °k)dA+ Q k ndA—J(
3
~ | 2xA A x 2A A >
= ZJ(O)COSO SAerEnode‘f d‘S‘ernokd.AJ
e
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~ 1 X 2 A o A
= 2J(0)cosa 2d SAPQe n°kdA (A.7)

<

A further simplification is possible on the basis of the numerical
magnitude of this term with respect to zm/d. The jet will be deflected
upward in such a manner that the zm/d values will be of the order
0.25 or greater. (See the calculations of the First Annual Report [1]
which, although in error, are of the correct order of magnitude.) The ratio
of the entrainment velocity at the edge of the jet to the jet exit velocity
can be evaluated from the mass flux evaluations of the First Annual
Report [1]. In order to estimate the order of magnitude of the
entrainment integral term we use the result for the value of
A[M /(K R)l/zp u(o) AO]/dx from Figure 34 of t. e earlier report. The

values are

o /
L/ 2pc(0) A

L2 pugo) a )

0.171 fully developed nozzle (A. 4)

0. 134 uniform nozzle (A.5)

where k and \ are coefficients to correct the momentum flux and to
allow u(o) to be used as a normalizing velocity respectively, see [1].
The value of k can be considered to be unity. The velocity magnitude

Qe can be related to the M values by the relationship

p21rRQe = %-I\’I \A. 6)

where R is the radius ai which Qe is evaluated. Since the ratio

1 2A N . . - .
mSp Qe n o k dA is desired it is only important to accurately

A A
model Qe where the product n ¢ k is appreciable. This is fortunate since

the isotachs of the First Annual Report indicate that the :pper portion of
the jet is unaffected by the jet-plate interaction excegt for a sufficiently
large combination of a and x/d and even then the upper portion of the

jet tends to retain a circular appearance. Also, since the control volume
is a semi circular arc above the plate and since the entrainment in the
bottom of the jet enters the lateral sides where ?\ ok = 0itis only
necessary to accurately model the upper portion. The magnitude of

Qe can then be evaluated from (A.6) as (note that the linear aM /dx
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implies dQe/dx = 0)

Q? I [d 1/2 1% a ¢
— - M/px /“u(o) A =
M(o)z_l dx/d o 2n Rd
2
- 0.17)% [_:i:l (A. 8)

Recognizing that (d/2R) < 1, the magnitude of the term in equation

(A.7) can be estimated as

2
Q
1 X S A A ~ e 1 X
— X\ pQ°hekdA = %) (0.7) "Rx
2J(0)cosa 2d A € J\u(o)z ZAocosa(Zd)

e

-0 &) 0 @) ()

3

> (x/d)% x 10 (A. 9)

where (0.7 is considered to be the average value oflr\l o Q and the
combination of the rumerical values is rounded to 10~ 3.

These considerztions show that the entrainment effects are
small for the x/- 0 <x/d <5) domain of interest. Hence, the integral
representing the entrainment effects can safely be neglected for the

purposes of computing zm(x) and the quantities which depend upon it.



APPENDIX C. Mass, Momentum, and Energy Flux Values
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Figure 30. Normalized mass and energy flux values, uniform, 0 s |k - 1| s 0,03
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Figure 31. Normalized mass and energy flux values, uniform, Ik - l' > 0.03.
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Comment: The data of Hill [19], votained with
a porous cylinder, indicate that the slope of the
rmass flux curve is not constan* in this region.
The relative accuracy of the porous cylinder
versus the integration of the velocity readings
is indeterminate since they are influenced by

different errors. The slope values of [19] are [
x/d 1 2 4,25 5.5 7.1 10
a 0.11 0.19 0.24 0,27 0.3 =~0,32 ©
3 + 24 b y
asymptotic y
value

—— - — uniform, present study

— — — fully developed,
present study

-—-17'!-——— o
EM :/u.-m‘;n for data from the limrswrs o Loutora LA
l - Alenander, s/df 1 2 4 [ L] 10 8,009
ot 3l
° J/iw(ﬂ’,lo 1. 028 Q. 999 (1. 011]0.97410. 996 .. 020 L 0. 204
Sarm, z/d) 3 3 ® 10 . - L 1. 90}
[} ot al. 7
I/mput AO‘O.%I 0. 996 1l1. 000 1. 004 - - LI 0N
i tlone and =/d 2,19 P47 . t - L 1.0y?
2 slorss ]
1/mpuity A.‘ . LI 1.07T2(1. 083 - . - 0. 182
Prasent i - o %0
= = sudy i '
Uniform . 0 134
Present X LN 0.
- - = | Rudy ‘
Fully § 2 -0 1T
Daveleped A
4 A —b i e
™~ =Y ¥ A v T
x/d

Figure 1. Normalized mass flux values as evaluated from references
[12], {14], and [21] (Data for Crow and Champagne [29] not
not shown, a, = 0.136 for 0 < x/d < 2; a; =0.292 for x/d > 6.)
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Figure 35. Normalized energy flux values us evaluated from references [12], [14] and [21].



APPENDIX D. Normalized J? Values to Dernonstrate the Effective Extent

of the Interaction Region
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x/d =1

x/d=2

x/d =13

x/d =4

x/d= 5

C 2

x/d =6

Table 1.2,

2-COMPONENT MORENTUN/SIN(ALPMA)

15.000

- 0.99999 = 0.99999
12.000 - 1.00000
ALPHA 9.000 = 0.99999
6,000
3.000
0,000
0.50000 0.75000 1.00000 1.50000 2.00000
H/0
2-COMPONENT MOMENTUM/SIN(ALPHA)
15.000 - 0.80419 - 1.00529
12.000 - 1.00951
ALPHA 9,000 - 099999 -~ 1,00192
6,000 - 0.99999
3,000
0,000
0.50000 0.75000 1.00000 1.50000 2.00000
H/70
Z=-COMPONENT MOMENTUM/SIN(ALPHA)
15.000 -~ 039684 - 1.01222
12.000 -~ 100922
ALPHA 9,000 = 0.86540 ~ 1,006471
6,000 - 0,99999 - 0.99999 ~ 0.99938
3.000 - 1.00000 - 1.00000
0,000 0.,00000 0.00000
0.50000 075000 1.00000 1.50000 2.00000
N/0
2-COMPONENT MOMENTUM/SIN(ALPHA)
15.000 - 0,10517
12.000 - 0.92929
ALPHA 9,000 - 0.61194 - 1,00707
6,000 - 0.6076% = 0. 9245 - 0.99814
3,000 - 074821 = 0.96427
0,000 0.,00000 0.00000
0. 50000 0.75000 .« 00000 1.50000 2.00000
H/0
2-COMPONENT MOMENTUM/SIN(ALPHA)}
15.000
12,000 - 0.,68396
ALPHA 9.000 - 0,94577
6,000 - 038323 -~ 1.23213 - 1,00061
3.000 - 050039 ~ 0.87497
0.000 0.,00000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
n/0
1~-COMPONENT MOMENTUM/SIN(ALPMA)
15,000
12,000
ALPHA 9.000
6,000 - 1.41309 -~ 0,97193
3,000 - 0.73271
0,000 0.00000
0+ 50000 075000 1.00000 ;650000 2.,00000
N

Normalized J  values to show the effective development
length for the uniform nozzle exit condition (JZ/J(O) sin a).
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1-COMPONENT MOMENTUM/SINLALPHA)

15.000
12,000
ALPHA 9,000
6.000 ~ 0.99999 - 0.99999
3.000- 1.00000 ~ 1.00000
x/d - 1 0.000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
)
Z-CUMPONENT MOMENTUM/SIN(ALPHA)
15.000 0.99999
12.000 ~ 0.99999 - 1.00000
ALPHA 9.000 - 0.99999 - 0,99999 - 1,00000
6,000 ~ 0.94906 - 1.14371 - 0.,99999
3.200- 0.78155 ~ 1.06855 =~ 0.99999
x/d = 2 0.000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
M/0
2-COMPONENT MOMENTUN/SIN(ALPHA)
15.000 1.00657
12.000 - 1.01113 - 1.00790
ALPHA 9.000 ~ 0.87519 ~ 1.01432 - 1.01000
6.000 - 075791 - 1.13051 - 1,02156
3.000- 0.59022 - 0.99070 - 1.07225
x/d =3 0.000 0.00000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
H/0
2-COMPONENT MOMENTUM/SIN{ALPHA)
15.000 1.00085
12.000 - 009‘033 1001273
ALPHA 9.000 - 0.62151 - 1,00971 - 1.01775
6.000 - 0.5504]1 - 0.99402 - 1,03662
3,000~ 0,39153 - 0,84778 - 1.06332
x/d - 4 0,000 0.00000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
H/0
2-COMPONENT MOMENTUM/SIN(ALPHA)
15.000 0.87263
12.000 - 0.72149 - 0.99729
“.PH‘ 9.000 - 0031006 el 0.92051 10020‘1
64000 - 034967 - 0.78143 = 1.03995
30000' 00 18936 - 0.67969 - 0097979
x/d = 5 0.000 0.00000 0.00000
0.50000 0.75000 1.00000 1,50000 2.00000
H/0
Z-COMPORENT MOMENTUM/SIN(ALPHA)
15,000 059647
12.000 - 0,46072 - 0.88841
ALPHA 9,000 - 0.15981 - 0,73887 - 1.01775
6.000 - 0.17319 ~ 0.55339 - 0,99001
3,000 0,00816 - 0.50772 - 0.83373
x/d =6 04000 0.00000 0.00000
0.50000 0.75000 1.00000 1.50000 2.00000
H/D
Table 1.b.

Normalized J . values to show the effective development length

for the fully developed nozzle exit condition (Jz/J(O) sin a).
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Table 1. Radius r as a function of x/d to define the 0.1 isotach
(u (x, r) /u (o) = 0.1) for the fully developed and uniform
nozzle exit conditions. (The data shown are from those cases
for which the meaiurcd x-component momentum flux was
constant to within - 3%.)

Fully Developed

a h/d x/d=1 2 3 4 5

3 0.75 1.25 1.41 1.61 1,82 2.07
3 1 1,21 -- 1.62 -- 2.01
3 1.5 1.25 1,43 -- 1,85 2.0
9 1 1.26 -- 1. 61 -- --
12 1 1.21 1,40 1.63 -= -=
15 1 1.20 1,38 1.62 -- --
15 1.5 1.22 1.42 1.63 1.83 --
15 2 1.28 -- 1.72 -- --
Average 1.23 1.41 1.63 1.83 2,02
Uniform

0 0.75 0.9 1.03 1,13 1.25 1.40
0 1 0.94 1,05 1.20 1.32 --

3 0.75 0.9 1.01 1.11 1.26 1.40
3 1 0.9 1.0 1.12 1.25 1.38
6 1.5 0.91 1.03 1.17 1.30 -~

9 1 0.92 1.03 1.16 1.30 --
15 1 0.93 1.02 -- -- --
Average -- 0.91 1,02 1.15 1,28 1.39
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Table 2. Summary of percent widths, distance to maximum pressure
and isobar which aligns with free isotach intersection.

Width of 0.1 x/d distance Paoree x/d distance
free isotach from x=o0 to A gu(O) in a from x=( to
intersection p max al‘l) x 10-2 0.1 free
contour as a isotach
percentage of intersection
the zero isobar
width recorded
at the x-location
of the maximum
pressure
a h/d u fd u fd u fd u fd
3 0.5625 -- 74 -- 0.7 -- 0. 57 - 0. 321
0.667 -- 80 - 2.3 -- 0.31 - 1.003
0.75 0.75 80 4.5 2.9 0.35 0.266 1.663 1.544
1 0. 68 78 5.9 5.7 0.38 0.266 3.543 3.176
6 0.75 0.69 76 1.9 2.1 0.36 0.30 1.16 1.18
1 0.75 71 4.7 4.2 0.29 0.30 2.5 2. 324
1.5 0. 64 68 6.4 7 0.20 0.22 5.178 4.737
9 1 0. 64 71 3,2 3.3 0.38 0. 27 1.91 1.81
1.5 0.65 70 5.7 6.2 0.25 0.22 3.715 3.9_7‘_)
2 -- 66 -- 7.5 - 0.18 -- 5.619
12 1 -- -- - .- - — -- -
1.5 0.58 65 5 5.1 0.28 0.224 3.202 3.029
2 -- 65 -- 7.2 -- 0.22 -- 4,59
15 1 0.46 -- 2 - 1.0 -- 1.247 --
1.5 -- -- -- s -- -- ~-- --
2 .- 61 -—- 6 -- 0.24 4.06 3,855
20 2 0.3 -- 3.4 - 0.65 -- 1.978 --
3 0.36 -- 5.2 .- 0.61 -- 3.429 --
60 2 0. 25 - 1.9 - 0.92 - 0. 37 -
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Table 4.

Data from the Stagnation Point Investigation. Uniform Exit Condition v (d’ 0, 0) =

_[Pﬁto 0)-p

atm

]1/2_

(d'

s d) recorded from the hot-wire anenometer

A-a of traverse and A-E to align vp and v, are indicated A-a' = A-a- (tan a + p)

a =3 degrees, h/d =1
—~ = 0.0328 A‘a“ 0.249

X
d
2.291
2.458
2.625
2.791
2.958
3.124
3.291
3.458
3.624
3.791
3.958
4e124
4,291
4.458
4.624
4e791
4.958
5.124
5.291
5458
5e624
5.791
5.958
6.124
6458
6.791
T.124
Te458
7.791
8.124
B.458

vp(fps)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0C0
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000

x
d
2.166
2.333
2.500
2.666
2.833
2999
3.166
3.333
3,499
3.666
3.833
3.999
40,166
4.333
4,499
4,666
4.833
4 e 999
5.166
5.333
5.499
5666
5.833
5999
6.333
6. 666
6.999
74333
T.666
7.999
8.333

v fps) |

8.106
10.267
12.149
14,374
16,430
18.488
20.618
22.374
24.0717
26.123
28.288
29.605
31.387
32.986
35.254
36.443
38.389
39.859
4l.628
424329
44,399
46,283
48.111
50.033
50.960
52.007
52.883
54.158
54.311
55.447
55.611

a
A
x
d
0.875
1,041
l1.208
1.374
1.541
1.708
1.874
20,041
2,208
2.374
24541
2.708
2.874
3,041
3.208
3.374
3.541
3.708
3.874
4.041
4.208
4.374
44541
4,708
5.041
5.374
5.708
6.041
6e374
6.708
T.041

vp(fps)

7.393

3.201

3.201

0.001

1.848

4.802
10.496
13,862
17.534
20.056
22656
240711
25¢577
26,528
27.352
27.305
276321
26.816
26.302
26.188
25.893
25,037
25.003
24.187
23.048
21.927
20.890
21.475
19,992
19.341
18,713

= 9 degrees, h/d = 1
= 0. 0395, A-’é = 0.164

p.S
d

0,958
1.125
1.291
1,458
1.624
1.791
1,958
2.124
2.291
2.458
24624
2.791
2.958
3.124
3.291
3,458
3.624
3,791
3.958
4e124
4.291
40458
4eb624
4.791
5.124
5.458
5.791
6.124
6.458
6791
Tel24

vw(f oY)

2,421

1.956

2.528

S.184

7.270
10.428
14,903
19.776
24,703
30,275
34,888
39,815
43,902
47.981
51,562
54.864
58.891
60,690
62.490
64.608
66,757
67.454
68.610
70,441
71,489
13,076
T4.197
74.837
75.387
75.374
75.130

a =15 degrees, h/d =

z _ X _
Aa-—0.0308'Ad 0.0871

x
d
0.000
0.166
0,333
0.500
0.666
0.833
0.999
l.166
1.333
1.499
1,666
1.833
1.999
2,166
2,333
24499
2.666
2.833
2.999
3.166
3.333
3.499
3,666
3.833
40166
44499
4,833
5.166
54499
5833
6.166

v Ups)

3 031
20279
3.160
3,284
2,279
3,845
3.322
13,290
24,829
34.430
40.723
44,385
46.185
45.769
45,031
43,768
42,056
40,283
38,768
36,255
35.725
34,663
33,275
32.631
30.380
29.559
28,685
27.382
27.320
25,420
23.184

X

d
0,000
0.166
0.333
0,500
0.666
0,833
0.999
l.166
1.333
1.499
l.666
1.832
1.999
2.166
2,332
2.499
2.666
2.833
20999
3.166
3.333
3,499
3.666
3,R33
4.166
4,499
4,833
5.166
He499
5.833
6.166

v“‘fps)
0.728
1.760
1.90%
l1.841
1.664
0.606
4,838
10.633
19,937
30,459
40,350
50,807
63,566
81.836
93,062
97.307
100,325
103.503
104,968
108.305
109.831
110.896
111.201
111.751
111.4764
111.481
111.242
111.224
110,310
109.738
108,238
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Figure 2.

Detail of uniform flow nozzle.




66

2 -t
1= 0 al free isotach 4
\_/—‘ .8 intersection contour
— - -
- 4,2
8.4
0 _ “ i

] -
’
‘\ 14.7

126

y/d

-1 r <
-2 }- -
-3 1 ] | ] ! L 1
0 1 2 3 x/d 4 5 b 7 8
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Figure 4. Isobar plot values shown are p(x.y,0)/p\ u(0)2 sin a x lO2 for the conditions 3, 1, u.
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Figure 6. Isobar plot values shown are p (x, Y, 0)/pAu (0)2 sin a x 102 for the conditions 3, 0.667, fd.
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Figure 19. Isobar plot values shown are p (x,y, 0) /pAu (0)Z sina x 102 for the conditious 9, 2, fd.
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centerline Kd/sina . The x/d = 0 ori&in for each h/d value
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the normalized curvature of the jet's momentum flux
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Figure 36. Normalized centerline pressure p./p A\ u(o)Z sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin a . The x/d = 0 origin for each h/d value
represents the intersection point of the 0.1 free isotach.
a = 9 degrees uniform exit condition
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the normalized curvature of the jet's momentum ilux
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Figure 38. Normalized centerline pressure p/p A u(o)Z sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin a. The x/d = 0 origin for each h/d value
represents the intersection point of the o.1 free isotach.
a = 12 degrees uniform exit condition
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Figure 39, Normalized centerline pressure p/p A u(o)?‘ sin a and

the normalized curvature of the jet's momentum flux
centerline Kd/sin a . The x/d = ¢ origin for each h/d val ue
represents the intersection point of the 0.1 free isotach.

a = 12 degrees fully developed exit condition
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Figure 40. Normalized centerline pressure p/p 2 u(o)?' sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin a . The x/d = 0 origin for each h/d value
represents the intersection point of the 0.1 free isotach.
a = 15 degrees uniform exit condition
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Figure 41. Normalized centerline pressure p/p \ u(o)2 sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin a . The x/d = 0 origin for each h/d
value represents the intersection point of the 0.1 free isotac
a = 15 degrees fully developed exit condition
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Figure 42. Normalized centerline pressure p/p A u(o)2 sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin a . The x/d = 0 origin for each h/d value represents

the intersection point of the 0.1 free 1sotach.
a = 30 degrees uniform exit condition
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Figure 43. Normalized centerline pressure p/p\ u(o)‘Z sin a and
the normalized curvature of the jet's momentum flux
centerline Kd/sin o . The x/d = 0 origin for each h/d value
represents the intersection point of the 0.1 free isotach.
a = 60 degrees uniform exit condition
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Figure 44. Kd/sin a for the conditions a = 3 degrees, uniform, and the indicated h/d values.
The abscissa of the separate curves has been shifted such that the intersection
of the 0.1 free isotach occurs at the origin.
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Figure 45. Kd/sin a for the conditions a = 3 degrees, fully developed, and the indicated h/d
values. The abscissa of the separate curves has been shifted such that the
intersection of the 0.1 free isotach occurs at the origin.
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Figure 46. Kd/sin a for the conditions a = 3 degrees, fully developed, and the indicated h/d
values. The abscissa of the separate curves has been shifted such that the
intersection of the 0.1 free isotach occurs at the origin.
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Figure 47. Ki/sin a tor the conditions a = 6 degrees, fully developed, and the indicated L/d

values. The abscissa of the separate curves has been shifted such that the
intersection cof the 0.1 free isotach occurs at the origin.



Sel

Kd

sin a

h/d - 1.0

0.

0 A 2. 1 1 . A 'y A

0 1 2 3 x/d 4 5 6 7 8

Figure 48. Kd/sin a for the conditions a = 9 Gegrees, uniform, and the indicated h/d values.
The abscissa of the separate curves has been shifted such that the intersection
of the 0.1 free isotach occurs at the origin.
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Figure 49. Kd/sin a for the conditions a = 9 degrees, fully developed, and the indicated h/d
values. The abscissa of the separate curves has been shifted such that the
intersection of the 0.1 free isotach occurs at the origin.
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Figure 50. Kd/sin a for the conditions a = 12 degrees, uriform, and the indicated h/d values.

The abscissa of the separate curves has been shifted such that the intersection
of the 0.1 free isotach occurs at the origin.
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Figure 51. Kd/sin a for the conditions a = 12 degrees, fully deveioped, and the indicated h/d
values. The abscissa of the separate curves has bezn shifted such that the
intersection of the 0.1 free isotach occurs at the origin.
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Figure 52. Kd/sin a for the conditions a = 15 degrees, uniform, and the indicated h/d values.
The abscissa of the separate curves has been shified such that the intersection
of the 0.1 free isotach occurs at the origin.
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Figure 53. Kd/sin n for the conditions a = 15 degrees, fully developed, and the indicated h/d
values. The abscissa of the separate curves has been shifted such that the
intersection of the 0.1 £ isotach occurs at the origin.
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Figure 54. Kd/sin a for the conditions a = 30 degrees, uniform, and the indicated h/d values.

The abscissa of the separate curves has been shifted such that the intersection
of the 0.1 free isotach occurs at the origin.
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Figure 55. Kd/sin a for the conditions a = 60 degrees, uniform, and the indicated h/d values.

The abscissa of the separate curves has been shifted such that the intersection
of the 0.1 free isotach occurs at the origin.



Axisymmetric region, azimuthal vorticity of the approaching jet flow.

Buffer region, Streainwise vorticity production from reorientation of the
azimuthal vorticity field (w 9 u/ae ).

Near wall region, streamw1se vorticity from flux at wall ( y dw /8 z)
and vortex stretching (w du/dy).

Buffer region

/} Near wall

r — region

Figure 56. Schematic representation of general isotach distribution
showing the axisymmetric region in the undisturbed flow,
the buffer region and the near wall region.
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Figure 57a. Flux of streamwise vorticity into the flow as a result of the
surface pressure distribution, fully developed cases (a degrees, h/d).
Note, 15, 1, uis for the uniform exit condition.
NOTE: Abscissa for data shifted such that 0.1 free isotach aligns with the
position x/d = 0.
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Figure 57 b. Flux of streamwise vorticity into the flow as a result of the
surface pressure distribution, fully developed cases (a degrees,h/d).
NOTE: Abscissa for data shifted such that 0.1 free isotach aligns with
the position x/d = 0.
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Figure 58. Vorticity, pressure relationships for normal jet impingement.
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Figure 59, Physical characteristics of oblique jet impingement.
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Note: For the comparison of the hot-wire and pressure data, Ve W28
shifted in x by an amount vw(x, z) = vw(x+Ax. 0) where Ax = zw/tan a +p.

Figure 60. Exverimentai technique for the acquisition of the velocity and
surface static pressure data.
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Figure 61. Measured, v_, and equi.alent stagnation streamline velocities (as

inferred from the surface pressure), v_, to determine the stagnation

point for the conditions a = 3 degrees, h/d = 1, uniform.
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Figure 62. Measured, v_, and equivalent stagnation s’‘reamline velocities (as inferred

from the surlace pressure), v_, to determine the stagnation point for the
conditions a = 9 degrees, h/1% 1, uniform.
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Figure 63. Measured, v_, and equivalent stagration streamline velocities (as inferred
from the surface pressure), v_, to determine the stagnation point for the
conditions a = 15 degrees, P h/d : 1, uniform.
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Figure 64. Comparison cf Ve for two z values, a = 15 degrees, h/d = 1, uniform.



