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PREFACE

This final report presents results of an investigation carried out at
the Environmental Research Institute of Michigan (ERIM), to analyze the
SKYLAB S-192 multispectral scanner data and to assess the utility of
special (unresolved object and signature extension) processing and infor-
mation extraction techniques for the remote sensing of Earth resources.

The research covered in this report was performed under Contract
NAS9-13280 and covers the period between March 1973 and September 1975.
During this period Mr., L. B. York has been Technical Monitor for NASA.
Expenses for the preparation of data and some of the processing were shared
by this contract and ERIM's subcontract to Michigan State University's
Contract NAS9-13332 which utilized data collected over the same test site.
The program was directed by R. R. Legault, Vice-President of ERIM; J. D.
Erickson, Head of the ERIM Information Systems and Analysis Department;
and R. F. Nalepka, Principal Investigator and Head of the ERIM Multispectral
Analysis Section. W. A. Malila was Co-Principal Investigator. The ERIM
number for this report is 101900-61-F.

‘ Part of this investigation was to test information extraction techniques
for SKYLAB S-192 data, and compare those results with results obtained from
processing LANDSAT and aircraft multispectral scanner data as well. Unfortu-
nately, the Southeast Michigan test site was cloud covered during every 7
LANDSAT~1 pass from June to September, so it was impessible to obtain LANDSAT
data over the test site during some time in the growing season that would

in some way be comparable to the 5-192 data set being studied, thus it was

_ not possible to comparably process LANDSAT data for this investigation.

The authbrs‘wish to thank Dr. L. V. Manderscheid of Michigan State
University, East Lansing for making available the ground information for the

test site. Special acknowledgement is due to R. B. Crame and J. Gleason of
the ERIM Multispectral Analysis Section (MAS) staff for their technical

assistance and suggestions on the data misregistration studies which were carried out.
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.

The technical work for the study of effects of misregistration (Section 4)
was conducted by R. Cicone and the signature extension work (Section 5)
was carried out by P. Lambeck. Numerous other MAS technical staff
members contributed to the success of this investigation as well.
Throughout this contract period secretatial assistance has been provided

by Ms. D. Dickerson, L. Parker, G. Sotomayor and E. Hugg.
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SUMMARY

The objective of this investigation was to examine the utility of
special processing techniques as applied to Skylab S~192 data for the
automatic extraction of resource information. These special processing
techniques include signacure extension algorithms to extend the
applicability of signatures over distance,time, and/or measurement
conditions and mixture classifiers to estimate proportions of spatially
unresolved objects., As a part of this investigation, S-192 data gathered
over Southeast Michigan were analyzed and three sites werz studied
1) a 90 square mile agricultural area in Ingham County, 2) an urban and
rural area in the vicinify of Lansing, and 3) an urban and rural area in the
vicinity of Ypsilanti,

Upon receipt of the data we examined the data quality, investigating
in each SDO (Scientific Data Output) signal-to-noise characteristics and
dynamic range. Aircraft scanner data gathered over the agricultural site
the morning of S-192 data collection were examined also and used as a basis
for comparison., The results of the examination of S-1§2 data quality were
essentially in keeping with the published §~192 performance evaluations [4].
A conclusion reached was that all spectral bands had a very limited range of
values in relation to the noise content of the data; four of the bands were
sufficiently noisy so as to be of doubtful use in classification processing,
Also examined was the spatial registration of the scanner data. The
S5DO~to-SDO misregistration in conic data was measured and shown tovbe
greater than one pixel in some instances. More importantly, further analysis
sﬂowed that the effect of scan—line—straightening was to compound and
increase the misregistration of the $-192 data: a maximum misregistration’
ofk2.2 pixels was calculated. Not only is the misregistration of scan-line~-
straightened data not easily correctable but the additional misregistration

seriously reduces the number of pure pixels available for training,
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Analytical and simulation studies were then performed to investigate the
effects of misregistration on classification accuracy. The results showed that,
for pixels which imaged more than one ground class in one or more channels,
the error rate was substantial and increased as the degree of misrvegistration
increased. Also shown was that, while the correct classification rate for pure
(one class) pixels did not change significantly as misregistration increased,
the number of such pure pixels markedly decreased as misregistration increased.
Because of the increased, uncorrectable misregistration in scan-line-straightened
data, the recognition processing for this contract was carried out with conic
data. Using the conic data, we were able to substantially correct for
misregistration by selecting a set of 13 SDOs (one for each band) and shifting
some relative to others such that the maximum misregistration was one third of
a pixel.

In preparation for recognition processing of the agricultural test site
using conventional techniquzs, a set of training statistics was extracted
using a supervised clustering method applied to pure (one class) pixels from
half the area. 1In this manner, several recognition signatures were defined
for 2ach class, the number depending on actual physiological and physical
phenomena as well as on economic designations. Having established the signatures,
the utility of the 13 spectral bands for recognition processing in the agricultural
area was determired. Using a computer algorithm which computed the average
pairwise probability of misclassification, the 13 bands were rank ordered with
the result that the four bands previously identified as having poor signal
quality were adjudged to be among the worst bands. The two best bands, by fér were
1.55-1.73 um (SDO 12) and 0.93-1.05 um (SDO 19). The result of classifying
the agricultural site using conventional techniques and the 7 best’bands
provided an overall correct classification rate of 75% for the pure (one-class)
pixels for the local (training) area and 63% for the nonlocal (test) area. A
second measure of pe;formance, the overall estimation of class proportions,
was based on aggrégaﬁed classification counts of all pixels in the area.

These results, which are given as the root mean square error of the estimates
summed over all classes, were E=4.7% for the local area ard E=6.9% for the

non-local area.
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In both cases, great confusion was noted in a triad of corn, trees and
brush, Thg classification of the data was affected by a combination of the
limited signal range in the data and the apparent spectral similarity of many
of the ground classes. The latter effect was attributed to the contrast
reducing effect of atmospheric haze and the fact that, at the time of year the
data was collected, there was a large range of conditions for several classes
(e.g., some of the corn had tasseled and some had not) leading therefore to
added spectral similarity among classes, The errors in the proportion
estimation were also affected by the large number of mixture (more than one
class) pixels in the scene. A brief study indicated that more than 70% of the
scene was composed of such mixture pixels, In general a disproportionate
number of such pixels were classified as corn, resulting in a substantial
overestimation of corn in the scene.

The utility of signature extension techniques for S5-192 data was tested
using the Lansing and Ypsilanti sites for training and test, respectively.
Signature extension techniqﬁes are potentially useful for reducing costs and
data processing time for large area surveys and are an important part of
multispectral data processing. Several signature extension techniques develqped
at ERIM for use on LANDSAT and/or aircraft data were utilized to process data
for the signature extension test site located some 70 miles from the signature
extension training area., The test area was chosen particularly because a layer
of haze covering this site was very evident in the S-190B imagery; thus, this ‘
. was a test under very different atmospheric conditions as well as a test over
distance, Training statistics were gathered using an unsupervised clustering
technique and clusters were identified for urban, residéntial, vegetation,
water, concrete, bare soil and sparse vegetation. A classification attempt without
the use of signature extension techniques resulted in poor accuracy while the
use of signature extension techniques improved classification accuracy. The
best results were obtained using the dark object algorithm. 1In a qualitative
sense these results matched those obtained using local clusters (i.e., clusters

generated at the signature extension site).
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Further classification was carried out on both training sites previously
mentioned using the other special classifier. This classifier, the unresolved
object or mixtures classifier, first identifies each pixel as being either pure
or a mixture of several classes and, if it is a mixture, estimates the proportions
of pure ground covers in that resolution element, Such a classifier would seem
to be well suited to a data set where more than 70% of the pixels were mixture
pixels. The results of using this approach on both sites was unsatisfactory,
due apparently to the previously mentioned limited signal range, contrast and
and spectral discriminability of the data, Thus, no general conclusions were
drawn with regard to the utility of the mixtures classifier on $-192 data.

Results of this investigation indicate that deficiencies in the §-192
data will tend to limit its ultimate utility. To minimize deléeterious effects
of channel-to-channel misregistration in any future use of 5-192 data, use of

conic format data is recommended. Furthermore, the design of future multispectral
scanner and data processing systems should take into account the experience

gained in processing and analyzing $-192 data, To this end, two recommendations
are made, First, finer spatial resolution should be considered for future
sensors; this would alleviate the problems caused by having a large proportion
of mixture pixels in the scene and the attendant problem of having so few

pure pixels on which to base training statistics. The second recommendation

is that future systems provide a means to adjust scanner gain and offset
parameters to better match the radiance characteristics of individual scenes

and thus make fuller use of the available scanner dynamic range.

xiv
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1
INTRODUCTION

Remote sensing of earth resources using multispectral scanners and
automatic information extraction techniques has been shown over the past
several years to be a feasible and viable tool for providing information
required by resource managers in many disciplines. Early multispectral
scanners used low-flying aircraft platforms for data collection. 1In 1972,
multispectrul remote sensing systems became spaceborne with the launching
of the first LANDSAT (initially called the Earth Resources Technology
Satellite). As it steadfastly orbited the earth, it was capable of pro-
viding information from four broad spectral bands. Moreover, its orbit
characteristics allowed it to overfly the same site every 18 days, allowing
for timely collection of data as well as enabling the use ofutemporal
information. .

SKYLAB, the first U.S. orbiting manned space station, carried as part
of its payload a new multispectral scanner, designated as semnsor 5-192.

The S-192 is more sensitive spectrally than LANDSAT, having 13 bands across
the visible, near-infrared and thermal-infrared portions of the spectrum.

The purpose of this contract was to analyze the data collected with the

$-192 and adapt previously developed information extraction techniques for
such data, especially in regard to problems associated with ~.ignature
extension and subresolution element classification, Signature extension
techniques potentially provide the ability to use training data from one scene
gathered under different conditions. Subresolution element classification
refers to techniques designed to estimate the proportion of the constituent
ground covers in resolution elements containing two or more different ground

covers.
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The data used in this study were acquired on August 5, 1973 at approxi-
mately 10:02 EST (15:02 GMT) over an area of Southeast Michigan stretching
between Lansing and Detroit. A five by 18 mile rural area comprising the
townships of Locke, Leroy and White Oak in Ingham County was designated as
the agricultural intensive study site for the contract, and detalled ground
information for this area was collected. The principal ground covers of
the test site are corn, various pastures, grasses, wheat stubbles and
weeds, dense woodlots, scrub and brush areas and bare soil. Appendix
III more fully describes the test site. As for the weather on the morning
of the overflight, a nonuniform haze layer was covering this test site
area according to ground observers.

Subéidiafy data other than that collected by the 5~192 that were used
for this study include imagery from the SKYLAB EREP S-190A multiband camera
and the S-190B fine resolution camera, screening film (video presentation)

of each channel of the 5-192, and 9~inch false color infrared photography

acquired by a high altitude aircraft. Also, at the time of $-192 data acquisitionm,

the ERIM C-47 aircraft carrying the ERIM M~7 12-~band multispectral scanner
made repeated passes over the test site, collecting MSS data from several
altitudes. Color, false color IR, and black and white IR photography were
also collected by the C-47 during these underflights. LANDSAT data for the area
for the 1973 growing season was unavailable since the area was cloud covered
on all passes of that satellite.

For this study, SKYLAB S-192 data were obtained in two formats: scan-

line-straightened data and unstraightened or conic format data. In both

cases the data were radiometrically corrected and had been processed at

Johnson Space Center to reduce the effects of low and high frequency noise,
The remaining sections of this report discuss many aspects of the
investigation in some detail. In Section 2 the analysis of the 5-192 data

is discussed. Questions related to signal-to-noise, dynamic range, and

band-to-band registration are addressed and S-192 and M-7 signal characteristics

SEr I o
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are compared. Section 3 presents and analyzes classification results

achieved over the Southeast Michigan agricultural test site. The effects :
of channel-to-channel misregistration as determined via simulation are i
discussed in Section 4. The classification results achieved in applying
signature extension and subresolution element processing techniques are
described in Sections 5 and 6, respectively. Section 7 provides conclusions
and recommendations arising out of the investigation.
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2
DATA QUALITY ANALYSIS

2.1 INTRODUCTION
This section discusses the SKYLAB S-192 multispectral scanner and
the quality of the data recorded from it. A thorough understanding of
the workings of the scanner and the characteristics of the resultant data
is necessary to successfuliy process the data and interpret the results. At
the end of the section, the S-192 data characteristics are compared to those

of another scanner, the aircraft mounted ERIM M-7 scanner,

2.1.1 DESCRIPTION OF S-192
The S-192 is extensively described elsewhere [1] and in Appendix I;
here we describe it briefly to introduce the concepts necessary for under-

standing the material in this report.

The S-192 has a conical scan, with a scan frequency of 94.79 scans/seconds,

using only the forward 116 of the scan for obtaining earth resources infor-
mation. The scanner instantaneous field of view is 0.182 mrad (approximately
81 m on the ground at spacecraft orbital altitude) and successive scan lines
overlap by about 10%. The data are oversampled by 10% along the scan line
as well, so the effective pixel (picture element) size is about 72m x 72m.
Data over the Southeast Michigan test site were collected at an altitude of
441,429 meters. While the data are originally collected as conic scan lines,
i.e., along an arc of a circle, the data are processed at NASA/Johnson Space
Center to produce scan-line~straightened data to conform with the majority
of data display forms. This aspect of the data will be extensively discussed
| later.

:There are 13 detectors on the 5-192, and the wavebands covering the
visible, near infrared, and thermal infrared portions of the spectrum are
listed in Appendix I. The data from each detectot were sanmpled and recorded
in the SDOs (channels) noted in the table. Each pixel, or picture elemeﬁt,,
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contains 22 SDOs. The data were sampled so that the 13 detectors produced
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22 channels as follows: for all odd numbered SDOs, their detectors' signals
were sampled at the same instant during the scan, time t. For all even
numbered SDOs, the appropriate detectors were simultaneously sampled at
a later instant, (t + At)}, one half pixel along the scan line after time t.
Thus eight of the detectors are sampled twice for each data point, and the
thermal detector odd SDO sample is recorded both in SDO 15 and SDO 21.
Those detectors which are sampled twice for each pixel (e.g., SDOs 1 and 2)
are referred to as high sample rate bands while the other detectors are
referred to as low sample rate bands.

The following sections will describe and analyze the data from the
S§-192 in terms of signal characteristics, spatial registration and resolu-

tion, and will discuss their impact on processing of S-192 data.

2.1.2 SIGNAL CHARACTERISTICS

The processing of the S-192 data was begun by analyzing the information -
content of the data channels. While we are interested in using differences
in reflectance (and/or emittance and temperature) characteristics to dis-~
criminate between the ground covers of interest, the data values recorded
on the tape are only indirectly related to the ground reflectance (or thermal)
characteristics, being acted upon by the atmosphere, the sensor optics and
electronics, and the digitizing electronics [2]). Here we consider just the
effect of the system electronics on the radiant energy collected by the
scanner. In the end, the desired output from a system of this sort are
signals which, for different object classes, are distinct enough to allow
classification of the data based upon pattern recognition techniques. The
components of the system effects which can be analyzed and discussed are
the sensitivity and linearity of the individual detectors and the detector
output utilization of the dynamic range of values available, There is also
the consideration of system noise, especially in relation to the signal levels
being output by the detectors. Finally, the apparent registration of the system
should also be inspected.
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The first part of this section describes various measurements made
on the S-192 data. Where it is difficult or impossible to derive absolute
measures for several of these components, measures of the S-192 relative
to those of another multispectral scanner will allow usrtO'obtain a better
feel for the performance of the $-192. The remainder‘of this section,
craft mounted scanner data and the results for the two scanners are compared.
To begin with, screening imagery and digital gray scale printouts
(graymaps) of each SDO were visually analyzed for noise characteristics.
It was seen that while most channels appeared to be of good quality, three
detectors (SDOs 5,6; 7,8; 18) contained a high degree of scan-line dependent
noise and two detectors (SDOs 15,16,21; 22) were so noisy that there was no
visible strucfure in the data. By scan line dependent nolse we mean that
striations along the arc of the .conic scan were quite prominent. Figure 2.1
displays a piece of screening film for one SDO from each group, and Figure 2.2
indicates the portions of the spectrum covered by the three groups of SDOs.
As noted, the two detectors in the last group are the thermal band,
10, - 12.68 um and the .41 - .45 um band respectively. In the case of the

thermal band, it has been reported [3] that the noise equivalent temperature

for the thermal detector for this data set is 2.6°K. It is entirely pcssible

that; this noise level exceeds the temperature changes occurring in the scene
so that there is essentially no information in this band. It was further
noted that one‘of the noisier detectors is the ,66 - .73 um bandehich c§vers
- the region of chldrophyl ébsdrption. This is uﬁfoftunate since this band is
usually a key band in the processing of multispectrai data for agricultural
areas. It was also noted from viewing these graymaps that most roads and

other features useful for location of fields were not readily evident.
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SDO 12: 1.55-1.T3 um SDO 18: .45-.50 um SDO 22: .41-.45um

FIGURE 2.1. SCREENING FILMS FOR S$-192 DATA. Examples of clear data, some scan line noise, very noisy data.
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Following this, a more analytic analysis of S-192 signal quality
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was carried out. The first, dynamic range of the data, was obtained by
examining histograms of pixels from an area 600 lines long by 700 points
wide. The area sampled included urban, water, forested and rural areas
and included the agricultural test site. The results, as listed in

Table 2.1, were tabulated in two ways. In examining the histograms it
was not clear at which point on the tails one no longer had data but
rather was just viewing infrequent noise spikes. Accordingly two rules
were used for determining the range: for the first, the limit was taken
as occurring at the first empty bin of the histogram; for the second, the
data values between the tenth and 90th percentile were used. In the latter
case, we are looking at the range of values for 80%, or most, of the data.
Here the dynamic range was between 6% and 127% of the available range of
256 counts; no SDO had more than 5 bits of significance. '

To obtain a fuller picture of the situation, these results need to
be compared to the noise content in the data, as well as the separability
of signals representing different ground. classes,

Measuring the noise characteristics of the scanner, i.e., noise from
electronic sources not including scene dependent sources, requires analyzing
data from a uniform reflector. The closest thing to a uniform reflector
that the data set included was a large lake. We developed statistics, means
and standard deviétions in each SDO, from the pixels of the lake. We use
them here with the following strictures. Because of weeds and other sus-
pended vegetation in the water, patches of shallow water and some atmospheric
back-scattering at the blue end of the visible spectrum, the estimates of the -

_noise given by the standard deviation will be greater than the true condition.
At longer wavelengths these éffects are diminished and the accuracy of the
estimate improves. In Table 2.2 we present the mean and standard deviation
measured; the signal:noise calculated is the ratio of these two quantities.'

One further measure, range:noise, is the ratio of the dynamic range to the
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TABLE 2.1. 8-192 DATA QUALITY ANALYSIS:
DYNAMIC RANGE IN COUNTS

In each column, the first entry indicates the data values, the

second is the number of counts,

DETECTOR spos?! P RANGE? P RANGES
SDOs RANGE RANGE
1 22 76-126, 50 89-105, 16
2 18 490-140, 50 95-117, 22
3 1,2 48-98, 50 57-70, 13
4 3,4 18-71, 53 29-42, 13
5 5,6 14-81, 67 29-48, 19
6 7,8 37-110, 73 67-86, 19
7 9,10 21-126, 105 64~94, 30
8 19 41-125, 84 75-105, 30
9 20 22-123, 101 74-97, 22
10 17 16-118, 102 73-96, 23
11 11,12 13-99, 86 44-63, 19
12 13,14 4-95, 91 20-42, 22
13 21,15,16 126-177, 51 140-156, 16

Maximum Range Available: 0-255

1For the doubly sampled detectors, results were calculated
for both SDOs and found to be in agreement -- as would be
expected. Hence they are reported together.

2Used continuous rule
3Used 102 to 90% rule

4Trimodal distribution; reported is the major distribution

10




TABLE 2.2 8§-192 DATA QUALITY ANALYSIS:

SIGNAL :NOTISE
) STANDARD

DETECTOR SDOs SIGNAL MEAN DEVIATION SIGNAL :NOISE RANGE:NOISE
1 22 95.8 5.6 17.1 2.9
2 18 102.4 11.7 , 8.8 1.9
3 1,2 56.5 2.8 20.1 4.6
4 3,4 29.3 2.8 10.5 5.4
5 5,6 32.4 5.2 6.2 .3.7
6 7,8 42.1 4.8 8.8 4.0
7 9,10 26.4 8.3 3.2 3.6
8 19 : 23.5 5.0 4.7 6.0
9 20 26.1 6.4 4.1 " 3.6
10 17 18.1 5.3 3.4 4.3
11 11,12 14.4 3.3 4.4 5.8
12 13,14 10.3 b.b 2.3 5.0
13 21,15,16 144.3 4.8 30.1 3.3

1For the doubly sampled detectors, results were calculated for both
SDOs and found to be in agreement -- as would be expected. Hence they
' are reported together.

11

g B s Foter s A ]t e . T




D ERIN

noise and indicates the number of '"noise os" wide the data range is in each
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band. For this calculation we used the dynamic range according to the 107
rule, since we are interested in the majority of the data points. It is
noteworthy that the bands specified as exceedingly noisy at the beginning of
the analysis have the lower range:noise values, although their signalinoise
may be good.

To complete iiie analysis of signal quality we would like to get a feel
for the detector sensitivity. However, it will be possible to do this only
in a relative sense, By locating, for different ground classes, the same areas
on the ground in both the $-192 and M-7 data sets, signatures may be calculated
and either distances between the distributions or probabilities of misclassifi=-
cation (the degree of overlap between pairs of signatures) may be calculated
and used to compare the separability of signals between the two scanners.

Two areas*

were located in the test site and signatures, mean and covariance
matrices, were calculated from the pixels in each field. These two fields were
chosen solely because they were the two largest occurrences of different classes
that appeared in both the S-192 and the M-7 data sets, We wanted the largest
fields possible so as to have a sufficient number of pixels in the $-192 data

set and thus to well estimate the signatures for these fields. The corn field
was very large and as a result 59 field center pixels were identified and used
for the signature calculation. The woodlot, on the other hand, was not small

but still only nine field-center pixels could be identified for the woodlot.

To measure the distance between the signatures we have chosen to calculate a

form of the Bhattacharyya distance. The distance calculated was**

-1
lg * Uy T
D = (Mg = M) (f ) (g = ) N

* B ) L
Fields chosen were a large corn field in Section 16, Leroy Township
and a large hardwood woodlot in Section 4, Leroy Tcwnship.

**The full form of the Bhattacharyya. distance is:
1/2 1/2
- 1
RN Ie *+ Ip )2 (z )z
B=g (g -up S5/ (g - v T
8 *°C T 2 .C
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where uC and uT
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are the mean vectors of corn and trees respectively

and ZC and ZT are the covariance matrices for corn and trees.

To enable us to analyze the situatiop even more closely, we calculated D

i
for each channel or
2
b = Bigg = My
i 1 (02 + 02 )
2 Ci Ti

and the results are given in Table 2.3 below. Obviously, the larger the

distance calculated, the greater the separation between the two distributions.

TABLE 2.3 DISTANCE BY DETECTOR BETWEEN CORN FIELD
AND WOODLOT FOR S-192

DETECTOR SpDOs Di
1 22 0.45
2 18 0.47
3 1,2 1.42
4 3,4 0.06
5 5,6 0.0003
6 7,8 3.3
7 9,10 4,42
8 19 5.20
9 20 3.03

10 17 : 0.20
11 11,12 3.3
12 13,14 0.40
13

21,15,16 : 0.05

13
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Readily apparent is the large disparity in the table's values. In
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general those bands which had been identified as being noisy have very small
distance values (D, ), the exception being band 6 (.67 - .73 um) which is in the
spectral region of chlorophyl absorption., Other bands with small distances
merely indicate very little separability in these bands for these two object
classes. In Section 2.3 these results were compared to those obtained by
analyzing signatures of these same two areas calculated from the M-7 data set.
This provides some measure of how well or how poorly the distributions are

separated in the $-192 data.,

In summary, S-192 data has been analyzed in several ways and has been
shown to have limited signal range, especially in relation to the system
noise. By the word system is meant the combined optics and electronics of
the data collection facility and alse the data preprocessing facility.
Conclusions on how accurately such data can be classified, however, are
not easily drawn from this information. By comparing $-192 data character-
istics to those of anothey multispectral scanner we may obtain a better

understanding of the situation. In Section 2.3, such a comparison is made.

2.1.3 SPATIAL REGISTRATION

Multispectral remote sensing and multivariate analysis have at their
core the concept that many channels of information regarding one data point
(pixel) can be used to more accurately classify it. One necessary condition,
obviously, is that all the channels of information used must refer to the same
point or condition. For example, if most channels of a pixel of multispectral
data image an area of class 1, while some other of the channels image an area of »
class 2, it may not be possible to correctly classify the pixel. Thus, all
channels of information must:be spatially registered, i.e., all imaging the same
area on the ground, if one is to achieve good results. If the data are seriously
misregistered it may be possible to process the data in: such a way as to substantially
correct the problem. We analyzed both the conic data and the scan-line-straightened
data for misregistration. It turned out that the scan line straightening procedure
further misregisters the data so that the conic data are more registered than the

scan-line-straightened data. Details of two analyses are presented below.

14
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2.1.3.1 Misregistration in Conic Data
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By the S-192 system design, all even-numbered SDOs are perfectly reglstered
one with the other; the same is true for all odd numbered SDOs. Further, there
is a one-half pixel misregistration between the odd numbered SDOs and the even
numbered SDOs due to the sampling technique used. Further misregistration is
introduced by scanner electromics, byvdifferent response times for different detec-
tors, and/or by improperly skewed record heads on the spacecraft tape recorder.
These combine to produce the misregistration dbserved in the conic data.

Misregistration in conic data, i.e., misregistration caused by scanner and
related recording electronics, has been documented by Braithwaite andkLambeck [3,4].
The measurements carried out were made using scans of the lunar surface and were
accurate to a quarter pixel. These results showed that SDOs 17, 19, and 20 lagged
one half pixel from where they would be expected. To investigate the registration
properties of the data set being processed, a short manual investigation was
carried out for the comic data set utilizing the fact that significant: reflective
changes occur at land/water interfaces in many of the bands. These results were
in agreement with those cited above, again with a quarter pixel error in measurement.

To obtain more precise answers as to what the spat1a1 misregistration charac-
teristics of the conic data were, a more analytical technique was developed. The
technique used is thoroughly presented in Appendix IV; here we summafize it
briefly'so that the discussion of thé results will be understandable.

To determine the misregistration between two channel -, the cross correlation
was determined over a range of fractional pixel shifts. The cross—correlatibn
function then has a maximum at the shift representing the actual mlsreglstratlon.
Initial tests of the method indicated that the values near the peak closelv
approx1mated a quadratic curve. To obtain a more accurate estimate of the shift
at which the peak actually cccurs, a quadratic curve was fit to the three shift
values nearest the peak. From the coefficients of this curve, the peak of the
cross~correlation function was estimated.

Table 2.4 contains the estimated misregistration between 17 of the original
22 Skylab SpOs. The SDOs (15,16,18,21,22) which do not appear in the table were
not used in this investigation, because they were not sufficiently correlated

with any other channels to obtain meaningful results.

15
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TABLE 2.4. SKYLAB S-~192 SENSOR MISREGISTRATION (PIXELS)

2 3 4 5 6 7 | 8 9 10 11 12 13 14 17 19 20
1 .50 | .05 |-.45 {-.01 |~.51 '~.14 |-.64 |-.33 | -.83 | .12 | -.62 | -.07 | -=.57 | .23 | .30 -.55
2 +.55 1-.057 .49 |-.01 [ .36 [-.14 | .17 | -.33 | .38 | -.12 | .43 | =.07 | .73 | .80 | -.05
3 -.50 |-.06 |-.56"|-.19 |-.69 |-.38 | -.88 | =.17 | -.67 | -.12 | -.62 | .18 | .25 | -.60
4 44 [-.06 | .31 1-.19 | .12 | <.38 | .33 | -.17 | .38 | -.12 ; .68 | .75 | -.10
5 -.50 |-.13 |-.63 |~-.32 | -.82 | -.11 | -.61 | -.06 | -.56 | .24 | .31 | -.54
6 37 |-.13 | .18 | -.32 | .39 | -.11 | .44 | -.06 74 | .81 | -.04
7 =.50 |=.19 | =.69 | .02 | -.48 | .07 | -=.43 | .37 | .44 | -.41
8 31 | -.19 | .52 .02 .57 | .07 | .87 | .94 | .o0g!
9 -.50 | .21 | -.29 | .26 | -.24 | .56 | .637| -.22
10 1| .21 | .76 | .26 | 1.06 { 1.13 | .28
1 =50 | .05.| -.45 | .35 | .42 | -.43
12 .55 | .05 | .85 | .92 | .07
13 -.50 | .30 | .37 | -.48
14 807 .87 | .02
17 .07 | -.78
19 -.85
20
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The misregistration was not actually determined by direct measurement for
all of the pairs of channels represented in the table. The misregistration
was first measured between seven pairs of even and odd numbered high sample
rate Sbos (1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14). In all cases, the average
measurement taken over 5 lines of data was almost exactly 0.5. These measure-
ments indicated that the misregistration between these pairs of channels could
be safely assumed as being 1/2 pixel, Measurements were made using 10 lines of
conical data on an additional seventeen pairs of correlated (p > .5 for a large
sample of pixels) channels chosen from among the odd numbered high sample rate
channels and the remaining low sample rate channels. A multiple linear
regression was performed on these seventeen measurements to obtain estimates
of the misregistration between nine pairs of channels from which estimates of
all of the remaining pairs were derived. The sum of the squared deviations
between the 17 actual measurements and their predicted values from the
regression analysis was 0.0015. This low figure indicates the consistency of
the results obtained from the different pairs of channels. As a further test,
measurements of the misregistrationvbétween nine pairs of channels taken from
a different set of 10 lines, were also made. The sum of the squared deviations

between these measured values and the values shown in Table 2.4 was 0.0067.

To determine the misregistration betweén any two pairs of channels from
Table 2.4, find the fractional pixel value in the table corresponding to the
desired pair of channels. The sign of the entry in the table denotes the
direction the channel given by the column must be shifted to register it with
the row channel. Positive is defined as in the direction of scan and negative
as the opposite direction. For example, channel 1 lags channel 2 and channel 2
also leads channel 3, '

Results indicate that the algorithm which was developed is, in fact, quite
accurate. The measurements made on the even and odd numbered high sample rate
SDOs yielded the exact results expected. The measurements made on the 17 pairs
of channels were consistent among themselves. The standard déyiation of each
of these estimates over the 10 lines of data which weré employed were also
quite small (less than .05 pixels). Measurementé made on the second set of 10
lines were also consistent with those obtained from the first set of linmes.
These results indicate that the method is reliable.

17
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Furthermore, it is possible to ¢-bstantially correct for the misregistration
for conic data, and to define a set of 10 SDOs, one for each detector called
out in Section 2.,1,3 as being useable, which are fairly well registered. This
may be done by first shifting SDOs 17 and 19 one pixel in the scan direction
relative to the other SDOs and then choosing the even numbered high sample rate
Spos 2, 4, 6, 8, 10, 12, and 14, and finally SDO 20 along with SDOs 17 and 19.

The next aspect of this discussion is to consider the effect of misregistered

conical data on the scan-line-straightened data.

2.1.3.2 Spatial Misregistration for Scan Line Strﬁightened Data

In the previous section we discussed the existence and extent of spatial
misregistration in conic data. In this section we examine it for scan-
line—straighteﬁed data and also examine the effects of the scan-line-
straightening algorithm on spatial misregistration. It is shown that even
in the absence of scanner-related misregistration, serious misregistration is
created in the data by the scan-line-straightening algorithm,

For this analysis, it was not possible to use the cross correlation
technique from the previous section because the technique requires some 500
continuous points on each scan line to be used in the algorithm to reduce
boundary effects and these 500 pixels must have identical misregistration
characteristics. That this last condition does not occur in the scan-line-
straightened data will be evident from the discussion below.

By the S-192 system design, all even-numbered SDOs are perfectly
registered one with the other; the same is true for all odd numbered SDOs.
Further, there is a one-half pixel misregistration between the odd numbered
SDOs and the even numbered SDOs due to the sampling technique used. Further
misregistration is introduced by scanner electronics, by different response
times for different detectors, and/or by iuproperly skewed record heads on the
spacecraft tape recorder. These combine to produce the misregistration observed

in the conic data.
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When the scan~line-straightening algorithm rearranges the collected pixels
into scan~line-straightened format, additional spatial misregistration is
introduced. The following example gives a graphic account of the randomness
of the resulting misregistration and the possible extent of it. Presented below,
in Figure 2.3, are two pixels each from two comnsecutive conic scan lines and

the manner in which they are assigned to a straightened scan line.

Conic Scan Line

+® *w
J + L4
I //; ¢ y
- T __ 4+ @ F  AandBare the centers
° F . - L 2 .of scan-line-straightened
Pixels + At A + o pixela, odd and even SDOs,
® PY respectively.
r———- —— —+
. ' V ] - e e —— —
i
b j ° p I @ Center of odd numbered SDO
- QV + Center of even numbered SDO
+
L

FIGURE 2.3. ASSIGNMENT OF SDOs IN SCAN-LINE-STRAIGHTENING

To begin the analysis, let us break the 22 SDOs into four subsets and examine
éach independently. The four subsets are: 1) ODD numbered LOW sample rate
SDOs, 2) EVEN numbered LOW sample rate SDOs, 3) ODD numbered HIGH sample rate
SDOs and 4) EVEN numbered HIGH ksample rate SDOs. It is assumed that all SDOs in
a subset will be assigned in the same way; this is so since the the assignment

algorithm as well as the starting point on a scan line is the same for all SDOs.
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All ODD numbered, LOW sample rate SDOs from pixel J in line N will be
assigned to A of scan-line-straightened pixel o (A being the center of the
resolution cell for the ODD SDOs of o), Similarly all EVEN numbered LOW sample
rate SDOs from pixel I, scan line 0 will be assigned to B. (B being the even
numbered SDOs of pixel «.)

When the high sample rate SDOs are straightened, the odd-even pair
of SDOs for each detector are interleaved, then the samples are assigned to
straightened lines and points and rebroken into an odd-even SDO pair again.

Thus for this example, all EVEN numbered, HIGH sample rate SDOs from pixel I, scan
line N, will be assigned to A and renamed to be the ODD numbered SDOs of pixel a.
Similarly all ODD numbered HIGH sample rate SDOs from pixel J scan line 0 will be
assigned to B and become the EVEN numbered SDOs for pixel o.

Within each of the two cases (paragraphs) cited above, the low sample
rate and the high sample rate groups, the misregistration between the even
SDOs and the odd SDOs will be that as found in the conic data -- for the

along scan line direction. In the along track direction for the example in

Figure 2.3 there will be one full pixel misregistration due just to the scan-
line-straightening. This is the maximum that could be created for this partic-

ular effect.

The misregistration between a set of high éample rate SDOs and a set of
low sample rate SDOs is indeterminate sincerit depends on whether or not the
even-odd designation for the high sample rate SDOs in the straightened format
has been switched from what it was in the conic format. Potentially, the along
scan misregistration between low and high sample rate SDOs can be one whole pixel.

The above discussion has referred only to misregistration caused by the
sampling scheme and the scan-line-straightening procedure. The occurrence of
scanner electronic related misregistration is in addition to that cited above.
This additional misregistration in the conic - data is only along the scan line.
In the scan-line-straightened data its directioh is still along the tangent to
the conical scan at the point of interest, We can state the total expected

misregistration in scan-line-straightened data as:
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Rx =1 + M sind (pixels)

R.y = 1 + M cosb (pixels)
where:

R

« is the component of wisregistration in the
straightened data along the scan line

v is the component of misregistzation in the
straightened data in the along track direection

is the maximum misregistration in the conic data

] is the angle between the line tangent to the conic
scan at the point being considered and a line in
the along track or flight direction.

This result will be used in the next section to show how misregistration
affects the processing of data.

Another observation regarding misregistration in scan-line-straightened

data is that it is not possible to correct the data, at least not using a simple

algorithm as was used in the conic data. Further, it is not possible even to

" correct within any one of the four subsets previously cited, so that misregistration

due to scanner electronics could be reduced even within one of the subset

groups of SDOs. That this is the case may be easily shown by using Figure 2.4

below.
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Conic Straightened
FIGURE 2.4. SCAN-LINE STRAIGHTENING WITH MISREGISTERED DATA

In the figure pixels A, B, E, and F will be assigned sequentially to a
straightened scan line. Assume that one SDO, SDO k, is one pixel out of
registration with the other SDOs. Thus SDO k of pixel B images the area of
pixel A, and SDO k of pixel E images the area of pixel D. Any attempt to
simply shift, for the scan line straightened data, SDO k one pixel relative
to all the other SDOs will result in SDO k of pixel B being the area of
pixel, D, and not pixel C as would be correct, It is possible that such a
shifting technique would reduce the misregistration in some pixels, but it would
increase the misregistration for other pixels and, more importantly, it would

not be possible to know exactly which pixels were correct and which were not.

It is not possible, in general, to predict where these discontinuities might
oceur as it is a function of spacecraft altitude, velocity, and heading. In
general it can be stated that these discontinuities will occur as frequently as
every pixel, at the ends of the scan lines, and falling off as one moves toward
the middie of the scan line to a frequency of about every 15th or 18th pixel at
the point on the scan line directly ahead of the spacecraft.

Finally, it is clear that the increased misregistration caused by the
scan-line-straightening algorithm results in fewer pure field center pixels than
for the conic data and in many more pseudo mixture pixels, i.e., pixels which
have some SDOs imaging field center areas and other SDOs imaging field boundaries
or even completely different fields. Even the mixture pixels will imége different

proportions of the classes in different SDOs.
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A thorough analysis of the effects of misregistration on the processing
of S$-192 data is presented in Chapter 4.

The effects of misregistration due to the scan-line-straightening algorithm
on S-192 data may be stated succinctly.

1. There is greatly increased misregistration in scan-line-
straightened data over conic data.

2. Scanner-caused misregistration between any pairs of channels
ray not be easily corrected for in scan-line-straightened data.

3. Scan-line~straightened data will have fewer pure field center

pixels than will conic data.

2.1.4 S-192 RESOLUTION AND THE IDENTIFICATION OF FIELD CENTER PIXELS

The resolution of the S-192 scanner for the spacecraft altitude at the
time the Southeast Michigan data set was collected, yielded a resolution cell
almost 81 meters square, or about 0.65 hectares (1.6 acres) pef resolution
element. Especially for this test site, where the average agricultural field
size is 15-18 acres, many of the resolution elements in the scene will be
imaging two or more fields, Obviously, in extracting training statistics it is
imporiant that the data points used be only those data points which are purely
of the class being considered. Thus a need evolves to identify pure data
points, or as they are more commonly called: field center points. The complement
of the field center point is called a mixture data point.

Thus far, the discussion has dealt with resolution elements and not pixels.
A pixel is not, for the S-192 (and generally speaking), the same as a resolution
element. A pixel, or picture element, refers to one data point, one vector of
observation, sampled from the detector odtputsa The S-192 system oversamples
by approximately 10% along the scan direction, and the overlap between
sﬁccessive conical scans is also about 10% at the midpoint in. the scanners
front field of view.

The ground size of a pixel is given to be 72 x 72 meters [1]. Aibrief
analysis of actual pixel size was conducted in the following manner, Pa;rs of -
pixels in lakes were located on scan-line-straightened data graymaps. (Care
was taken to find pairs which were either on the same scan line, seVeral‘hundred
pixels apark, or located at the same scan point numbr: several hundred scan lines
apart. Points corresponding to the pixels selected :wure also located on USGS
maps of Southern Michigan. Distances wgre accurately measured on the USGS maps
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and on the graymaps; the result was that the pixels were measured to be 69
meters wide in the along-scan direction and 72 meters in the along track
direction. Calculations based on geometrical considerations using only the
angle of the scan cone and thé altitude at the time of data acquisition
yielded measures of 70 x 70 meters. The differences are not felt to be serious.

Having defined resolution elements, pixels, pure pixels and mixture pixels,
the rest of this discussion is devoted to a procedure for identifying field
center pixels. Preparatory to this, it should be understood that at ERIM
individual fields are usually defined by the set of points § = {(xi,yi),
X, = line number of vertex i, ¥y = point number at vertex i} which are the
vertices of a generalized polygon which is the boundary of the field.

Simply speaking, identification of field center pixels is accomplished
by the inscribing of a smaller similar polygon with the polygoh which defines
the field being considered. A pixel is identified as a field center pixel if its
center is within the inscribed polygon. The distance the field center polygon
is inset from the original is calculated sc that even in the worst case all
the pixels in the field center polygon are guaranteed to be resolving only
areas within the field. It is important to remember here the distinction between
pixel size and tlie size of the resolution cell.

In general, the inset calculation is a summation of many components, and
in fact the inset may be different in the direction of scan than in the along

track direction. We can generalize the inset (I: {Ix,Iy}) as follows:

(=)

= 2
Ia = Pu B+ Ra +L+S pixels

where

o 1indicates x: scan direction or y: line or along track
direction

D is the size of the resolution cell in the direction of o

P is the size of the picture element in the direction of o
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B is the inset necessary to insure that the pixel does not
include the boundary between fields. Typically B = 0,5 pixel,

R is theée error due to misregistration effects, e.g., if one
channel is misregistered from the others by R pixels, then
this channel could still be imaging across the field boundary
when the other channels are imaged entirely within the field.
For conic data corrected for misregistration,

R¥ = 0,32
Ry = 0,
For straightened data, from the previous section we havc
Rx = 1 + MSINO
Ry = 1 + MCOSO

from Table 2.4, M is found to be 1.13. To develop one
measure for the whole scan line, we take the maximum values of
SIN@ and COSO, which is one.

Thus:

RX

Ry = 2.13

L is due to any field location errors which may have occurred.

2.13

is the error due to "movement" of individual pixels az a result
of the nearest neighbor scan line straightening. For conic
data, therefore, S = 0, For straightened data, S = 0.5 pixel.

Thus, the inset to be used for conic data would be:

I, = (%) 0.5 + 0,92 + L = .90 + L pixels
1 ={8) o05+40. +L=.58+1L piice'ls
y 72 :

while the inset to be used for scan-line-straightened data would be:

=1 =1 =(8& =
I= Ix = Iy <7Z> 0.5+ 2,13+ L + 0.5 = 3,21 + L pixels
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The significant increase in inset for the second case here is due to
the increased misregistration between SDOs found in scan-line-straightened
data. Figure 2.5 illustrates the use of insets for these two cases. In the
conic data case a 20 pixel field has eight certain field center pixels while
a field of 75 scan-line-straightened data pixels has only six pure field
center pixels. :

In summary, what has been presented here is the inset to be used to insure
that any pixel identified as a pure, field center pixel is resolving only
one ground class in all of its bands. This insures that the training

statistics will refer only to pure conditions of the classes they represent.

2.1.5 PROCESSING CONIC DATA

The bulk of the processing carried out for this study was done on conic,
not scan—-line-straightened data. Using conic data meant that the misregis-
tration in the data was not compounded by the scan-~line-straightening algorithm.
More importantly, it meant that remedial algorithms, as described at the end
of Section 2.1.3.1, could be and were employed to significantly reduce the
misregistration in the data. '

The drawback to using coni: data is that graymaps of individual SDOs are
somewhat distorted. TFor most of our work, however, such graymaps proved
adequate. For instances where undistorted maps were degired, a special
implementation of the digital mapping program was used, In this mode, the data
to be presented are broken into groups of 40-55 pixels for which the conical
arc over those points can be approximated by a straight line.: Then each swath
of data are mapped, the symbols being printed diagonally on the printer,
incrementing one print line every n characters. Additionally, conic pixels
falling at points where there is overlap in the undistorted printed map can be
deleted. While this does not produce as rectified a map as the scan-line-
straightening algorithm employed at JSC, graymaps generated in this manner are
only slightly distorted, On the whole, we found the mechanics of data .
manipulation when using conic data to be little different than when working

with straightened data.
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2.2 M-7 MULTISPECTRAL SCANNER

The ERIM M-7 multispectral scanner is an aircraft mounted line scanner
with the capability of recording data in 12 wavebands from the ultraviolet to
the thermal infrared region of the spectrum [6]. Appendix II lists the
spectral and optical characteristics of the M-7 scanner. Fofkthis study, the
M-7 was used to acquire data over the test site at the same time as the S5-192
data for this study was collected [7]. The M-7 data were acquired at an altitude
of 2000 ft,* collecting data along several parallel North-South passes over the
test site. The data used for this study was Run 2 over flight 1. Run 2 began
at 1056 hrs, E.D.T., and ended at 1105 hrs. E.D,T., while the S-192 data set was
acquired at 1102 hrs. E.D,T.

2.2,1 M-7 SIGNAL CHARACTERISTICS
The M-7 data were digitized and preprocessed as described in Appendix V
and the data were then analyzed for signal characteristics. The analysis was

carried out along the same lines as that for the 5-192,

The dynamic range analysis is presented in Table 2.5 and the signal:noise analysis

in Table 2.6, For this latter table, the only water body in the M—74data set was

a small farm pond. For the sake of rigorous comparison to the procedures of
Section 2.1 the statistics derived from it are presented, However we should
point out that since it is a very small water body and_prpbably much shallower
than Lake Lansing, the estimated noise for the M=-7 is probably larger than the
actual noise characteristic of the data..  For the M-=7 daté, however, we can ‘
obtain a very accurate estimate of the;séanner—related:noise‘by analyzing the
signals derived from the "dark level", i.e., that portion of the data generated
while scanning the dark interior of the écanner housing, Since here the
illumination is zero, any variation in the signal is due just to scanner system
noise, The calculated noise from the dark level and from the water signature
are presented in Table 2,7. To calculate the standard deviations reported in
Table 2.5, the dark level of 1000 consecutive scan lines were analyzed. For

the thermal band, the noise on the cold reference plate was used instead. It

*The original flight plan had been for data collection from an altitude of
5000 ft., however haze over the site necessitated collection at a lower altitude.

28



ER'M FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN
TABLE 2.5. M-7 SIGNAL CHARACTERISTICS: DYNAMIC RANGE
Total Available Range = 512 Counts

CHANNEL DYNAMIC RANGE- DYNAMIC RANGE®
1 71-284, 213 90-137, 47

2 65-301, 235 89-155, 66

3 64-388, 304 105-186, 81

4 76-369, 193 110-185, 75

5 59-317, 278 100-165, 65

6 57-218, 261 ' 91-159, 68

7 63-343, 280 94-192, 98
56-362, 306 73-196, 123

9 10-208, 198 94-158, 64

10 : 10-207, 197 -~ 109-166, 57
11 _ 12-270, 258 109-176, 69
12 60-287, 227 100-210, 110

1Used Continuous Rule

2ysed 10% Rule
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TABLE 2.6. M-7 SIGNAL CHARACTERISTICS: SIGNAL:NOISE

WATER STANDARD

CHAI‘i NEL M__ DEVIATION SIGNAL :NOISE RANGE:NOISE
1 102 5.0 20.4 9.4
2 103.5 5.6 18.5 11.8
3 120 6.2 19.4 13.1
4 11 5.6 © 19.8 13.4
5 88 5.6 15.7 11.6
6 86 5.1 | 6.9 13.3
7 88 6.7 13.1 14.6
8 68 6.7 10.1 18.4
9 .o 2.9 7.2 22.1
10 . 19 2.8 6.8 20.4
11 24 6.3 3.8 11.0
12 84 4.3 19.5 25.6
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M~7 NOISE CHARACTERISTICS FROM DARK LEVEL SIGNALS

TABLE 2.7,

STANDARD

CHANNEL MEAN DEVIATION
1 26 1.3
2 22 1.2
3 21 .53
4 28 1.3
5 30 1.2
6 27 1.2
7 58 1.5
8 26 .9
9 52 1.5
10 39 1.0
11 30 1.5
12* 31 4.1

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

DARK LEVEL
SIGNAL:NOISE

20.0
18.3
39.6
21.5
25.0
22;5
38.7
28.9
34.7
39.0

20.0

7.6

WATER
SIGNAL:NOISE

20'4
18.5
19.4

19.8

15.7

' 16.9

13.1
10.1
7.2
6.8
3.8

19.5

*Results for this band were analyzed from cold reference

plate signals.
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TABLE 2.8, DISTANCE BY CHANNEL BETWEEN A CORN AND
A WOQDLOT DISTRIBUTION FOR M~7 DATA

CHANNEL D,
1 6.02
2 7.1
3 2.6
4 9.1
5 7.3
6 8.0
7 8.7
8 9.5
9 10.4

10 5.2
11 3.7
12 6.0
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can be seen that in some bands the noise measured from the water signature
is much greater than the dark level noise. So it seems that using the water
signature as the noise measurement results in an overestimation of the
scanner noise.

The two selfséme corn field and woodlot areas which were used for the
S-192 part of this analysis wére located in the M-7 data set. Signatures
were calculated and the same distance measure used previously was also calcu-
lated here. Table 2.8 below presents the results of this analysis. On the
whole the two distributions appear to be véry well separated in this data.

Comparisons of the twc scanners for dynamic range, noise and signature

separability will be made in the following section.

2.3 COMPARISON OF S-192 AND M-7 SIGNAL CHARACTERISTICS

The purpose in comparing data characteristics of the M-7 and $-192 multi-
spectral scanners is not to prove one better than the other, but rather to
better understand the capabilities of the new 5-192 scanner. The M-7 has been
widely used for several years and its capabilities and performance are well
known while, on the other hand, the 5~192 is only the second experimental
spaceborne multispectral scanner and its performance and capabilities are
unknown. By comparing these two scanners, we hope to better understand the
§-192 and perhaps be able to suggest improvements or refinements for the
next generation of spacecraft scanners.

Briefly, with reference o Tables 2.1 through 2.8, it is seen that the
dynamic range of the two data sets is very different, especially that the
S-192 data range in the better channels is no more than 5 bits. Also, looking
at the dynamic range in relation to the level of noise (as expressed in statis~
tics over bodies of water), the S-192 data range:inoise is a quarter or a thivrd
fhat of the M-7 data.

As for the separability of ground classes of interest, this was investigated
by determining the separability of two spec¢ifis fields, one corn and one woodlot,
which were scanned in both of the data sets. '

A comparison of Tables 2.3 and 2.8 shows that, on the whole, the separability
for the M-7 data is much greater than that for the S-192; one should remember in
making the compariéon that, because the measurement is of two Gaussian distribu-
tions and is given in terms. of 02, that the actual probability of misclassifica-

tion declines exponentially at a rapid rate as the distance slowly increases.
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‘A further, finer comparison can be based on the fact that three of the
S-192 and M-7 spectral bands are very similar., This identification was made
upon inspection of spectral response curves for the two scanners. These
bands are listed in Table 2.9

Of the three bands treated here, two are in the near-infrared and one in
the visible (green) portion of the spectrum. For these three bands we can

compare, in Table 2.9, the key quantities calculated for each scannmer.
TABLE 2.9. BAND TO BAND COMPARISON OF M-7 AND S-192 RESULTS

CORN-WOODLOT
DYNAMIC RANGE: SIGNAL: SEPARABILITY

A RANGE NOISE =~ NOISE @)

$-192 Band 4: .54 - .59 13 5.4 10.5 0.06
M-7 Band 6:  ,55 - .60 68 13.3 16.9 8.0
§-192 Band 10: 1.15 - 1,28 28 4.3 3.4 0.20
M-7 Band 10: 1,00 - 1,50 57 20.4 6.8 5.2
$-192 Band 11: 1,55 - 1.73 19 5.8 A 3.0
M~-7 Band 11; 1,50 - 1.80 69 11.0 3.8 3.7

From the above comparisons, it is clear that the 5-192 data has a very
limited range of data values, especially in relation to system noise. This
small range:noise in turn severely inhibits the separability of classes of
interest. Such problems with S-192 data appear to b= due, in some part, to the
eéffects of the atmosphere on radiation sensed by the scanner. In general, the
atmosphere reduces data contrast and, in this instance, with a variable haze
covering the test site area, the effect was more pronounced, Another factor
which seems to make a difference between the two data sets is that on the one
hand full use of available signal range on the M~7 was achieved by manual
intervention both during data acquisition and during the digitizing process,
while on the other the S-192 system was ubiquitously set to handle surface
radiance over a wide range of atmospheric and ground conditions resulting in
a very limited available range for any particular instance. Perhaps a more

versatile acquisition system design would have upgraded the $~192 performance.
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3
PROCESSING RESULTS FOR THE AGRICULTURAL TEST SITE

SKYLAB S-192 data over Southern Michigan was processed for two sites,
showing two different applications of multispectral data. The first
application was in the performance of an agricultural survey over the
Southeast Michigan EREP test site. Both SKYLAB S-192 and aircraft M-7
scanner data were collected over the area and are discussed in Sections 3.1
and 3.2, respectively. The second, a 1and use evaluation for the urban-

rural area around Lansing, Michigan, is detailed in Section 5.

3.1 PROCESSING RESULTS FOR S-192 AGRICULTURAL DATA

3.1.1 SIGNATURE EXTRACTION '

The agricultural test site, detailed in Appendix III, comprised 90
sections (each about 1 mile square) in Ingham County, Michigan. The process
of field location and identificaticn was accomplished using a semi-automated
technique described in Appendix VI, Briefly, field vertices were digitized
from large-scale photography and transformed to data scan line and scan point
coordinates. The same procedures used to identify pure field center pixels
within each of the ground truth fields as described in Section 2.1.4, were
applied in order to identify the field center pixels for each of the 90
ground truth sections. Table 3.1 shows the classes in the scene along with
the number of field center pixels identified for those classes; the notation
of local (north 40 sections) and non-local (south 50 sections) sections of
the ground truth area refer to the manner in which the area was divided

" for training and testing purposes.

Some of the class names require explanation. Unplanted farm areaé
were listed in the ground truth as any of these categories: sod, grass,
clover, grassy weeds, weeds, pasture, fallow and stubble. These were

deemed to be similar in character differing only in the proportion of
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TABLE 3.1 NUMBER AND DISTRIBUTION OF FIELD CENTER PIXELS

NUMBER OF FIELD CENTER PIXELS FOR CLASS

LOCAL AREA NON-LOCAL AREA
CLASS (NORTH 40 SECTIONS)  (SOUTH 50 SECTIONS)
CORN 344 549

TREES 24 260

BRUSH 68 39
SOYBEANS 19 52
ALFALFA 23 20

GRASS 398 264
STUBBLE 53 , 71

BARE SOIL 38 43

URBAN 69

FIELD BEANS 0 __56
TOTAL 1036 1307

ground covered by the vegetation, and hence were lumped together in the

category of forage. The category of trees was deemed to be dense stands

of mature trees, while the term brush was used in the ground trath to

indicate scrub forest, some less dense tree stands, and brushy areas.
Training was carried out using only pixels from the north 40 sections.*

The use of the north area for training rather than the south area was an

' arbitrary choice. The use of 40 sections, rather than some subset of the 40,

*The signature extraction, classification and assessment of results for
the S-192 data reported in this section was carried out under Contract
NAS9-13332, a subcontract involving the performance of $-192 data processing
for Michigan State University. [5],
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was based on the desire to obtain training statistics for as many of the

classes in the scene as possible and also to have a large number of pixels
for each class so as to more accurately estimate the training statistics

for each class.
all pixels of common class together and thereby calculating one set of

statistics for a class, we implemented a supervised clustering approach.
In this manner, all the field center pixels of each class were clustered
independently.
distinction, varies physiologically so that several spectral signatures are
necessary to fully represent the class, this method will yield a better set

of training signatures.

procedure.

TABLE 3.2 DERIVED TRAINING CLUSTERS FOR S-192 AGRICULTURAL DATA SEI

CLUSTER

CORN 1
CORN 2
CORN 4
CORN 5
ALFALFA
TREES 3
TREES 4
BRUSH
SOYBEANS
BARE SOIL
CLOVER
STUBBLE
WEEDS
GRASS 1
GRASS 2
GRASS 3
GRASS 6
PASTURE 7
PASTURE 8
PASTURE 9

PASTURE 10

URBAN 1
URBAN 2
URBAN 3

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN
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In extracting the training statistics, rather than lumping

Thus if a ground class, which is basically an economic

Table 3.2 lists the clusters obtained from this

NUMBER OF PIXELS

134
28
129
28
20
12
10
55
18
20
10
32
43
27
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The signatures extracted in this manner were 12-channel signatures;
SpDO 18 (.45-.50 ym) was dropped from the processing at this point because
besides containing no information (see Section 2), its wildly fluctuating

data values were causing confusion in the analysis.

3.1.2 SIGNATURE ANALYSIS AND SELECTION OF OPTIMUM BANDS

The set of signatures was first analyzed to see if any of the apparent
spectral subclasses were due solely to effects of the noisier channels.
At the same time, they were examined to determine if some of the signatures,
for the same class, might be combined. Since the cost of classifying a
data set is directly related to the size of the signature set, it is
important to reduce the size of the signature set whenever possible.

As a first step, all 24 signatures were input to program STEPL which
calculates optimum channels. Care was taken so intra-class differences
were ignored; the channels were selected on an inter-class basis only. The
results, as shown in Table 3.3 below, indicate that three of the four bands
(SDO's 6, 21, 22) identified initially as noisy or having poor signal
quality, were also identified by the program as the least useful in dis-
criminating among the object classes. The fourth band previously identified
as too noisy to use, SDO 8 (.67-.73 um), which covers the region of chloro-
phyl absorption and is thus a key band in the discrimination of vegetation
class, was deemed by this program to be of use. This is perhaps soubecause
the separation of classes in this band is still greater than the noise
content of the band. - )

Next, with the aid of one- and two-channel signature plots and outputs
from computer prdgrams which measure pairwise probabilities of misclassification

" and also estimate theoretical performance matrices for sets of signatures, the

signature set was reduced from 24 to 15 signatures. :Six of the signatures
were simply dropped: the three urban signatures because they were deemed to

be primarily mixtures of grass, soil and trees and also because there were

38




D ERM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

TABLE 3.3 SDO RANKING BASED ON OPTIMUM BAND CRITERIA

RANK 1 2 |3 }& |5 6 7 8 |9 |10 12 12

spo # 19 12 |2 8 10 {17 20 6 |4 |14 21 22

A (pm) .93- |1.5-|.50-|.66-{.770 |{1.15- {1.03-] .60-}.54-12.1~} 10.2- .40~
1.05 1.7 |.55 |.73 |.89 |1.28 |1.12 | .65 |.60 |2.34] 12.5 .45

CUMULATIVE

PAIRWISE

PROBABILITY OF 21 |.10 l.07 |.056}.048 |.039 |.034 | .031}.028|.026} .024 .022

MISCLASSIFICATION

no other urban features in the test site to test them on, the clover
signature because it was very similar to some of the grass signatures and
there was no other clover in the test site, and the stubble and Pasture

7 ciusters were found to be redundant with some of the grass clusters.
Signatures combined on the basis of spectral similarity were: Pasture 8
with Pasture 10; Grass 6 with Pasture 9; and Grass 3 with Weeds.

This reduced set of signatures was input to Program STEPL for a final
calculation of optimum bands. As reported in Table 3.4, the rank ordering
is almost the same aithough the pairwise probability of misclassification
has increased slightly, due to the several combination signatures in the set.
Seven bands were selected for processing using a rule of thumb which says to

select n channels where the decrease in the probability of misclassification

.1s less than .005 between n channels and n+l channels.

3.1.3 CLASSIFICATION RESULTS OF §-192 AGRICULTURAL DATA SET
The signature set described in the previous sections was applied to
classify all 90 sections in the agricultural data set. Two bases for evalua-

tion were used to.analyze the results. The first basis was the pixel-by-pixel
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TABLE 3.4 FINAL SELECTION OF OPTIMUM BANDS

RANK 1 2 3 4 5 6 7 8
SDO 12 19 2 10 17 8 20 4
A (um) 1.50- |.93- | .50- | .770 | 1.15- | .660 | 1.03- | .54-

1.70 |1.05 | .55 .89 1.28 .73 1.19 .60

PROBABILITY OF
ﬁISCLASSIFICATION .21 11 .088 .070 | .058 .050 | .043 .039

classification results for pixels of known class, i.e., the previously
identified field center pixels. The second was an analysis of proportion
estimation as taken from aggregated classification counts, which provides
a more overall evaluation of the classification results.

Tables 3.5 and 3.6 present performance matrices for just the field
center pixels in the north and south areas, respectively. The bottom lines
of the tables show the total proportion of field center pixels classified
to each recognition class, and present the ground truth proportion for
comparison. Finally, estimates of the overall classification rates are
offered. ‘

Examination of the performance matrices shows that overall performance
is only fair. One major problem is the high percentage of corn pixels
being classified as trees/brush, as well as a large number of other pixels
being classified as corn. The trees/brush classification is especially

- disappointing. Investigation of this showed the classes to be, simply, very
similar spectrally. Some,of;the other apparently false récognitions 2re not
entirely spurious. Several of the stubble pixels could indeed be bare or
almost bare soil for example, or some of the brush pixels might be'weedy or

pasture spots in low density brush areas. In comparing the south area to
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TABLE 3.5

GROUND TRUTH NO.

CLASS PIXELS
CORN 344
FORAGE 474

(GRASS 398)

(ALFALFA 23)

(STUBBLE 53)
TREE/BRUSH 92

(TREES 24)

(BRUSH 68)
BARE SOIL 38
SOYBEAN 19

TOTAL 967

GROUND TRUTH (%)

RMS Error in Proportion

FROM NORTH 40 SECTIONS

" PERFORMANCE MATRIX FOR CLASSIFICATION OF FIELD CENTER PIXELS

PERCENT OF FIELD CENTER PIXELS ASSIGNED TO RECOGNITION CLASS:

CORN
73.0
8.9
(7.3)
(21.7)
(15.1)
26.1
(4.2)
(33.8)
13.2

31.6

33.9

35.6

FORAGE TREE/BRUSH BARE SOIL  SOYBEAN UNCLASSIFIED
6.4 18.1 0.3 1.7 0.6
81.4 3.8 3.6 1.7 0.6
(83.7) (4.6) (2.5) (1.3) (0.8)
(69.5) (0.0) (0.0) (8.7) (0.0)
(69.8) (0.0) (13.2) (1.9) (0.0)
17.4 51.1 0.0 0.0 5.4
(20.8) (75.0) (0.0) (0.0) (0.0)
(16.2) (42.6) (0.0) (0.0) (7.4)
7.9 0.0 79.0 0.0 6.0
10.6 0.0 0.0 57.9 0.0
44.4 13.1 5.0 2.6 1.0
49.0 9.5 3.9 2.0 0.0

Overall Percent Correct Classification of Pixels =

75.0%

Estimation (%) = 2.57 (Excluding Urban)

(Excluding Urban)

A3
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GROUND TRUTH
CLASS

CORN
FORAGE
(GRASS 264)
(ALFALFA 20)
(STUBBLE 71)
TREE/BRUSH
(TREES 269)
(BRUSH 39)
BARE SOIL
SOYBEAN

FIELD SEAN

TOTAL

GROUND TRUTH (%)

NO.
PIXELS

549

355

308

43
52

56

1363

TABLE 3.6  PERFORMANCE MATRIX FOR CLASSIFICATION OF FIELD CENTER PIXELS
FROM SOUTH 50 SECTIONS USING SIGNATURES OBTAINED FROM
40 NORTHERN SECTIONS :

PERCENT OF FIELD CENTER PIXELS ASSIGNED TO RECOGNITION CLASS:

CORN
76.1
23.9

(21.6)
(80.0)
(16.9)
31.5
(32.7)
(23.1)
4.7
15.4

67.9

47.5

40.3

RMS Error in Proportion Estimation (%) = 3.97

Overall Percent Correct Classification of Pixels =

FORAGE TREE/BRUSH  BARE SOIL SOYBEAN  UNCLASSIFIED
8.0 14.0 0.0 1.8 0.0
68.7 2.0 3.9 29.0 0.0
(74.3) 2.7 (0.0) (1.5) (0.0)
(20.0) (0.0) (0.0) (0.0) (0.0)
(62.0) (0.0) (19.7) (1.4) (0.0)
- 12.3 51.9 0.0 2.6 1.6
(8.6) (55.8) (0.0) (1.1) (1.9
(38.5) (25.6) (0.0) (12.8) (0.0)
30.2 2.3 62.8 0.0 0.0
65.4 0.0 0.0 19.2 0.0
28.6 3.6 0.0 0.0 0.0
28.6 18.1 3.0 2.4 0.4
26.0 22.6 3.2 3.8 4.1
63.0%

Wi

NYOIHDIW 2O ALSHIAINA IHL 'STHOLYHOBYTINNY MOTUM ATHINNOS



Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

the north, it is seen that the forage subclasses in the south area dis-
tinctly fall off in terms of classification accuracy, with most of the
incorrectly classified pixels being called corn and soybeans. Soybean
recognition also suffers. However, it was noticed in the aerial photo-
graphy that soybeans were a highly variable ground cover for the data:set
at this time of year. There are probably too few soybean pixels in the
sample to give an accurate accounting of the classification performance.

The analysis of the proportion estimation results for both north and
south areas are presented in Table 3.7. These results are the classifi-
cation counts over all pixels in each area. Given in the table for each
area and ground class is the ground truth proportion; the proportion of
pixels in the area classified as that class; and the RMS error of the
estimate. _

The striking features of this table are that corn is overestimated,
and that the error rate is larger in the nonlocal (south) area.:

Conclusions regarding these classification results will be given in
Section 3.3, where comparison can be made with results obtained from pro-

cessing aircraft scanner data from the same site.

3.2 RESULTS OF PROCESSING M-7 AGRICULTURAL DATA SET

For purposes of comparison with the S-192 data processing results,
training and classification was carried out for the M-7 acquired data for
a small 1.5 square mile area. The area selected for training and testing
was located at mile three from the beginning of the flight line, line 2.
(A complete description of the data, digitization and preprocessing is

given in Appendix V.) " This region was chosen because it was the first

" area in the data set which contained several large contiguous areas of

corn, soybeans, woodlots and bare soil. All fields within the area were
identified and used in this exercise. The classes, number of fields and

number of pixels for each class appear as part of the results in Table 3.9.
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TABLE 3.7  GROUND TRUTH PORPORTIONS AND RECOGNITION
ESTIMATES FOR LOCAL (NORTH 40) AND NONLOCAL
(SOUTH 50) RECOGNITION OVER LARGE AREAS

North 40 Area 5 __South 50 Area
. A * o % %
Ground Cover Ground Recognition RMS Error Ground Recognition RMS Error
Class Truth Counts . by Class Truth Counts by Class
Corn 26.57% 36.87% 13.8 33.3% 48.0% 17.0
Trees/Brush 17.2 14.3 7.3 16.5 13.3 7.2
Forage 47.4 40.5 9.7 35.5 30.9 11.0
Bare Soil 7.2 5.4 4ok 7.2 3.3 7.4
Soybeans 3.7 2.4 5.0 . 4.0 . 4.4 5.6
Other 3.1 0.4 5.9 4.7 0.0 7.8
RMS Error! 4.66% 6.89%
. 1/2
*RMS error was calculated as: E - (L Z P.. - p )2
*  “RMSj no i i 1j
for: j = Class j

Number of agricultural sections used

=]
L]

pij = True proportion of class j in Section i

Estimated proportion of class j in Section i

1/2
TRMS error was calculated as: E = 1 2 (P -p )2
RMS i 3

for m classes and j, pj and ﬁj as above,
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3.2.1 TRAINING PROCEDURES

Initial training for the M-7 data was accomplished by using an unsuper-
vised clustering technique to process every ninth pixel in the area. This
technique yielded 59 clustefs. The output graymap of cluster assignments
was examined and an association was established between clusters gnd actual
ground covers. It was shown that four major object classes (corn, soybeans,
trees, and hay) were represented by very few clusters, while the various
other ground covers such as weeds, bare soil, cut hay, senescent vegetation,
pastures, farmsteads, etc., which display a wide degree of variabiiity,
were represented by 85% of the clusters., By examining the statistics for
the cluster groups we were able to generalize thevlarger of these clusters

into eight broad classes, as noted in Table 3.8.

TABLE 3.8 COMBINING CLUSTERS BASED ON REPRESENTING
COMMON OBJECT CLASSES ’

Total No.
Class No. of Clusters of Points
1. Com 2 2006
2. Soybeans 3 217
3. Trees 3 566
4. Hay 1 1771
5. Sparse
Vegetation 8 252
6. Grass 4 889
7. Bare Soil 9 : 305
8. Dark or Wet
Bare Soil 6 301
TOTAL ~ 36 .. 6307
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Next the statistics (means and standard deviations) for the clusters
in each group were combined to yield one signature for use in classification
processing. In order to reduce classification costs, it was necessary to
combine the clusters so as'to greatly reduce the number of training signatures
used in classification processing. Also, it was felt that for this data no

loss of accuracy would result since it appeared from our analyses that there
was very little overlap between class groups of clusters. As an additional

safeguard, the program which calculates the new signature first performs a
X~ test on each signature to measure its distance (in a probability sense)
to the mean of the other signatures in the group and rejects signatures if
the distance 1s too large. .

The subset of seven bands chosen for processing this set of data are
as follows (listed in order of increasing wavelength): 2 (.46-.49 pm);
3 (,48-.52 ym); 7 (,58~.64 um); 9 (.67-.94 um); 10 (1.0-1.4 um);

11 (1,5-1,8 ym); and 12 (9.3-11,7 ym),
The data were then classified and evaluated. It was found that the
overall classification rates were only fair and there was a major problem
with tree false alarms in corn fields and also corn false alarms in tree
areas. Further tests showed that these problems were not a result of having
.combined the individual clusters -~ in fact classifying with the separate
corn and tree clusters produced slightly poorer results.
As a final investigation, "élassical" training techniques, that is
calculation of a set of training statistics for each individual field using
all ;he pixels in that field, were used for all corn fields, soybean fields,
and woodlots. The set of signatures for each class were combined, after
,first omitting "outlying" signatures, (signaturgs whose mean was further

than a sﬁecified distance from the mean of thlie combined signatures). It

was found that signatures thus discarded were from anomalous fields —- so-called
tree areas which were pasture with somevtrees, a soybean field that was vefy
weedy or uneven in gfound cover, etc., The final set of eight sigﬁaﬁures
therefore included five signatures derived from clustering and three

signatures derived from the more “classical" approach.
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Results using this set showed a marked increase in correct classifi-
cation and are presented in Table 3.9. It was noted that the tree-corn
confusion problem, though still evident, involved significantly fewer
pixeis than previously. In comparing the recognition map to aerial photo-
graphy, many cases were noted where apparently incorrect classifications
in a corn or soybean field, for example, were matched with spots of dead
crops or weeds in the fields. Thus we arrive at a problem in trying to
assess classificatinn results using only classification counts: nonhomo-
geneous recognition in a nonhomogeneous area thought to be homogeneous,
is 1likely to be correct classification. Therefore, it is believed that
the numbers displayed are an understatement of the correct classification
rate. Also pertaining to the interpretation of Table 3.9 is the observation
that more anomalous ground covers, such as weeds or pasture, would be
correctly classified if called any one of a number of training classes
such as weeds, sparse vegetation or hay.

Because of time limitations we were not able to classify the entire

data set to compare with the §-192 data set.

3.3 COMPARISON OF CLASSIFICATION RESULTS
Examination of the 5-192 and M-7 classification results, Tables 3.5,

3.6 and 3.9, shows that the M-7 classification was'substantially better
than that accomplished using the S~192 data especially as regards tree
recognition. This is not too surprising considering the problems caused
in the S-192 data by coarser resolution cell size and atmospheric effects
due to the longer path length for reflected radiation to reach the SKYLAB
sensor. Also, five of the seven bands used in processing the M-7 data

- were not useable in the S5-192 data set due either to excessive noise or

to limited dynamic range for the data in those bands. Thus it is
perhaps unfair to compare results obtained from the two sensors.
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TABLE 3.9 PERFORMANCE MATRIX FOR M-7 MULTISPECTRAL SCANNER CLASSIFICATION
OF TRAINING AREA FOR FIELD CENTER PIXELS

. LIGHT DARK
GROUND TRUTH SoY- SPARSE = BARE (WET)

CLASS # FIELDS # PIXELS CORN BEANS TREES HAY GRASS VEG. SOIL SOIL UNCLASSIFIED
Corn 10 5767 85,0 0.9 6.4 4,3 3.2 0.5 .0 .0 : .0
Soybeans 6 2248 4.5 77.0 3,2 2,9  12.4 .0 .0 .0 0’
Trees 8 2139 1,6 0.3 88,9 4,5 1.8 0.4 2.2 0.3 .0
Hay 7 3379 2,5 5,2 4,8 8.9 0,5 0.1 0 .0 .0
Weeds 6 4371 10.3 .3 5.9 27,7 22.0 5.1 25.5 2.8 .0
Pasture 5 1526 8.7 .0 .5 1.3 79,7 8.6 1.0 1 .0
Pasture/Woods 8 820 9,6 2.4 38.4 14.5 - 31.2 3.3 .5 .0 .0
Alfalfa 1 119 .0 72.3 0 27,7 .0 .0 .0 .0 .0
Grass 2 394 5.3 0.8 6.3 0.8 79.4 2.5 4.3 0.5 .0
Bare Soil 7 1741 1.1 0.1 0.8 .0 5.0 11.1 24.2 57.6 .0
Field Beans 2 371 10.2 .0 3.8 1.1 1l4.6 66.3, 1.1 3.0 .0

k"'w"‘v ...__,_/ NPT s
TOTALS 62 22873 25.5 9.1  13.6 39.6 12.2 .0
'GROUND TRUTH (%) 25.2 9.8 9.4 48.0 7.6 .0

Overall Correct Classification = 84.1%
RMS Error in Proportion Estimation = 4.77%
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However, an illustration which would point up the differences in the
data collected, and hence the differences in the performance of the scanners
could be effected via a comparison of the manner in which signals from the
various ground classes £ill up the signal space. This can be shown by

using a sequence of two-dimensional ellipse plots. For simplicity,

presented here are two such plots for each scanner. In each plot, Figures
3.1, 3.2 for the $-192 data and Figures 3.3 and 3.4 for the M-7 data,
the channels displayed are the best bands for discrimination. What is
plotted is the two-dimensional contour ellipse for a chi-square value of
one. The scale of the plots differs for the two scanners -- the S-192
plots are twice the scale of the M-7 plots.

It is seen from comparing these figures that the S-192 data overlap
a considerable amount, that is, the signals are compressed into a small
portion of the available signal space. The ellipses shown are for a chi-
square value of one meaning that only about 40% of the population of a two-~
channel distribution lies inside the ellipse as drawn (assuming the
distributions to be Gaussian). It is readily apparent, then, that the 60%
of the pixels outside the ellipse of the correct class will lie inside the
ellipse of some other, probably incorrect class. It'is surprising that the
processing results were as good as they were. For the M-7 data, noting the
change in the scale of the plots, it is seen that the ellipses are spread
about a larger area of the signal space and are also somewhat distant from
each other, The closeness of tree and corn distributions in each case
indicate why this pair of classes was so troublesome,

In conclusion, it has been shown that the limited range of the data or,

. viewing it another way, the compression of the signals into a small portion

of the signal space, is responsible for the high confusion rate in classifying
the S-192 data. ' '
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BARE SOIL

FIGURE 3.2
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TWO-DIMENSIONAL SIGNATURE PLOTS FOR S§-192 AGRICULTURAL DATA
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4

EFFECTS OF CHANNEL-TO-CHANNEL SPATIAL MISREGISTRATION ON
RECOGNITION ACCURACY OF SKYLAB S-192 DATA

4.1 THE PROBLEM

The fact that Skylab S—1§2 data are spatially misregistered has been
established. Scan-line-straightened data in particular is more severely
misregistered than conic data as is described in Section 2.1.3. A significant
issue to be examined here is whether this misregistration is a cause for
concern with regard to the recognition accuracy achievable using these data.
To address this problem two techniques were eméloyed. The effects of channel-
to-channel misregistration were examined analytically and through a simulation
technique. Two experiments were designed to implement the simulation technique.
One experiment concentrated on the effects of misregistration on field center
pixels and a second experiment investigated the effects on border or mixture
pixels. Though it was found that misregistration has an insignificant effect
on the recognition accuracy of field center pixels, it was determined that the
availability of these pixels was markedly reduced. That is, with the introduction °
of misregistration, fewer pure fiéld center pixels exist. As a result, the
classification of mixture pixels (pixels whose signals were derived from two or
more ground covers) was an important concern. It was determined that the correct
classification of mixture pixels deteriorated with the introduction of misregis-
tration. Misregistration could adversely influence the false alarm rate of
ground classes .witich adversely affects the accuracy of standard proportion

"~ estimation techniques.

4.2 THE APPROACH

In order to facilitate the analysis of the effects of channel-to-channel
spatial misregistration, §-192 resolution elements may be divided into four
categories as illustrated in Figure 4.1. These are: (a) pure field center
pixels can be misregistered but remain field center pixels; (b) pure field

center pixels can be misregistered so those channel(s) out of registration
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CROP W CROP O
ICHAN 1
(a) 2
3
1
(b) )
3
1
(c) 2
3
. 1
(d) , )
3

FIGURE 4.1. ILLUSTRATION OF FOUR RESOLUTION ELEMENTS MISREGISTERED
ALONG THE SCAN LINE ONE-HALF PIXEL IN CHANNEL 2 OF THREE
DATA CHANNELS .(OFFSET IN THE VERTICAL DIRECTION FOR
ILLUSTRATIVE CLARITY).
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become mixtures of two or more crop types;‘(c) mixture pixels can be misregistered
so channel(s) out of registration represent different mixture proportions;
and (d) mixture pixels can be misregistered so those channel(s) out of registration
become pure field center values. :

In the analysis of the effects of channel-to~channel spatial misregistration,
pixels falling into category (a) were examined separately from those in (b),
(c) and (d). Two techniques were employed in the analysis of the effects upon
pure field center pixels that are misregistered but remain field center in all
channels (category (a)). The first, an analytical technique, examined a simplified
data structure studying the effects of misregistration within a context of two
signatures with a common covariance. The second technique employed was one baseé
on the simulation of the effects of misregistration. A simulation was also carried
out in the analysis of the effects on pixels of the above mentioned categories
(b), (c) and (d).

A simulation technique was decided upon in order to quantify in some
manner the effects of misregistration on a given §~192 data set, Given a
signatures set from registered data, the problem was to determine in what
manner the signatures would be affected by the introduction of a known degree
of misregistration., Signatures were to be simulated representing not only
pure field center statistics of misregistered data, but also border pixel
statistics. Signatures were manipulated rather than the actual data in order
to simplify the amount of processing required.

A subset of five signatures from the agricultural processing set used in
Section 3 were used as the basis for the simulation. These signatures
represented ground covers corn, tree, grass, bare soil and brush. The same
seven bands of data previously selected were used here; these were SDOs (2, 8,
10, 12, 17, 19, 20). It wa: assumed for purposes of simulation that data
from which the.signatures were generated were perfectly registered from
channel-to-channel. From these initial signatures many signatures were
generated representing a varilety of distributions as affected by varying degrees

of misregistration. When more than one channel was misregistered in simulation
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each was misregistered from the original set by the same degree. Two different
sets of processing were carried out. One examined the effects of misregistration
of three S-192 channels and the other was a simulation of the misregistration

of a single S-192 channel.

Once a variety of misregistered distributions were simulated, several
analyses were carried out, These were (1) an analysis of the effects of
misregistration on the expected recognition performance matrix of misregistered
field center pixels, (2) an analysis of the expected classification performance
for mixtures of two crops at varying degress of misregistration, and (3) an
examination of the effect of misregistration on the availability of field
center pixels.

Presentation of the above analyses will first concern the effects of
misregistration on field center pixels that remain field center in all channels
even after misregistration and Secondly the analysis of the effects of spatial
misregistration on border and near border pixels will be discussed.

4.3 THE EFFECT OF MISREGISTRATION ON RECOGNITION ACCURACY OF FIELD CENTER

PIXELS THAT REMAIN FIELD CENTER IN ALL CHANNELS EVEN AFTER MISREGISTRATION

The analysis of this section deals with an examination solely of field
center pixels that remain field center in all bands even after misregistration.

4,3.1 RESULTS OF THE ANALYTICAL ANALYSIS OF THE EFFECTS OF

MISREGISTRATION ON FIELD CENTER PIXELS

Insight was gained into what effects spatial misregistration may have on
field~center recognition performance first through an analytical analysis of
" the problem. This analysis examined two normal distributions with common
covariance for any number of channels of data, The conclusions of. the analysis
were intriguing., Where 'common sense' might dictate the hypothesis that
misregistration would hurt field-center recognition performance, the model
studied indicated that quite the opposite could be true, Under certain
circumstances misregistration could actually improve results in the classification

of field center pixels,
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examined error rate of classification as a function of correlation (p). It

was determined that a unique maximum error rate is reached somewhere between
-1 <p <1, Figure 4.2 plots error rate ¢ as a function of correlation p in
a conceivable manner as determinediby the analysis. Misregistering data will
cause correlation to tend to zero. Therefore, should the given correlation A
between the two stated distributions lie in the range 0 < A < Perit <1 for

perfectly registered data, then by misregistering the data the expected error
rate would actually decrease in value. A full presentation of the analytical

analysis is presented in Appendix IX.

FIGURE 4.2 ERROR RATE OF RECOGNITION ¢ AS A FUNCTION
OF CORRELATION p IN FIELD CENTERS

In order to test the hypothesis of the analytical analysis in a more realistic
data processing situation whére there are more than two signatures, each with
a distinct covariance matrix, a simulation model was developed to empirically
analyze the effects of channel-to-channel spatial misregistration on the

correct classification of field center S-192 resolution elements.
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4.,3,2 THE FIELD CENTER RESOLUTION ELEMENT MISREGISTRATION MODEL

The simulation model presented in this section describes the effect of
misregistration of field center pixels that remain field center pixels in all
channels even after misregistration., The means and standard deviations of
pure field center pixels are not affected by misregistration. Hence the
model does not modify these statistics, Correlations are the statistics
that are affected.

Analyses were made by Horwitz [8] and Coberly [9] of the correlation
between ground elements studied as a function of the distance between the ground
elements. Though both were studies of aircraft data, conclusions were drawn
for LANDSAT size resolution elements. They determined that the correlation
between LANDSAT size pixels drops exponentially as the distance between
the pixels increases. In effect, two adjacent LANDSAT or S$-192-sized pixels

are virtually uncorrelated.

In effect a misregistered scanner channel is measuring a signal displaced
from the center of focus of the registered channels. Hence the correlation
between two channels which are not registered would be less than the corresponding
correlation had both channels been registered. The above mentioned amalyses
indicate that pure field center signatures derived from misregistered data
are less correlated in those channels out of registration than field center
signatures derived from corresponding registered data.

The model chosen to simulate this effect is one that estimates the
decorrelation as a linear function of misregistration, This estimate is a
more conservative measure of the effect than the previously mentioned
éxponential drop measured in aircraft data. However, since $-192 resolution
ié.not as fine as the aircraft resolution considered, this more conservative
estimate was deemed’more appropriate, k

Given a perfectly registered distribution Sp with mean Ap and covariance Cg.

For SR with some channel or channels misregistered, it would have the same

is

mean vector but a different covariance C,,. Any term of C,, say ¢ .
M M 53Y Cyi,4

related to a term of CR in the following manner,
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CMij = cRij for i=j

CMis T CRis for i¥] and i and j registered with respect
J J. to one another, i.e., R=l.

cMij = BcRij for i#i, 0<f<l and i,j misregistered with

respect to one another,

where

B is dependent linearly on the degree of misregistration.

B was simply chosen to equal the degree of misregistration between two
channéls. For example if two channels i and j were misregistered by one-half
pixel with respect to one another, then the correlation between i and j,

CMi i’ was simulated to be one-half the measured correlation between i and j

9
in the registered signatures.

4.,3.3 THE EXPERIMENTAL DESIGN
Appendix VII describes the experiment carried out in full. For purposes
of clarity the following experiment summary is presented.
Five 5-192"field "center signatures representing the distributions of
tree, corn, grass, bare soil and brush classes were selected for use in the
implementation of the experiment. Using the simulation model discussed in
the previous section, signatures representing field center distributions
misregistered by factors of 1/3, 1/2, 2/3 and 1 whole pixel in the SDOs 2,
12 and 17 were simulated (See Appendix I for wavelengths). These three SDOs
were chosen because they were found to be the three best channels for purposes
of discrimination for the given signature set. Thus we are calculating «n upper
bound to the errors caused by misregistration. 'An expected performance matrix
was calculated for each of the four sets of simulated signatures along with
the original signature set using the program PEC described in Appendix XI. ;
The same processing was carried out using the best channel for discrimination,
SDO 12, as the only misregistered channel. This was an attempt to measure the

sensitlvity of classification results as a function of the number of chaunnels

misregistered.
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4.3.4 RESULTS OF FIELD CENTER ANALYSIS

The analytical analysis described in Section 4.3.1 concluded that channel-
to-channel spatial misregistration would not necessarily cause field center
classification accuracy to deteriorate. However, it did not provide a
measure of just how sensitive classification performance on field center
pixels might be to misregistration. Therefore, the simulation technique
was employed in an effort to quantitatively assess a classifier's sensitivity
to misregistration. Keep in mind that both the analytical analysis and the
empirical evidence gathered from aircraft data pertain only to those field
center pixels that remain field center after misregistration.

Tables 4.1 and 4.2 display results calculated for simulated misregistrations
of three channels and one channel, respectively. The rew labelled "0 pixels"
represents the expected performance of the data set as is, without misregistrationm.
The results displayed in these tables seem to support the hypothesis that
misregistration need not be harmful to the recognition performance of field
center pixels that remain field center after misregistration. Note that, in
both Tables 4.1 and 4.2, the total expected classification for the given
signature set diminishes slightly (by 0.22%) for misregistration of up to
one-half a pixel but as more misregistration is introduced, the performance
improves slightly (0.44 to 1.0%) above the beginning value.

Examination of the simulation results on a crop-by-crop basis leads
to further observations. First, not all the crops behaved in a like manner
as misregistration was introduced. In Table 4.2 bare soil retained a somewhat
constant expected performance whereas grass experienced a loss of .2% at
B = 1/3 and then steadily improved from 81.1% to 84.2% at B = 1. Corn, on
the other hand deteriorated up to B = 1/2 and then improved. The expected
recognition of trees deteriorated up to B = 2/3. Secondly, in comparing
Table 4.1 and Table 4.2 on a crop-by-crop basis, one detects more sensitivity
in the misregistration of one channel in more cases than in the misregistration
of 3. Most pronounced is grass which improved from 81.3 to 82.8 in Table 4.1,
and from 81.3 to 84.2 in Table 4.2. Interestingly, corn deteriorated in Table
4.2 up to B = 1/2, while it improved in Table 4.1.
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TABLE 4.1. EXPECTED PERFORMANCE OF S-192 SIGNATURES
FOR VARYING DEGREES OF MISREGISTRATION OF
Spo's 2, 12 and 17.

DegrSe of
Misregistration Expected Recognition Accuracy (%)
Tree Grass___ Bare Brush Corn Overall
0 pixels 96.5 81.3 97.9 77.2 77.9 86.16
1/3 96.3 80.3 - 98.2 76.8 78.2 85.96
1/2 96.1 Bl.1 98.1 76.0 78.4 85.94
2/3 96.2 81.8 98.1 76.0 79.0 86.22
1 96.7 82.8 98.7 76.4 78.4 86.60

TABLE 4.2. EXPECTED PERFORMANCE OF $-192 SIGNATURES
FOR VARYING DEGREES OF MISREGISTRATION OF

Spo 12.
B
Degree of
Misregistration ~ Expected Recognition Accuracy

Tree Grass __Bare Brush Corn Overall
0. pixels 96.5 81.3 97.9 77.2 77.9 86.16
1/3 95.6 8l.1 97.7 78.5 76.7 85.92
1/2 95.2 81.5 97.7 79.0 76.4 85.94
2/3 95.2 82.0 97.6 79.7 76.8 ' 86.26
1 95:7 8.2 97.7 80.9 77.3  B87.16
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Three conclusions can be drawn from these results: (1) as was
hypothesized, misregistration is not necessarily harmful to the recognition
performance of field center pixels that remain field center in all channels
after misregistration, (2) though results may both decay or improve,
depending on the degree of misregistration, the expected performance of the
classifier was found here to vary only plus or minus one percent of the
total for registered data and at most three percent on a crop~by-crop basis,
and (3) the semnsitivity of the classifier to misregistration did not appear
to be a function of the number of channels misregistered. In fact, more change
in classification was detected with only one channel misregistered than with three.

The fact that misregistration is expected to in some cases improve
recognition accuracy among field center pixels should not suggest using
misregistered data or actually misregistering data to improve recognitiom.
Though the recognitioﬁ of certain field center pixels may actually improve,
evidence presented in the next section will indicate that other more serious
problems are confronted with the introduction of misregistration. Deleterious
effects can be detected among border pixels and field center pixels that are
mixtures in the misregistered channels.

4.4 THE EFFECTS OF CHANNEL~TO-CHANNEL SPATIAL MIGREGISTRATION ON

BORDER AND NEAR BORDER PIXELS

This section deals with the category of pixels consisting of field center
pixels that become mixture pixels in those channels that are misregistered as
well as border or mixture pixels. Within this overall category the most

deleterious effects of misregistration are encountered.

4.4.1 THE AVATLABILITY OF PURE FIELD CENTER PIXELS

Channel-to-channel spatial misregistration reduces the availability
of pure field center pixels. Figure 4.3 displays several representations
of three channel resolution elements. Pixel (a) is the appearance of a
pixel registered in all channels. It appears as a pure field center pixel

in cover type W. If this pixel were misregistered by one whole pixel in
channel 2 in the right to left direction it would appear as (b). The pixel
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CROP W CROP 0
2 pixels
chan 1
(a) :
2 perfectly registered
pixel in all channels
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1 : misregistered
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FIGURE 4.3, ILLUSTRATION OF HOW CHANNEL-TO-CHANNEL
MISREGISTRATION AFFECTS AVAILABILITY
OF FIELD CENTER PIXELS
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TABLE 4.3. DISPLAY OF THE NUMBER OF PURE FIELD CENTER PIXELS
AVATLABLE FOR VARYING DEGREES OF MISREGISTRATION

NUMBER OF FIELD CENTER PIXELS AND PERCENT OF TOTAL FOR:

TOTAL PIXELS NO ONE~HALF
INCLUDING MISREG~ PIXEL ONE-PIXEL
MIXTURES ISTRATION MISREGISTRATION MISREGISTRATION
# % # % # %

CORN 3641 1526 41.9 1054 28.9 537 14.7
BRUSH 820 341 41.6 227  27.7 117 14.3
TREE 490 175 35.7 105 21.4 41 8.4
GRASS 2922 1250 42.8 896 30.7 491 16.8
BARE 653 222 34.0 140  21.4 55 8.4
STUBBLE 1081 391 36.2 247  22.8 100 9.3
OTHER 706 296 41.9 209 29.6 119 16.9
TOTAL 10313 4201 40.7 2673 27.9 1460 14.2
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is still fully in Crop W but now channel two is detecting a signal displaced
an entire pixel from the registered location. Pixels (c), (d) and (e)
would all have been pure field center pixels had no misregistration been
introduced. These pixels are now mixtures in channel 2 of covers W and O.
In fact, pixel (e) is 100% cover 0 in channel 2, whereas it is 100% cover W
in channels 1 and 3. This effect of misregistration causes fewer pixels to
be pure field center in all channels.

Table 4.3 indicates for the given S-192 data set the availability of
pure field center pixels as a function of the degree of misregistration. For
a given misregistration B, any pure field center pixel within 2B of the
border lies within a sensitive region. The signals detected for these
pixels will be mixtures in the misregistered channels. Table 4.3 was
calculated using only the larger fields (greater than 17 acres) from the $-192
Southeast Michigan agricultural test site with a program designed to count field
center pixels given a set of polygon field designations, To determine how
many pure field center pixels would be available for a misregistration of B,
each field polygon was inset by B pixels and the available field center pixels
counted with respect to the new field designation, .

It is obvious from Table 4.3 that the availability of field center
pixels deteriorates rapidly with increased misregistration. Column 2
indicates the number of available field center pixels with perfect misregis-
tration. The third column indicates that with the introduction of 1/2 pixel
misregistration along the scan line the total number of field center pixels
diminishes by 1323 or 31.5%. Another 1/2 pixel misregistration reduces the
total number of available pixels by another 34% from those available initially.

The evidence of this analysis adds great weight to the need to study
the effects of misregistration on mixture pixels. Though misregistration
may have no significant effect on pure field center signatures as concluded
in the previous section, the diminished existence of pure field center pixels
makes both the extraction of creditable field center statistics more
difficult and the analysis of the effects of misregistration on mixture

pixels more significant,
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4.4,2 THE SIMULATION MODEL DEVELOPED FOR BORDER AND NEAR BORDER PIXELS

§-192 resolution elements lying on field boundaries are mixtures of two
or more ground covers. Due to misregistration, certain channels of field
center resolution elements may also represent mixtures of two or more covers.
The concern was to develop a mathematical model that would enable an analyst
to describe any distribution from a misregistered data set srising from
mixtures of at most two crops, based on the signatures of the pure field
center crops. The model developed incorporates features of the ERIM mixtures
model.*

An n-channel multispectral signature for material W consists of a mean
vectér Aw-with components ay where i=1,..,n, and a covariance matrix

Cw with components ¢ for each i=1,...,n and j=1,...,n.

Consider the ca:i’ihere the signal detected in one or more channels
represents a mixture of ground cover W and some other ground cover 0. The
following is the model used to construct the signature of mixture pixels
from the pure signatures of W and O.

Let aw be the proportion of cover W present for each pixel and 0L»°=1-0Lw

the proportion of cover 0 present for each pixel., If the pixel were of pure

cover W then aw

and O consists of components:

1. A mean vector Am of a mixture distribution of crop W

Ami = OLwi Awi + (1_awi) Aoi (4.1)

where i denotes the spectral channel.

The definition of a term Cm. j of the variance-covariance matrix is:

1,
Cmi,j =a . Cwi,j‘+ (l—awi)coi,j (4.2)
Whenever i=j the channel variance term O;i would be:
2 _ 2 2
Omi - Gwiowi +a cwi) 0oi , (4.3)

Given any two distributions then, one can approximate mixture distributions

in any proportion of the two crops using Equation (4.1) and (4.2).

*The misregistration-mixtures, model discussed here was developed for
NASA/JSC under [17] and current contract NAS9-14123,
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With the occurrence of spatial misregistration between channels, Eq. (4.2)
should not be used to estimate covariance between channels that are not in
registration with respect to one another. If the pixel in question had been
a field center pixel of cover .W lying near the border or represents a mixture
of covers W and O and if two channels, say 1 and j, are not in registration
with respect to one another; then the following model can be used to
approximate the distribution.

Let awi be the proportion of cover W present for each pixel in chanmnel
i and %oy = l—uwi the proportion of cover O present for each pixel in channel 1i.

For the misregistered mean vector AM’ use Equation (4.1). Then for the definition

of a term CMi,j of the variance-covariance matrix, use:
cMi,j = min(uwi,awj) * cwi,j + min(aoi’aoj) * coi,j 4.%)
cMi,j = min(awi,awj) * cwi,j + [l-max(awi,awj)] * coi,j 4.5)
Whenever i = j, the variance term is given by
Oii T %t ¥ Cwi,s T %) ¥ Coyy (4.6)

Letting oi represent the channel i variance, with appropriate subscripts
we have:

2 2 2
OMi = %i%it %i%1 4.7

This expression is equivalent to the mixture variance estimation model,
Eq. (4.3).
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Equation (4.5) describes in full the estimated covariance between any two
channels of data that are being simulated under the stated model. Diagonal
terms of the variance-covariance matrix (the channel variances) are described
by Eq. (4.7). Let us here consider the correlation terms between channels
in an attempt to more fully describe and justify the underlying assumptions

made in arriving at this simulation model.

(a) Perfectly RLbLatchd (b) Misregistered
Other‘ Wheat . Other, Wheat
:E] ¢ 4 = 1 for 1 Oy = 1
_E_ all i 2 o = 1
3] 3 %ws” 1/2
_1:_ 4 Qs =1
5 l5 s = 1/2
6 l6 | oy =576
I

{

» I K3 )
Figure 4.4. - An Fxample of Channel Misregistration
for a Single Resolution Element

Figure 4.4 displays a possible configuration of the composite signal
received by six different channels while focusing on a single resolution
element. Figure 4.4(a) indicates that all six channels are focused on
precisely the same location, a borderline resolution element of wheat. This
indicates a perfectly registered vector of signals, Figure 4.4(b) indicates
a vector wherein channels 3, 5, and 6 were misregistered and actually

viewing mixtures of wheat and other,
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Correlation terms between chamnels 1, 2 and 4 remain identical
in Figure 4.4(b) to their calculated value for the case shown in Figure 4.4(a).
It is also easy to see that the cross correlation between channels 3 and 5 is
identical to the mixture covariance estimation model: whenever o , = g

wi wi’
Eq. (5) becomes:

= * *
cmi,j Ot cwi,j + 0Lo:l coi,j

which is ERIM's mixture model [15].

However, whenever Oi ¥ awj as is the case, for example, in channel 1
versus 3 or 3 vs. 6, Eq, (4.2) addresses situations not previously considered
by the mixture model and assumptions made in the evaluation of these

covariance terms must be fully understood.

(a) With Cverlap (b) Totally Misregistered
Other  VWhueat . ‘ (No Overlap)
aoil awi Other Wheat
a =0
channel {1 wi

chanzel j ’ v aoj =0

FIGURE 4.5 A MISREGISTRATION CONFIGURATION IN TWO CHANNELS
FOR A SINGLE RESOLUTION ELEMENT
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*
cmi,j + min(aoi,ao ) c

= min{(o .,0 ,) * ¢
( wi’ WJ)

wi,j ] oi,j

Figure 4.5(a) displays what the components of Eq. (5) are estimating.
Note that uwj = mln(awi,awj) gives the proportion of overlap (area shaded)

between the two channels in the wheat field., Hence awj * cwi,j is the

contribution of ¢ . to the constructed covariance term c .
wi, ] mi, j

aoi = min(aoi,a j) is the proportion of the other field that is common to
o
both channels i and j (area shaded) and o

Similarly,

i * Co1i i is the contribution
’
of the covariance of 'other' in channels i and j. Hence where there is

no overlap, the cross correlation is assumed to be negligible and therefore

Zero. ) .

The two basic assumptions made in the derivation of the covariance
estimation model are (1) within the same field the correiation between two
ground signals drops off rapidly as the distance between the signals increases
and (2) signals from different crops are totally uncorrelated. Figure 4.5(b)
illustrates the second assumption. Here the correlation CMi,j = 0. Also
as seen in Figure 4.5 the contribution to the estimated correlation from the

unshaded area is assumed zero. The only contribution is from the shaded area.

~chanuel 1
o

3 .

]

2 1p(0) ( ) estimated covariance
a b

g ‘\§<\ (=) true covariance
EW ]

m Y

—

0

H

{2}

o

[4]

Misregistrution (l—ai)

FIGURE 4.6 ILLUSTRATION OF COVARIANCE AS ESTIMATED
AND TRUE COVARIANCE
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Figure 4.6 illustrates a comparison between the covariance estimated by
the proposed model and a hypothetical true covariance. The difference bétween
the two curves is due to both assumption (1) above and the fact that scanner
noise and atmospheric noise contributions were not considered. When there is
no misregistration, p(l-ui) = p(0) and the estimate is exact. As misregistration
increases some error is introduced., The analytical deviation of Eq. (5), based

on the assumptions mentioned above, is presented in Appendix X.

4.4,3 THE EXPERIMENT FOR MIXTURE PIXELS

Appendix VIII describes the experiment carried out in full, Fur purposes
of clarity, the following experiment summary is presented.

In the analysis of the effects of channel-to-channel misregistration on
mixture pixels, tw> types of signature simulations were required. First,
signatures representing field center distributions misregisteréd for factors
of 1/2 and 1 whole pixel in SDOs 2, 12, and 17 were calculated. Another
experiment was run in parallel with only one channel, SDO 12, misregistered.
The second experiment is otherwise identical to the first and anlysis of
the results of both are presented in the next sections. Once field center signatures
were calculated, new distributions representing mixtures of all permutations of
two ground covers for varying proportions were simulated as follows. Let
Ogp and %p be tke proportions of distributions A and B in the ith channel used
to simulate a mixture of ground covers A and B. For perfectly registered

‘signatures, was set to 2/3, 1/3 and O for every channel i. However for

e
misregisteredA:ignatures, the channels out of registration would be in
different proportions. For example, if a signature was misregistered by 1/2
é.pixel the proportion of cover type A would be oy - 1/2. Hence any field-
center pixels in the registered case within 1/2 pixel of the boundary would
become mixture pixels in the misregistered case. (In effect there would be
fewer field center pixels). Therefore signatures representing mixtures of
misregistered distributions were simulated with proportions of % and Og
in the registered channels i and (ajA- B) and (ajB + B) in the misregistered

channels j, where B is the degree of misregistration.
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Once the simulated‘signatufes were attained, the program PEC (see
Appendix XI (with a 0.001 probability of falsely rejecting a pixel from a
multivariate gaussian distribution) was used to calculate the expected perfor-
mance for each set of signatures representing a given misregistration case.
That is, given the linear decision boundaries between the 5 field-center
signatures, what will be the expected classification of mixture pixels.

Analysis consisted of the study of the expected performance curve as a
function of the location of the pixel across a field boundary. The ztudy
conducted centered on the analysis of three basic problems: (1) the effect
of misregistration on the classification of a mixture pixel of two ground
covers; (2) the effect of misregistration on the false alarm rate of any given
crop among mixtures of two other ground covers; (3) the effect of misregir ‘a
on proportion estimation; and (4) effects as a function of number of chanuec.o

misregistered. These analyses are presented in the following sections.

4,4.4 TINTERPRETATION OF RESULTS

In order to facilitate the discussion of the results it would be wise at
this point to introduce the standard format of the graphs to be presented.
These graphs were vital tools in most of the analyses carried out and it
would be of invaluable aid to be fully at ease with their format.

Each figure is composed of three graphs (see Figure 4.7 as an example)
with each graph displaying one of the degrees of misregistration considered
(0, 1/2, or 1 pixel). The curves display the expected performance of pixels
of the types labelled at the top of the graphs, as a function of the proportion
present of each of the two possible crop types. In a sense one could envision,
as an aid in studying these graphs, a pixel moving across a fixed field boundary
aﬂd at various locations the expected probability of that pixel's classification
would be calculated. Note in each of the following graphs a zone representing
pure field center pixels in the registered case has been labelled as well as an
an area representing mixtures of varying degrees. The width of these zones is
exactly one pixel and the field boundary would appear as drawn. The right hand
corner of a pixel placed on this grid would lie at the labelled mixtures proportion

that it represents.,
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Primarily the presentation will center on the effects noted on brush and
grass mixture pixels interacting with brush, grass, and corn signatures. Since
corn is the major crop of interest in the scene, the analysis of the false
alarm rate will revolve primarily about the false alarm rate of corn. These
crops were chosen for primary consideration since corn, grass, and brush
comprise almost three-fourths of the scene. The effects of misregistration
analyzed through the interaction of these crops is fairly typical of the entire
study; it represents neither one extreme nor the other. Some consideration will
also be given to interactions between other crops.

4.,4,5 DISCUSSION OF THE EFFECTS OF CHANNEL~TO-CHANNEL SPATIAL

MISREGISTRATION ON BRUSH-GRASS MIXTURES

Figure 4.7 displays three graphs, one for each degree of misregistration
of the three SDOs considered, plotting the expected probability of classifying
brush and brush-grass mixtures as brush (the solid line) or grass (the dashed
line). In Figure 4.7(a), on top, one notes that in the area desigrated brush,
these field center pixels are for the most part classified as brush, As the
mixture of brush and grass becomes predominantly grass, the performance curve
increases for grass and decreases for brush. Also note in Figure 4.7(a) that
at the border (1/2, 1/2), mixture pixels are in prbportion one-half grass and
one-half brush and are called brush or grass 70% of the time. These pixels
are thus incorrectly classified 30% of the time. As misregistration is intro-~
duced (compare Figures 4.7(a), (b) and (c)), field center brush pixels are not
classified as brush with as much consistency. The expected performance for those
pixels most near the border deteriorates from around 78% to 42% correct for one-half
pixel misregistration, and down to 15% for one pixel misregistration., The ‘
indication is that misregistration does affect the correct classification of near-~
border and border pixels significantly.

Figure 4.9 is a counterpart to Figure 4.7. Here misregistration is depicted
from grass into brush. Again near-border grass pixel classification

deteriorates, from 83% to 25% correct classification with one pixel misregistration.
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Figure 4.8 displays the expected probability of classifying a brush or
brush-grass pixel as corn. Even in the registered case, the corn false alarms
among brush-grass pixels are significant. As misregistration is introduced,
more and more corn false alarﬁs occur among pixels that were pure field center
brush pixels in the registered case., In fact those most near the border are
called corn with up to 40% regularity, In view of this graph alone, one cannot
dismiss the significant increase in corn false alarms introduced by misregistration
of the data. Figure 4.10 acts as the counterpart for Figure 4.8 with misregistration
from grass into brush. One notices that as misregistration increases more corn
false alarms occur among otherwise pure grass pixels, however the rate decreases
among grass-brush mixture pixels.

These observations indicate that misregistration has a significant effect
on the correct classification of mixture pixels. It was also evident in these
and other graphs that are not presented that the corn false alarm rate was high
among mixtures of different crops [see section 4.4.7]. Several observations were
also made in examining the effects of misregistration as a function of the channels
misregistered. Generally,,the recognition curves did not deteriorate as rapidly
with only one channel misregistered. However, depending on the mixtures, some
curves would deteriorate even more rapidly indicating a need for concern even
though just one channel was improperly registered. The next set of curves to be
presented, Figures 4.11 to 4.14 are the counterparts of Figures 4.7 through
4.10, respectively, for the simulated misregistration of only one channel

Figure 4.11 is a display of misregistration of SDO 12 from brush to grass.,
Near border pixels deteriorate from about 80% to 35% at the extreme of one pixel
misregistration. This indicates a less rapid deterioration than in the case
of Figure 4.7 where three channels were misregistered.

Figure 4,12 is a display or the corn false alarm count for ome channel
misregistered. Ih contrast to Figure 4.8 the rate is not mearly as pronounced
and yet there is a marked increase in the false alarm count »f corn among pixels

of pure brush had the data been registeted.
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EXPECTED PROBABILITY OF CLASSIFICATION OF BRUSH AND BRUSH-GRASS MIXTURE PIXELS AS CORN
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GRASS

GRASS-BRUSH MIXTURES

1.0
0.9+ ———— % CLASSIFIED
____________ -l AS BRUSH
0.8 1 k‘ % CLASSIFIED
. A
0.7 + N /’/ AS GRASS
\
0.6 4 N
N
0.5 4 \\ A
0.4 4 AN NO MISREGISTRATION
N\
0-3 e ot 4 N
\
0.2 -+ N
'\\
0.1 b 3 e
-
~
0.0 + } 4 }
1.0
.9 4
0.8
0.7
0.6 B.
ONE HALF PIXEL
0.5 MISREGISTRATION
0.4 '
0.3
0.2 -
0.1
0.0
1.0
.9 4
L
0.8 +°~_ -
O.T — \\‘ c
~ ONE PIXEL
0.6 <+ N , MISREGISTRATION
0.5 4 ~ — ,
0.h 4 \\)(////
0.3 <+ ’.‘/A
0.2 <+ // - \'\\\\\
o1 4 -
v - —
0.0 ! ! 4 }
(1,0) (1,0) (1,0) 2,3 1,2 (0,1)

: 3 3
MIXTURE PROPORTIONS (GRASS, BRUSH) FOR %ERFECTLY, ;RE%ISTERED PIXELS

FIGURE 4 L] 9 .
GRASS-BRUSH MIXTURE PIXELS.

EXPECTED CLASSIFICATION PERFORMANCE OF GRASS,

THREE CHANNELS MISREGISTERED.
78



EXPECTED PROBABILITY OF CLASSIFICATION OF GRASS AND GRASS-BRUSH MIXTURE PIXELS AS CORN

0'5 - ’ ‘

GRASS GRASS-BRUSH MIXTURES

0.7

0.6 %

005"’

A
0.4 4 . NO MISREGISTRATION

0.37
0.27 {

0.1

P
-

0.0

0.7 1

0.5¢+ - B
: : . : ONE-HALF PIXEL
0.4 . ' | : MISREGISTRATION

0.7

; c
- : ) ONE PIXEL
0.34 : , MISREGISTRATION

0.2../_//\ | ‘

0.14

é
v

¢ s i
T T *
(1,0) (1,0) (1,00. (@, 1,2 (0,1)
313 33
MIXTURE PROPORTION (GRASS-BRUSH) FOR BEGISTERED PIXELS ) ,
FIGURE 4.10. - CORN FALSE ALARMS AMONG GRASS AND GRASS-BRUSH
MIXTURE PIXELS.79THREE CHANNELS MISREGISTERED




Z * FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Figure 4,13 displays grass pixels misregistered into brush. Interestingly,
the deterioration of the expected probability fg at about the same rate as
that indicated for three misregistered channels in Figure 4.9. It is
especially interesting to noté that the curve for brush increases at a less
rapid rate for a one channel misregistration of one pixel than it does for the
three channel case. The reason for this becomes clear upon examination of
Figure 4,14, the display of the corn false alarm rate. Surprisingly with just
one channel misregistered more corn false alarms are detected as misregistration
increases than with 3 channels of misregistration. This could be explained in
that SDO 12 best discriminates corn from grass-brush mixtures. Misregistration
of that one channel may tend to make the mixtures look more like corn in that
channel, whereas misregistration ofvthree channels may make the mixture less
like corn in SDOs 2 and 17. As a result more corn false alarms are detected
among pixels misregistered in one SDO than in three. The conclusion to be drawn
froﬁ this observation is most obviously that effects of misregistration should
not be overlooked even though just one channel is in question,

The graphs presented to this point describe not only the effects of
misregistration on the predominant scene classes, but are also typical of
the kinds of observations that can be made concerning other mixture combinatioms.
A few more graphs will be presented in the next subsection for purposes of
giving the reader a broader perspective on the analysis carried out.

4.4,6 ADDITIONAL DISCUSSION OF THE EFFECTS OF CHANNEL-TO-CHANNEL

MISREGISTRATION ON BORDER PIXELS

The following graphs were chosen for discussion te display various
observations that were made concerning the effects of channel-to-channel
séatial misregistration on the classification of S-192 data. Cormn, grass, and _
brush have been previously discussed since they are the predominant scene classes.
The examples chosen here will either (1) display a mixture for which three

channels of misregistration causes much more deterioration of classification
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accuracy than does one channel or (2) display an example wherein the
misregistration of one channel causes a greater rate of false alarm of grass
pixels than three channels.

Figure 4.15 is a display of the effect of three channels of misregistration
on the classification accuracy of bare-soil brush pixels. Registered pure
bare soil pixels that are nearest the border fall in expected recognition
accuracy from a near 100% to 0% as misregistration is introduced. In Figure 4,15(c),
near the point (1,0) it is interesting to note that only a few percent of these
mixtures of misregistered bare-soil birush pixels are recognized as either bare
soil or brush. Figure 4.16 indicates that a good percentage of these pixels
would be misclassified as corn. Many others were calléd grass and a very high
percentage went unclassified at a 0.001 probability of false rejection.

For one channel of misregistration (Figures 4.17 and 4.18), the expected
performance of the bare-soil brush combination was not deleteriously affected.
This indicates that a great deal of separation from other ground covers was
maintained in spite of misregistration.

The next series of graphs (Figures 4.19 to 4,22) displays the recognition
curves of mixtures of corn and bare soil, These indicate a situation for which
a single channel misregistered produces a more harmful effect than three
misregistered channels. TFigure 4.19 (3 channels) in contrast to Figure 4.21 .}
(1 channel) reveals similar expected performance curves for corn mixtures.
However, examining Figure 4.19 as the mixtures become more like bare soil and
the bare soil classification curve compensates by increasing more rapidly, than
since the pixels are more like bare soil in the misregistered channels.
However, examining Figure 4.19 as the mixture become more like bare soil
ﬁpe bare soil classification curve increases the proportion of bare soil in
the mixture, However, in Figure 4.21 bare soil‘retains about the same
classification rate regardless of the degree of misregistration of the one
channel. Comparing the curves of grass false alarms among corn-bare mixtures,
a remarkable increase in the false alarm rate for one channel misregistered
(Figure 4.22) is noted in comparison to three channels (Figure 4.20). At the
high point, one-half pixel misregistration of SDO 12 causes a 42% rate
among - corn-bare mfxtures. At one pixel misregistration, the figures are
58% versus 38%. )
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4.4.7 EFFECT OF MISREGISTRATION ON STANDARD PROPORTION ESTIMATION

A question of obvious concern is to what extent proportion estimation is
affected by channel-to-channel spatial misregistration. It is argued
generally that errors of one kind tend to compensate for errors of another
kind; that is, errors are made uniformly in all directions and over a large
sample their effects will be cancelled, The surprising corn‘false alarm rate
among registered pixels of brush-grass previously discussed already indicates
that the process of proportion estimation is less than an exact science.

The increased number of false alarms to bz expected with the introduction of
misregistration places even more reliance on compensating errors for accurate
proportion estimation.

Figure 4.23 is presented to show that the errors introduced are not
strictly compensatory for proportion estimation, espeéially when misregistration
is introduced in the scene. Let us focus our attention bn the estimation of
the proportion of corn. Noting an increased rate of corn false alarms among
brush-grass pixels, these would necessarily have to be compensated for by a
decrease in the correct classification of corn or mixtures of corn-other pixels
(here we use the expression correct classification in the sense that mixtures of
two covers A and B are classified as either A or B). Figure 4.23 is a graph
of the expected probability of "correct' classification of two ground covers as
labelled as a function of the mixture proportion. The solid line indicates the
amount of brush-grass correctly classified. With more misregistration there
are more false alarms particularly of corn, as previously noted, However the
correct classification of corn, corn-grass or corn-brush pixels does not

correspondingly decrease, indicating that corn may be overestimated.,

4.5 CONCLUSIONS AND RECOMMENDATIONS

Examination :of the effects of spatial misregistration on S-192 gcanner
signals centered upon an examination of expected classification‘pérformance
for certain degrees of misregistration., In the physical sense, data are
affected by misregistration in that the correlation between channels not in

registration with respect to one another decreaseg, and pure field center pixels
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that are near borders of fields may become mixtures in those channels that are
misregistered. It is due to these physical affects on the scanner signals that
misregistration deleteriously affects recognition performance.

The effects on the classification of field center pixels that remain field
center in all channels even after misregistration was found to be insignificant.
This conclusion seemed to be independent of the number of channels misregistered.

However, misregistration had serious effects on the correct classification .
of border and near-border pixels. First it was determined that the availability
of pure field center signatures was affected in that fewer pixels are found to
be pure ground covers in all channels. This increases the number of pixels
that are mixtures of two or more ground covers in some or all bands. Analysis
of these mixture pixels led to the conclusions that (1) misregistration increases
the error rate in the classification of §-192 data and (2) misregistration increases
the false alarm rate. 'Increases in the false alarm rate of corn and grass were:
particularly noted. In terms of standard proportion estimation, the availability 4
of fewer field center pixels, coupled with the increased rate of false alarms f
among mixture pixels greatly increases reliance on the compensation of errors for
accurate proportion estimation. The simulation provided evidence, in one case,
to indicate that errors were indeed not compensatory. The effect of misregistration
as a function of the number of channels misregistered was undetermined. In some
cases misregistration of three channels caused more serious effects than the
misregistration of one channel. However instances were found to indicate the
opposite to be true as well.

~ Hence, misregistration affects the processing of 5-192 or any coarse
spatial resolution scanner data in a manner that is not to be taken lightly. i
Since §-192 conic format data has already been determined to be out of
registration to some degree, it would be difficult if not- 1mpossible to
precisely quantify the extent to which classification accuracy has
deteriorated due to‘the misregistration, however, it has been determined
both analytically and empirically, through a simulation of the effects
of misregistration, that the extent of the harm done could be significant.
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As regards the nrocessing of scan line straightened data, however, it has

been shown (section 2.1.4) that the process of scan line‘straightening

increases the misregistration in the data. Thus it is expected that the
classification accuracy from processing scan line straightened data would decrease
in view of the results of this section, Future scanners and data preparation
algorithms and procedures must be designed to take every precaution to minimize
channel-to-channel spatial misregistration in order to optimize ‘the conditions

under which scene classification and recognition processing are performed.
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5
SIGNATURE EXTENSION

5.1 INTRODUCTION

Signature extension is a process by which training statistics from one
scene may be modified and thenrused to classify features in a second scene
which differs from the first in geographic locatidn or in the measurement
conditions under which the data were ¢ollected. This process may also incor-
porate preprocessing of the data from either or both scenes. The goal of
signature extension is to minimize or to eliminate altogether the requirements'
for collecting ground truth and extracting training statistics for the second
scene, thus reducing the costs and time delays associated with those procedures.
Signature extension would then help to provide timely and cost-effective
classification over extensive land areas, including remote areas for which ground
truth information may not be readily available. Testing, evalﬁation, and
further development of signature extension techniques is required to fully
realize this goal. B

Several signature extension algorithms* were tested on SKYLAB S-192 data
collected over Southeastern Michigan. These algorithms and the testing

procedure followed are discussed below.

5.2 TRAINING AREA

A portion of SKYLAB Pass 14 (5 August 1973), representing data from an
area surrounding East Lansing, Michigan, was chosen for computing trcaining
statistics. The atmosphere over the area appeared to be fairly clear, although
a bank of clouds was present only five miles northwest of this site. A
clustering algorithm [1] was used to compile the training statistics, producing
twenty-four signatures, ten of which could be associated with major features
within the scene. These associations were determined with the aid of aerial
photography and SKYLAB S-190A photography using both color and false color
film, since no actual ground observations were performed in the East Lansing

area,

*These algorithms were developed by ERIM for NASA/JSC under contracts
NAS9-14123 and NAS9-9784. ' ‘
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The training statistics were extracted from S-192 data which was in conic
format., Although it made the correlation between the cluster classification
map and the photographic images more difficult, this data format provided better
spatial registration between the spectral bands of the S-192 scanner than would
have been obtained with scan-line-straightened data. The seven spectral bands
used in the signatures were those chosen as the most optimum for processing the
Michigan agricultural test site data, and are listed in Table 5.1.

The ten clusters identified from the training stétistics for the East
Lansing area appeared to be associated with features in the scene as follows:

old residential - long established residential areas made up of closely

spaced houses and many mature trees; green sparse vegetation - low density
vegetated areas and also forests; green dense vegetation - high reflective
vegetated aréas such‘as agricultural fields and lawns (parks); concrete -
high reflective areas mostly made up of segments of expressways and parking
lots, or a mixture of concrete areas with other bright méterials such as
rooftops or high reflective soils; wet soil - wet unvegetated agriculﬁural
land, also recognized major portions of a residential district with widely
spaced houses among mature trees; watérr— deep water which filled the
instantaneous field of view of the scanﬁerj urban - impervious materials
such as parking lots and rooftops of large buildings (efg., stores, warehouses,
and factories); high reflective urban - ‘also impervious materials, higher
signal levels than urban which may be associated with real scene features or
localized differences in the haze 1ayérs; dry soll - freshly graded high
reflective soil such as gravel or sand; shallow water - a mixture of water
and shoreline signatures. These ten signatures were those emﬁldyéd‘in the
test of selected signature extension algorithms, as deécribed in Section 5.3.
The other fourteen training cluster signatures classified only a few inter-

mittent pixels within the training area and hence were not used.
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TABLE 5.1

SKYLAB S-192 CHANNELS CHOSEN FOR DATA PROCESSING
IN THE TRAINING AREA AND IN THE SIGNATURE EXTENSION AREA

5-192 WAVELENGTH TRAINING AREA EXTENSION AREA
BAND (um) spo # SDO #
3 .50 - .55 | 2 1
6 .654 - 734 8 7
7 .770 - .890 10 9
8 | .930 - 1.050 19 19
9 1.030 - 1.190 20 : | 20
10 1,150 - 1.280 17 17
- 1.730 12 | 11

11 , 1.550
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5.3 SIGNATURE EXTENSION AREA

A second portion of SKYLAB Pass 14 (5 August 1973), representing data
from a swath running from Ypsilanti, Michigan to the Detroit Metropolitan
Airport, west of Detroit, was chosen for testing the signature extension
algorithms. This area was 1oc5ted less than sixty miles downtrack from the
training area. However, the atmosphere over this scene was noticeably hazy,
with some occasional, but small, clouds being present as well. This scene
appeared to contain nearly the same proportions of the ten selected training
classes as did the training scene.

Haze would be expected to affect the scanner data in the following
manner. First there would be an increased additive component of the sensed
radiation due to increased path radiance. The effects of increased attenuation
by the hazy atmosphere would also affect the radiation, but on balance it is
expected that the resultant data values for a class viewed through a haiy
atmosphere will be greater than the values for that class when viewed through
a clearer atmosphere. The nct effect is to reduce the signal contrast in all
bands. ”

The data available for the signature extension area was in scan—line—
straightened format, which caused a degradation in the inter-channel spatial
registration within this scene relative to the training scene, which was in
conic scan format. Although the same spectral bands-were used to process this
scene, different SDOs (Scientific Data Qutputs) were chosen, when available,
to maximize the registration between channels (see Table 5.1).

The various processing schemes applied to the signature extension scene

are described in the subsections below.

5.3.1 LOCAL CLUSTERING RESULTS

As a prelude to testing the selected signature extension algori\hms, the
clustering program was run on a subset of data (around Ypsilanti proper)
comprising approximately twelve percent of the signature extension area.

Although more than twenty clusters were obtained (as in the signature training

area), only eight major clusters emerged where each represented more than one
percent of the clustered area, and these were not in an exact one—to-one corre~

spondence with those identified in the training area.
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The eight clusters selected from the signature extension area statistics
appeared to be associated with features in the overall scene as follows:
green sparse vegetation ~ low reflective vegetated areas including forests
and some agricultural fields, a slightly more sparse vegetation signature than
that obtained from the training area; green dense vegetation - high reflective
vegetated areas such as agricultural fields, similar to the corresponding training
signature, but encompassing a greater variety of features within the signature
extension scene due to the differences in the local sparse vegetation cluster;
old residential / urban - included parking lots and sparsely vegetated portions
of old residential areas, surrendering the remainder of the old residential
areas to either the local urban cluster or the local sparse vegetation cluster;
water / residential - a mixture of a water signature with a residential signa-
ture: developed areas along lake or river shorelines; water -’deep water which
filled the instantaneous field of view of the ecanner; water / vegetation - a
mixture of a water signature with a vegetation signature: vegetated areas
along lake or river shorelines; soil - agricultural fields with little or no
vegetation and vegetated areas mostly obscured by haze adjacent to the small
clouds which were present in the scene, also some concrete; urban / residential -
partly vegetated urban and residential areas, mixtures of bright objects (roof-
tops, concrete) with vegetation. Table 5.3 lists the percentage of the signa-
ture extension scene recognized by each local cluster class when these cluster

signatures were applied to the total scene.

5.3.2 RESULTS WITH UNALTERED TRAINfNG SIGNATURES
Since the atmosphere over the signature extension area was much hazier
than that over the training area, higher signal levels would be expected and
‘one would expect the classification of the scene using the unaltered training
- signatures to be biased in favor of the higher reflectance classes. In fact
' the testing of this arrangeﬁent confirmed that expectation, with vegetated areas

N being classified in favor of the dense vegetation, with water classification
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TABLE 5,2

APPROXIMATE PERCENTAGE OF THE TRAINING SCENE
COVERED BY EACH TRAINING CLASS

TRAINING TRAINING AREA PERCENTAGE
CLUSTER # CLUSTER IDENTIFICATION (50250 PIXELS)

2 old residential 10.7
3 green sparse vegetation 37.2
4 green dense vegetation 14.8
6 concrete 6.2
8 wet soil 9,0
13 water 0.7
14 urban ©10.8
17 high reflective urban 8.2
18 dry soil 1.2
20 shallow water 1.2
unclassified 0.1
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TABLE 5.3

APPROXIMATE PERCENTAGE OF THE SIGNATURE EXTENSION SCENE
COVERED BY EACH LOCAL CLUSTER CLASS

EXTENSION . L EXTENSION AREA PERCENTAGE
QLH§Z§§_ﬁ CLUSTER IDENTIFICATION (85250 PIXELS
1 green sparse vegetation 43.4
4 green dense vegetation 19.1
6 0ld residential / urban 1.9
9 water / residential 0.6
11 water , 0.9
14 water / vegetation 0.9
17 soil 12.7
23 urban / residential 19,5
-unclassified : 1.0
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dominating over residential signatures. In addition, especially hazy areas,
some bright urban or residential areas, and some areas of concrete were
recognized by the dry soil signature. The percentage of the signature exten-
sion scene recognized as each training class, using unaltered signatures, is
listed in Table 5.4 together with the corresponding percentages recognized

after applying each of the signature extension techniques discussed below.

5.3.3 RESULTS WITH DARK OBJECT ADDITIVE SIGNATURE CORRECTION

The dark object signature correction [11] assumes, channel-by-channel,
that -the signal levels generated by dark objects (objects of low reflectance
and/or low irradiance) represent path radiance and therefore provide a means
to estimate an additive correction. to the mean levels of each ﬁraining

signature in each channel. In an attempt %o avoid using correlations between

spurious or anomalous low signal levels, the low end of the histogram continuum

is judged to be the most appropriate reference point for the algorithm Since
spurious or anomalous gaps in the histogram continuum are also possible
artifacts of any scene, this algorithm is not by any means foolproof. The
algorithm also provides only an additive signature correction, whereas it 1s known
from study of mathematical models for signéture variations that a multiplicative
signature correction would be desireable as well.

Table 5.5 lists the additive changes to the training signature means which
were determined by the dark object signature extension algorithm. Also 1listed
are the corresponding training signature changes resulting frdm»the other '
algorithms discussed below.- Note that the dark object algorithm generated
larger corrections (in counts) for the 'shorter than for the longer wavelength
bénds, as might be expected from the physical cause of the differences between
the training and signature extension scenes (i.e. haze). |

The percentage of the signature extension scene recognized as each training
class, after application of the dark object algorithm, is listed in Table 5.4.

These results may be compared to the local cluster classification results
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TABLE 5.4

PERCENTAGE OF THE SIGNATURE EXTENSION SCENE
CLASSIFIED AS EACH TRAINING CLASS

TRAINING CLUST UNALTERED DARK OBJECT MEAN LEVEL
CLUSTER # CLUSTER IDENTIFICATION SIGNATURES CORRECTION CORRECTION MASC
2 old residential 2.1 2 3.9 8.8 1.0
‘3 green sparse vegetation 29.3 44.3 43,2 S.3
4 green dense vegetation 31.9 20.0 8.9 25.7
6 concrete 10.0 3.6 4.4 16.3
8 wet soil | 0.2 5.6 7.5 1.2
13 water 0.4 1.4 1.5 0.2
14 urban 4,6 4.9 12.3 2.7
17 high reflective urban 4.7 11.8 9.4 3.9
18 dry soil 14.7 3.2 2.5 21.3
20 shallow water 1.7 0.8 1.1 1.6
unclassified 0.5 0.5 0.5 0.7
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TABLE 5.5
SIGNATURE CORRECTIONS DETERMINED BY EACH SIGNATURE EXTENSION ALGORITHM (IN COUNTS)

' | ’ DARK OBJECT , MEAN LEVEL MASC
S-192 = WAVELENGTH CORRECTION CORRECTION T
BAND # (um) (ADDITIVE) (ADDITIVE) (ADDITIVE) (MULT.)

3 .50 - .55 9 9.07 40.87 .529
6 654 ~ .734 9 8.94 19.63 741
7 .770 - .890 10 11.32 ~10.16 1.195
. 8 .930 - 1.050 3 9,75 -11.70 1.146
9 1.030 - 1.190 5 8.12 -17.15 1.217
10 1.150 - 1,280 -1 7.48 - 8.20 1.081
11 1.550 - 1.730 0 - .15 - 1.16 .862

T Y

NYDIHIIY 4O ALSHIAIND INL ‘SIHOLVYHOBY I NN MOTHM ATHINEOS



D ERIM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

listed in Table 5.3, bearing in mind that some of the local cluster categories

do not correspond exactly to the training cluster categories. Classification

waps also were generated and were compared with aerial photography. Generally

the dark object classification of the signature extension scene was judged to be

a dramatic improvement over classification with unaltered training signatures,
altnough there was evidence that the élgorithm over-corrected for the differences
between the training and signature extension scenes. In partiqular the recognition
where the haze was densest was unexpectedly accurate, while 1n‘areas where the
haze density was closer to the average for the scene there was a tendency to

classify some urban areas as old residential areas and to classify marginal

concrete areas as urban.. Water recognition, however, was accurate. This
tendency to misclassify bright features as darker features while correctly
classifying the darkest features correlates with the effect of excluding a

multiplicative signature correction for the effect of the haze.

5.3.4 RESULTS WITH MEAN LEVEL ADJUSTMENT SIGNATURE CORRECTION

The mean level adjustment algorithm [12] utilizes the correlation
between averages over portions of the training scene and the signature exten-
sion scene to estimate a correction to the mean levels of each training
signature in each channel an additive correction in this case. Alternatively,
a purely multiplicative correction could be estimated; however in this experiment
the difference between the training and signature extension scenes (hazy density)
would be expected to produce a mostly additive effect. The algorithm requires that
the portions of the two scenes whose averages are to be compaﬁed be of similar
composition (i.e., contain similar pefceﬁtages of each ground cover), Table 5.2 lists
the approximate percentage present of each trainiag class in the portion of the
ttaining scene which was averaged for this algorithm, while Table 5,3 lists
the percentage for each local cluster class in the portion avéraged from the
signature extension scene, Although differences between local cluster categories

and training cluster categories prevent a complete comparison between the data
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Close inspection of the false color IR photography for these two areas
revealed that some of the dissimilarities tended to balance each other, but
that the signature extension scene appeared to have a slightly greater per-
centage, overall, of brighter features.

Since implementation of the mean level adjustment algorithm, like
the dark object algorithm, provided only an additive signature correction, it
might be expected to be only partially effective in general. In this particular
application it was judged to be only slightly less effective than the dark
object algorithm, with its results a bit more biased toward over-correction of
the difference between the training and signature extension scemes. The bias
toward bright features in the average over the signature extension scene apparently
led to a mean level signature correction which biased the modified training
signatures in favor of less bright materials. ' |

The additive signature corrections generated by the mean level adjustment
algorithm are listed in Table 5.5. Note that the corrections. for the shorter
wavelength bands are nearly the same, overall, as those for the longer wavelength
bands. Of course the relationship between counts'and radiance is not being
considered here, as perhaps it should be, however the difference between the
mean level adjustment classificationjreSults and the dark object results lies
mostly in the creatment of the longer wavelength bands. It appears that this
difference reflects the fact that the mean level adjustment results are slightly
more biased in favor of darker materials and that the longer wavelength bands
show more contrast between the features of the scene than do the shorter wave-

length bands.

5.3.5 RESULTS WITH MASC 7

The Multiplicative and Additive Signature Correction (MASC) [11] emplqys
a least squares regression to match training cluster mean signal levels with
local cluster mean levels, based on the ordering and spacing of those signature

means within'a chosen data channel. The data channel selected for comparing the
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ordering and spacing of the clusters within the two signatdre déta sets is
used to define exclusive paired matches between training clusters andjiﬁcal
clusters. Extra clusters are discarded from the larger cluster set sé that
the obtainable matching between the remaining clusters is maximized.  This
matching iIs achieved by a least squares determination of appropriate multi-
plicative and additive coefficlents in each data channel. Mathematical models
of expected signature variations (changés in the atmosphere, in the 11lumination
of the scene, and in the scanmer responsivity) predict that these variatioﬁs
should be both multiplicative and additive, hence a proper association between
clusters of the training data set and clusters of the local data set should
produce a realistic‘signature correction from the MASC algorithm.

The MASC algorithm was implemented using the 10 Lansing area clusters
and the eight test area clusters preﬁiously mentioned. Table 5.6 lists the
cluster associations determined by the MASC algorithm, based onvusing $-192
Band #11 (1.550-1.730 ym) to order the clusters. This band was chosen for.
the cluster ordering because it had been determined to be the single most
useful band for classifying the Michigan agricultural test site data. Note
that the cluster pairings obtained are not optimum. This appears to have
occurred because one band does not adequately separate all classes; a minimum
of two channels would have been needed in this case to achieve an unambiguous
separation of the cluster classes. Another aspect of this data set was that
there was not a good one-to-one correspondence between the clusters in the
training and signature extension data sets. The multiplicative and additive
coefficients determined for this cluster pairing arrangement are listed in
Table 5.5. -

In order to facilitate a comparison between the MASC coefficients and the -
purely additive ccefficients of the dark object and mean level adjustment
élgorithms, Téble 5.7 has been generated. The additive coefficients listed in
Table 5.7 represent the change in the signatures for the darkest material (water)
and for the brightest material (dry soil) that result from applying the
multiplicative and additive coefficients of MASC. These may be compared with

-~
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TABLE 5.6

TRAINING AREA AND SIGNATURE EXTENSION AREA CLUSTER ASSOCIATIONS
SELECTED AND OPTIMIZED BY THE MASC ALGORITHM

Training Training Cluster Local MASC
Cluster # Identification Cluster # Associated Cluster
2 old residential 6 _ old residential / urban
3 green ;sparsAe vegetation
4 green dense vegetation 4 green dense vegetation
6 concrete 23 urban / residential
8 wet soil 9 water / residential
13 water : 11 water
‘14 urban
'17 high reflective urban 1 green sparse vegetation
18 dry soil 17 soil

20 shallow water 14 ' water / vegetation
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TABLE 5.7

EQUIVALENT PURELY ADDITIVE CHANGES TO SIGNATURE MEANS OF WATER AND DRY SOIL TRAINING CLASSES

(IN COUNTS)

Water Training Signature

Dry Soil Training Signature

$-192 Wavelength Unaltered MASC Equivalent Unaltered MASC Equivalent
Band # (um) Mean Value Change Mean Value Change -
3 .50 - .55 55.99 14.52 76.16 . 3.62
6 654 - .734 41.42 8.88 102.39 -6.94
7 .770 — .890" 24.64 -5.36 79.68 5.37
8 .930 - 1.05Q‘ 26.43 -7.85 93.42 1.92
9 1.030 - 1.190k 25.08 -11.70 90.55 2.54
10 1.150 - 1.280 21.01 -6.49 92.24 -.70
11 1.550 - 1.730 13.66 -3.04 76.97 -11.76
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the coefficients for the dark object and mean level adjustment algorithms which
are listed in Table 5.5. It should be noted that the variance and covariance

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

values of the signatures were also affected by the multiplicative coefficient
in this application of MASC.

Note in Table 5.6 that the association of the concrete and high reflective
urban training clusters with lower reflectance local clusters (urban / residential
and green sparse vegetation, respectiyely) would tend to bias this MASC
classification of the signature extension scene toward brighter materials.

In fact such a bias was observed, with deep water areas mostly classified as

shallow water, with residential areas classified as urban, and with urban areas

recogﬁized by the concrete signature. This bias in the recognition is indi-
cated by the small pdsitive or sometimes negative equivalent additive changes
in the signature méans for the 1ongér wavelength bands, listed in Table 5.7.
This result actually represented a small step backward from using the t:aining
signatures without alterationms.

It appears that further algorithm development, addition of some safeguards
against misassociation of clusters, and/or some interventioh by the analyst
are required for the MASC algorithm to realize its full potential. Some
specific recommendations for improving the MASC algorithm, based on its

observed performance with this data set, are discussed in Section 5.3.7.>

5.3.6 RESULTS WITH ADAPTIVE PROCESSING |

Adaptive pfocessing [13] using a decision-directed Kalman filter, was
also tested on the S-192 data set by generating recognition maps from local
cluster signatures and from MASC signatures, but no noticeable improvement in
the clessification of the scene was observed. It appears that the variations
in the density of thé haze over the signature extension scene were sufficiently
locaiized so that a tate of signature adaptation which would be able to correct
for the haze adjacent to a small cloud would also react to local changes in the
material composition of the scene, leading either to signature capture or to

localized biases in the classification. It seems that in order for adaptive
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processing to improve upon results obtained from conventional techniques,
the signature variations should occur on a scale in time or space which is

noticeably greater than the scale of localized changes in scene composition.

5.3.7 COMPARISON OF RESULTS

Of the signature extension techniques tested on this 5~192 data set,
the dark object correction appeared to do surprisingly well, with the mean
level adjustment additive correction being a not-too-distant second best.

MASC, on the other hand, did not do as well as expected, even less well than
using training signatures without any alterations. Although these results
run somewhat contrary to recent experiences [11] with some LANDSAT data sets,
this surprise serves to bring out more clearly perhaps some of the advantages,
disadvantages, and needs for improvement in these algorithms. Some specific
observations in this regard are discussed below.

The surprisingly‘good performance of the dark object algorithm with the
chosen 5-192 data set may have been aided by the nature of the difference
between the training scene and the signature extension scene (i.e., atmospheric
haze) which might have caused a change in the signal levels which was mostly
additive. This suggests that the cause of the signal change from one scene
to another is a consideration in selecting an optimum signhature extension
algorithm for a particular applicationm,

The mean level adjustment signature correction algorithm requires that
the training scene and the signature extension séene be similar in composition
of classes. Apparently, in this S¥192 data set the training and signature
extension scenes were sufficiently siﬁilarvsoithat, with the differences between
the two scenes being mostly additive, relatively good classification of the
signatufe extension area was obﬁained. The réquirement for statistical simi-
larity between scenes, however, may be too restrictive for similar good results

to be expected in other applications of the algorithm.
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MASC, although in this instance, verforming poorly, potentially is the
most powerful of those techniques tested with this S5-192 data set. It pro-
vides for both an additive and a multiplicative correction in each channel
of each signature and does not require the degree of statistical similarity
between scenes that is needed for the mean level adjustment algorithm, How-
ever, it does require that the clusters obtained from each of the scenes
represent similar classes. The disappointing performance of the MASC algorithm
used with this S-192 data set appears to have been caused by its only partial
capability to identify and avoid the prejudicial effects of anomalous clusters
(those without counterparts in the other cluster set). Since clustering
algofithms probably cannot be expected to produce sets of signatures from two
different scenes which are in a close one-to-one correspondence, some method
is needed to identify non-correlating clusters and to edit them out of the
cluster matching procedure which is the groundwork for calculating the signa-
ture corrections. This editing process could be aided by including more than
one data chamnel in the cluster matching algorithm. Using more than one data
channel would also help to increase accuracy in identifying the proper pairing
between the clusters that remained.

Adaptive processing improves performance only when gradual changes
of the measurement conditions occurs over a scene. Also, there probably is
a tendency, when chposing test cases for signature extension, to select
training and extension data sets over which the measurement conditions are
fairly uniform, in order to better assess the performance of the non-adaptive
signature extension algorithms. Such -test cases might use adaptive processing
as merely a way to perform a fine-tuning adjustment on the extended signatures.

In the present instance, localized variations in the haze density over the

 signature extension scene caused too much variability for adaptation, to

properly establish such a fine-tuning adjustment in time to affect the classi-
fication over the most important part of the signature extension scene (l.e.,

the beginning), while a more rapid rate of adaptationkled to signature capture.
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in summary, although the dark object signature correction appeared to
do the best with this 5$-192 data set, it is believed that, among the signature
extension algorithms tested, MASC has the most ability to improve and to grow
to produce the best performancé in the long run. Following original develop-
ment of MASC, improvements and modifications to the basic approach are being

pursued at ERIM as well as at other institutions.
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6
MIXTURES AND SUBRESOLUTION ELEMENT PROCESSING

When a spatial resoiution element overlaps the boundary between two or
more ground classes, the radiation detected will be a mixture from the classes
involved. The spatial resolution of the SKYLAB S§-192 scanner is such that
compared to the size of the fields or areas of the ground cover classes, the
frequency of mixture pixels is fairly large. An analysis of this effect for
an agricultural site is presented in 6.1 below. Further, situations arise
where the classes of interest are smaller than the system's resolution, The
use of conventional multispectral processing techniques on mixture pixels,
will likely result in the improper classification of these pixels. If the
number of mixture pixels in the data is large, processing errors can be
expected to be numerous as well. In cases where the objects of interest are
too small to be resolved, standard processing would be incapable of proper
classification for that class.

Processing a sizable number of mixture pixels using conventional
processing techniques has a major impact on the accurate estimation of
proportions or acreages of classes in the scene, Such processing techniques
rely on compensating errors to cancel the measureable effects of misclassifi-
cations or on some fixed bias in the estimate to produce accurate proporﬁion
estimates. That misclassification errors do not compensate is shown, in
Section 6.1 below, by means of the same simulation techniques previously
described in Section 4. :

, For the past several years ERIM has been developing special processing
techniques* [14, 15, 10] to handle such situationms. In this section we present
the results of two studies where mixtures processing was applied to S-192
data. As previously mentioned, two processing studies had been carried out
on the 5-~192 data: The first being for the agricultural test site; and the
second being for the urban and suburban areas around Lansing, Michigan. For
the agricultural area, the use of mixture processing techniques was used to

try to better estimate the proportion of the classes of interest in the

*The development of these techniques-has been supported by NASA/JQC
under contracts NAS9-9784 and NAS9-14123.
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scene. The second study utilized mixtures processing techniques to estimate
the proportion of vegetative matter in an urban scene. Discussions of these

studies are presented in Sections 6.3 and 6.4, respectively.

6.1 IMPACT OF MIXTURE PIXELS ON PROPORTION ESTIMATION

In assessing the impact of the standard processing of mixture pixels
on proportion estimation, a first consideration is the proportion of the
pixels in the scene which are mixture pixels. This information would give
an indication as to the severity of the problem -- the larger the proportion
of mixture pixels, the greater the likely impact on proportion estimation.
Earlier in this report we addressed the problem of locating pure field center
pixels and noted the substantial number of border pixels for just the larger
fields in the agricultural test site.

To more directly assess the number of mixture pixels in the scene, one
section (1 mile square) of the agricultural test site was selected; field
boundaries for all fields were drawn on a map and the number of pure
pixels and mixture pixels were counted. In the counting procedure, pixels were
deemed to be field center if their edges were more than .3 pixel from a
boundary in the scan (points) direction and more than .1 pixel in the along
track (lines) direction, thus accounting for the effects of resolution
element size and the misregistration of the bands.

Section 109, the section selected, was chosen because it had the same
number of fields and about the same number of acres as the average over
sections: 31 fields, 616 acres. The map displaying the fields and pixels
is shown in Figure 6.1. As noted, out of a total 514 pixels, only 152 or
30% of them were pure field center pixels and the other 362 or 70% were
mixture pixels. Furthermore, it seemed from the analysis that if the data
had been perfectly registered, the number of mixture pixels would not have
been significantly reduced. Thus it can be safely concluded that the
majority of pixels being considered in this agricultural scene are mixture

and not field center pixels,
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[[] Fieid center pixels

{ Mixture Pixels

Total Fields = 31
Total Acreage = 616
Total Pixels = 514 100%

= Field Center Pixels=152 309,
Mixture Pixels = 362 170%

FIGURE 6.1. DISPLAY OF MIXTURE PIXELS IN LOCKE TOWNSHIP SECTION 109
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This situation has major impact on the accurate estimation of proportioms.
The more mixture pixels in a scene that can be spuriously classified, the more
the accurate estimation of proportions is dependent upon compensation of the
errors. Consider for the moment a mixture pixel of two classes, say trees
and grass. Using standard proportion estimation procedures, it would be hoped
that such a mixture pixel would be classified as either trees or grass and
that the number of times such pixels fall in either class is equal to the
overall proportion of grass and trees found in all such mixtures. Should a
disproportionate number of false alarms, that is detections of a third class,
occur among this mixture of trees and grass, then the task of accurate proportion
estimation becomes more difficult and an even greater reliance is placed on
the compensation of errors.

The simulation technique used in the analysis described in Section 4
was applied to measure how prevalent a problem the false ‘alarm rate could be
in the given S-192 data set. Recall that five signatures, for cornm, grass,
tree, bare soil and brush, were chosen and mixtures of all possible pairs of
these crops were simulated in proportions (1/3, 2/3) and (2/3, 1/3). Table
6.1 displays the expected performance for the recognition classes. Given a
mixture of crops A and B, one would hope that the sum of the percentage of those
mixture pixels classified as A and those classified as B would be close to
100%. The difference would be the number of false alarms detected. In
examining the last column of Table 6.1, one finds that the false alarm rate

is by no means insignificant. The lowest false alarm rate detected is 10%

" while the highest rate is 76%.

Thus it appears that the number of false alarms from mixture pixels is
significant when the pixels are classified using conventional techniques.
What, then, does this mean in terms of overall accurate proportion estimation?

' Going back to the tree-grass example cited above, consider that a high
rate of corn classifications occurs among pixels which are mixtures of trees

and grass. Such false alarms would need to be compensated for by a decline in
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TABLE 6.1 EXPECTED PERFORMANCE FOR RECOGNITION OF SIMULATED
SKYLAB MIXTURE PIXELS BASED ON THE BEST LINEAR

DECISION BOUNDARIES BETWEEN FIVE SKYLAB FIELD

CENTER SIGNATURES

% ASSIGNED TO CLASS

% CORRECTH % FALSE
MIXTURE PROPORTION | TREE | GRASS | SOIL | BRUSH | CORN | UNC CLASSIFI-| ALARMS
CATION
(1/3,2/3) 4.2 | 44.0 0.8 | 22.4 23.4 5.2 48.2 51.8
TREE-GRASS
(2/3,1/3) 31.6 | 10.2 0.4 | 24.6 21.2 | 12.0 41.8 58.2
(1/3,2/3) 4.6 8.8 56.6 0.0 12.2 | 17.8 61.2 38.8
TREE-SOIL
(2/3,1/3) 47.2 6.6 8.2 0.6 13.0 | 24.4 55.4 44.6
1 (1/3,2/3) 6.0 4.4 0.0 | 67.8 16.8 5.0 73.8 26.2
TREE-BRUSH
(2/3,1/3) 32.4 3.6 0.0 | 37.6 15.6 | 10.8 70.0 30.0
(1/3,2/3) 9.6 5.0 0.0 | 27.6 52.8 | .5.0 62.4 37.6
TREE~CORN
(2/3,1/3) 39.0 2.2 0.0 | 26.2 25.2 7.4 74.2 25.8
(1/3,2/3) 0.8 | 27.0 63.0 0.0 2.6 6.6 90.0 10.0
GRASS~SOIL
(2/3,1/3) 1.2 | 69.8 15.4 1.2 7.0 5.4 85,2 14.8
(1/3,2/3) 0.6 | 20.2 0.0 | 51.2 23.4 4.6 71.4 28.6
GRASS-BRUSH :
(2/3,1/3) 1.6 | 50.2 0.0 | 22.4 22.2 3.6 72.6 27.4
(1/3,2/3) 1.6 | 29.0 0.2 | 10.6 55.6 3.0 84.6 15.4
GRASS-CORN
(2/3,1/3) 1.4 | 60.2 0.4 7.6 28.0 2.4 88.2 11.8
(1/3,2/3) 8.6 | 28.0 1.0 | 23.0 31.0 8.4 24.0 76.0
SOIL-BRUSH
. (2/3,1/3) 7.2 | 28.6 32.8 1.4 16.2 | 13.8 34,2 65.8"
' ‘ (1/3,2/3) 4.8 | 31.2 4.6 1.6 50.2 7.6 54.8 45.2
SOIL-CORN :
(2/3,1/3) 3.4 | 22.6 48.8 0.0 13.0 | 12.2 61.8 38.2
: (1/3,2/3) 1.6 8.8 0.0 | 32.4 54.2 3.0 86.6 13.4
BRUSH~CORN
(2/3,1/3) 1.2 6.8 0.0 | 59.6 28.6 3.8 88.2 11.8
FINAL
ESTIMATION OF PROPORTION | 52% | 118% 58% | 104% 128% 40%
BY CLASS**
(CORRECT = 100%)

% Assigned to one of the two classed considered.
*% Assuming all above mixtures equally likely.
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the classification rate of pure corn pixels and/or by offsetting false alarms

of other classes among corn and corn-mixture pixels. This then triggers a
chain-reaction of other compensations within other classes. The odds of this
all happening so that the errors do indeed compensate, would seem to be very
slight. '

In referring back to Table 6.1, the bottom line shows strikingly that,
for this data set, the errors would not compensate. Tree and bare soil classes
are grossly underestimated while corn is significantly overestimated among mixture
pixels,

It is clear, then, that significant numbers of mixture pixels, when processed
by conventional means, will yield significant numbers of false alarms. " Further,
the odds that significant numbers of false alarms will compensate one with another
so that estimation of proportions of classes may be accurately accomplished using
classification counts from conventional classifiers seems rather small. To
complete this study, an investigation of whether there is a fixed, estimable bias in

the proportion estimates is needed.

6.2 BRIEF DESCRIPTION OF THE MIXTURE PROCESSOR

For the example discussed in the previous section, the task of accurately

estimating proportions of classes in a scene where a significant portion of
the pixels are mixture pixels could not be done by using conventional
classification processing techniques. In the following sections we discuss
the application of a specialized processor, here called the mixtures
processor, which allows for the fact that pixels may contain mixtures of
different ground covers, and is capable of analyzing the proportions of the
classes present in each pixel.

Before proceeding further, a short explanation of the manner in which the
mixtures processor is applied is in order,

It is obvious that a pixel may be purely or almost purely of one ground'
class, or it may be a mixture of several ground classes. Thus the algorithm
used, as its first stage, determines the several likeliest possibilities,
First, the most probable single signature for a pixel, and the attendant chi-
square value are determined. (The chi-square value is a measure of the
likelihood that the pixel is a member of the signature distribution being
considered.) Next, the likeliest mixture of two classes is calculated and the
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proportion of each class in the pixel, and an associated chi-square value is
calculated, The pixel may be further analyzed as a mixture of three and four
classes, For reasons of processing time and computer space requirements, for
the agricultural test site part of this study we limited the consideration to
either pure or two-class mixtﬁre pixels, This is not an unrealistic restriction
for this case when one considers the scan swath over the ground: For an
agricultural area like the current data set, most mixture pixels will occur
at field boundaries so that the vast majority of such pixels will be mixtures
of two ground classes., Figure 6.1 also provides an illustration of this situation.

The data are then processed through a second stage where a pixel is
determined to be a pure pixel if the chi-square value for the likeliest pure
case is less than some threshold Tl. If it is mot pure according to this
test, then the chi-square value for the two-class mixture case is compared
to a second threshold Ty If it is less than Tys the pixel is determined to
be the mixture indicated; otherwise, further tests with T3, T4’ etc. are
conducted when three and four class cases are considered. If the pixel fails
all the tests, it is considered to be from a class or classes not included
in the signature set. Currently the thresholds Ty Tz, etc., are chosen
empirically so as to minimize the error of the proportion estimate over some
training area of known proportion,

The chief factor affecting the performance of the mixtures processor is
the geometrical configuration of the signatures used to define the ground
cover classes. The signatures can be defined as hyperellipses in an n-dimensional
orthogonal space where n is the number of bands or SDOs. A simplex is a
hypervolume defined by m vertices, where a signature mean defines each vertex.
A pure pixel would be one which is located near a signature mean, while a
mixture pixel would be one which was located between several of the signatures.
Further, if for a given set of signatures, the simplex they define is not
convex; e.g., one signature being a linear combination of some other signatures,
then the simplex is said to be degenerate. For such a simplex, a non-unique
answer is mathematically possible and as a result such simplexes should not

be used for processing.
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6.3 APPLICATION OF MIXTURES PROCESSOR TO AN AGRICULTURAL SCENE

The initial step in implementing the mixtures processor is to define a
signature set. It is important that the signatures used be sufficiently
distant one from the other; that is, the simplex formed by the set of signatures
cannot be degenerate, otherwise the algorithm breaks down. For this reason
it is wise to limit the number of signatures used. Also, since the processing
time goes as m(m+l)/2 (for m signatures), there is a second reason to keep
the size of the set as small as possible.

For the agricultural test site the set of 15 signatures used for the

classification had the following composition:

CORN 4 Signatures
TREES 2 Signatures
BRUSH 1 Signature
GRASSES, WEEDS, ETC. 5 Signatures
BARE SOIL 1 Signature
SOYRBEANS 1 Signature
ALFALFA 1 Signature

Since soybeans and alfalfa are very minor ground covers in the test site,
we excluded them from this study. An analysis of the tree and brush signatures
showed the two tree signatures to be very disparate, but the brush and one of
the tree signatures were found to be very similar spectrally -- overlapping
some 75%. The brush signature, representing primarily areas of scrub forest,
was therefore combined with the one tree signature.  As for the corn
signatures, the two signatures with most of the corn points were found to be
véry different; since corn is a major cover, both these signatures were
selected for use. - The bare soil signature also was included.

The grasses were represented by 5 diverse signatures. Since combining
several signatures into one resultant signature with a large spread would
have decreased the inter-signature distances in the simplex, we endeavored

to choose just one signature. An examination of 2~dimensional scatter plots
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of all the signatures indicated that one grass signature seemed to be more
toward the exterior of the total signature simplex than any of the other grass
signatures. That cluster probably represents the grass subclass which had
the highest percentage ground'cover and thus the lushest condition of the
grass object class. This grass signature was selected to represent grass
with the hope that pixels from pasture or weed fields would be called a
mixture of grass and bare soil.

The signature set described above was applied to a small 550 pixel
section of the data. Subsequent analysis showed that very little of the data
were being called out as grass, and as a result the error rate was substantial.

It seemed that the initial choice of a grass signature was a poor one.
Accordingly, a different grass signature was selected, this one being from
the grass cluster containing the greatest number of grass pixels.

The test data subset was again processed through the mixtures classifier. The
results were somewhat better, but the total error in the proportion estimation ‘
for the test data subset was still slightly inferior to the error rate achieved using
the normal, i.e., linear maximum likelihood, classifier. It was further
noted that the chi-square thresholds chosen, which minimized the total error
of the proportion estimate, resulted in 737 of the pixels being counted as
"pure" and only 187% of the pixels being assessed as mixtures. Many more
mixture pixels had been anticipated.

One hypothesis that might explain these results is that the conventional
classification had been done using 15 sighétures ~- the mixtures approach used
only six. It seems that it would be necessary to further pack the signature
simplex with other grass signatures so as tb increase the grass classification
rate. Such a procedure would increase the grass classification, but it would
further decrease the number of pixels processed as mixtures.

That few pixels weré called out as mixture pixels seems to be another
result of the poor signal range discussed in Section 2, The signature set

is such that not only are the means relatively close together, but also the
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individual distributions are very broad so that pixels which are mixtures of
separate classes are themselves very near the center of some distribution so
that they would be classified as being from that distribution. Figure 6.2
illustrates the point, and the reader is referred back to Figures 3.1 and
3.2 for further illustrations of this point using the S-192 data. Because
of these results, no further mixtures processing was performed on the

agricultural test site data.

6.4 APPLICATION OF MIXTURE PROCESSOR TO URBAN AREA

As a second exercise, the mixtures processor was used to classify two
small portions of data from the urban area of Lansing, Michigan, using
signatures acquired by clustering the data. This portion of the data and
the training methods used were specified in Section 5.1 of this report.

For this exercise, we were interested in determining the amount of
vegetative material, or alternatively of impervious materials, in an urban
area. Such information is of use to geographers, and urban planners and impacts
local urban climatology, etc. In this case it was expected that most of the
classes of interest would be smaller than the resolution size of the scanner.
In other words, it was expected that each pixel would be a mixture of two,
three or even more classes.

Initially, five of the signatures from the set were identified as being
classes of interest for this problem: green vegetation, concrete, other
impervious (rooftops, asphalt etc.), bare soil, and water (there is a river
which runs through the city). This signature set was anglyzéd using program
GEOM. This program calculates a measure of separateness (in a probability
sense) for each signature mean in the simplex. The measure calculated is
roughly the distance in standard deviatiohs between the signature mean and
the hyperplane through the other signature méans. If the distance for a
given signature is small, then the simplex is liable to be degenerate and
the mixtures algorithm will not work well, The results, Table 6.2, show that

the simplex of these five classes is degenerate -- concrete, other impervious
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b3

CHANNEL j
>

This pixel is a mixture of classes Aand C
and is not a member of B.

CHANNEL i

FIGURE 6.2. ILLUSTRATION OF A MIXTURE PIXEL IN A THREE SIGNATURE SIMPLEX
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. and bare soil each overlap with the simplex formed by the other four signatures.

Additionally the other two distances are small.

' TABLE 6.2
GEOM RESULTS FOR AN URBAN 5 SIGNATURE SIMPLEX

CLASS GEOM DISTANCE
Green Vegetation 2,98
Concrete 0.28
Water 1.99
Other Impervious 0.26
Bare Soil 0.58

Investigating further, we tried all é-tuples to see if some of these
simplexes would not be degenerate., All were degenerate, Next all triplets
of signatures were tried and here several of the combinations yielded non-
degenerate simplexes. From these results the triplet of concrete, other
impervious and green vegetation was chosen for the processing effort, since
it séémed that these classes would be the most prominent in the scene. The

GEOM results for this triplet are given in Table 6.3 below.

- TABLE 6.3
GEOM RESULTS FOR EINAL URB@N SIMPLEX

CLASS _ GEOM DISTANCE
Green Vegetation 6.06
Concrete = 3.0

Other Impervious 4.5

- . k The fact that simplexes with more than three signatures were degenerate
indicates that only two out of seven channels were important for separating

these classes -- the other five being redundant, This follows since for the
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spectrally disparate classes involved, a non-degenerate simplex existed only
for some triplets of the signature set, and each triplet in turn defines only
a plane (2-space). Thus there are only two independent channels for this
problem.

The mixtures processor described in the previous section was implemented
to process the data, using the three signatures mentioned above. It was
noticed that, for most of the pixels, low chi-square values were being
calculated for the best one-at-a-time case -- i.e., that it was most probable
that the pixel was pure. The rest of the pixels were deemed most likely to
be mixtures of a pair of classes. Only a few pixels were deemed to be mixtures
of the three classes. The results were also poor, with the other impervious

signature overestimated and the vegetation greatly underestimated.

6.5 CONCLUSIONS
It was concluded from the results of both studies that the lack of
adequate dynamic range, as demonstrated here by the size of the simplex in
relation to the size of the class distributions, precluded the possibility
£or most of the pixels to be processed as mixture pixels since the pixels
‘were associated with higher probabilities of being pure. The mixtures processor
discussed in this section cannot be expected to yield good results under

these circumstances.

N
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7
CONCLUSIONS AND RECOMMENDATIONS

In preparation for the processing and analysis of SKYLAB $-192 data, a
fairly detailed examination of the data was undertaken, investigating in each
SDO (Scientific Data Output) signal-to-noise characteristics and dynamic
range. Aircraft scanner data gathered over the agricultural site the
morning of $-192 data collection were examined also and.used as a basis for
comparison. The results of the examination of $-192 data quality were
essentially in keeping with the published S-192 performance evaluations [4].
Conclusions reached were that four of the spectral bands were sufficiently
noisy so as not be of use in classification processing and that the
remaining bands all had a very limited range of values in relation to the
noise content of the data. Also examined was the spatial registration of the
scanner data. The SDO-to-SD0 misregistration in conic data was measured and
shown to be greater than one pixel in some instances. More importantly,
further analysis showed that the effect of scan-line-straightening was to
compound and increase the misregistration of the §-192 data: a maximum
misregistration of 2.2 pixels was calculated. WNot only is the misregistration
of scan-line-straightened data not easily correctable but the additional
misregistration seriously reduces the number éf pure pixels available for
training.

Analytical and simulation studies were performed to investigate tlie
effects of misregistration on classification accuracy. The results showed that,
for pixels which imaged more than one ground class in one or more channels,
the error rate was substantial and increased as the degree of misregistration
increased. Also shown was that while the correct classification rate for pure
(one class) pixels did not change significantly as misregistration increased,
the number of such pure pixels markedly decreased as misregistration increased.
Because of thé increased, uncorrectable misregistfation in scan-line-
straightened data, the recognition processing for this contract was carried out
with conic data. Using the conic data, we were able to substantially correct
for misregistration by selecting a set of 13 SDOs (one for each band) and
shifting some relative to others such ‘that the maximum misregistration was

one third of a pixel.
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In preparation for recognition processing of the agricultural test site
using conventional techniques, a set of training statistics wae extracted
and the utility of the 13 spectral bands for recognition processing this area
was determined. Using a computer algorithm which computed the average pairwise
probability of misclassification, the 13 bands were rank ordered with the
result that the four bands previously identified as having poor signal quality
were adjudged to be among the worst bands, The two best bands, by far, were
1.55-1,73 m (SDO 12) and 0.93-1.05 m (SDO 19). The result of classifying:
the agricultural site using conventional techniques and the 7 best bands were
somewhat disappointing, with accuracies of field center pixels on the order
of 70%, with confusion noted among in a triad of corn, trees and brush. The
classification of the data was affected by a combination of the limited
signal range in the data and the apparent spectral similarity of many of the
ground classes. The latter effect was attributed to the contrast reducing
effect of atmospheric haze and the fact that, at the time of year the data
was collected, there was a large range of conditions for several classes
(e.g., some of the corn had tasseled and some had not) leading therefore to
added spectral similarity among classes, Errors in the proportion estimation
were also affected by the large number of mixture pixels in the scene. A
brief study indicated that more than 70% of the scene was composed of such
mixture pixels. In general a disproportionate number of such pixels were
classified as corn, resulting in a substantial overestimation of corn in
the scene.

The utility of signature extension techniques for S$-192 data was tested
using the Lansing and Ypsilanti sites for training and test, respectively.
Several signature extension technigues were utilized to process data for the
signature extension test site located some 70 miles from the signature
extension training area. The test area was chosen particularly because a layer
haze covering this site was very evident in the §-190B imagery; thus, this
was a test under very different atmospheric conditions as well as a test over
distance. Training statistics were gathered using an unsupervised clustering
technique and clusters for urban, residential, vegetation, water, concrete, bare

soil and sparse vegetation were generated, A classification attempt without
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the use of signature extension techniques resulted in poor accuracy while the
use of signature extension techniques improved classification accuracy. The
best results were obtained using the dark object algorithm., In a qualitative
sense these results matéhed those obtained using lo:ial clusters (i.e., clusters
generated at the signature extension site),

Further classification was carried out on both training sites previously
mentioned using the unresolved object or mixtures classifier. Such a classifier
would seem to be well suited to a data set where more than 70% of the pixels
were mixture pixels. The results of using this approach on both sites was
unsatisfactory, due apparently to the previously mentioned limited signal range,
contrast and spectral discriminability of the data., Thus, no general
conclusions were drawn with regard to the utility of the mixtures classifier
on 5-192 data.

Results of this investigation indicate that deficiencies in the $-192
data will tend to limit its ultimate utility and that to minimize deleterious
effects of channel-to-channel misregistration the further use of 5-192 data
in conic format is recommended. Furthermore, the design of future multispectral
scanner and data processing systems should take into account the experience
gained in processing and analyzing §-192 data, To this end, two recommendations
are made, First, finer spatial resolution should be considered for future
sensors; this would alleviate the problems caused by having a large proportion
of mixture pixels in the scene and the attendant problem of having so few

pure pixels on which to base training statistics. The second recommendation
" is that future systéms provide a means to adjust scanner gain and offset
parameters to better match the radiance characteristics of individual scenes
and thus make fuller use of the available scanner dynamic range. For space-
craft scanners the long atmospheric path traversed by the ground-reflected
radiation has the effect of adding a sizeable constant radiance (path radiance)
while also attenuating the radiation resulting in reduced contrast in the data.’

1f future scanners are designed with appropriate offset and gain capabilities
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(indeed, is there a need to set the rero response of a band equal to a zero
radiance level in that band or rather should it be set close to a zero
reflectance level) it is safe to say that higher contrast, more useful data,
would result. As for making’specific recommendations regarding spatial and
radiometric parameters of future scanner systems, such work was beyond the
scope and context of this investigation. These are very complex areas and
need to be properly and fully addressed in order to derive more definitive

recommendations for future spacecraft multispectral scanners.
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APPENDIX I

SPECTRAL CHARACTERISTICS

BAND

1

10

11

12

13

SDO s

22

18
1,2
3.4
5,6
7,8
9,10
19

20

17
11,12
13,14

15,16,21

OFTICAL CHARACTERISTICS

Instantaneous Field of View

Scan Rate

A (um)
41-,45
+45-,50
+50-.55
.54=.60
.60~,65
.66-.73
.77-.89
.93-1.05

1,03-1.19
1,15-1,28
1,55-1.73
2.10-2,34

10,2-12.5

No. of Samples/Scanline/detection:

Low Sample Ratz Bands

High Sample Rate Bands

Analog to digital Conversion

Cone Angle

Portion of Scan Viewing the ground

Scan Swath

Altitude at time of data collection
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- §=192 SCANNER CHARACTERISTICS

0.182 mrad

94.79 revs/sec,

1240

2480

8 bits/value
5°32!
116.25°

72.4 km

441,429 m
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APPENDIX II1

M-7 SCANNER CHARACTERISTICS [6]

A, SPECTRAL CHARACTERISTICS FOR MISSION 85M, AUGUST, 1973

BAND

(VoI N - Y S e S T -

e~
b O

12
B. OPTICAL CHARACTERISTICS

Resolution

Near TR (Bands 10,
Thermal (9.3-11.7
Scan Rate

Along track velocity

A (Um)

41-.48
L46-.49
.48-,52
.50-.54
.52-,57
.55-.60
.58~.64
.62-.70
.67-.94
1.0-1.4
1.5-1.8
9.3-11.7

Spectrometer (bands 1-9)

11)

pm)

Analog to Digital Conversion

2,0 x 2.0 mrad
2.0 x 4,0 mrad
3.3 x 3.3 mrad
60 scans/sec,
2.75 ft/scan

9 bits/value

Altitude at time of data collection 2000 ft

. ’ Portion of Scan Viewing Ground

Scan Swath

90°

4000 ft.
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APPENDIX III
SOUTHEAST MICHIGAN TEST SITE GROUND TRUTH

The Southeast Michigan Test site consists of three rural townships, LeRoy,
Locke and White Oak, in Ingham.County. The location of the test site is given
in the map, Figure I1I.1. Michigan State University provided ground truth for
the three townships. The acreages and number of fields of each ground cover

class are given in Tables III.1-III,3. Designations are grouped as follows.

CORN - corn
SOYBEANS
TREES
GRASS

soybeans

trees, brush, woods

]

grasses, sudan grass, clover, weeds, pasture,
short grass, tall weeds

STUBBLE
SOIL
ALFALFA

stubble, cut grass, cut oats, cut wheat, cut beans

soil, bare soil
alfalfa

SYMBOL

D - barley

- lettuce

~ hay

- onions

- orchard

beans

- oats

- wheat

- homesteads, buildings, towns, freeway
- water, lakes, swamp

- unknown, crop?, illegible

OTHER

H

oM E O G
1

CLOUD COVER - Indicates that the section was cloud covered in the
high altitude photography which served as a source
for "ground truth'.
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LOCATION OF S-192 TEST SITE ON EXCERPT OF ROAD MAP

OF SOUTHERN LOWER MICHIGAN

FIGURE III.1.
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TABLE III.1.

GROUND TRUTH FOR LOCKE TOWNSHIY, INGHAM COUNTY, MICHIGAN
GIVEN IN ACRES AND NUMBER CF FIELDS

LOCKE ~ SECTIONS = 30
SECTION CORN SOYBEAN TREES GRASS STUBBLE SOIL ALFALFA OTHER TOTAL SYMBOL
#  ACRE|| # ACRE|| # ACRE # ACRE || # ACRE # ACRE|| # ACRE|| # ACRE || # ACRE |[FOR OTHER
2 8| 170.5|f 3 |42.2{| 6| 177.7 || 17 | 206.5)| 1 7.0 4} 21.1j 1} 1l.1 40 | 636.1
3 9 | 192.0}| 2 |[32.8|} 4| 108.3 || 15 | 297.9|} 4| 65.5) 3| 24.0|} 4| 58.5}} 2 | 19.9}| 43 | 798.9} X,6
4 8| 136.3|{ 4 [78.4}} 11| 141.4 || 10 | 261.3) 4| 59.8{ 3| 66.1 3 | 42.7|| 43 | 786.0| X,8,N
5 8 | 259,6|| 1 {23.4) 4} 272,0 3| 72.6)f 4| 58,64 5| 92.4 25 | 778.6
G 14 | 253.9|{.1 |18.8|| 4 | 71.4 7| 96.7|10} 123.4f 3] 31.0 2 | 10.6y 41 | 605.8| X,w
/ 51 60.7 1| 59.7 || 10 | 259.4{ 4| 49.1} 5| 53.3|| 1| 18.1|] 1 5.8/ 27 | 506.1j| Y
8 11 | 231.1)) &4 [37.4ff 6 | 204.2 3] 28.1) 9| 106.4) 5| 28.7 38 | 635.9
9 11 | 269.31} 2 [62.6| 3| 63.1 9 | 137.7{} 2| 13.4| 2| 34.6 2 | 35.7|] 31| e616.4| ?
10 4| 8L.3|| 1 |25.1)] 6 | 145.0 || 14 | 270.8) 4| 95.9 -1 17.0]] 1 7.0l 31| 642.1) @
11 51 62.7 8| 101,3 || 11 | 409.5| 2| 11.8| 3| 43.9 2 | 10.5{ 31| 639.7| H,Y
14 3| 139.2 || 17 | 366.8|| 3| 121.7 23 | 627.7
15 1| 52.0 11} 101.2 6 | 432,51 1| 76.1 9 | 661.8
16 9| 186,7{ 4 |8L.8] 2| 38.6 7] 237.31 11 13.5(1 4| 41.7 27 | 599.6
17 16 | 187.8{| 1 |26.9)| 5 | 124.6 || 15 | 183.7) 3| 34.6| 4| 28.27 1} 19.9)} 1 | 12,3} 46 | 618.0) N
G 18 10 | 113.0f 4 |45.51 7 | 117.5 8| 57.3|| 4| 52.3|] 5| 45.6)] 1| 29.8)1 1 7.6l 40 | 486.6]] N
19 3| 46,7 6| 99.5 || 15 | 218.9{ 6| 52.6{ 4 | 18.8) 1| 20.5|} 1 | 12.8| 36 | 469.8) @
20 8 | 126.8 1| 9.8 || 13 | 185.4) 9| 120.8| 6| 51L.6( 2} 35.7 39 | 615.1
21 3| 54.4 4 | 6l.4 5| 302.5| 2| 41.6] 2} 137.5 1 | 18.8} 17 { 616.2{ H
22 3| 192.5 7 | 143.4 5 | 320.2 15 | 656.1
23 11 | 332.9ft 3 |46.2j} 5 | 66.8 31 55.0) 2§ 84.3) 1| 49.2 25 | 634.4
26 9 | 266.9 4 | 68.5 3| 72.5{ 2| 8.0 1| 25.1| 3 |124.64] 2 | 17.0|| 24 | 642.6)| X
27 6 | 135.0) 1 | 8.2ff 6 | 65.5 | 13| 336.2|| 2} 74.9}} 2| 18.1 1 5.3{ 31 | 643.2)| W
28 11 | 223.6f 1 [32.2)| 3} 31.6 7| 91.3{f 7| 132.3§ 7 | 137.8{ 1| 8.2 37 | 657.0
29 11 | 191.1 9 {110,1 || 11 | 19%.1) 3| 25.1} 6 | 92.6 40 | 618.0
30 7 | 129.5} 1 |36,9) 4 | 107.1 5| 70.8f 2| 10.5} 5| 70.2) 1 15.8(| 1 4.7\ 26 | 445.5|] X
31 7] 76.8f 5 |55.6| 6 | 74.3 2| 167.3)}) 5| 33.94 3| 2.6f 1| 10.0|] 2 | 21.,0}} 31 | 463.5) H,6
32 8 | 1a9.1} 1 | 8.2} 5 | 203.7 5| 74.3)| 5| 95.40 5| 45.6 3 | 55.0]l 32 | 631.3{] 2N,H
33 § 1 266.1 2 |[23.4ff 3 | 35.8 8 | 163.2{l 3| 86.6( 2| 27.0 1 | 17.0f 27 | 619.1j @
34 6 | 269.0f 1 [13.5)§ 5 | 53.8 6 | 99.4) 2| 73.7) 3| 122.4 23 | 631.8
35 3 | 123.4 7 | 114.6 |} 10 | 264.5) 5| 85.6| 3| 26.9 2 | 14,1} 30 | 629.1}} 2H
ToTAL||223 |4840,7] 42 [699.1{{146 |3196.1 ||263 |5938.7)[111 | 1874.4 || 96 {1358.0}/18 [369.2||29 |317.8 | 928 118594.0
AVE. |{7.4 | 161.40 1.4 23.3]] 4.7 | 106.5 [/ 8.8 | 198.9{3.7| 62.5(|3.2 | 45.3].6 | 12.3[/1.0 } 10.6 ] 30.9| 619.8




TABLE III.2. GROUND TRUTH FOR LEROY TOWNSHIP. INGHAM COUNTY, MICHIGAN
GIVEN IN ACRES AND NUMBER OF FIELDS.

LEROY: SECTIONS = 29

SECTION CORN SOYBEAN TREES GRASS STUBBLE SOIL ALFALFA OTHER TOTAL SYMBOL
# ACRE # ACRE # ACRE { ACRE # X ACRE # ACRE # ACRE # ACRE # ACRE FOR OTHER
2 1 | 41.6 51 193.1 6 1269.1 (|2 22.8 4 13.5 1 8.2 || 19 548.3 Y
3 3 105.4 1 14.0 4 83.7 3 148.6 4 104.8 2 65.5 2 29.2 19 551.2
4 4 50.9 (|1 }71.31[ 4| 180.4 4 1180.1 |i3 14.6 2 11.1 4 3 | 41.0] 1 8.8 || 22 558.2 Y
5 8 1203.0 3| 160.4 4 52.9 |13 | 104.7 2 19.3 20 540.3
6 7 205.2 1 6.5 3 45.7 4 66.7 1 18.8 2 35.7 2 21.7 20 400.3 X
7 7 97.2 3 69.7 3 33.9 4 67.4 6 114.7 3 32.1 3 62.6 29 477.6 || 2N,X
8 7 278.6 4 104.1 7 159.6 1 21.6 3 50.4 3 29.9 25 644.2 L1 2X,Y
9. 8 300.7 3 33.3 5 84.2 1 14.0 4 73.7 1 27.5 3 [1098.4 25 642.8 ||X,Y,0
10 9 |217.1 4 32.8 4 96.5 {1 5 65.4 8 97.1 || 5 | 96.5{| 1 | 42.1 u 36 647.5 X
11 5 82.5 4 51.0 9 |226.7 || 5 51.0 3 23.9 {1 2 | 48.0} 1 j157.4 (| 29 640.5 X
14 6 |136.1 8 80.0 12 | 280.5 8 81.114 2 { 10.3}} 3 | 38.0{ 39 626.0 i 2X,6
15 8 |231.0 3 62.8 7 {159.6 |1 4 35.8 5 27.0 1 4 1 61.24 2 | 47.1 |} 33 624.51|2X
16 7 |373.414f 2 | 31.7{| 5 69.6 4 '62.8 || 4 70.3 1 10.3 23 618.1
17 10 355.8 1 11.5 2 32.9 12 159.2 2 23.1 2 61.5 29 644.01| 8
18 6 54.6 j| 2 | 17.8}| 6 54.1 5 1207.1 (| 4 73.1 5 35.24 2| 19.5 30 461.4
519 9 |152.8 1 3 | 42.7|| 2 75.4 8 |108.2 {2 62.8 2 12.6 4| 1 | 19.641 1 | 24.2 || 28 498 . 3N
1220 5 1364.7 5 42.3 7 64.3 || &4 86.4 3 25.34l 4 | 36.3}} 2 | 30.0 1} 30 649.31| 8,X
21 3 1269.1 1] 194.8 3 53.7 il 2 73.2 1 25.4 2 | 28.8 | 12 645.01} 28
22 6 [200.4 1] 2 | 59.3}| 4 98.5 5 1133.8 1 3 78.9 1] 69.1 21 640.0
23 8 256.3 3 70.8 11 155.6 4 60.5 3 91.7 1 10.3 30 644.6
26 6 300.0 1 14.9 3 189.5 8 84.2 6 59,7 | 24 648.3
27 7 212.3 3 26.4 3 16.2 12 148.2 2 39.7 7 95.4 4 72.7 1 20.1 39 631.0{i N
28 12 |221.8 |} 2 | 57.6|] 6| 127.3 8 |1l41.1 || 2 20.1 7 54,24 2 | 20.8 39 642.9
29 12 1230, [ 4 | 91.4} 3 55.9 9 | 17C.4 {} 2 25.3 3 63.3 1 9.8 || 34 646.21l o
30 11 §201.8 || 1 | 14.41] 2 41.9 7 1127.8 1] 5 51.6 7 64.31 3 | 20,1 1 | 20.3 4 37 532.2141 6
31 5 183.8 1 23.6 3 99.6 5 72.1 2 22.6 4 89.9 1 36.8 1 19.0 22 547.4|| D
32 9 1243.8 ] 2 | 23.1| 3 51.9 6 95.7 |{ 4 87.4 1 2,9 5 |148.2 || 30 653.04f N,20,B,H
33 11 | 239.61 6 [ 72.64| 3| 103.6 6 60.7 || 8 | 102.1 3 17.24 2 8.6if 2 | 16.1 1}l 41 620,5{| N, X
34 . Cloud Covexy
35 8 {374.24 1 | 17.3(|}] 3 87.0 4 79.7 I 1 11.5 4 47.34 1 | 29.3 22 646.3
TOTAL {]208 $183.8 ||40 ]699.11]1107] 2523.4 || 185 {3645.7 [i89 11516.51{{100] 1178.9 || 40 |629.3|| 38 [893.2 ||807 {17269.9
AVE. 7.2 |213.2 {|1.4) 24.1{{ 3.4 87.0 [}6.4 | 125.7 {|3.1] 52.3(3.4 40.7 [11.4] 21,74 1.3 30.8 {|27.8] 595.5




TABLE III.3.

GIVEN IN ACRES AND NUMBER OF FIELDS

GROUND TRUTH FOR WHITE OAK TOWNSHIP INGHAM COUNTY, MICHIGAN

WHITE OAK: SECTION = 29
SECTION CORN SOYBEAN TREES GRASS STUBBLE SOIL FALFA OTHER TOTAL SYMBOL
# ACRE |{# ACRE ||# ACRE #  ACRE #  ACRE # ACRE ||# ACRE # ACRE {|# ACRE  FOR OTHER
2 9| 205.1 6 38.0 12| 350.0 21 29.9 6 49.5|| 2 | 66.8 37 739.3
3 14 | 319.9(} 1 } 38.6| 3| 110.0 11} 118.8 8 99.7]} 1 5.7 1] 4.1 39 696.8 X
4 71 208.6|| 2 | 19.71] 9 99.7 8} 160.7 5f 146.1 4 32.2{1 1 | 17.3 1| 8.71 37 693.0 N
5 51-103.14| 4 |100.2] 2} 120.9 10| 137.1 || 10| 125.3 1(106.0]| 32 692.6 N
6 18| 222.11] 5 | 59.3}] 4 69.7 3| 21.7 71 86.6 9 | 119.6{[1 | 21.9 1} 6.9 48 607.8 0
7 6| 139.411 1 | 26.5)] 4| 189.4 3| 45.0 3} 39.7 5 35.2[| 2 | 81.9 1{19.71]F 25 576.8 )
8 51 178.00f 2 | 27.0]} 6 94.3 6] 214.8 1| 28.8 3 21.2 51 79.0]] 28 643.1}[H, 4N
9 8| 293.3)1 2 | 47.811 6 73.0 41 42.9 2] 38.0 5 94.0 3] 57.1} 30 646.11[K,2H
10 7| 235.5 541 141.1 5{ 88.0 1} 11.5 4 32,1}/ 3 {109.3 3| 10.8]| 28 628,3|{3X
11 2| 72.6 4 292.8 51 224.6 21 6L7||1 | 7.5 14 659.2
14 3 91.0 61| 156.0 12| 337.7 2| 36.8 1 25.4 24 646.9
15 9 267.5 4 69.1 3| 65.6 1] 88.7 6 { 119.8||1 4,1 2| 13.9| 26 628.7]19,X
16 12| 307.5|} 3 | 18.9]| 8 89.4 9| 172.3 1| 19.0 3 28,2 36 635.3
17 8| 159.51!| 2 | 43.2}] 5| 150.5 5| 55.4 6| 62.1 9 74.8 6| 91.0}| 41 636.5||7,5H
18 11 | 247.3 9 99.7 5! 74.3 4l 76.7 3 55.9{|1 | 11.0 2] 22.4|| 35 587.3l18,X
519 81 201.3|{1 | 39.8]] 4 76.5 31 45.4 4] 128.9 1 29.3111 | 45.5 1 2.9§| 23 569.6||X
20 8 207.311 2 |} 89.2{| 6| 100.2 9| 168.7 4| 28.3 2 6.8 3| 42.04| 34 642.5(IN,X,J
21 71 192.4)| 2 | 24.7]} 9 80.7 6] 236.8 4] 36.3 21 70.9¢| 30 641.81IN,0
22 12:1 233.41] 2 | 71.9]] 5 30.5 7] 78.3 6| 121.6 5| 100.7|i1 7.5 38 643.9
23 2 29.5 2 90.5 8] 196.8 2] 30.5 3 88.8 8l196.4|1 25 632.5//Y,1,5F
26 2 62.7 || 1 7.5 4| 347.9 9| 192.8 1] 16.2 1 1.8 2| 11.0|| 20 639.9||2Y
27 11| 149.911 2 1 29.9]] 6 | 130.5 12] 161.9 8] 83.5 8 59.3]{1 8.7 4 12.1| 52 635,8({0,3X
28 51 1100l 1 { 26.5|} 7 | 137.7 4| 176.8 6| 93.2 6 71.2{|{3 | 36.0 32 651.4
29 4| 277.7 1 46.1 6| 206.8 4] 39.1 2 35.2011 | 12,6 2} 31.14 20 648.6{H,X
30 81! 153.3 7 | 107.7 12| 127.7 5|/ 59.3 5 47.1112 | 32.8 s| 38.5|| 44 586.4]13H,2%
31 ‘ Cloud Cover
32 12 | 242.5 3 52.4 6] 131.0 4| 39.1 4 23.7{17 [27.8 1| 4.1 37 620.6}%
33 9] 139.2 {11 | 15.5}] 9} 135.4 7| 143.3 71 82.8 3 37.4]|1 4.6 s| 76.0| 42 634.2]|7,W,%, 20
34 11| 199.5 , 9 | 142.3 11| 157.7 1} 101 99.1 3 13.3{{1 4.6 3| 21.91] 48 638.4ll0, 2x
35 71 184.3|{ 1 6.9 7 | 146.2 7] 141.6 4| 72.8 4 |72.5 1} 11.5{] 31 635.6||J
TOTAL § 230 | 5433.4 {{35 [693.1]§60 |3418.2 20814274.5 1114 1719.7 |} 111 }1363.9{{35 |678.1 |} 63/958.0]|956 |18538.9
AVE. 7.9 | 187.4 |[1.2] 23.9|p.5 | 117.9 7.21 147.4|{3.91 59.3|] 3.8 47.0{11.2! 23.4 {|2.2] 33.0]]33.0 639.3
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If a field was listed as 1/2 one crop and 1/2 another, it was treated
as if it were 2 separate fields; but if it was listed as woods pasture or
weeds and brush, it was piaced under the category first mentioned. However,
weedy soybeans were called soybeans. Since fields with dual crop identifi-
cation were arbitrarily classified by the first designation, there may be a
bias in the results. This bias is likely to be significant only for the
GRASS and TREES categories.

Table ITI.4 totals the information from the previous tables. The
percentage of fields belonging to each ground cover class do not différ
significantly between townships. However, the percentage of the total acreage
is significantly different for corn and grass. Corn covers 35.8 percent of Leroy
Township but only 26.0 percent of Locke while grass ranges from 21.1 percent
in Leroy to 31.9 percent in Locke Township. The major ground cover classes,
in order of decreasing importance according to the percent found in the test
site, are listed below:

Corn 30.3%
Grass 25.5%
Woods 16.8%
Stubble 9.4%

Bare Soil 7.2%

All other ground covers represent less than 5% of the total acreage of the area.
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TABLE I1I.4. PERCENTAGE TOTALS OF ACREAGES AND NUMBER OF FIELDS FOR VARIOQUS
' GROUND COVER CLASSES FOR EACH OF THE THREE TOWNSHIPS AND FOR
THE ENTIRE TEST SITE.

WHITE OAK

LOCKE LEROY TOTALS

% OF % OF % OF % OF %Z OF % OF % OF % OF

TOTAL TOTAL AVERAGE TOTAL * TOTAL AVERAGE TOTAL TOTAL AVERAGE TOTAL TOTAL AVERAGE

FIELDS ACREAGE ACREAGE FIELDS ACREAGE ACREAGE FIELDS ACREAGE ACREAGE FIELDS ACREAGE ACREAGE
CORN 24.0 26.0 21.7 25.8 35.8 29.7 24.0 29.3 23,6 24.6 30.3  |. 24.9
SOYBEAN | 4.5 3.8 16.6 5.0 4.0 17.5 3.7 3.7 19.8 4.3 3.8 17.8
TREES 15.7 17.2 21.9 13.3 14.6 23.6 16.7 18.4 21.4 15.3 16.8 22.1
GRASS 28.3 31.9 22.6 22.9 21.1 19.7 21.8 23.1 20.6 2.4 25.5 21.1
STUBBLE |.12.0 10.1 16.9 11,0 8.8 17.0 11.9 9.3 15.1 11.7 9.4 16.3
soIL | 10.3 7.3 4.1 | 12.4 6.8 11.8 11.6 7.4 12.3 11.4 7.2 12.7
ALFALFA | .1.9 2.0 20.5 5.0 3.6 15.7 3.7 3.7 19.4 3.5 3.1 18.0
OTHER 3.1 1.7 | 11.0 | 4.7 5.2 23.5 6.6 5.2 15.2 4.8 4.0 16.7
TOTAL 21.4 20.0 19.4 20.2
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APPENDIX IV
DERIVATION OF CROSS-CORRELATION FOR MISREGISTRATION STUDY
The following is a procedure for determining the amount of misregistration
between two correlated data channels. By recomstructing the continuous waveform
over a lengthy interval in both channels, the cross-correlation function of the
two waveforms can be determined. Let f£(t) and g(t) denote the reconstructed
waveforms in the two channels over the interval {A,C]. The cross~correlation

function r(to) is defined as

c
r(to) - J f(t)g(t + to) dt
A

The amount of misregistration between the two channels can be estimated as the
value of the parameter t which maximizes the cross-correlation. The continuous
waveforms can be reconstructed from the sample values by making assumptions
which allow the use of Shannon's sampling theorem. The sampled data is converted
into continuous form to allow the misregistration to be estimated to within a
fraction of a pixel rather than in whole pixel increments. The length of the
interval [A,C] must be long in comparison to the range of the parameter values
t,e This condition is required to minimize the effect of inaccuracies which
will occur near the endpoints of the interval,

Shannon's sampling theorem indicates that a continuous signal y(t),
bandlimited to B{radians/sec), can be exactly reconstructed from samples
taken with a sampling interval T = m/B. iThe sampling rate is equal to
twice the highest frequency component contained in the signal. The original
signal y(t) can be expressed in terms of the sample values y(mt) as

[=+)

yit) = § By@m)

=ea00

sin B(t - mT)
B(t - mT)

Assume that the two continuous data channels f£(t) and g(t) are bandlimited

to B and that the sampling interval T is equal to /B, Let the vample values

143




Z ’ FORMERLY WILLOW RUN LABORATOFR/ES, THE UNIVERSITY OF MICHIGAN

of these two waveforms over the interval [A,C] be denoted as f(kT) and g(iT)
i, k=1, ... , N. The cross-correlation r(to) can be expressed in terms

of the samples as

C

r(t ) = g £ (kT) g (4T) I sin B(t - k1) sin B(t + t, - iT)
° i,k=1 A B(t - k1) B(t + € - 17)

Using a variation of Parseval's Theorem, the integral can be evaluated by
extending the limits of integration to positive and negative infinity, and

r(to),can be expressed as

N .
BT X £(k Vg ) sin B(kT - it + to)
i, k=1 B(kt - it + to)

r(to)

or, since BT = 7

B § £k g ) sin m(k - i + tolTl

r(t )
° i,k=1 m(k - 1+ €_/T)

This relationship can be expressed in terms of a fraction of a sampling interval

(or fraction of a pixel) by defining a variable A = to/T. Then

N
_ .\ sin m(k = 1+ A)
r(A) = Bﬂi 1§=l f(k )8(1 ) ,n,(k -1+ A)

Neglecting the constant factor BT and expressing f(kt) and g(it) as £, and
8ir respectively, the function d(A) must be evaluated, where

N
- sin m(k = 1 + A)
a(d) = izk=ik i Tk -1+ M)
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which can be simplified as

(N-1) .
aw = 1 ne] G

g== 1) | 3-ke

For large N, the variable j need not extend over the entire range because of
the insignificant contribution of the high magnitude terms. To reduce the
effects of noise, the function d(A) should be determined for several scan lines
and averaged,
Initial tests of this algorithm indicated that the misregistration estimate
was being biased by the DC (average) component of the signal in each channel
To remove this bias, the algorithm was modified to subtract out the mean value
of each channel before computing the cross-correlation. In essence, this
means that the cross-correlation between the AC (varying) components of the signals

was then computed and this modification removed the bias that had been noted.
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APPENDIX V
DIGITIZATION AND PREPROCESSING OF M-7 DATA

The data set selected for processing was Run 2 which was collected over
Flight line 1 of the intensive study site at an altitude of 2000 feet. The
time of data collection was 1100 hours EDT, approximately the same time as
SKYLAB overpass.

First the analog tape was duplicated to remove relative skew (misregistration)
between channels, and the tape was reviewed in regard to data quality. The scan
rate was checked and found to be 60 cycles per second as per specifications.
The relative ground speed of the aircraft was checked and found to Be
approximately 2.75 feet/scan or 98 knots. Each data channel was checked, The
only problem found was in the thermal channel, track 12, where the offset was
very noisy, with variations in the cold plate signal of as much as 15% of the
total dynamic range.

As mentioned above, the data were gathered at an altitude of 2000 feet.
This means that the ground size of each resolution element is very small
compared to the size of ground objects of interest; or conversely, that each
ground object of interest would contain an enormous number of resolution
elements. For example, the spectrometer on the M-7 scanner exhibits a
resolution of two milliradians, resulting in~a resolution element of four
feet by four feet. A typical 15 acre agricultural field would be scanned
by as many as 40,875 resolution elements.

Accordingly, it was felt that we could take advantage of the gross
redundancy in the data by means of spatial filtering to improve the signal
to noise ratio of the data, and decrease considerably the,ﬁumber of pixels to
be processed, thus decreasing processing time and costs. Naturally, some
information, such as the ability to more precisely locate boundaries between
two areas or detect fine-scale structure in the data, would be lost in using
such filtering. For this data set, it was felt that such drawbacks would not
hurt the aﬁalysis effort, Accordingly, it was decided to filter along each
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scan line using an appropriate low pass analog filter and sampling once every

20 milliradians. In addition digital smoothing over 9 scan lines was used at
each scan point. The result was one digitized "average" datapoint from every

10 x 9 rectangle of data points in the original analog tape. This represents

an increase in signal to noise of 9.5:1 and a large decrease in the volume of
data output. In addition, this sampling scheme allowed the data to be digitized
eight times faster than it could have been done had we digitized every point

in the scan line. In all, some 40,000 analog data scan lines (representing
approximately 21 miles on the ground) were digitized. Each digitized scan line
consisted of 85 points of ground scene, and an additional 55 points of calibration
information.

After digitizing, the data were again checked for any unusual problems (noise,
skew between channels, dropouts, etc.); none were found. The data were then
dynamically clamped to the zero signal reference source (cold plate for the
thermal channel and dark level for the other channels), i.e., processed to reduce
any changes in the offset of each channel by calculating for each scan line
the average values of the reference area for each of the channels, then
subtracting these values from all points in the scan line.

The preproceésing stage was completed by application of the average signal
versus angle data transformation [16]. In this method, for each channel, the
average signal at each discrete scan angle (pixel) is calculated and the resulting
function analyzed. The average signal function in all channels was quadratic
in form. The data were corrected by dividing the data values by the corresponding
value of the correction function. ‘

The output data were then used in the training and classification stages

described in the text,
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APPENDIX VI
FIELD LOCATION IN S~192 DATA

As a first step in identifying individual fields, graymaps were generated
for several of the bands which displayed good contrast and homogeneous areas,
however, it was not possible to accurately locate individual fields. Even
geographic features such as roads are not defined clearly enough to be of use
in matching the ground information to the graymaps.

Since fields could not be located by inspection of graymaps, a semi-
automatic procedure employed which made use of an x-y coordinate digitizer which
efficiently digitizes the coordinates of points where a cursor has been
momentarily positioned. All points of interest, section corners, field corners,
etc,, were located on large scale photography. Points digitized for Skylab
processing were located on plack and white enlargements of imagery acquired
by the U-2 overflights in mid-August, 1973.

To transform the photographic (x,y) coordinates into (scan line, and scan
point) coordinates, control points which could be found with confidence on the
graymaps as well as on the photographs were used. Being unable to find such
obvious control points as roads or road intersections, bodies of water were
used for control points. Comparison of a signature for a deep water lake and
a general vegetative signature indicated a large separation of signals
in SDO's 17 and 19. Therefore a two-channel classification for
water was performed; all points so classified were indicated on a scan-line-
straightened graymap. These pcints were compared to U-2 and S-190A false
color IR imagery to ascertain their precise place in the scene and finally were
located on the enlarged U-2 photographs.,

A transformation was calculated using the control points and regression
techniques. The digitized points were then mapped from the photography (x,y)
coordinates to scan line, scan point coordinates for scan-line-straightened
data. The best-fit regression for the Skylab conversion yielded a first order

‘equation with no cross terms.
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These coordinates were then converted to conic data coordinates. The
appropriate transformation was calculated by ugain defining a set of control
points and by using the inverse of the scan line straightening transformation
equations as given in the EREP Users Handbook, coupled with regression
techniques to accurately calculate the constants in the equations,

The equations we used were:

P-n'e N+Z
CONIC POINT = A 5’51n N

vhere
P = [STRAIGHT POINT - 51.7.8-0.5]
N = 1239 Points/Conic Scan Line
8 = 116.25° Field of Scan

A & B are constants estimated from regression techniques.

Similarly, for scan lines:
CONIC LINE = C + D . STRAIGHT LINE

(CONIC POINT * 2 — 2 - N)O
2 N

- E-R €OS

with
= Radius of the scan circle projected on the Earth
¥ 608 pixels

and C,D, and E are constants estimated from regression techniques. To
perform the regression, 18 points were located on both conic and straightened

graymaps., The regression fit was very good and further, all 5 coefficients

seemed to be sensible, a reflection of the physical reality.
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With the field coordinates converted, the ground information was merged
with the conic data. Graymaps of two conic data chamnnels and the ground
information channels were overlayed for comparison and the conversion was

deemed very satisfactory. ’
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APPENDIX VII

DESIGN OF THE EXPERIMENT TO ASSIST IN THE
ANALYSIS OF THE EFFECTS OF CHANNEL-TO-CHANNEL SPATIAL
MISREGISTRATION OF S-192 DATA ON "FIELD-CENTER" PIXELS

An integral part in the evaluation of the effects of misregistration of
§-192 data is an investigation of the effects on field center pixels that remain
field center in all channels even after misregistration. The following outlines
the experiment designed to assist in this analysis. Since the analysis was based
on a simulation of the effects of misregistration, the base signatures were
extracted from the corrected conical S~192 data set which was assumed for purposes
of simulation to be perfectly registered from channel-to-channel.

Step 1. Choose a signature set. |
Five S-192 field center sigiatures were chosen representing‘the
predominant scene classes: corn, tree, grass, brush, and‘bare;sdil.

A subset of seven 5-192 SDOs were used (SDOs 2, 8, 10, 12, 17, 19, 20).

Step 2. Choose a subset of n channels to misregister in simulation
There were two phases to this step in the experiment. Initially three
channels, SDOs 2, 12, and 17 were chosen to be misregistered. These three

SDOs were chosen because they were found to be the three best channels

for purposes of discrimination in the least-probability~of-misclassification

sense. Next, in a parallel experiment, only SDO 12 was misregistered, It

had been determined to be the best single SDO for purposes of discrimination.
Step 3. Choose varying degrees of misregistration to simulate.

-Each of the channels described in step 2 were misregistered in
simulation by fixed amounts of 1/3, 1/2, 2/3 and 1 full pixel.

Step 4. Run a Computer Program to calculate simulated field-center signatures
for each degree of misregistration determined in Step 3.

The simulation model used is described in section 4.3.2. A computer
program was written to implement the algorithm simulating the effects of
chandel-to—channel spatial misregistration of field center pixels. This
program was run to produce four sets of signatures with three misregistered
channels and four sets of signatures with one channel misregistered.

Each set represented a different degree of misregistration,
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5. Calculate an expected performance matrix for each set of signatures.
The program PEC was used tc calculate these matrices. PEC is fully
described in Appendix XI. The program was run for each set of
signatures simulating effects of misregistration along with the original
"registered" signatures,
6. Analyze the results in light of the analytical expectations.

The . performance matrices were analyzed as is described in
Section 4.3.4,
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APPENDIX VIII

DESIGN OF THE EXPERIMENT TO ASSIST IN THE ANALYSIS
OF THE EFFECTS OF CHANNEL-TO-CHANNEL SPATTAL
MISREGISTRATION OF S-192 DATA ON "BORDER" OR "MIXTURE" PIXELS

The following experiment was implemented to determine the effects of

misregistration on mixture pixels. Since the analysis was based on a

simulation of the effects of misregistration, the base signatures were extracted

from the corrected conical S-192 data set which was assumed for purposes of

simulatién to be perfectly registered from channel-to-channel. The analysis

carried out pertains only to those pixels that are mixture pixels in some

channel(s) after misregistration.

Step

Step

Step

Step

1. Choose a signature set.

Five S-192 field center signatures were chosen representing the
predominant scene classes: corn, tree, grass, brush, and bare soil.
A subset of seven S-192 Spo's (2, 8, 10, 12, 17, 19, 20) were used.

2. Choose a subset of n channels to misregister in simulation.

There were two phases to this step in the experiment. First three
channels, SDOs 2, 12, and 17, were used. These three SDOs were chosen
because they were found to be the three best channels for purposes of
discrimination in the least-probability-of-misclassification sense.
Next, a single SDO, 12; was used. It had been determined to be the
best SDO for purposes of discrimination.

3. Choose varying degrees of misregistration to simulate.

Each of the channels described in Step 2 were misregistered in
simulation by fixed amounts of 1/2 and 1 full pixel in the east to west
direction.

4, Run a computer program to calculate simulated field center
signatures for each degree of misregistration determined in Step 3.

The simulation model used is described in section 4.4.2. A computer
program was written to implement the algorithm simulating the
effects of channel-to-channel spatial misregistration on field center
pixels. This program was run to produce six sets of signatures, three

for each parameter setting of channels to be misregistered.
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Step 5. Choose varying proportions of mixtures of two ground covers to simulate.
A distribution of mixtures of two ground covers A and B were to be
simulated in proportion of 2/3 A and 1/3 B, 1/3 A and 2/3 B.

Step 6. Simulate mixture distributions in the proportions chosen in Step 5
for all possible pairs of registered field center signatures chosen
in Step 1.

The program discussed in step 4 was optionally run to simulate these
mixture distributions in the proportions described in Step 5. These
mixtures represented the actual distributions expected to be found in
the S-192 data set under the assumptions of the model used.

Step 7. Simulate mixture distributions in the proportions chosen in Step 5
for all possible pairs of misregistered field center signatures
for each misregistration chosen in Step 3. ‘

For one-half pixel misregistration, twelve distributions were
simulated for each of the field-center misregistered distributions
calculated in Step 4. For one pixel misregistration, twenty signatures
were simulated for each of the base signatures. The difference in
the number of simulations lay in the fact that, for a greater degree
of misregistration, more field center pixels would be mixtures in the
misregistered channels., Hence more distributions were simulated

in order to better represent the situation,

Step 8. Calculate an expected performance matrix for each degree of
misregistration. :

Using the program PEC, three performance“mgtrices were calculated, one
for each misregistration of 0, 1/2 and 1 full pixel. Program PEC is
described in Appendix XI. The field center signatures simulated in
Step 4 were used as recOgﬁition classes, Linear decision boundaries were
determined based on these signatures. Thea the signatures simulated in

Step 7 were used as the scene classes and expected performance probabilities
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were calculated for each of the simulated distributioms.

Step 9. Plot the results.
Graphs were generated displaying the probability of classification

of a ground cover asa function of the mixture and misregistration.
Step 10. Analyze the results.

The plots were analyzed as a described in Section 4.4.5.
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APPENDIX IX

A SIMPLE ANALYTICAL MODEL TO STUDY THE EFFECTS OF
MISREGISTRATION ON FIELD CENTER CLASSIFICATION ACCURACY

Insight has been gained iﬂto what effects spatial misregistration may
have on field-center classification accuracy through an analytical analysis
of the problem., Consider two normal distributions in n channels, NA(uA, R)
and NB(uB, R), with a common covariance R. The probability of a type-one

error* using the linear decision rule is

t -1
or1/2:5R %) (1%-1)
where
o] - _:_L- yz
1 2
¢ (x) = ~— J e dy
X~
V5 (1%-2)
b

and o= uA-uB, the channel to channel mean difference.

Studies have indicated that misregistration from channel to channel, or
time period to time period in the case of multitemporal analysis, causes resultant
signatures to be less correlated, This analysis, therefore, attempts to examine

the error rate 2 as a function of correlation p

- 2 -
Let R = 012 90'102 1 ;3 then R 1 = 6—2—;'—2-——? O'2 90'102
1 92 (=p°) (IX-3)
2 " 2
po,0, O, po0, O3

*Under the assumption of common covariance, type-two error is equivalent to
to type-one error.
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Also, let £(p) utR_lu for -1 <p <1 (IX~4)

1/2

and g(p) = 1/2£(p)

f(p) =2 at p==¢1

Similarly g(p)>~ at p = * 1, which implies x -+ » at p = * 1. ¢ can be
expressed as a function of p through f(p) and/or g(p):

1/2

¢(x) = ¢[1/2 £(o)™" 7] = ¢[g(p)].

Substituting x = » into E¢. IV-2 we have I(®) = 0, We have established
therefore, that the error rate ¢ is minimized for correlation p=%1, Let

us now examine the behavior of the function ¢ for -1 < p < 1,

Although restricting ourselves to two channels we note that the following
analysis can be generalized for pij’ the correlation between any pair of
channels i and j.

Let us now calculate the first derivative of f(p):

t -1
f(p) =R Ty

-1
df(p) _ ,t 4R _
d(p) H T4 " ‘ (IX-5)
art
We can simplify the calculation of 3 by noting the following relationship
between dR- and 95 :
dp

& owmh =L (- o=<>R Lin & >

dp dp
, dR—l
Solving for o we find:
_d_R_:]... = - R°l ( )R— (IX-6)
dp dp
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Substituting Eq, IX-6 into Eq. IX-5 and solvingi

df(p) _ _t.-1 dR p-1
dp MR 3 U
t -1

Noting that p R - [(R—l)tu]t and (R—1>t =R

df(p) _ -1 ..t drR -1
o =-@® "W 3 (R "W

(IX-7)

Eq IX-7 is an expression for the first derivative of f(p) in terms of
the derivative of R. Now let us examine if, for -1 < p < 1, critical values

of £(p) exist, Individually examining the components of equation (IX~6)

determine the following expression for two channels.,

2 - |

1 1 O"M1 T P9 . (1%-8)

R7u = 25 2 (102 2 - zc 1 -
o1%01" (%) \op%uy ~eogophy [T <‘*2>
drR _ . 01 e 01
o~ 12\, 2 \10 (Ix-9)
now substituting IX-8 and IX-9 intoIX~7:
a

. 01 1 .
i) . ; —oog.

v cl(al, az) <, Lo ¢y a, ; let b ¢y (IX-10)

22
df(p) = b(a,a = 2bg.a, 3 b >0
& 17278, 172 (IX-11)
df @) -1
For ) =0, either a, or a, one of the two rows of R~ , must equal zero.

Since &x) > 0 and continuous, and has minima defined at p==%1, then ¢
is maximized at :
K,0 U0
172
P = no. °F 201 for -1 < p < 1,
2t H19 - T
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Before examining the implications of this result, let us determine

whether thisresult can be generalized.

Eqs. IX-5 to IX-7 can be generalized by letting p = pij and

4R = 2R _ for any pair of channels i and j,
dp ap

i3
Hence:

t. -1

and

3f(pij) N utaR-l "

9p Bpij

Examining a three-dimensional case,

2
9 P12919% P13919;
= 2

R P12919 72 237293
2
P13%193 P2392%3 93

Therefore: 0: 1 0 '0 0 1
R_ -1 0 o) & =lo o ol; & -
Y 3
0 P23 0

) ' 0 0 o0 3014 1

Following the same line of reasoning as in two dimensions {Eq. IX-10 and IX-11
we find that

A (py,)

%P1y

1

= 0 when either the lst or 2nd row of R "y is zero;

similarly for f(p23) and f(ol3).
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We can now generalize to conclude

3f(pi .)

9p.,

= 0 at some p ., - in the interval defined by -1 < p.. < 1
1,3 ci,] i
]

J
for any pair of channels i, j. The point pci,j can be calculated exactly by setting
the ith or jth row of R_lu equal to zero and solving for pi,j' The function £
is a function of many variables, f(p12’pl3""’pij"") for all i,j. We have
determined that (1) the function ¢ is minimized along its boundary in the
interval‘—l <pz<1 and (2) the function f has a critical point at pci,j
with respect to each variable pi,j for all i and j and these critical
points must be maxima. Under these conditions we can conclude -that the
function % reaches a maximum on the interval -1 < pij < 1.

Let us now examine the implications of this analysis graphically for

two channels of data:

CASE 1 CASE 2 CASE 3
@/\ ' /\"’ Q
-1 Pe lp -1 e, Loy -1 Pe p

FIGURE IX-1 ERROR RATE OF RECOGNITION ¢, AS A FUNCTION
OF CORRELATION p IN FIELD CENTERS

Eigure IX~1 displays possible curves mapping the error rate ¢ in field centers

‘as a function of p. A maximum error occurs at p . ¢ is minimized at p = £ 1

and intercepts the y axis at p=0, £(0) =‘f(0) = ulz 022,f Uzz 012 .
2 2
H1%2 M9 1 %2
pc occurs at pc = uzcl or ”102 .
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Let P, be the correlation of a registered data set in two channels
and let Pn be the correlation of the same data set but misregistered to
varying degrees, Keep in mind that misregistering data will cause the
correlation to decrease, Let us examine each case depicted in Figure IX-]

separately,
CASE 1

(1) if 0 < I 1, then misregistering the data set would cause
the error rate to increase until P = Pos then it would restore accuracy
somewhat until on = 0.

(2) 1if 0 < PSP S 1, then misregistration would actually improve

results.,

(3) 4if -1¢< Py < 0, then misregistration would cause the error rate

to increase,

(4) if Pe N 1, misregistration would always improve field center results,

CASE 2
(1) 4if -1 < PSP < 0, this behaves as case 1 step (1).
(2) 4if -1 < Pe S P S 0, see case 1, step (2).
(3) if 0 < Py < 1, see case 1 step (3).
(4) 1if Pe W -1, see case 1, step (4)
CASE 3

In this case misregistration would always cause the error rate to

increase,
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APPENDIX X

DERIVATION OF CORRELATION ESTIMATION MODEL FOR TWO
CHANNELS MISREGISTERED WITH RESPECT TO ONE ANOTHER

Crop 1 | Crop 2
SRR |
dk— }
| resolution in
dj | channel k

resolution in e |roent !

channel ] k o '

d - .
h| ]

FIGURE X-1. CONFIGURATION OF BOUNDARY RESOLUTION
ELEMENTS OF TWO CHANNELS OF DATA MIS-
REGISTERED WITH RESPECT TO ONE ANOTHER

In the derivation of the covariance estimation model, we restrict ourselves

to two channels of data and two crop types. Figure X-1 illustrates a possible

configuration of boundary elements for two channels misregistered with respect to

one another. It is the cross-correlation between two such channels that we are

interested in calculating.

Let Sij(a,B) be the signal per unit area from ground coordinate (o,8) for
the i7" crop, j channel. This signal is assumed to originate from a

stationary random process, with statistics:
E[Sij (a,8)] = Aij
= 8L, Ty (ay=05581-8,)
§{i,h) is Kronicker's Delta Function, If i#h, i.e, two different

crops, correlation is assumed to be zera

rijk(al—az,sl-ﬁz) is the correlation function and is dependent on the

distance between the locations on the ground,
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The assumption made is that the correlation between two pixels drops rapidly as
the distance between two pixels increases. The correlation between two adjacent

pixels is assumed to be zero.

The scanner signal in the jth channel is the sum over the resolution area

of all signals Sij(a,ﬁ):

0 dj bj dj
% = I do I dBSlj (a,B) + J da J dg SZj (a,B)
aj cj 0 cj
with statistics:
0o Y by g
E(xj) = J da J dBa, + 'J da J dBaZJ
aJ cj 0 cJ
0o Y by 4
k- B = | do [ Qi Ga®) - ayl ¢ [ [ astsy e - ay)
aj cj 0 cj
the correlation between channels j and k is:
Ry = E {[xj - EGxy)] [xk-z(xk)]}
0o Y By 4
= E J dal I dBl[Slj(al’Bl)-Alj] + J daz JdBZISZj(aZ’Bz) - Azj]
a c. , e,
3 h | -7
0 dy | b 9
* J doy J dgy (833 0y ) ~ Ayl ¥ J day J dBISy (295Bp) — Al
a c : 0

k k ®x
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multiplying this expression out we note that cross terms drop out due to

Kronecker's Delta:

0 dj 0 d,
aj Cj ak Ck
d, b d
‘T-j 4 k k
+ J day stl J da, J dg, T)ik (al-az, 61-82)
’ 0 c, 0 c
3 k

To simplify the algebra let cj=ck and dj=dk’ This means that only misregistration
in one direction is considered, We will generalize later to two directions.

Using this assumption along with the identity*

0 0 d-c
Rjk = Jdal J daz(d-c) J rljk(al-az,ﬁ) <l - %%%) dp
a & ~(d-c)
bj bk d-c
+ Jdal J dmz(d-c) J tzjk(alraz,s) (1 - %ﬁl) dg
0 ~(d-c) -¢
d-c

‘let F1jk = (d-e) Jrijk (ul-az,B) (1;18!\ dg
~(d-c) ' ¢/

and similarly

d~c
szk = (d-c) Jrzjk (C!l"dz,e) <l"_£%l_> dg
~(d=c) €

* simplified using the identity

B-A .
f JF(u—v) du dv = (B~-A) JF(x) 1- LEL dx
A ‘A ~(B-A) B-A
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substituting we have:

0 0 b b
J p (x-1)
Rjk = Jdal Jdaz Fljk(al-az) + Jdal JdQZFij(al-uZ)
aj a, 0 0

now examine each component of Rik assuming that aj <8 (the same argument

applies otherwise).

0 0
Jdal Jdaz F],jk (al-az)
a._I a,
a C 0 0
= Jdal Jdaz F].jk (az—al) + Jdal Jdaz Fljk'(az-al)
3, % G %
3y 0 <8y ,
) Jd“l Jd"‘z Flyk (egmop) + (8 jFij(“) (1'£%L> o (x-2)
a:i ay ay k

The contribut;ion to the estimated covariance from any non-overlapping
region is assumed to be zero. The left component of Eq. X-2
determines this contribution, hence it can be eliminated, Thus the

left hand term of Rjk is:

%k | -
J Fljk(a) -lal}  da (X-3)
‘ =
ay k,
Similarly for bj < b, we find;

% (-3)

bj bk b;] |
Jdal Jdaz Fij (a;-a,) ¥ (bj) JFij (l-ba da (X-4)
0 0 -bj 3
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substituting Eqs. X-3 and X-4 into Eq. X-1 we have:

"k
1-]8 1-ja -
R ¥ (-3p) J Fp (@) -l;i— da + (b)) szjk ( -l;—l-> da (X-5)
a
k

If the pixels being examined were pure crop 2 pixels, the expression

evainated for Rjk would be the covariance Rij between channels j and k in
crop 2. In order to simplify the expression for a border pixel we need to

evaluate it in the field center case.

For crop 2, a, = 0 and let bj = bk = b, hence

b b

Rjk = Rij =0 + Jdal Jdaz F2jk (ul-az)
0 0
simplifying:
R g™ b J Fpype <1-J_:_L> da (X-6)
-b
{
Similarly for crop 1, bj = 0, and let aj =a =a
a
Rpj = @ JFljk"“) <1‘J—?‘;L> do (-7)

We know have R2jk and lekf the cova;ignce terms for channels j and k for
crops two and one,
For a mixed pixel,'we mak.: two observationms,
(1) The covariance of two points on the ground drops very
rapidly as a function of the distance between them then:
(2) To substitute Eqns. (X-6) and (X-~7) into Eq. (X-5) we need to
normalize by dividing respective terms by a and b, the

~widths of the respective pixels.
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Having made these observations we can conclude for a boundary pixel,
the covariance Rjk can be calculated using the expression

_ % by |
ik~ Ta Mk T T Rogx (X-8)

Eq. X-g‘was derived under the assumption that misregistration was in only

one direction, The simulation model described in section 4.4.2 is based on this
assumption, The analogy of Eq. X-8 with misregistration in two directions

is a trivial extension of Eq. X~8 and is determined to be:

d, -¢c d, -c
=| K £k o
Rik ae 2 Rigx t |\ Tad b5 Ragk (x-9)

‘ where c = dk-—ck and d = d,~c, are the heights of each resolution element.

b I
We note that in our case the widths of the respective

pixels are the same size, hence a=b. Therefore EE is the proportion of

a
overlap in crop 1, and 31 ig the proportion of overlap in crop 2,
b
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APPENDIX XI
DESCRIPTION OF PROGRAM PEC

PEC is a program written in the MAD language under UMESS for the
IBM 7094. PEC will compute the expected performance matrix for the ERIM
linear rule classifier on a given set of signatures and classifier
parameters by using a Monte-Carlo technique. The matrix gives the probability
that pixels from each given signature distribution will be classified into each
given recognition class based on the best linear decision boundaries between
recognition classes. The classifier works as follows. BRetween each pair of
signatures A and B, a boundary is found to separate those pixels which might be
classified as A from those classified as B. This boundary is a linear

hyperplane of the form

> -»>
X o C -D} =
[x, + € -D] =0
where
>
Xy is any point on the hyperplane
E ig a vector normal to the hyperplane

D is a constant which is the distance from the origin.
to the plane in units,of the length of ¢. In this
program we normalize C to be of unit length.

1f [; . E ~ D] < 0, then.; will be classified as A; otherwise'; will be

classified as B.
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Once these boundaries are established between all pairs of signatures,
classification proceeds as follows. Given a pixel, it is tested againgt
the hyperplane between signatures 1 and 2, and one of these two classes wins.
The winning signature is tested against the third, this winner against the
fourth, etc, The ultimate winning signature thus will emerge, and the
exponent value (i_ﬁw)t M;l(g-ﬁw) will be computed. If the exponent is less
than a specified threshold, the point will be tabulated as belonging to the
winning signature class, but otherwise the point will be tabulated into the
class "unclassified",

A Monte—-Carlo technique is employed to generate the pixel from a given
scene class, The production of a random pixel is as follows,. We want
; such that {y} is normally distributed with signature mean g and covariance
R. First X is prod..ced with each element normally distributed, so that it has
meén 0 and covariance I (the identity, that is, channels, are.uncorrelated). Then

we want a transformation

&>

y=Px+b (XI-1)

which we will apply to every ; to get the corresponding ;. By definition, the

covariance R can be written

>
R = E {(G-b) G-B)%}
where E { } or e( ) denotes the expected value of the enclosed term.
Then

R=E {(Px)(Px)t} = E(PxxtPt)

= PE(xxt)pt = pIPt = PPt

By definition, P is the Cholesky decomposition of R. After computing P, each
> .
y is obtained quickly from Eq. XI-1.
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