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Chapter I
 

BACKGROUND OF MICROWAVE MOISTURE MEASUREMENTS
 

-Introduction
 

In the pursuit of understanding the world in which he
 

lives, man has reached into the depths of outer space itself
 

an has viewed the earth in a perspective never'before pos

sible. This age of sophisticated electronics has also pro

duced varied instrumentation with which to extract earth re

source data from orbital altitudes. Some devices, such as
 

ultra-violet and gamma ray instrumentation, are designed to
 

measure higher frequencies (shorter wavelengths) than our
 

human sensory mechanisms can detect. Others operate within
 

the visible spectrum (0.4-0.7 micrometers, vim) and include
 

most devices using photographic film. Still others operate
 

at wavelengths longer than our senses are capable of detect

ing. These include instruments performing in the near-infra

red(0.8-1.5 pm), the middle infrared (1.5-5.5 jim) and the
 

far-infrared (5.5-1000jm) and the numerous radar and micro

wave sensors .i:OOi.. Some systems readily'detect-a-par

ticular phenomenon, while others are "blind" to the identical
 

phenomenon.
 

Microwave backscatter-and emission are both strongly de

pendent on the moisture content of soil, vegetation and snow.
 

This comes about because of the relationship of microwave
 

backscatter and emission to the dielectric properties of the
 

scattering and emitting surface, and the relationship of these
 

dielectric properties to moisture content.
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The dielectric constant of water at microwave frequencies
 

is quite large, as much as 80, whereas that of dry soil is
 

typically less than S and that of dry snow is less than 2.
 

Therefore, the water content of soil or snow can-greatly af

fect their dielectric properties. This suggests the- applica

tion of microwave remote sensors.for monitoring soil moisture
 

content and snow properties.
 

Previous Investigations
 

In the mid-1960's, Kennedy (1968) and Edgerton et al.,
 

(1969) began the investigation of passive microwave sensors
 

for determination of soil moisture content. Numerous theo

retical-studies (Peake, 1959; Chen and Peake, 1961; Poe et al.,
 

19711 Stogryn, 1967; Fung et al., 1965; and Johnson, 1972)
 

and -experimental studie. (Schmugge et al., 1974; Jean, 1971;
 

Lee,, 1974) have been conducted to measure soil moisture with
 

microwave radiometers. The radiometric results indicated
 

that under some conditions the soil moisture content can be
 

determined quite accurately and the passive microwave radio

meter has high potential in this application.
 

Schmugge et al., (1974),reported a series of aircraft
 

flights over bare land using microwave radiometers in the
 

wavelength range of 0.8 cm to 21 cm. The results indicated
 

that it is possible to monitor soil moisture variations with
 

airborne microwave radiometer wavelengths and to determine
 

the distribution of soil moisture. It was shown that the
 

longer wavelengths were-more sensitive to variations of soil
 

moisture content.
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Sibley, (1973) has investigated the effects of vegetatio
 

on microwave emission. A theoretical model has been develope
 

for the apparent temperature of vegetated terrains for use in
 

soil moisture studies.
 

Lee, (1974), using a passive microwave radiometer system
 

of 1_41 GHz (21.13 cm. L-band) and 10i69 GHz (2.81.cm, X-band
 

for a field experiment has found that the L-band is more sen

sitive to soil moisture variations than the X-band for all
 

surface types.
 

Another microwave remote sensor for soil moisture con

tent detection is radar. The effects of soil moisture on the
 

radar return have been examined in the laboratory (Lundien,
 

1966) through the interpretation of airborne scatterometer
 

data. (King, 1973), and by imaging radar (Waite & Mac Donald,
 

1970).. Uliby (1974)-has shown that the radar response to
 

soil moisture content between 5 and 8 GHz is influenced by
 

surface roughness,microwave frequence and look angle. Ulaby
 

(1974-b) also has shown that the moisture content of the
 

soil strongly influences its dielectric properties at small
 

incidence angles (relative to Aormai) and the lower microiavE
 

frequencies for'vegetated surfaces.
 

King, (1973) and Dickey et al.,(1974) analyzed data from
 

13.3 GHz and 400 MHz scatterometers and found that for inci

dence angles less than 40' the 13.3 GHz data showed a differ

ence in backscatter from wet and dry fields of the order of
 

7 db. The averages of the various' crop types were within a
 

spread of only 5 db.
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In 1971, Poe et. al investigated the soil moisture con

tent of a plot .at the USDA's U.S. Water Conservation-labora

tory in Tempe, Arizona. This- study encompassed f1, multiple
 

wavelength microwave radiometric measurements (8.1 pm, 2.2 cm,
 

6.0 cm and 21-.4 cm); and #2, dieectrid constant measurements
 

(8.1 pm and 2.2 cm), the numerical modelling of dielectric
 

mixtures (soil, air water), and-he'emissioi characteristics,
 

of soils. This study minimized complicating features due to
 

surface-and lateral-ariatlens in .thes.oils. Thus, the primary
 

variables subject to measurements and analysis were the dist

ribution of moisture and temperature within the soil.
 

The disagreement of measured and calculated temperature
 

for 6.0, 2.2 and 0.81 cm was probably due to uncertainties
 

in the near surface soil temperatures. Closer agreement at
 

21.4 cm was due to the greater skin depth, which implies that
 

warm soil temperature in the first few centimeters had little
 

effect on the 21.4 cm radiometric temperature.
 

Schmugge, Gloersen and Wilheit (1972 and 1974) used micro

wave radiometers to measure surface temperatures.- Measure

ments were by a nadir viewing infrared radiometer operating 

in the 10 to 12 i atmospheric windows. Agricultural test sites
 

were located in the vicinity of Phoenix, Arizona; Weslaco,
 

Texas; and the Imperial Valley, California. The majority of
 

the selected fields were without vegetative cover and at least
 

400 meters on a side. In the Imperial Valley and Phoenix area
 

four 15-cm soil samples were taken in each field to yield the
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average soil moisture for the top 15 cm in the soil. More
 

detailed surface truth .data were available for flights. o-ver
 

Weslaco, Texas. A surface sample one to three 'centimeters
 

deep and a sub.surface sample at a depth of 15 cm were taken.
 

The study was conducted at frequencies of 1.42 GHz 'C21.l cm),
 

4.99 GHz (6.01 cm), lP'3V-GHz l'5'5'-mf and 37 GH. 8O.8-cm).
 

A linear regression analysis was performed on the bright

ness soil moisture data on each data set. In general, it was
 

found that the correlation coefficient decreases with decreas

ing wavelength, as does the slope of the regression curve,
 

indicating a greater sensitivity to soil moisture with longer
 

wavelength radiometers.
 

The data presented indicated little change in the emis

sion from soils with moisture contents less than 10 to 20% and
 

above this point there appears to be a linear decrease at a

bout 2'X per percent soil moisture. It has also been shown
 

that both surface roughness and vegetative cover decrease the
 

ability to sense soil moisture at least at 1.55 cm. It was
 

also concluded that longer wavelength radiometers ( 6 and 21
 

cm) have greater sensitivity to soil moisture.
 

Using a Truck mounted radiometer, Edgerton and Treler,
 

(1970) undertook to study various geological phenomena. The
 

purpose of their study was to establish the microwave proper

ties of representative rocks and minerals, and to examine the
 

feasibility of utilizing microwave radiometry for various ge

ological mapping problems, Microwave radiomettic investiga



tions were performed on 29 sites within nine localities of
 

the Western United States. Field measurements were performed
 

with dual polarized radiometers taving observational wave

lengths of 0.81, 2.2, 6iO and -21 cm. Microwave brightnesp
 

temperature measurements were used to determine the emissi

vities and physical characteristics .of the raterials. The
 

authors determined that the characteristics included surface
 

roughness, moisture content and specificgravity. It was
 

also determined that a majority of the outcrops examined dur

ing the study were "distinctly non-specular" relative to the
 

0.81 cm observational wavelength and the corresponding emis

sivities were generally high (i.9). It was found that prac

tically no correlation exists between moisture content of rough
 

outcrops and the corresponding 0,.81 cm emissivities. At the
 

21 cm scattering due to roughness was greatly diminished. This
 

is evident as the 21 cm emissivities were low and the polari

zation differences were great. The low emissivities correla

ted closely with high moisture content in the outcrops.
 

On February 21 and March 1, 1971, NASA Goddard Space
 

Flight Center performed airborne microwave radiometric meas

urements at 1.42, 4.99, 19.35, 37 and 94 GHz (X, 21.4, 6.0,
 

1.55, 0.81 and 0.32 cm) over'a portion of the Phoenix Valley,
 

Arizona (Poe and Edgerton, 1971). The 1.42 and 4.99 GHz radio

meters were pointed in the nadir position while the 37 and 94
 

GHz radiometers were aligned 45 degrees aft. The 19.35 GHz
 

data were obtained with an 'imagingsystem which measures the
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horizontally polarized tightness tegperatures in -the plane
 

perpendicular to -the dtrection of Xlight -at 500 ftoiD nadir. 

It was found that atmosphefic .atte'ruation effects at 1.42,
 

4.,99, 19-.35 and 37 GHz were relatively unimportant, however,
 

effects were 'important at 94 GHz.".
 

... The penetration of 1.42 and 4.99 GHz'through ailfalfa
 

and wheat ('25-c 'and 15 'cm, respecti-vely) was noted in sever

al cases. The penetration was noted only in cases where the
 

underlying soil had substantial amounts of moisture in excess
 

of 14 to .21 percent (dry weight basis). It was concluded that
 

the lack of detectable penetration of-vegetal cover over rela

tively dry soil was probably due to the lack of significant
 

contrast in the emissivities of vegetal cover and dry soil.
 

Further, the-authors did not observe vegetal,penetration with
 

any consistency at higher frequencies. Estimates of-the' depth
 

of penetration indicated the emission at 37 and 94 GHz is 
con

trolled by the moisture contained in the near-surface regions
 

of soil. Vilues of correlation coefficients were consistently
 

larger in magnitude at 1.42 and 4.99 GHz.than at 37and 94'GHz.
 

Values obtained-at-19.35 GHz for-selected view angles-varied
 

widely.
 

Numerous hydrological studies employing various satellite
 

sensor systems haye been conducted. Their findings are quite
 

6ncouraging. Edgerton, et al., (1968) indicated that the phys-'
 

ical properties which are important when considering-microwave
 

emissions of snow interact in a very complex fashion. Experi

ments conducted on new snow showed that fresh, dry, low-density
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snw is nearly transparent .at micTowaye greqnencie!. Conse

quently, the bightness-teiperatures sensed under these con

ditions are primarily a function of the underlying jMaterials.
 

In old coarse-textured high-density snow, since layering is
 

-common and the individual snow grains are not necessarily small
 

in comparison to".observational wavelengths, 'scattering and in

terferdnce phenomena occur. It may be possible to-overcome
 

these difficulties by utilizing longer observational wavelengths.
 

Ground based measurements (Edgerton, et al., 1971) have
 

indicated that foi dry snow over frozen soil the effective
 

microwave emissivity decreases as the snow pack increases. At

longer wavelengths, the decreases were less for the same snow
 

pack. The effect of liquid water in the snow on microwave e

mission from snow has been investigated,
 

Schmugge, et'al.., (1974) indicated that the effect of vol

ume scattering in dry snow and firn becomes noticeable for free
 

space wavelengths shorter than about 3 cm while at the longer
 

wavelengths, 11 and&21-cm, .scattering may not be an important
 

mechanism. The rise in brightness temperature for wet snow
 

indica-t6s that it may be-possible to detect the onset of-snow

melting by looking at brightness temperature differences be

tween day and night passes ovet snow fields.
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Chapter II
 

OBJECTIVES OF THE EXPERIMENT
 

Remote Sensing of Soil Moisture
 

Theobjective of the soil moisture experiment-was to
 

determine the-feasibility of remote sensing of the soil
 

moisture content of the earth's surface and near surface
 

layers from the Skylab satellite. Water has the highest
 

dielectric constant of all the naturally occurring materials.
 

Soils- have a very low dielectric constant at microwave
 

frequencies. When varying amounts of water are added to the 
-

soil, the resulting mixture will have a dielectric constant
 

proportional to the relative amounts of soil, water and
 

air which are present. Since mixtures involving both water
 

and soil material have dielectric constants in proportion
 

to the amount of water, even small amounts of additional'
 

water may increase the dielectric constant of the mixture
 

sufficiently for detection -byremote sensors. The emissivity
 

in microwave wavelengths of-radiation is so strongly
 

influenced by the dielectric constant of the emitting,
 

substance that the potential exists-for remote sensing of
 

soil moisture content by airborne or-space sensors.
 

One of the major advantages of microwaves for soil mois

ture measurements is penetration. Whereas the signals for
 

infrared and visible radiation that can be recorded by photo



graphic sensors come from the very top layer of the soil,.u

sually much less than a millimeter thickness, microwave sig

nals come from a combination of the surface layer and deeper
 

points within the soil. The depth of penetration depends on
 

wavelength, with the longer wavelengths penetrating deeper
 

than the shorter wavelengths. It also depends-on the mois

ture content of the soil since greater penetration is possi

ble for dry soils than for wet soils.
 

In addition to the influence of the soil moisture con

tent on microwave emission, other factors such as vegetative
 

cover and surface roughness may also affect the emissivity.
 

Surface roughness and vegetative cover slightly modify the
 

emission from the underlying soil by scattering and surface
 

emission (Newton et al., 1974). The magnitude of the effect
 

of surface roughness and vegetative cover depends on the wave

length of emission. Longer wavelengths have the advantage of
 

being less influenced thanthe'shorter wavelengths. In addi

tion, the longer wavelengths suffer from less interference
 

from atmospheric and'weather phenomenon; In fact, wavelengths
 

at 2r-cm (L-band radiometers) are ihfluenced very little by
 

clouds and precipitation. While optical and infrared photo

graphic images are produced from only the areas truly visible
 

to the observer, microwave signals at longer wavelengths may
 

come from beneath the vegetation from the soil surface and
 

underlying layers beneath the ihmediate.soil surface. Therefore,
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the-important capability of being able to remotely sense the
 

moisture content of~the-subsurface layers beneath light
 

vegetation exists for microwave sensors.
 

A Skylab soil moisture experiment was designed.to deter

mine the feasibility of using the microwave sensors-on the
 

Skylab satellite for determining the moisture cont~nt of the
 

soil. Although Skylab has photographic and multispectral scan
 

ner sensors which were very useful in providing auxiliary in

formation, the primary thrust of the soil moisture experiment
 

concerned the use of microwave sensors for detecting soil'mois
 

ture. Microwave sensors on Skylab made measurements at two
 

different wavelengths in the passive and active modes. Data
 

were collected with an.L-band passive radiometer which obtain

ed brightness temperatures from large areas of the earth at
 

21 cm wavelengths. Sensors at 2.1 cm wave-length obtained mea

surements in both the active and passive modes. For the soil
 

moisture experiment, the L-band radiometer, S194 sensor, ob

tained measurements from an area 115 km in diameter centered
 

around nadir . The S193 sensor obtained measurements at 2.1
 

cm wavelength in both the active and passive modes and was
 

operated at the 300 forward pitch angle with Vertical-vertical
 

polarization in the cross-track contiguous mode. While data
 

were being collected by the Skylab microwave sensors, soil
 

moisture samples were being collected in the field by ground
 

crews. Samples were collected from-the surface in every 2.3 cm
 

depth down to 15 cm.
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The object of the experiment was to collact detailed
 

soil moisture information for various layets so that the sen

sitivity of microwave radiometers and scattefometers from
 

Skylab to soil moisture content could be determined. A suf

ficient amount of data was collected to provide correlations
 

between the measurements made by the Skylab microwave sensors
 

and soil moisture content as well as data for testing the re-

sults of these correlations. The results suggest several ap

plications of remote sensing techniques for determining soil
 

moisture content for agricultural and hydrological uses.
 

Snow Cover and Freeze-thaw Line
 

A very important factor in water resources management
 

in the upper Missouri and Mississippi River basins is the
 

amount of moisture stored in the plains snowcover. The snow
 

storage in the intermountain river basins of the Western
 

United States is also extremely important since the-bulk of
 

the annual water yield for this area is derived from this
 

source. The ability to appraise basin yield prior to the melt
 

period.is,.increasing in importance with the ever increasing
 

demand for water in the Missouri and Mississippi Basins. Of
 

paramount importance is the flood potential associated with the
 

.plain snow-cover. -In the recentpast.a number of-the extreme
 

floods in -both.basins have resulteddireatly-from snow-melt.
 

.The-abilit,y.to..determinezthe- amount-.of-mois.ture -stored-in the
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snow cover is crucial to determining the flood potential and
 

to forecasting the magnitude of the resulting flood wave.
 

Because of the large geographical area involved and the
 

wide variation in areal distribution characteristic of plains
 

snow cover, it is practically impossible to establish a ground
 

based sampling program capable of furnishing the quantity and
 

quality of data required to prberly assess the amount of
 

moisture stored in the snow cover. During the melt period
 

when time becomes a critical factor synoptic data for the en

tire snow covered area is necessary and cannot be obtained by
 

any ground-based means.
 

A factor closely associated with the snow-cover in deter

mining the hydrologic response of a drainage basin to snow

melt is whether the ground is frozen or unfrozen. Again this
 

information is required over a large area for forecasting pur

poses and cannot be reliably obtained through ground-based
 

collection programs. In both the assessment of moisture con

tained in the snow cover and the condition of the underlying
 

ground the macroscale of the areal coverage dictates a com

parable scale in the sensing or sampling prbgram.
 

The application of remote sensing to the determination
 

of the amount of moisture stored in the plains snow cover
 

involved in this experiment or project had as an overall ob

jective determining if this moisture assessment could be ac

complished by remote sensors of the type operating on board
 

Skylab during the SL4 portion of the mission. To determine
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the amount of moisture stored in the snow cover requires the'
 

measurement of the areal extent of the snow cover and the a

real variation of the water equivalent of the snow.. The wa

ter equivalent is the depth of liquid water that would result
 

from melting the snow and is a function of both the density
 

and the depth of snow at a particular location.
 

The overall objective can be divided into the following
 

separate items:
 

1. 	To determine the effectiveness of remote sensing in
 

establishing the areal extent of snow cover.
 

2. 	To determine if remote sensing techniques can be
 

utilized to obtain the depth and density of snow
 

over large areas with sufficient accuracy to deter

mine the areal variation of the water quivalent, or
 

if 	the water equivalent of the snow cover can be
 

determined directly.
 

The first item-certainly can be accomplished by aerial
 

or space photography provided cloud-free conditions exist,
 

however, for flood forecasting purposes during the critical
 

melt peribd ihe cloud-free constraint is not acceptable. Syn

optic data for the entire snow covered area must be available
 

frequently during this period.
 

Associated with the snow cover objective is the objective
 

of determining the capabilities of the remote sensors to ob

serve the advance and retreat of the freeze-thaw line during
 

the winter period.
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A secondary objective which would be pursued provided
 

the two primary objectives discussed could be achieved was to
 

investigate the possibility of determining the quality of the
 

snow, that is the amount Of water in crystalline form and also
 

the capability of monitoring the heat content of the snow pack
 

and the associated energy budget. This phase would be parti

cularly important during the spring melt period. This capa

bility would permit the determination of the time of melting
 

and the rate of production of melt water which are important
 

factors in the forecasting of the amount of runoff and the
 

associated flood potential.
 

Data for the snow experiment were collected during SL4,
 

while data for the soil moisture experiment were collected
 

during SL2 and SL3. The experimental sites, data analysis
 

and results are described in the following chapters.
 



Chapter III
 

EXPERIMENTAL SITES
 

Soil Moisture
 

Soil moisture experimental sites were established in es

sentially two states, Texas and Kansas (Figure 1). The south

ern sites were located in West-Texas between Lubbock and San
 

'Angelo for .June and August missions and between Lubbock and
 

Hobbs, New Mexico for the September mission. The more north

erly sites were located between Concordia and Emporia, Kansas
 

on June 13, 1973 and southeasternKansas in September.
 

Texas
 

The area of Texas which was selected as the test site for
 

June 5, 1973 and August 8, 1973 can be separated into essen

tially two major landscape regions.. The northern half of the
 

site is part of the region known as the High Plains. The most
 

striking feature of the High Plains is the very flat and level
 

character of the surface. This feature combined with well

drained and relatively fertile sandy soil has permitted the
 

development of agriculture over most of the northern half of
 

the test-site: The dominant crqp in this- part of-the site is
 

cotton-, however, lesser acreages of grain sorghum are grown
 

throughout the area.
 

The southern half of the test site contrasts significantly
 

with the northern half. This section is characterized by rol

ling and rough-broken topography. Much of the land shows the
 

results of periods of effective erosion. Relatively deep,
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KANSAS , 

++ 

Figure 1 The-lbocation of the Texas and Kansas test sites
 
used Lar the sol moisture experiment.
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steep-sided arroyos are present locally as are small steeply
 

sloping mesas with a flat resistant sandstone caprock. Be

cause of the rugged character of the terrain, most of this
 

section is uncultivated. The natural vegetation remains dom

inant over much of the landscape. This means that the vegeta

tion is quite variable locally; however, the basic character

istics of vegetation tend to run throughout the area. General

ly, the vegetation is rather shrubby, with the trees averaging
 

about three meters in height and relatively dispersed. On
 

very dry sites, the shrubs may be as low as 50 cm in height,
 

but in spots of greater moisture availability may reach five
 

meters. In most instances, the shrubs are underlain by a
 

grass understory. Again, the grass is short (15 cm) on dry
 

spots and as much as 50 cm in moist -areas. Interspersed at
 

various points throughout the area are various species of suc

culents, primarily cacti.
 

The site selected for the September 13, 1973 test is es

sentially perpendicular to the June-August test areas, but the
 

landscape surrounding Lubbock is common to all missions. The
 

eastern portion of the September mission overlaps to some ex

tent with the northern portions of earlier sites. The primary
 

differences from month to month in the area are varying stages
 

of crop growth. In June the area was dominantly bare soil,
 

but by September, heavy vegetation had transformed the land

scape to the extent that little bare soil was visible. Moving
 

to the southwest, the character of the test site changed rapidly
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from cultivation to a relatively natural condition. The land
 

surface is consistently flat across the entire test site, how

ever, variations in the density of the vegetation and the
 

character of the substrate are present along the site. The
 

soil on the eastern end of the site is relatively uniform fer

tile sandy 'soil. Moving southwest the soil becomes sandier,
 

oftentimes becoming dunes and ranging-tb a depth of 15-18
 

meters. Vegetation of these soils is rather sparse and is
 

primarily composed of rather short and slender shrubs. Little
 

ground cover is present and much of the surface is visible.
 

Toward the southwest end of the test site; vegetation
 

and soil are somewhat different again. The land remains rela

tively flat. However, the soil in this area tends to be ra

ther hard clay with significant numbers of pebbles and boul

ders in the soil matrix. The vegetation is quite different
 

since there is a substratical ground cover of short drought
 

resistant grass. The overstory of woody plants tend to be
 

somewhat inconsistent in that densities are highly variable
 

with relatively dense, open stands occurring at irregular in

tervals. Between the open stands individual plants occur in
 

somewhat random fashion.
 

Kansas
 

Several passes across the state of Kansas provided the
 

data base for soil moisture in this area. Data were collected
 

for June 13, August 5, September 13 and September 18, 1973.
 

June 13 data were taken from Concordia to Bmporia, Kansas,
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across the region of the Flint Hills. This region is charac

terized by a rolling topography and in some parts rather sub

stantial local relief. Over much of the region the soil is
 

extremely rocky with gravel size material on the soil surface
 

and throughout the soil profile. The vegetation of this area
 

is almost exclusively mid-grass prairie with grasses poten

tially ranging from5 cm to-two meters. Most of'the area
 

is used as grazing range for beef cattle with a relatively
 

small percentage set aside for cultivation.
 

August S data were taken along a track from the north

west corner of Kansas across Wichita and extending across Ok

lahoma and part of Arkansas. The soil moisture ground truth
 

data were taken in an area surrounding Wichita, Kansas. This
 

region is dominatd by ralatively flat topography and little
 

local relief. Most of the vegetation of the area is small
 

grain cultivated crops, mainly dominated by wheat. At the
 

time of theSkylab III pass, more than half of the land area
 

was bare ground, since the wheat land had been harvested and,
 

tilled. This cultivated zone grades gradually into a zone of
 

natural grasslan,-which is primarily used for grazing. This
 

zone is composed mainly of mid-grass with some evidence of
 

shrub vegetation.
 

To the south and east of the August S pass, the September
 

18 pass begins. The flight line extends from southeast Wichi

ta, Kansas toward Springfield, Missouri. Unlike the area of
 

the August 5 pass, the land is largely uncultivated and is
 

dominated by natural vegetation. Much short or medium grass
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is present on.the western half of the site. Shrubby vegetation
 

is present also; however, some large deciduous trees occur
 

locally. The deciduous tree cover increases,eastward along
 

the site. The topography of the test strip tends to be gener

ally rolling with moderate local relief. Soils throughout
 

,the site tend to be more variable than within the other sites.
 

-" The five areas shown in Figure I-served as the data base
 

for the soil moisture experiment. The other two attempted
 

data takes could not be used because of lack of corresponding
 

ground truth and microwave data. The August 5 soil moisture
 

data were collected in Kansas while the microwave sensors
 

were operated over Oklahoma causing a mismatch of data. It
 

was not possible to use the September 18 data in the final
 

analysis because heavy rainfall began just after the Skylab
 

data collection causing termination of the collection of soil
 

moisture samples from the field. This left three data sets
 

across Texas and two across Kansas for use in the soil mois

ture experiment.
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Snow Cover and Freeze-Thaw Line
 

Six Skylab EREP passes were preliminarily scheduled for
 

the analysis of snow cover and snow characteristics. The ini

tial pass of Novermber 30, 1973, however, was aborted due to
 

the absence of snow cover in the test site area. Skylab data
 

were not available for the January 4, 1974 pass from Kentucky
 

to New Brunswick nor from the January 12, 1974 transect from
 

Texas to Montreal, Quebec. The three Skylab passes that ob

tained data for the snow study were those on January 11, Jan

uary 14 and January 24, 1974.
 

The January 11 test site encompassed an area 30 nautical
 

miles either side of a line from Amarillo, Texas to Clinton,
 

Iowa. The S190B photography aided by information extracted
 

from the NOAA/BDS Climatological Data showed that the snow
 

cover extended from the Oklahoma panhandle northeastward into
 

Iowa. However, the S190B revealed widely scattered patches
 

-of bare ground extending from northeast Kansas through north--

west Missouri into Iowa. -In addition, dense cirrus in Iowa
 

and moderatley heavy stratocumulus in northeast Kansas and
 

northwest Missouri were also, observed. Four to six inches of
 

fresh snow had fallen on January 9-10 in much of the test site
 

area on top of a snow base from 4-7 inches. This resulted
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in snow depths ranging from four inches in south central
 

Kansas to 12-13 inches in portions of southeast Iowa and north

west Missouri. During the January period prior to this pass,
 

the Central United States remained under a high pressure air
 

mass of cP/cA origin. Maximum temperatures had not risen above
 

32 degrees F even as far south as Wichita, Kansas, while over

night lows had frequently plunged below -20 degrees F in por

tions of Iowa.
 

The January 14 (GT-30) Test site extended from Denver,
 

Colorado to Mankato, Minnesota. This run coincided with the
 

initiation of a pronounced warming trend in the test site
 

area which lasted for the rest of the month. The maximum tem

peratures in Nebraska along the ground track generally ranged
 

in the mid-40's and increased to the mid-S0's by January 16.
 

Maximum temperatures in Colorado floated from the mid-50's on
 

January 14 to as high as7 in Boulder, Colorado by January 16.
 

A moderate cirrus cover extended from the Rocky Mountain
 

foothills into southwest Nebraska, jut gradually dissipated
 

£:fter-readhTg central Nebraska.. Generally, no fresh snow- ad
 

fallen inside the test area since January 11' Snow depths
 

ranged from 4-8,inches, increasing northeastward along the-track.
 

The January 24 (GT-33) test site area extended from north
 

central- northeast South Dakota into east- central Iowa. This
 

pass took place well into the melt period. Consequently,
 

snow depths tended to vary from 0-4 inches in this area. Moder

ate to dense cirrus clouds were located in the South Dakota
 

portion of the run, but Iowa skies were generally cloud-free.
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Chapter IV
 

DATA BASE
 

Skylab Photography
 

Black and white and color photography was provided for 

each pass for which soil moisture data were collected. The 

multispectral camera (S190A) provided - six simultaneous frames 

of imagery in aJ mm format at approximately 1: 285,000 in 

scale. The Earth Terrain Camera (S190B) provided a single
 

image frame in 4.5 inch format at a scale of approximately
 

1:960,000. Additional details for these sensors are shown
 

in Table I.
 

The imagery was at least partly cloud free in all cases.
 

and some part of the pass was useable for detailed analysis.
 

The June 5 pass across west Texas is cloud free over the north

ern half of the site. However, the southern half is totally
 

cloud covered. The June 13 pass which crossed central Kansas
 

is almost totally cloud covered so that it could not be used
 

for extracting ground information. The August 5 pass provided
 

good quality, relatively cloud free imagery in all bands. As
 

such, the photographic data base proved to be a good source
 

of vegetation land use and topographic information. Land-Use-


Vegetation maps were completed for both the Kansas and Texas
 

test sites for use in the microwave data analysis.
 

The August 8 pass across west Texas paralleled and over

lapped the June 5 pass. The S190A 0.4-0.7 Pm color imagery
 

was quite dense and as such required extensive photo lab
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TABLE I
 

Characteristics of the Skylab and Aircraft Photographic Sensors
 

-System 	Product Wavelength Resolution Scale Format Coverage
 

MSC
 
S190A B&W IR 0.7=0.8 68 meters 1:2,353,620 70mm 169 km
 

"" 0.8-0.9 "-

B&W PAN 0.5-0.6 28 meters
 
.0.6-0.7 33 meters  " 
 " 
 "
 

Color IR 0.5-0.88 S7 meters "" 

Color 0.4-0.7 24 meters " ' "
 

ETC
 
SI90B Color 0.4-0.7 15 meters 1:956,617 112mm 109 km
 

Color IR 0 0.5-0.88 " 	 "" 

MSS
 
S192 	 Tape 0.41-0.46 0.182mrdn. 1:771,213 Continuous 69 km 

Film 0.46-0.51 260 sq. ft. Strip 
Tape 0.51-0.-5 6 110 scan 109mm 
Tape 0.56-0.61 (3.-5 in.) 
Tape 0.62-0.67
 
Tape 0.68-0.76
 
Film 0.78-0.88
 
Tape 0.98-1.03
 
Tape 1.09-1.19
 
Tape 1.20-1.30
 
Film 1.55-1.75
 
Tape 2.10-2.35
 
Tape 10.2-12.5
 

RC-8
 
Aircraft
 

Color 0.4-0.7 50 cm 1:16,183 228mm 4.6 km
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manipulation to make it useable. The 0.5-0.88 Pm color infra

red imagery was good quality, however, the magazine ran out of
 

film and the test site was only partially covered by this band.
 

S190B color data were not taken on this pass and as a result
 

most of the land-use and vegetation interpretation was done
 

from black and white photography of bands 0.5-0.6 P and 0.6

0.71.
 

Good quality photography from all bands of the S190A and
 

S190B sensors are available for September 13, 1973. From
 

these images, good ground classifications could be developed.
 

All of the Texas test area was cloud free as well as several
 

miles to the northeast and southwest of the track.
 

Cloud cover at the time of Skylab data collection is
 

shown in Figure 2 for the various dates and locations for the
 

soil moisture experiment. The Texas site is the only one
 

that was completely free of clouds and this occurred on only
 

one day, September, 13, 1973. The Skylab data were collected
 

through varying degrees of cloudiness for the other passes.
 

For the snow experiment, the January 11, 1974 photographic
 

data were received in the form of S190B 0.4-0.7 pm color trans

parencies only. Since most of the pass was cloud free, this
 

imagery was useable for the purpose of providing ground support
 

information. Interpretations from these data carried as far
 

as possible with respect to judgements relating to snow char

acteristics. Similarly, good information is available for
 

January 14 as all bands are of good quality and all are avail

able.
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Texas-June 5, 1973 

Kansas-June 13, 1973
 

Texas-August 8, 1973
 

S190A .6-.7 micron photographic mosaics 
showing


Figure 2 

cloud conditions for the five data sets 

for the
 

soil moisture experiment.
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Texas-September 13, 1973
 

Kansas-September 18, 1973
 

Figure 2. SI90A 0.6-0. 7,m image mosaics showing cloud conditions for five Skylab
 

passes
 

ORIGINAL PAGE B
 
OF POOR QUALrfT,
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However, only half of the track of January 24 is cloud
 

free. Fortunately, the northwest end of the track is clear
 

and of sufficiently good quality to permit interpretation.
 

Skylab S194 L-band Radiometer
 

The S194 microwave sensor on the Skylab satellite is an
 

L-band radiometer operating at a21 cm wavelength. This abso

lute microwave-radiometric sensor utilizes a fixed planar ar

ray antenna oriented toward nadir. It records thermal radia

tion at 21 cm wavelength and measures absolute antenna temper

ature. This radiometer utilizes a calibration scheme refer

enced to a fixed hot and cold load input (EREP Users Hand

bookj.
 

The half-power beam width of the S194 sensor is 150. The
 

15° 
solid cone centered about the vertical axis corresponds
 

to the angular width of the beam between the half-power
 

points of the antenna pattern. The 150 angle will encompass
 

a swath width (resolution cell size) of 60 nmi at the orbital
 

altitude of 235 nmi (Sensor Performance Report). The first
 

null of the major lobe of the antenna pattern is at 360 which
 

encompasses a swath width of 145 nmi. About 90% of the energy
 

is contained within the major lobe. The radiometric measure

ments made by this sensor are influenced to the greatest ex

tent by the brightness temperature of the surface material
 

contained within the half-power beam width giving a footprint
 

size of 60 nmi or 115 km.
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The radiant energy received by the antenna is sampled at
 

such a rate as to ensure a minimum of 97% ground coverage over

lap. Because of this, the distance on the ground between cen

ters of two consecutive resolution cells is about 2 nmi. The
 

ground coverage provided by the S194 sensor across the Texas
 

site is shown in Figure 3. The precision of the measurements
 

made by the radiometer is about 10K.
 

In SL2 and SL3, the L-band radiometer collected seven
 

sets of data (Table II) for the soil moisture experiment over
 

the Kansas and Texas test sites. All the data were taken in
 

the morning at mode 1 with sun elevations ranging from 29.9
 

in pass 10 to 77.9 in pass 5 while Skylab was over the test
 

sites.
 

Skylab S193 RADSCAT Sensor
 

The S193 microwave sensor on Skylab consisted of three
 

systems--an altimeter, a radiometer and a scatterometer. All
 

three systems shared the same hardware. The altimeter could
 

only be operated when the radiometer or scatterometer were not
 

operating. The radiometer and scatterometer could be operated
 

either concurrently or separately. The passive radiometer and
 

the active scatterometer sensors are called the S193 RADSCAT.
 

The specifications and characteristics of the equipment are
 

contained in the documentation provided by fGeneral Electric
 

Company and NASA (EREP Users Handbook).
 

The Skylab RADSCAT instrument operated at a frequency of
 

13.9 GHz (2.16 cm wavelength). It used a parabolic antenna
 

which provided a two degree pencil beam at the half-power
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TEXAS
 

S-194 RADIOMETER ANTENNA
 
TEMPERATURES (fK)
 

229. 1 

248.5 

271.4 

276. 0 

Figure 3 The antenna temperature, location and size of the
 
footprint of the S194 radiometer across the Texas
 
test site.
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TABLE II
 

Skylab S194 Data Collected for the Soil Moisture Experiment.
 

Mission 2 2 3 3 3 3 3 

pass 5 10' is 16 38 38 48 

Date 6-5 6-13 8-5 8-8 9-13 9-13 9-18 

Time over 18: 0:49.51 13:51:22.74 16:37:44.35 16:4:30.99 17:57:25.06 17:59:21.15 15:S7:596
 
test site 18: 1:38.20 13:51:57.59 16:37:58.30 16:5:14.66 17:58: 0.40 17:59:51.95 15:58:36.90
 

(GMT)
 

Test site Texas Kansas Kansas Texas Texas Kansas Kansas
 

Altitude 237.9 234.4 235.3 236.0 229.2 228.8
 
(nm) 237.6 234.7 235.3 236.1 229.3 228.9
 

Sun 74.8 29.9 56.2 48.7 58.9 56.3 42.2
 
elevation 77.9 31.4 57.1 51.2 58.5 55.3 42.7
 

mode 1 1 1 1 1 1 1
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http:16:37:58.30
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point. The antenna is mechanically scanned to provide measure

ments at various angles relative to nadir. Several scan modes
 

and various transmit-receive polarizations are provided to
 

study the sensitivity of the terrain.
 

* The S193 RADSCAT system could be operated in the follow

ing basic modes:
 

I)- In-Track Non-Contiguous (ITNC). The-scatterometer
 

and the radiometer are used jointly in this mode. In this
 

mode, overlapping measurements are made at angles of 00,. 150,
 

290, 40° and 480 between the antenna pointing direction and
 

the vertical at the space craft. The distance between the cen-

-ters.of each set of measurements is. about 100km. The measure

ments at each angle are made for four transmit-receive polari

-zationpairs(HH, HV, VH and VV) in the scatterometer and for
 

.both vertical and horizontal polarizations in the radiometer.
 

The object of this mode is to view the same target at five
 

discrete angles to study the variations in radar backscattering
 

coefficient and radiometer brightness temperature with inci

dence angle. This mode is intended -primarily for use over a
 

homogeneous terrain (such as the ocean) where the measurements
 

made atdiscrete targets some 100 km apart could be meaningful.
 

The precision of measurements made in this mode is better than
 

in the contiguous modes because of, relatively larger integra

tion time for each measurement.
 

2) Cross-Track Non-Contiguous (CTNC). In this mode,-the
 

scatterometer and the radiometer were again used concurrently.
 

Measurements were made at the same angles of incidence but
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perpendicular to the track so they were spaced approximately
 

100-km rather than overlapping. The antenna in this mode could
 

be moved either to the left or the right or both left and right
 

of the satellite track. The polarizations were the same as in
 

the ITNC mode.
 

-3) In-Track Contiguous (ITC). The scatterometer and the
 

radiometer were used almost concurrently in this mode. Mea-

surements were made at the same angles as before for the scat

terometer and at intermediate angles for the radiometers. The
 

measurements were spaced approximately 25 km. Data in this mode
 

were taken for only one transmit-receive polarization pair for
 

the scatterometer and one polarization (the same as the receive
 

polarization for scatterometer) for the radiometer.
 

A target cell viewed at 480 in a scan overlaps a cell
 

viewed at 480 in the previous scan because of the rapid scan
 

of the mode. The amount of overlap between successive scans
 

is a function of incidence angle and is greater at higher an

gles and decreases as the incidence angle approaches nadir.
 

At nadir, a gapping rather than an overlap occurs. On succes

sive ,scans,as the vehicle ro Iesses virtually the entire4&th
 

was viewed from 48' down to the lower angles (near-about 15.60).
 

The-beam width of the antenna corresponds to a target cell of
 

11.1 km diameter at nadir for the scatterometer and 15.2km dia

meter for theradiometer at nadir. -, 

•. /4)- Cross.-Track Cont'iguou :-CTC). Intthistmode the radio

meter and scatterometer. Could each be,operated either individu

ally or concurrently. In this mode, the antenna swept in the
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roll plane, both to the left and to the right of an initial

ized point. The measurements were made at 12 points over a
 

22' angular range about the center point. The center point
 

could be vertical or tilted- ahead or to the side by 15', 30
 

or 400. The sub-mode chosen dictated whether the measurements
 

being made were all radiometer, all scatterometer or half of
 

each. Due to the rapid scan, not all possible polarization

pairs are allowed. The cross-polarized combinations (HV or VH)
 

are not allowed in this mode. The measurements for vertical
 

transmit-receive (VV) and horizontal transmit-receive(HH) pol

arizations were made alternately. This mode is also called
 

the mapping mode and was primarily intended for land targets.
 

It comes closest to radar or radiometer terrain mapping.
 

The precision of the radiometer (iJ)varied with the op

'erative mode but was in the neighborhood of I*K. The precision
 

of the scatterometer measurement also varied with mode (Sensor
 

Performance Report) and-was usually between 5 and 7% (about
 

0.25 	db).
 

The $193 scatterometer was designed to ieasure radar
 

:backscattering coefficient, a°,'f6r.different anglesof.incir
 

dence and polarization pair combinations (HH, VV, HV and VH).
 

The S193 radiometer measures apparent radiometric antenna tem

perature as a function of incident angle and for different
 

polarizations. The S-193 RADSCAT sensor illuminates a-1-1.1 (SCAT)
 

-kmK 	 icone atnadir when flying at an altitude- of 235 

nautical miles. A complete analyss.of the footprints as a
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function of orbit height, velocity and pointing accuracy of
 

the antenna is given by Sbbti (1975).
 

The S193 instrument was operated at a forward pitch of
 

29.40 in the CTC mode with VV polarization for most of the
 

passes for the soil moisture experiment. A comparison of the
 

.ground coverage in relationship to the S194 sensor is shown
 

in Figure 4. The antenna excursion extended about the initial1
 

ized point 11.3750 to the left and right. During one scan
 

cycle, a total of 24 data measurements were recorded, which
 

included 12 data values for both the radiometer and scattero

meter, Data were taken for only one polarization pair (VV or
 

HH) for both the radiometer and scatterometer..
 

During SL2 and SLS, the S193 microwave sensor obtained
 

five sets of data for the soil moisture experiment over Texas
 

and Kansas test sites. Only three of the five data sets were
 

comparable since the other two data sets were taken at a 40.1'
 

pitch angle with one of these having vertical polarization and
 

the other horizontal polarization (Table III).
 

Aircraft Photographic' and Microwave Data
 

Supplementary information for the soil moisture experi

ment was obtained from the AAFE RADSCAT underflight of June
 

5, 1973. This flight was flown from latitude 31.510, longi

tude 99.680 to latitude 33.44',longitude 101.81 which cover

ed a distance of approximately 190 miles across the Texas
 

test site (Figure 5). This track was nearly the centerline
 

of the area to be investigated by Skylab II pass S on June 5,
 

1973.
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17231-240
 
_241-250
 

7251-260
 
0261-270
 

fl271-280
 
E]281-290
 

Figure 4 	A comparison of the S193 and S194 radiometer foot
prints.
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TABLE III 

S193 RADSCAT DATA FOR SOIL MOISTURE EXPERIMENT 

Pass 5 is 16 38 38 

Date 6-5-73 8-5-73 8-8-73 9-13-73 9-13-73 

Mode CTC CTC CTC CTC CTC 

Pitch angle 29.40 29.40 29.40 40.10 40.10 

Roll angle 0 0 0 0 0 

Polarization VV VV Wv VV HH 

-Test site Texas Kansas Texas Texas Kansas 
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The aircraft was a NC130B which was to. be flown at an
 

altitude of 10,000 feet, plus or minus 1000 feet. Terrain
 

elevation at the beginning of the flight was approximately
 

1500 feet. As the flight progressed to the northeast, terrain
 

elevation increased to almost 3200 feet. During the flight
 

the actual altitude ranged between 9000 and 7300 feet.- The
 

ground speed'of the aircraft averaged approximately 167 knots
 

or 281 feet per second. Due to varying cross winds the cross
 

angle of the aircraft ranged between 13.8 degrees to the
 

right to 9.2 degrees to the left in order to maintain a flight
 

direction of approximately 322 degrees. Altitude and cross
 

angle reflect movements of the aircraft's pitch and yaw, but
 

no. measurements were taken for roll. Therefore: movement a

long the longitude axis of the aircraft was assumed to be
 

zero. On board the aircraft were a RADSCAT system operating
 

at the same wavelength as the S193 RADSCAT and a vertical RC8
 

camera system. Due to the variance of height above the ground
 

level, the scale of the aerial color photography ranged be

tween :19, S00 and 1:16,900. The film used was number SO-397
 

and> the camera used a six inch lens with a 2-A skylight filter.
 

Photographs were taken every 34 to 37 seconds throughout the
 

flight, giving forward overlap of each frame. Also, it was
 

apparent from adjoiniig frames that the subpoint of the camera
 

system was ahead of the aircraft giving a slight obliqueness
 

tO the photographs. This factor remained nearly constant
 

throughout the flight.
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The principal aircraft instrument used for the soil mois

ture experiment was the S193 RADSCAT. This instrument is a
 

passive radiometer and active scatterometer operating at 13.9
 

GHz, 2.1 cm wavelength, that was operated in the vertical
 

polarization mode. The antenna has a half-power beam width
 

of 1.8 degrees and this beam was directed approximately 30
 

degrees from nadir behind the aircraft. An eliptical foot

print was obtained with major and minor radii of 150 and 130
 

feet for an altitude of 7300 feet, and 190 and 160 feet for
 

9000 feet. The time lag between the two components of the
 

RADSCAT was about 10 microseconds. Even though the aircraft's
 

velocity was 281 feet per second, the footprint of the radio

meter and scatterometer differed by only 0.00281 foot. There

fore, the values obtained by the radiometer and scatterometer
 

are representative of the same area of land. The RADSCAT
 

recycles in as short a time as 0.4 second and as long as one
 

to two seconds. These times allowed between 50% and 0% foot

print-overlap. The data sample contained 6054 points with an
 

average distance of 166 feet between mid-points.
 

A comparison-.of the characteristics of the various micro

wave sensors and the-complete data sets which could be used
 

in the final analysis for the soil moisture experiment is
 

shown in Table IV.
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TABLE IV
 

Microwave Data Sets used in the Soil Moisture Experiment
 

Sensor S194 S193 S193 Aircraft Aircraft
 
Passive Active Passive Active Passive
 

Microwave Microwave Microwave Microwave Microwave
 
Radiometer Scatterometer Radiometer Scatterometer Radiometer
 

Frequency (GHz) T.4 13.9 13.9 13.9 13.9
 

Wavelength (cm) 21 2.1 2.1 2.1 2.1
 

Normal Altitude (km) 435 435 .435 2.5 2.5
 

Half-Power
 
Beam Width (Degree) 15.0 2.02 1.56 1.8 1.8
 

Half-Power Footprint
 
Diameter (km) 115 13x16 17x21 0.09 0.09
 

Pitch Angle (Degree) Nadir 29.4 29.4 29.4 .29.4
 

Data Sets Available 5 2 2 1 1
 



Soil Moisture Data
 

The Skylab soil moisture experiment was conducted over
 

test sites located in western Texas and eastern Kansas. ,The
 

sites were approximately 300 to 400 km in length and 120 km
 

in width. During the time of data collection from Skylab,
 

soil samples were being collected from the test sites. Sam

pies were taken for each 2.5 cm depth down to 15 cm at inter

vals of approximately 6 km along one route (pass 5 and pass
 

10) or two somewhat parallel routes (pass 15 and pass 16 and
 

pass 38) through the test sites. Location of the soil mois

ture sites are shown in Figures 6 to 11. Soil samples were
 

collected from 42 to 120 different locations for the different
 

Skylab passes with samples from six different depths at each
 

location. After collection of the soil samples in tin con

tainers, they were taken to the laboratory where they Were
 

weighed and dried so that the percentage of moisture in the
 

soil was determined on a weight basis. The actual measured
 

values-of soil moisture content at the locations shown in Fig:

ures.6 'through 11 are given in Appendix I for the 2250 soil
 

samples..
 

Soil'Moisture Distributions in the Test Sites
 

The soil moisture content of sample sites were obtained
 

along the Skylab track for all missions for relating to the
 

measurements of the Skylab sensors. Although the distribution
 

of samples in the test sites were carefully devised before go

ing to the field, the coverage of sensors was so large that
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samples could not cover the entire area. Also all the soil
 

samples could not be taken in the same day. In addition,
 

thunderstorms in the summer are very localized. As a result,
 

distribution of soil water content can vary considerably in
 

short distances. Therefore, it has been found necessary to
 

apply-the techniques of climatic water balance calculations
 

to improve'the-ground truth information on. the geographical
 

distribution of soil moisture in the test sites.
 

The climatic water balance technique required the calcu

lation of potential and actual evapotranspiration from meteoro

locical parameters. Thus, the soil moisture storage and run

off could be determined by these calculations for various soil
 

types.
 

The .methods used in this investigation,were developed by
 

Thornthwaite (1948), and Bagleman (1971). These methods are
 

simple to use-and produce good results. Thornthwaite's equa

tion can estimate the daily rate-of potential evapotranspira

tion (PB) from mean daily temperature. This PB rate is adjus

ted by a factor which varies with the day of year and the lati

tude of the station (Thornthwaite and Mather, 1957). -The ac

tual evapotranspiration at any location depends upon PB, pre

cipitation and the availability of soil moisture and can be
 

calculated (Bagleman, 1971). The available water which is
 

the amount of water between wilting point and field capacity,
 

varies with different soils, Table V (Salter and Williams, 1965).
 

The soil type of each station was determined from .county soil
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TABLE V
 

Available Water Data for the Top 12 

marized as Means per Textural Class 

and Williams, 1965).
 

Textural FC WP 

-..Class -0) % 20) 

Sand 6.7 1.8 

Loamy Sand 17.9 5.1 

Fine Sandy 25.6 9.5 
Loam 

Silt Loam 35.3 12.7 

Clay 39.4 22.1 

in. of Soil Sum
(After Salter
 

AW
 

(in.)
 

0.79
 

2.15
 

2.56
 

2.82
 

1.93
 

51
 



survey maps and other sources. A computer program (FORTRAN IV)
 

has been developed for these calculations. -The inputs of the 
-

program are monthly temperature, daily temperature, daily pre

cipitation, soil type, initial value of soil moisture, and lat

itude of each station. The daily variation of soil water stor

age in the upper six inches of soil depth was then computed
 

for 61 stations (Figure 12) from May 1 to September 13, 1973
 

in Texas and New Mexico, and for 57 stations (Figure 13) from
 

July 19 to September 18, 1973 in Kansas.
 

In order to be of value for comparison with Skylab data,
 

the moisture content of the upper 15 cm layer had to be parti

tioned into each of the separate 2.5 cm layers. This was
 

accomplished by using the moisture profile from the sites
 

where soil moisture measurements were available. It was as

sumed that the moisture profile at the calculated sites was
 

the same as that at the nearest measured site.
 

As a check on the validity of this procedure, the meas

ured and computed Values of soil water content in the upper
 

15 cm of soil depth were compared for the stations which had
 

soil moisture measurements as well as meteorological data for
 

calculations, Figure 14. The correlation coefficient is 0.87
 

and the averages of the measured and computed soil water are
 

9.50% and 9.36% respectively. The-largest individual differ

ence is less than 4% with most of the differences less than
 

2%. Therefore, this is a useful technique for obtaining more
 

complete coverage of ground truth information for each test
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MEASURED SOIL MOISTURE 

Figure 14 A comparison of the measured soil moisture content
with the cal-culated soil-moisture content.
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site and also for adjusting all moisture measurements to the
 

exact time of Skylab data collection.
 

In pass 5, Skylab flew over the Texas test site from 2:
 

00:30 pm to 2:02:00 pm, local time. The soil samples were ta

ken from 8:30 am, June 5, to 12:30 pm, June 6, 1973. There
 

was no rainfall after Skylab passed this area or before the
 

soil samples were taken. The soil water content of the first
 

2.5 cm of soil depth in percentage by weight is plotted in
 

Figure 15 for the 66 sites where soil moisture was measured
 

and for the additional 48 stations where soil moisture was
 

calculated. The geographical distribution of soil moisture
 

over the entire test site was obtained from a computer pro

gram using the technique of weighted linear trend surface,
 

which is based on distance for weight anda least squares sol

ution for each grid intersection. Figure 16 shows the same
 

soil moisture distribution contoured for every 5% interval.
 

In pass 16, Skylab passed over the test site from 10:04:
 

00 am to 10:05:30 am, local time. The 720 soil samples from
 

120 locations were taken from 8:30 am, August 7, to 12:30 pm,
 

August 9, 1971. There was 0.04 to 0.08 inches of rainfall in
 

the early morning of August 8 in the northwest part of the
 

test site. According to the water balance calculations and
 

the distribution of rainfall, 3% to 6% of soil water content
 

was added to the first 2.5 cm of 18 soil samples which were
 

taken from Tahoka to Lubbock in the evening of August 7. The
 

soil water content of the first 2.5 cm of soil depth in per

centage by weight was then calculated for the entire site
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Figure 15 
 The geographical distribution of soil moisture content throughout the Texas 
test site on June 5, 1973
as computed by fitting a least squares trend surface to the data points.
 

ORIGINAL PAGE IS
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TEXAS
 

SOIL MOISTURE (PERCENT) 
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5toO
 
10 to 15 

15 to 20 
20 to 25 
25 to 30 

30 to 35 

Figure 16 The geographical distribution of soil moisture
 

content throughout the Texas test site on June 
5, 

1973.
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based on the 120 soil moisture measurement locations and 48
 

additional locations where the soil moisture was calculated.
 

Thus, the geographical distribtuion of soil moisture content
 

was obtained as shown in Figure 17.
 

In pass 38, Skylab'passed over the Texas test site from
 

11:57:00 am to 11:58:30 am, local time. The soil samples
 

were taken from 8:30 am, September 8 to 12:00 pm, September
 

10. There were different amounts of rainfall and evapotrans

piration in the different locations within the test site in
 

the period from September 8 to September 13. It was necessary
 

to adjust the water content asmeasured by the soil samples
 

for comparison with the data from the Skylab sensors. The
 

water content of the soil samples was adjusted according to
 

the calculated actual evapotranspiration and precipitation
 

based on data from the nearest weather stations. The distri

bution of soil moisture content over the entire site was then
 

calculated based on the 86 locations where soil moisture con

tent was measured and the 35 stations where the soil moisture
 

content was calculated. The resulting distribution of soil
 

moisture is shown in Figure 18.
 

In pass 10 Skylab collected data over the Kansas test
 

site from 7:51:22 am to 7:57:57 am, local time. The soil
 

samples were taken from 8:30 am to 4:30 pm on June 13, 1973.
 

Several local thundershowers occurred on June 12 in the test
 

site before the Skylab and ground truth data collection,
 

resulting in very high soil moisture levels. Soil moisture
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Figure 17 	 The geographical distribution off soil moisture
 
content throughout the Texas test site an August
 
8, 1973.
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Figure 18 	 The geographical distribution off sail moisture
 
cbntent throughout the Texas test site on Sept
ember 13, 1973.
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content was measured at 42 locations throughout the test site.
 

The distribution of soil moisture content over the whole test
 

site (Figure 19) was computed based on these measured values
 

and 37 stations where'the soil moisture content was calculated
 

by the water balance technique.
 

For the Kansas test site, Skylab pass 15 collected data
 

for the soil moisture experiment from 10:37:10 am to 10:38:10
 

am, local time. The soil samples were taken from 8:30 am,
 

August 5 to 12:00 pm) August 6. There was no rainfall after
 

Skylab passed this site or before soil samples were taken.
 

The water content of the soil was so low that the actual eva

potranspiration rate was negligible in the period from August
 

5 to August 6 so that no adjustments of measured soil moisture
 

The ground truth data for this pass included
were necessary, 


42 soil sites where the moisture content was measured and 36
 

stations where calculations were completed for obtaining the
 

soil moisture distribution patterns over the whole test site
 

as shown in Figure 20.
 

In pass 38, Skylab collected data over the Kansas test
 

site from 11:59:21 am to 11:59:51 am, local time. The soil
 

samples were taken from 10:00 am, September 13 to 5:00 pm,
 

September 14. There were heavy local thunderstorms before the
 

Skylab and ground truth data collections. Therefore, the vari

ation of soil moisture content in the site was rather great
 

and all 59 locations of soil samples were located in the west
 

side of the test site as shown in Figure 11. It was necessary
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Figure 19 	 The distribution of soil moisture content through

out the Kansas test site on June 13, 1973.
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S10 to 15
 

Figure 20 	 The distribution of soil moisture content through
out the Kansas test site on August 8, 1973.
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to calculate the soil moisture content in the east side of
 

the test site by the water balance technique. Thus, the dis

tribution of soil moisture content over the entire test site
 

was determined as shown in Figure 21 based on 59 measured
 

values and 39 calculated values.
 

It can be seen from the previous illustrations of soil
 

moisture variations for the different data sets in Kansas and
 

Texas that wide variations in moisture conditions existed. This
 

was very fortunate,giving ideal conditions for the soil mois

ture content of the surface and near surface layers of the
 

earth. Response of the different Skylab sensors will be dis

cussed in a later section.
 

Vegetation and Land-Use Data
 

While collecting quantitative soilmoisture data for the
 

radiometric experiments, other types of information of a less
 

quantitative nature were also gathered. During the course of
 

field work, photographs of the vegetation were taken and height
 

and density information were gathered on the basis of best
 

estimates. All of these pieces of information were then as

sembled in the laboratory.
 

In order to understand the contribution of vegetation and
 

land use to Skylab measurements, a vegetation land-use map
 

was generated for the two test sites. These maps were prepared
 

from the S190A and S190B vertical color photography, supplement

ted by ERTS imagery and ground truth photographs taken during
 

the soil moisture sampling missions. Figure 22 shows the map
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Figure 21 The distribution of soil moisture content 
through

out the Kansas test site on September 13, 1973.
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for the June 5, 1973 Texas test area and Figure 23 shows the
 

vegetation and land use in the Kansas test site based on the
 

August 5, 1973 data. Table VI describes in some detail vege

tation characteristics of each category on the maps.
 

The vegetation of the test area is classified according
 

to the methods established in the International Classification
 

and Mapping of Vegetation (UNESCO, 1973). The categories used
 

in the classification are units of vegetation, including both
 

zonal formations and the more important and extensive azonal
 

and modified formations. The system is based upon vegetation
 

physiognomic rather than floristic considerations and consid

ering the nature of the Skylab project to which it is applied,
 

this is quite appropriate.
 

Supplementary terms referring to climate, soil and land

forms are included in the names and occasionally in the def

initions, where they help the identification of a given unit.
 

Although most Onits are defined physiognomically, they broad

ly indicate environmental conditions.
 

Considering the specific details, the classification is
 

divided into five major categories: (i) Closed Forest, (ii)
 

Woodland, (iii) Scrub, (iv) Dwarf-Scrub and Related Communities,
 

(v) Herbaceous Vegetation.
 

The relative amounts of each vegetation type within each
 

footprint of the S193 and S194 Skylab sensors was determined.
 

The percentage of each type of vegetation within each footprint
 

was determined by utilizing a Hewlett-Packard calculator
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Table VI
 

Vegetation-Land-Use Map Categories
 

Map UNESCO
 
Categories Formula 


1 
 V-D-2b 


la V-D-2b 


2 V-C-3c 


3 V-C-6a 


4 V-B-3c 


4a V-B-3c(l) 


5 V-D-2b(2) 


6 V-B-Sc(2) 


7 III-C-2a 


Description
 

Dominantly bare ground, some emer
gent shoots of cotton andtgrain
 
sorghum less than 5 cm in height.
 

Same as above; variations due to
 
soil type differences.
 

Short grassland; dominant gram
inoid growth forms are less than
 
50 cm tall. Woody synusia of
 
shrubs covering less than 10% of
 
the areas.
 

Short grass communities practic
ally without woody synusia.
 

Medium tall grassland; dominant
 
-graminoid growth forms are 50 cm
 
to 2 m tall; woody synusia of
 
broad leaf diciduous shrubs cover
ing 10% or less.
 

Same as above, but total plant
 
coverage per unit area is sig
nificantly less.
 

Mainly anual low forb communities
 
less than 1 m tall.
 

Medium tall grassland; dominant
 
graminoid growth forms are 50 cm.
 
to. 2m tall; woody synusia of
 
broad leaf diciduous shrubs cover
ing 10-40%.
 

Xeromorphic (sub-desert) shrubland
 
without succulents. Open stands
 
of shrubs with various xerophytic
 
adaptions. Mainly less than 2
 
meters tall.
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Table VI (cont.)
 

Map UNESCO 
Category Formula Description 

8 III-B-3a(l) Temperate deciduous shrubland. 
Moderately dense scrub with 
more or less continuous grass 
under story. Shrubs 2 to 3 m 
tall. Grass less than 50 cm talL. 

9 III-B-3a(2) Temperate deciduous shrubland. 
Essentially the same as category 
8, but the percentage of shrub 
coverage is lower and individual 
plants are more widely separated. 

9a III-B-3a(3) Same as above, but much less 
total vegetative cover, i.e., more 
bare soil. 

S Bare saline soils, often found in 

dry channel or depressions. 

"W Water. 

U Urban. 
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digitizer system. Therefore, detailed vegetation information
 

was available for understanding the performance of the micro

wave sensors.
 

Snow Cover and Freeze-Thaw Line Data
 

In-general, two significant factors minimized the data
 

base uable for SL-4 analysis. Most noteworthy of these was
 

the inadvertent modification of the S193 instrument through
 

astronaut error. The abrupt removal of the antenna cap on
 

S193 augmented the radiometer footprint to essentially hor

izon-to-horizon size. Though the active microwave portion
 

(scatterometer) did not suffer the identical fate, a substan

tial alteration in footprint size and shape did occur.
 

The collection of suitable ground truth fared somewhat
 

better. Sufficient advance notice for ground truth collection,
 

however, was received only for the January 11 pass. On this
 

date, a special data collection by NWS personnel was taken in
 

Kansas and extreme northwest Missouri. No collections of this 

nature .weretaken for January 14 or January 24. In spite of 

this setback, sufficient data was obtained from contour maps 

supplied by the River Forecast Office (RFC) in Kansas 

City, Missouri for the January 14 test area. The data ex

tracted from RFC. contour maps. on January,24 .is sparse.,_ and_ 

it has been determined that the density of observations 

will not support any conclusions generated from this data 

set.
 

72
 



The 	following is. a list .of data~available for analysis:
 

A. 	January 11, 1974
 

1. Site: Amarillo, Texas to Clinton, Iowa
 

2.: Skylab Data Available:
 

a. 	S190B: frames 44Z60
 

I) Time GMT start: 17:34:34.3
 

2) Time GMT stop: 17:36:r3.6
 

3) Coordinates @ start: 36:57.5N 99:14.6W
 

4) 	Coordinates @ stop: 40:358N- 92:55.3W
 

b.-S192: 	channels 9, 10, 15, 16, 18, and 21
 

1) Time GMT start: 17:35:47.9
 

2) Time GMT stop: 17:43:58.0
 

c. 	S193
 

1) Time GMT start: 17:34:47.3
 

2) Time GMT stop: 17:36:0.04
 

3) Coordinates @ start: 37032' 98019'
 

4) Coordinates @ stop: 400101 93'49?
 

d. 	S194
 

1) Time GMT start:. 17:34:40.19
 

2)< Time GMT stop:- 17:36:12.42.
 

3)- Coordinates-@ start: 37012'N 98051'W
 

4) Coordinates-@ stop: 400 34'N 92591W
 

3. 	Ground Truth Available:
 

a. 	special data collection taken by NWVS for Kansas
 

and NW Missouri only
 

b. 	other sections of track have snow depth only
 

from CD's; water equivalent data not available.
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B. 	January 14, 1974
 

1. 	Site; Denver, Colorado to Mankato, Minnesota
 

2. 	Skylab Data Available:
 

a. 	S190A: frames 119-132
 

1) Time GMT start: 17:01:0.1146
 

2) Time GMT stop: 17:03:10.1992
 

3) Coordinates at start: 38:58.5N 105:21.8W
 

4) 	Coordinates at stop: 43:21.3N 96:27.0W
 

b. 	S190B: frames 81-105
 

1) Time GMT start: 17:00:45.8
 

2) Time GMT stop: 17:03:15.6
 

3) Coordinates @ start: 38:26.9N 106:14W
 

4) Coordinates @ stop: 43:32.3N 96:01.2W
 

c. 	S193S
 

1) Time GMT start: 17:01:07.43
 

2) Time GMT stop: 17:02:19.5
 

3) Coordinates @ start: 39015? 104050'
 

4) Co rdinates @ stop: 41'44' 100'02'
 

d. 	 S194
 

1) Time GMT start: 17:01:20:11
 

2) Time GMT stop: 17:03:07.18
 

3) Coordinates @ start: 39043'N 104 0 02'W
 

4). Coordinates..@,stop: 43016! 96037?
 

3. 	Ground-TruthAvailable: 

a. 	data-obtained'from River Forecast Center Operation
al Charts, including snow depth and water equiva
lent for entire track.
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C. January 24, 1974
 

1. Site: South Dakota and Iowa
 

2. Skylab Data Available:
 

a. 	S19OA: frames 349-360
 

1) Time GMT start: 17:56:32.2
 

2) Time GMT stop: 17:58:22.1
 

3) Coordinates @ start: 45:04.9N 99:14.7W
 

4) Coordinates @ stop: 41:46.1N 91:07.4W
 

b. S193S: not processed 	from tape
 

c. 	S194
 

.17:56:31.90
Time 	GMT start:
1) 


2) Time GMT stop: 17:58:-12.01
 

3) Coordinates @ start: 45005'N 99015'W
 

4) Coordinates @ stop: 410461N 91007'W
 

3. Ground Truth Available:
 

a. 	sparse data obtained from River Forecast Center
 

Operational Charts
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CHAPTER V
 

THEORETICAL BASIS FOR THE DETECTION OF
 
GROUND MOISTURE CHARACTERISTICS FROM SPACE
 

Introduction
 

The need to make measurements over a large area in a short
 

time has increased the role of remote sensing techniques in sci

entific study. An effort is being made to measure the character

istics of earth's surface by airborne and/or spaceborne remote
 

sensors. A number of different sensors, both active and passive
 

are being utilized to gather information about the significant
 

features of the earth. The active systems transmit their own en

ergy and measure the energy reflected or scattered by the target.
 

Passive systems measure the energy emitted by the target. Some
 

of these systems operate in the microwave region of the electro

magnetic frequency spectrum. The all weather day/night opera

tional capability of microwave sensors is particularly useful for
 

repeated and timely coverage.
 

The S194 and S193 radiometers are passive systems and mea

sure antenna temperature. The antenna temperature is related to
 

the brightness temperature which is dependenton the emissivity
 

and thermometric temperature of the target. The S193 scattero

meter is an active system and measures the radar backscatter co

efficient, a*, of the target that is related to the reflection
 

coefficient of the target. Both reflection coefficient and emis

sivity depend on the electrical properties of the target. The
 

electrical properties of most of the targets change significantly
 

with moisture.
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Scatterometer Theory
 

The radar scatterometer is an instrument designed to measure
 

the radar scattering coefficient a* (radar cross-section per unit
 

area as a function of the illuminated incidence angle 0 measured
 

from the vertical). The signals radiated by the transmitter of
 

the radar are re-radiated by the ground and received back at the
 

radar. The power incident at the receiver input terminals is
 

given in terms of radar operating parameters by the classical ra

dar equation:
 

2

PtGtGrCA 

(4 7r) 3r = Rk (1 

where:
 

Pr = radar receive power appearing at the receiver input
 
terminals, in watts
 

Pt = transmitter power, in watts
 
Gt = transmitter antenna gain

Gr = receiver antenna gain 
a = target cross-section, in square meters
 
X = radar wavelength, in meters
 
R - radar range-in meters
 

The received radar signal is made up of component signals scat

tered from numerous small scatterers and simultaneously observed
 

by the radar. Thus, the average power received by radar is the
 

sum of the powers received from the individual scatterers. 

If there are n scattering elements in a region illuminated at

one time by a radar,the radar equation becomes (assuming Gt = 

Gr = G) 

n- PtG 2n 

Pr= Z
 

i=l (47V) Ri4
 

or
 

*PtG 2 x 2CAA
 

Pr (
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where P. is the average returned power and a* is the differential
 

scattering coefficient.
 

Thus a*, the radar scattering coefficient can be written as:
 

-(4T~) RkPr 
U0 
=
 

G2 X2 AA Pt
 

where the gain, G, and the wavelength, X, are the parameters of
 

the radar. The range, R, depends on the experiment and the area,
 

AA is determined by the radar and the experiment.
 

The value of a' for a particular target depends on the polar

ization, wavelength and angle of the incident wave. In addition,
 

GO also depends upon the target, surface roughness and subsurface
 

structure. a' for a target can be found experimentally by utili

zing a radar scatterometer. A number of simplified theoretical
 

m6dels are available to c6mpute the viilue- of a' for different
 

types of target. For example, the analytical expression for the
 

polarized scattering coefficients for a weakly perturbed dielec

tric plane are given by:
 

CFVV 8K 142 jRv COs 2e 4 (l+Rv)(l-1)sinel2 Wf(2K sinG,O)
-

and: 

'8H 8412 cos 4 e IRHI 2 Wf '(2K sine, 0 

where K = 2X/X and Wf is the two dimensional Fourier transform
 

of the surface correlation coefficient of the perturbed plane.
 

Rv and RH are Fresnel reflection coefficients for ivertical:"and
 

horizontal polarization respectively. a, is the standard devi

ation of the small scale surface height variation. VV corres

ponds to vertical receive-vertical transmit polarization and HH
 

corresponds to horizontal receive-horizontal transmit polarization.
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X is the wavelength. Thus, the value of a* depends on the reflec

tion coefficient which in turn is related to the dielectric prop

erties of the target. The above expressions are only applicable
 

when there are small perturbations in the surface roughness on
 

the wavelength scale.
 

This example of the theory was given for the very simplified
 

model based on perturbation theory. This model applies only to
 

surfaces slightly rough compared with the wavelength, so it is
 

not truly applicable to many natural surfaces at 2 cm wavelength.
 

It is shown here only as an illustration of the theories that
 

may be applied. The subject of radar scattering theory has a
 

rich literature, but most of it is not directly applicable here
 

because of the assumption nearly always made that the scatter is
 

from the rough boundary between two half spaces. In fact, most
 

natural areas cannot be easily represented by simple rough sur

faces, for they contain vegetation, structures made by man, and
 

even natural structures like cliffs that are not amenable to the
 

theories. When these objects are present, volumetric scatter
 

must be considered, particularly for vegetation covered surfaces
 

and for bare surfaces dry enough to permit penetration of the
 

signal to volume scatterers within the soil.
 

The model shown illustrates the two essential features of
 

the physics of scattering even though it is not in a detailed
 

sense applicable to most surfaces. That is, it shows that the
 

scattered signal depends both on the surface roughness and on
 

the dielectric properties of the surface (or of volume scatters).
 

The Fresnel reflection coefficients for horizontal and
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vertical polarizations are given respectively by:
 

cose - sin2ORH
 = 

cose + YE r - sin 2 

er cosG - Ce - sinZ0Rv r r 

Er cosO + 5r - sin2O 

where e is the angle of incidence and er is the complex dielectric 

permittivity. 

The dielectric properties of water at two temperatures are
 

shown in Figure 24 (Hoekstra and Delaney, 1974). K' is the real
 

part and K" is the imaginary part of the complex permittivity. The
 

value of the dielectric constant can be as high as 80 and that of
 

the imaginary part as high as 40 at certain frequencies. The com

plex dielectric constant of silty clay for 10% water content at
 

24'C is shown in Figure 25. The dielectric constant of dry soil is
 

typically less than 5. Therefore, the water content of a soil
 

greatly affects its dielectric properties.
 

Available studies have shown that the relative dielectric con

stant (with respect to vacuum) of soil increases with increasing
 

moisture content. -Variations in the real and complex part of the
 

dielectric constant as a function of water content at 2.2 cm wave

length are shown in Figures 26a and. 26b respectively (Poe et.al,
 

1971). A number of formulas such as given by Rayleigh., Bottcher,
 

Weiner and Pierce are available to compute theoretically the dielec

tric properties of mixtures if the dielectric properties of its con

stituents are known. Such values computed by using formulas given by
 

Bottcher and Rayleigh are shown in Figures 26a and 26b. These
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Figure 24 The dielectric spectrum of water at two temperatures
 
(after Hoekstra and Delaney, 1974).
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-10C'(B). (After Hoeksta and Delane7, 1974).
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theoretical formulas are useful in inter- and extra-polating
 

experimental measurements. An excellent comprehensive summary
 

of dielectric properties of soils as a function of moisture con

tent is given by Cihlar and Ulaby (1975).
 

It should be pointed out that the dielectric properties of
 

soil not only change with water content but also are dependent
 

on the-temperature,.'density of soil and the soil type.
 

Radiometry Theory
 

It is well known that any object emits (and absorbs) electro

magnetic energy in different parts of the frequency spectrum.
 

The relationship between the frequency of emittance (or absorp

tion) and amount of energy emitted (or absorbed) is given by
 

Plank's Black-Body Radiation Law.
 

The temperature equivalent to the energy measured by a radio

meter is termed the Apparent Temperature. In a practical situa

tion, a radiometer viewing the surface of the earth measures con

tributions from surface emission, emission by the intervening
 

atmosphere and in turn absorbed by the atmosphere (some part)
 

and the atmosphere-emitted radiation reflected by the surface in
 

the direction of the radiometer.
 

The apparent temperature of a surface when measured by the
 

radiometer at an angle e from the vertical,givenxby-SkonlAc(1970):
 

Taj (0) = L(O) [TBj ()+TsjJ0(e)] +>Tatm(G) (1) 

In the above equation, "j" stands for vertical or horizontal pol

arization. L(G) is the atmospheric transmittance determined by
 

atmospheric absorption between the surface and the radiometer in
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the 	direction 0. L(G) can be written as:
 

H
 
L(O) = exp [-sec 0 f ct(z) dz] (2)
 

0
 

Tatm(O) 	represents the direct contribution from the atmosphere
 

and is given by: 

• H IH 

TatmOS) = secO I Tair(Z) c(z) exp[-secG f a(z')dz']dz 
0 z 

(3) 

Equation (3) gives the emittance by the atmosphere and subsequent
 

attenuation by the intervening atmosphere.
 

Other parameters appearing in equations (1), (2) and (3) are
 

defined as follows:
 

c(z) = The atmospheric attenuation coefficient per unit
 
length at an altitude of z.
 

Tair (z) = Thermometric temperature of the atmosphere at an altitude z above the surface.
 

H = 	 Height of radiometer from which the measurement is 
made. 

Ts(e) = 	 The atmospheric emitted radiation reflected by the 
surface of the earth in the direction of the radio
meter. 

TB(e) = 	 Brightness temperature of the surface of the earth. 

CMT 

em = Emissivity of the surface. 

T = Thermometric temperature of the surface. 

The parameters which influence the radiometric measurement are 

(i) 	atmospheric effects, (ii) surface emissivity.
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Atmospheric effects
 

The atmospheric effects influence the radiometric measure

ment through L, TS and Tatm . All these three variables are de

pendent on atmospheric attenuation coefficient a. a represents

contributions from oxygen, water vapor, rain'and clouds. If a
 

=
equals 0, L = 1, and TS Tatm = 0. Both TS and Tatm are caused
 

by atmospheric emission, and for a -lack body in thermodynamic
 

equilibrium, the absorption coefficient is equal to the emission
 

coefficient. Thus, under the clear sky conditions and operating
 

at frequencies in the "windows" of the absorption spectrum, the
 

effect of L, TS and Tatm can be reduced considerably. Usually
 

if meteorological information is available, L and Tatm can be
 

calculated and TS can be inferred approximately.
 

The effect of the atmosphere may be significant if clouds
 

and rain are present. If-the atmosphere were not an emitter, the
 

signal received from the ground would be attenuated; since the
 

antenna temperature Ta is just the strength of the received power
 

flux expressed in temperature instead of watts/m 2 , this would
 

mean that the observed temperature would be less when clouds in

tervene. Since the atmosphere does emit in an amount proportion

al to its absorption, the reduced signal from the ground is com

bined with both the direct cloud emission and the downward emis

sion that has been scattered from the ground. If the emissivity
 

of the ground is low, as it is over water, the signal from even
 

a moderately attenuating cloud is strong enough not only to com

pensate for the loss in ground signal due to attenuation but ac

tually to raise the observed signal strength; thus the temperature
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observed over a cloudy ocean may well be tens of degrees higher
 

than when the sky is clear. On the other hand, if the brightness
 

temperature of the ground exceeds the physical temp6rature of the
 

cloud, as it does over dry warm land, the effect of clouds is to
 

reduce the observed signal. In the extreme case of attenuation
 

exceeding a few dB, the observed signal is almost entirely from
 

the cloud and is at the physical temperature of the cloud.
 

For soil moisture measurement, the brightness temperature of
 

the ground may be either lower than that of the cloud (high mois

ture content with little vegetation) or higher than that of the
 

cloud (low moisture content). In the high moisture case, cloud
 

attenuation tends to raise the observed temperature, leading to
 

an underestimate of the soil moisture. In the low moisture case,
 

cloud attenuation lowers the observed temperature, leading to
 

an overestimation of soil moisture. This effect can be quite sig

nificant at the S193 frequency (13.9 GHz), but at the S194 fre

quency, (1.4GHz) the cloud attenuation, and indeed attenuation in
 

heavy rain, is insignificant.
 

Surface emissivity
 

The emissivity of the surface is related to the scattering
 

behavior of that surface integrated over the-upper half-space.
 

According to the law of thermodynamic continuity, the emitted
 

energy = absorbed energy = incident energy - reflected energy.
 

The emissivity of a target is given for a flat surface by:
 

B = (1- iRP1 2) 

where p corresponds to the appropriate polarization (vertical or 

horizontal). 

87
 



When the surface is not flat, the emissivity must be calcu

lated by taking into account the angular variation of the emis

ison in both polarization. Here we must replace the above equa

tion by:
 

S(ESo) = 1-secEo f [apc(OS)- - o s)]d2 

where OpcCOS) is differential scattering coefficient for a wave
 

from direction 0 scattered in direction s,-with incident polari

zation p and scattered polarizationc and %p(o,s) is the same
 

where both polarizations are p. These a's are functions of both
 

roughness and dielectric properties of the ground.
 

The emissivity is very sensitive to soil moisture. For ex

ample, the emissivity of very dry soil is about 0.95. The emis

sivity of calm water is about 0.4t.0.6 for most microwave frequen

cies. At 13.9 GHz, the difference in brightness temperature be

tween dry soil and 17% soil moisture is about 56'K. The effec

tive emissivity at 21.4 cm wavelength as a function of water con

tent is shown in Figure 27.. Included in this figure is the em

issivity calculated by using theoretical formulas given by Bottcher,
 

Weiner and Pierce for different form factors F. Figures: Zf-and_29
 

show the brightness temperature versus soil moisture curve at 21.1
 

cm wavelength for two different test sites (Bihmugge et.al, 1972).
 

Discussion -"
 

As is evident from above, the dielectric properties of a
 

medium influence the radar scattering coefficient and the radio

meter emissivity in two ways: a) through the Fresnel reflection
 

coefficient and b) the effective depth in the medium responsible
 

for the backscattered or the emitted energy.
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BRIGHTNESS TEMPERATURE RESULTS
 
300 21.1 CM RADIOMETER
 

PHOENIX, ARIZONA
 
-D-FLIGHT 1, 2/25/71
 

290 o FLIGHT 3, 3/1/71
 
From: Schmugge. Gloersen, and Wilheit, 1972 
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Figure 28 	 Brightness temperature at 21.1 cm wavelength versus 
soil moisture from Phoenix, Arizona (after Schmugge, 
et. al, 1972 ). 
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BRIGHTNESS TEMPERATURE RESULTS 
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Figure 29 Brightness temperature at 21.1 cm wavelength versus
 
soil moisture from the Imperial Valley Cafter Schmugge,
 
et. al, 1972).
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Thus, any changes in the dielectric properties and thereby
 

in soil moisture should be evident in the radiometric and scatter

ometry measurements. It should be pointed out that these measure

ments are also affected to a large extent by the surface roughness
 

and any vegetation cQver. The effect of soil moisture and the
 

roughness on these measurements have to be separated. Also, need

ing to be established, is the amount of surface penetration and
 

the effect of subsurface structure. The ultimate utility of these'
 

measurements for detecting ground moisture depends on how well
 

the moisture effects can be separated- fromother effects. Thus,
 

the task is of establishing parameters such as frequency, polari

zation and angle which are optimum in detecting ground moisture.
 

The measurements made while operating with these optimum para

meters will be more sensitive to any variations in soil moisture
 

than-to other factors such as surface roughness.
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Chapter VI
 

ANALYSIS AND RESULTS OF THE SOIL MOISTURE EXPERIMENT
 

S190A and S190B Photographic Interpretations
 

Portions of the SlS0A photography havebeen studied in de

tail to determine what features can be seen for.each of the
 

six bands.. The bandwidths and related- information are as fol

lows:
 

Researu
 
Serial No. Bandwidth(i) Film Type Filter
 

15- 0.7-0.8 IR Aerographic B&W Type CC
 
EK2424
 

08 -0.8-0.9 IR Aerographic B&W Type DD
 
EK2424
 

11 0.5-0.88 Aerochrome IR color Type BE
 
2443
 

02 0.4-0.7 Aerial color (high reso- FF
 
lution) type SO-356
 

06 0.6-0.-7 Pan-X aerial B&W type BB
 
SO-022
 

10 0.5-0.6 Pan-X aerial B&W type AA
 
S0-022
 

Frame 169 for the September 13, 1973 Texas site was studied
 

using the aerial color .4-.7 P and the Aerochrome IR color .5

.88 from the transparencies. The other four filter types.were
 

enlarged to approximately 11 x 11 prints. No attempt was made
 

to determine each and every tonal change on the photos, however,
 

a great deal of general information was obtained. Frame 169
 

included much of the 9-13-73 Texas site (Figure 30). Therefore,
 

topographic maps, field notes and aerial photography were avail

able for identification of many features.
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General: Tonal Change
 

General color variations in the aerial color .4 .7 P
 

range from black in the north to red in the south. The low

lands appear dark gray with the south-central regions of the
 

photo-showing-a lighter.red color.
 

The IR color .5-.88 p has excellent color contrast. The
 

upland area to the north of Lubbock is a very dense red. in
 

comparison to the west and south of Lubbock which is light
 

green with a small amount of red visible.
 

Excellent tonal contrast is also visible on the black and
 

white .6-.7 p band. The area to the north and northwest of
 

Lubbock and also immediately surrounding Lubbock appear black
 

to dark gray. The central portion of the photo is a mixture
 

of black and dark to light grays. The southern portion of the
 

photo is the lightest, appearing light gray to white. The
 

lowlands are dark gray.
 

The black and white .5-.6 p band shows less general con

trast. The overall toial quality is dark to medium gray with
 

the lightest area being east of Brownfield. The lowland and
 

the area orth-of Lubbock are the darkest grays.
 

The IR black and white (bands .7-.8 and .8-.9 p ) are very 

similar to each other. The uplands are in generally light 

gray to almost white in contrast to the dark gray lowlands. 

Large apparently non-cultivated areas stand out on the upland
 

as dark gray areas.
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Cities
 

Cities show up a light gray color on the aerial color and
 

the color IR. Cities ranging in size from Lubbock(130,000) to
 

Post, Texas (4,600) may easily be seen. On the aerial color
 

band, some of Lubbock's major streets are visible plus about
 

half of the interstate loops around the city. The major
 

streets are not visible in the IR color band and only a small
 

portion of the interstate loop can be seen.
 

On the black and white aerial band, cities still appear
 

light gray. Lubbock is easily visible on both photos but smal

ler cities such as Staton, and Levelland, Texas are more vis

ible in the .5-.6 band as they stand out against the darker
 

background. Some of the major streets stand out on both photos
 

but the interstate loop is better seen in the .5-.6 band.
 

Black and white IR bands show cities as medium gray. Where
 

cities are surrounded by a light background they are easily
 

visible but next to medium or dark gray backgrounds, they can
 

no longer be seen. On both bands the major street patterns
 

in Lubbock show up well. Seven east-west and seven north

south streets are visible but the interstate loop does not show
 

up. The Texas.Tech. campus is visible as a dark gray rectangle
 

in both photo.
 

Roads
 

Roads are not easily visible in the aerial color and color
 

IR bands but some major roads such as west of Lamesa and south

est of Brownfield can be detected. The aerial B&W bands have
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the same problem. Some major roads can be followed for a
 

short distance then they fade out as <the background changes,
 

however, the Lubbock airport is visible as well as an airstrip
 

between Brownfield and Levelland. A major road in the dissec

ted lowland southeast of Post, Texas can easily be seen. Sec

ondary roads can be traced as section lines in some areas.
 

On the B&W IR bands some major roads such as Highway 82
 

from Brownfield to Lubbock and Highway 84 running NW-SB through
 

Lubbock stand out better than in any of the other bands. The
 

roads are dark gray and therefore fade out on the dissected
 

lowland. Secondary roads and section lines are not as clear
 

as in the B W aerial bands.
 

Lakes and Streams
 

On the aerial color band two lakes (White River Lake and
 

Illusion Lake) appear very black but most lakes are hard to
 

see. More easily seen are the color changes of the landscape
 

surrounding the lakes. Two areas appear very white and are
 

apparently areas of high salt content (Mound Lake and an area
 

near Cedar Lake). Major streams on the dissected lowland show
 

up as light brown but tributaries can not be seen.
 

The IR color band shows White River Lake, Illusion Lake
 

and Rich Lake as dark blue with other lakes beifig medium blue.
 

The same two white -areas also appear in IR color bands. Major
 

streams show up as light green to white in color.
 

The B W aerial bands show the same three lakes as in the
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color IR band except the lakes are black. The other lakes are
 

mediumgray generally with white borders around them. The
 

two white areas are easily seen in the .5-.6 p band but in the
 

.6-.7 band they are less distinct due to other very light areas
 

in the photograph. Major streams appear white and many trib

utaries can be seen in both aerial B W bands.
 

Almost all lakes appear black in IR B W bands. Many more
 

of the smaller lakes can be detected than in the other bands.
 

Streams, however, do not show up as well but the major streams
 

can be traced. Few if any tributaries can be seen.
 

Cultivated and Non-Cultivated
 

In the aerial color band, cultivated areas range from
 

black in color in the north to various shades of red farther
 

south. Field work indicated the predominant crops in this re

gion-are cotton, grain sorghum and corn. Non-cultivated areas
 

appear medium to dark gray and are predominately grassland or
 

grassland and shrubs. Aerial photos revealed that-some very
 

light red areas,such as, around Mound Lake, are sand dunes.

The'color IR band shows cultivated regions ranging in col

or from deep red north of Lubbock to medium and light green 

throughout the rest of the photograph. Non-cultivated areas 

are dark green in color. Frame 028 of the June 5, 1973 mission 

also provides an excellent opportunity to examine, fields of 

cotton and grain sorghums in the color IR and B&W IR bands. -

Figure 31 shdws the spectral r.eflectance characteristics for 

cotton under conditions of moderate and high soil moisture. 
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It is readily seen that reflectance in the red and near infra

red is extremely high. This is observable on the color IR
 

where cotton fields show up as intense reds and on the B&W IR
 

bands where cotton appears as brighter fields. Similarly, on
 

the Pan-X band (0.5-0.6) cotton is seen-as very black fields,
 

which from the curve is what would be predicted.
 

Cultivated areas range from black to almost white in the
 

.B&W Pan-X aerial band and therefore smaller tracts of non

cultivated land are more difficult to detect. The non-culti

vated lowlands and uplands are dark gray. Large upland tracts
 

can be separated.from cultivated areas but not as easily as
 

in the aerial color and color IR.
 

Since the B W aerial band (0.5-0.6) is an.overall medium
 

to dark gray, although some non-cultivated areas can be seen,
 

this band is'not as good for distinguishing between cultivated
 

and: non-cultivated areas. However, the IR B W bands are excel

lent for distinguishing the two. Non-cultivated areas appear
 

as smooth dark gray tones in contrast to a medium to light
 

gray cultivated area.
 

Local Relief
 

Local relief is not easily detected on the aerial color
 

band. The "escarpment separating the cultivated upland and the
 

dissected lowland is visible as a color change"from ljght'red
 

to medium gray but-the exact dividing line is often hard to
 

see. Local relief on the dissected lowland does not stand out
 

very well but due to color changes from gray to black the
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circular depressions on the northern upland are easily seen.
 

The detection of local relief on the color IR band is a

bout the same as in the aerial color band, however, the es

carpment is more easily seen as a dividing line between the
 

light green upland and the dark green lowland. Local relief
 

is poor on the dissected lowland and only a few upland circu

lar depressions stand out and only then as color changes from
 

gray centers to the red fields surrounding the depressions.
 

The black and white aerial bands have the best visible
 

local relief. The actual boundary between the upland and low

land is not as clear as in the B&W IR bands but the dendritic
 

drainage pattern leading off the escarpment is very visible.
 

The depressions stand out as pocket marks all over the north

ern part of the photo.
 

The B&W IR bands show little or no local relief. The
 

depressions are not visible nor are the dissected lowlands.
 

The escarpment is seen as a color contrast from a light gray
 

upland to a dark gray lowland. Some streams can be seen lead

ing away from the escarpment on the lowland side.
 

Clouds
 

Scattered cumulus clouds covered part of the test site
 

on June-5, 1973. On the aerial color and color IR bands clouds
 

are about the only white objects, ther.efore, they stand out
 

quite clearly. They also stand out well in the aerial B&W
 

(.5-.6) band since the background is medium to dark gray,
 

however, they are not as easily seen as in the aerial color
 

and color IR bands.
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The aerial B&W band (-.6-.7p) and the two IK B&W bands are
 

not good for detecting small scattered cumulus clouds. There
 

are some scattered and apparently thin clouds in the south

central portion of the photos. In these three bands only the
 

shadows of the clouds show up on the landscape, however, in the
 

southwest portion of the photos,. the ,individual scattered cum

ulus clouds are larger in diameter so the clouds as Weli as
 

the shadows may be seen.
 

Soil Types
 

June 5, S190A photography (Frames 9-27 &28) of the Texas
 

aid New Mexico border areas displays a significant amount of
 

soil information. Included in these photos are Roosevelt and
 

Lea Counties, New Mexico and Cochran, Yoakum,Hockley and Terry
 

Counties in Texas. These particular dounties are of interest
 

since certain soil associations- tend to be well delineated
 

on the color and B%W IR bands (Figure 32). Amarillo loamy
 

sands and sandy loams are well delimited on this imagery with
 

respect to adjacent deep sand associations. Various soil char

acteristics are shown in Table VII. From this table it can be
 

seen that essential variations are quite small and significant
 

overlap in variable values is present.
 

Soil Moisture and Precipitation Analysis
 

On S190A Imagery(0.7-0.9 Microns)
 

Two Skylab photos were analyzed for the detectability of
 

soil moisture. Soil moisture should be detectable in the re

flective IR-portion of the spectrum. This'noisture should
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Figure 32 	 Different types of soil which can be identified on
 
the S190A photography.
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TABLE VII. Some Soil Characteristics in the Texas Test Site.
 

Soil Surface Depth USDA Texture Permeability Water Available
 

Amarillo fine 
 inches/hr. inches/in.

sandy loam 0-10 in. Fine sandy loam 757 - 2-. 0.125 

Amarillo loam 
 0-8 in. Loam 
 0.5 - 2.5 0.150
 

Amarillo loamy 
fine sand 0-12 in. Loamy fine sand 1.0 - 2.0 0.83 

Brownfield
 
fine sand 0-14 in. Fine sand 
 1.5 - 3.0 0.67 

Tivoli fine
 
sand 0-72 in. .Fine sand 
 1.0 - 4.0 0.67 

Abilene clay

loam 0-18 in. 
 Clay loam 0.2 - 0.6 0.16-0.18 

After: (2) USDASCS Survey Series 1960, No. 17, March, 1964
 

(2) USDASCS Soil Survey Series 1960, No. 15, March, 1964
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appear as dark swaths on the point resulting from local thun

derstorm precipitation.
 

Figure 33 was taken on August 5, 1973 over south-central
 

Kansas using the 0.7-0.8 micron band. Figure 34 was taken on
 

June 5, 1973 over the Lubbock, Texas area using the 0.8-0.9
 

band. Both photos show the amounts of precipitation that
 

occurred during the five days prior to overflights and the
 

average moisture content for the first inch of soil along the
 

soil sample route.
 

For the June 5 Texas site all the precipitation values
 

shown occurred on June 2. Precipitation values range from .08
 

inches at Tahoka to .83 inches at Lorenzo. None of these
 

locations reveal any detectable tonal changes caused by pre

cipitation. The Slaton area with .50 inches is darker than
 

most areas of the photo yet the Abernathy and Lorenzo areas
 

received more precipitation, .58 and .83 inches, respectively,
 

but have a lighter tone. Although moisture swaths are not
 

visible one should take into account that the rain gauge sta

tions are widely scattered and that the precipitation occur

red three days prior to the Skylab overflight.
 

Thirty-six soil samples taken within 24 hours of over

flight reveal a moisture range in the first 2.5 cm of soil
 

from .7% to 21.1%. Where the moisture changes significantly,
 

break points are shown as dashed lines on the figures. Look

ing north of Lubbock on Figure 34, the average moisture values
 

are 4.1%, 21.1%, 5.1%, .7%, 13.5% and 2.4% yet there is little
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Figure 33 	 Soil moisture variations plotted on S190A black and
 
white infrared photography, .7-.8 microns.
 

St
 

4,
 

Figure 34 	 Soil moisture values plotted on S190A black and
 
white infrared photography, .8-.9 microns.
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detectable tone variation in this area. 
 Similarly throughout
 

the photo moisture changes do not coincide with tonal changes.
 

This may be due in part to the low moisture contents observed.
 

Most of the moisture values are less than 5.0%. However, this
 

does not account for the lack in tonal change for the 13.5% and
 

21.1% values.
 

For the Ausust 5 Kansas site, (Figure 33) all of the pre

cipitation values shown occurred on August 2 with the excep

tion of the Medicine Lodge value which occurred on August 1.
 

Precipitation values range from .02 inches at Wichita and Con

way Springs to .4 inches at Medicine Lodge. As on the Texas
 

photo, none of theselocations reveal any detectable tonal
 

changes caused by precipitation. The Medicine Lodge area with
 

.4 inches is lighter in tone than the Conway Springs area with
 

0.2 inches. Once again, although moisture swaths are not vis

ible one should take into account that most of the precipita

tion was negligible and occurred three and four days prior to
 

overflight.
 

Soil sample sites 1-28 and 33-42 appear in the Kansas
 

photograph. Soil samples taken from these sites within 24
 

hours of overflight reveal a moisture range in the first 2.5cm
 

of soil from .7% to 12.8%. Tonal variation is greater than in
 

the Texas photo yet these variations do not seem to coincide
 

with the moisture changes. Once again, the moisture content
 

is generally less than 5.0%. However, in the bottom portion
 

of the photo the moisture values are 12.8%, .7%, 2.3% and 8.7%,
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yet there is no noticeable tone change as these moisture val

ues change.
 

It was concluded that small soil moisture and precipita

tion variations were not detectable as 
tonal variations on
 

the S190A IR B&W photography. 
Some light tonal areas contain

ed high precipitation, .83 inches, and high moisture content,
 

21.1%, while another light tonal area contained only .02 inch
 

of precipitation and as little as 
.7%moisture. Similar vari

ations were observed in dark tonal areas. 
 This inconsistency
 

may be caused by a lapse of three to four days from the time
 

precipitation occurred until the photographs were taken and by
 
the fact that in the first inch of soil the measured soil mois

ture was generally less than 5%.
 

From the point of view of soil moisture, non-microwave
 

imaging sensors may not have the 
same potential as microwave
 

sensors. However, the infrared bands of both the SlS0A and
 

S192 sensors have been successfully, though to a limited extent,
 

employed in segregating areas where soil moisture varies signifi
cantly from that of adjacent areas. An excellent sample of this
 

is illustrated in Figure 35 in which the Abilene clay loam, a
 

very fine grained soil with significant water capacity, can be
 

identified on the black and white infrared and color infrared
 

bands of the S190A, and the B8W IR of the S192, (0.7-0.8 lim,
 

0.8-0.9, 0.5-0.88 and 0.7-0.8 pm, respectively). Similarly, an
 

area of medium grained, highly permeable sand, interdigitated
 

with less permeable sandy loans is present along the border
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a 2.7- 0.8 b 0.8- 0.9 

c . 0.70- 0.88 

d. 1.55- 1.75 

1Figure 3S 5I90A IR photographs (a and b ) showing the Abilene Clay Loam as a dark 
irregular zone near the right center of the frame, and S192 MSS Imagery
showing the same area (c and d). Note that the soil variation does not show 
on the 1.55 - 1.75 Mm imagery. (All bandwidths are indicated in micrometers.) 
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between Texas and New Mexico. These permeable sands again
 

are displayed on the infrared images (Figure 36).
 

In view of the interpretations of the Skylab imagery and
 

the known soil moisture characteristics of the test sites, it
 

can be tentatively concluded that spectral resolution is of
 

significantly greater importance than spatial resolution for
 

detecting general soil moisture variations. However, the rel

atively poor spatial resolution of the black and white infra

red bands tends to cause boundary zones to be very indistinct.
 

This unfortunately causes the imagery to yield a continuously
 

changing view. Therefore, for mapping purposes greater spatial
 

resolution is essential.
 

In general, however, direct measurement of soil moisture
 

variation by optical and MSS data is impossible in areas of
 

moderate to heavy vegetation cover. In these situations, in

ferences relating to long term moisture availabilty must be
 

made on the basis of the vegetative densities. This means
 

that quantitative soil moisture information cannot be gathered
 

from optical or MSS data.
 

Good quality, high resolution optical and MSS can be used
 

more effectively in conjunction with microwave sensors in or

der to increase the accuracy of soil moisture measurements by
 

using imagery as a means of providing vegetation type and den

sity information and using a thermal band to collect and assem

ble surface temperature. These data can be used in conjunction
 

with microwave sensors to provide sound moisture information
 

as well as land-use and vegetation information.
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Figure 36. 	S190A black and white infrared photograph showing
 
the permeable sands which are present over much of
 
this region of the high plains. Note the lighter
 
image density of the sands in contrast to the
 
darker loams and sandy loams by which they are
 
bounded.
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Quantitative information can only be secondarily extrac

ted frommultispectral camera data in the form of densitomet

tic measurements. Therefore, MSS data in both digital and
 

image form can provide more useful information. Data can be
 

extracted readily for selected areas with substantially great

er accuracy than densitometric measurements from photographic
 

transparencies.
 

Examination of the available MSS bands indicates that a
 

narrow band of approximately 0.7 to 0.88p is the most likely
 

to produce useable soil moisture information. Shorter wave

lengths are adversely affected by the atmosphere and as a re

sult show a great deal of haze. On the other hand, longer
 

wavelengths (1.55 to 1.75 p) appear to be best suited for
 

showing vegetation details, but show little effect due to soil
 

moisture. Figure 35 shows the contrast between 0.70 to 0.88
 

MSS images and 1.55 to 1.75p MSS images.
 

Considering the problem of spectral signatures, it must
 

be noted that spectral signatures in all likelihood do exist.
 

Based on Figures 35 and 36 it can be readily seen that signif

icant spectral variations are present. While, from these ex

amples it is obvious that spectral responses to different
 

soils and soil moisture conditions show considerable variabil

ity, the lack of time sequential imagery over a specific test
 

site prevents detailed sun angle or seasonal studies.
 

Turning briefly to the problem of spatial resolution and
 

scale versus spectral resolution, various arguments can be
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presented to support improvements in both. However, from the
 

point of view of accurate land classification schemes, there
 

are definite advantages in improved spectral resolution. This
 

permits more accurate identification of vegetation types and
 

soil types, better determination of range conditions and gen

eral vegetation vigor. On the other hand, for mapping pur

poses, good spatial resolution-is absolutely essential. Bound

aries between various vegetation types or soil types must be
 

displayed as realistically as possible since natural boundary
 

zones are normally transitional or gradational and good resol

tuion is essential if confusion on the part of the interpreter
 

is to be eliminated. Ideally, the spatial resolution of any
 

given spectral band should be no worse than thirty meters.
 

S192 MSS Analysis
 

An initial investigation was conducted using the S192
 

MSS 10.5 to 12.2p thermal band. Data used in the study were
 

those obtained from Skylab IV, pass 81, on January 11, 1974.
 

This pass collected data from southwest to northeast across
 

the Kansas test site. The S192 thermal channel data were a

vailable for a section of the pass between Wichita and Topeka,
 

Kansas..
 

Surface data were obtained for snow depth, water equiva

lent, maximum temperatures and minimum temperatures in the
 

study area. There were 40 stations within the east site with
 

various weathef data. In addition, the National Weather Ser

vice cooperated in obtaining additional measurements during
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the Skylab pass on January 11 for snow depth and wat6r
 

equivalent.
 

The general weather pattern of the study area indicated
 

a slight gradient from north to south. However, there were
 

a few instances in which the weather pattern was interrupted

*warmer air from-the south formed pockets toward the southern
 

portion of the study area and-there were also noticeable poc

kets of deeper snow around the towns of Cassody and Alta Vista,
 

Kansas.
 

Contour maps of the four ground truth parameters were
 

prepared by Surface II (a computer mapping program), using a
 

nearest neighbor search; Overlays have been used for a vis

ual comparison of the meterological and hydrological paramet

er:s with the thermal channel in addition to various statisti

cal comparison
 

Processing of S192 Computer Compatible Tapes
 

Computer Compatible Tapes (CCT) from the S192 sensor
 

were processed using the KANDIDATS IDECS facility at the Space
 

Technology Center. This facility allows the user to interact
 

with the processing of digital images:
 

They tapes- received contain data for approximately 50 sec

onds of sensor operation. The start time listed on the tapes
 

is 11:17-:43:58.0 and the stop time is 1:17:35-:47.9. The
 

start time matches with information in the header record.
 

Before processing began, an attempt was made to locate the
 

area covered by the sensor. The ancillary blocks of several
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scanline data sets were examined to determine the latitude and
 

longitude of the scanlines. The following locations, rounded
 

to the nearest second, were obtained for the test site.
 

Scanline #88 #2039 #2930 

Space Craft lat 37052118 ' 38038117'' 38058'56" 
Nadir long-97 45'57" -96%8'55" -95o5256"? 

Center First 38015'28 390 1'31" 39022' 4" 
Pixel -9704844" -96031' 8" -95055,18 ' 

Center Center 380 4739" 38050124' 3901049"1 
Pixel -97023138" -960 5"45" -95030? 8" 

Center Last 37042? 7" 38027'52"1 38048' 5" 
Pixel -97022. 4" -96 - 4'46" -95 29'I0" 

Azimuth 540 550 550 

The CCT were copied on a diskpack for use by KANDIDATS.*
 

Only channel 9 (band7) and channel 21 (band 13) were copied
 

due to disk storage limitations. Channel 21 is a low sample
 

rate (1240 points per scanline) channel of band 13, 10.2-12.5
 

microns. Channels 9 and 10 form a high sample rate pair (2480
 

points per scanline) of band 7, .78-.88 p. By copying-only
 

channel 9, we obtain low sample rate data for band 7.
 

The CCT also contained-channels 19,15,16 and 18. Chan

nel 10 was essentially the same as channel 9 since channels
 

9 and 10 make a high sample rate pair .of band 7. Channels
 

16 and 15 make a high sample rate pair for band 13. Although
 

these channels were not processed in detail, it was noted that
 

they showed anrunexpectedly high number of under-range counts.
 

Channel 18. is a low sample rate of band 2, .46--.51, and-also
 

*Kansas Digital Image Data System
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showed a high number of over-range counts.-


Processing of the digital images for band 7 and 13 con

sisted of the following steps:
 

1. 	Compression of the image;
 
2. 	Equal probability quantizing
 

of the compressed image.
 
3. 	Convolution with a rectan

gular pulse, a type of low
 
pass filtering.
 

Compression of the image was performed by sampling every
 

fourth point per scanline and every fourth scanline. This re

sulted in a 16 to 1 reduction in the size of the image and
 

allowed the image to be displayed and analyzed.
 

Quantizing of the compressed image removed the bias from
 

the data and increased the range of values. The quantizing
 

was such that each resulting data value has an equal probab

ility of occurring. The resulting quantized image was quite
 

grainy so a rectangular convolution was performed to smooth
 

the 	data.
 

The results of the processing were displayed by several
 

methods. To observe the original data, the compressed image
 

was displayed on and photographed from the IDECS black and
 

white television screen. Both band 7 and 13 were photographed
 

in this Way and a mosaic was made of the photographs. The
 

compressed band 7 .and the compressed, quantized and convolved
 

band 13 were printed on a line printer to form a grey map.
 

The final method of display uses th& IDECS to level-slice the
 

convolved band 13. The four slices were &6chdisplayed in a
 

different color and photographed from a color television
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screen. Again, a mosaic was made with the photographs. The
 

colors used were red, yellow, green and blue, with red repre

senting low. counts and blue high counts.
 

Scanline straightening of the image was not performed for
 

display purposes since this operation is very time consuming.
 

The original counts from the CCT were displayed. Each count
 

may vary in value between 0 and 255. For each data point, the
 

count can be converted to radiance-measure by the following
 

equation:'
 

R = Ao + C * A1
 

where:
 

R = Absolute radiance
 
Ao, A1 = Calibration coefficients
 
C = Count value
 

For the area under study, the calibration coefficients are:
 

Ao A1
 

Band 7 -.395 .2561
 

Band 13 .295 .154
 

These coefficients are taken from the CCT header record.
 

Radiance values may be converted to an effective temper

ature by use of the inverse of the following function:
 

R(T) .G 'C * G(X) d 
A. A' * BXP- (14388/XT>-1
 

Earth Resources Production Processing Requirements
 
for BREP Electronic Sensors, PHO-TR 524 REV A,


Change '1: NASA, 1974; pp 5-17 to 5-19.
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whet'e:_
 e = Wavelength in pm
 

i = 11909 Watts-v -/cm2-STBR 
T = Temperature-in OK 

G.(X)= Spectral response for band 13 
X2 

IG = I/f G.(X) d 

R(T) = Radiance for given temperature.
 

The resulting radiance-is therefore a measure of the-effec

tiVe temperature'across the band pass; This temperature is
 

not the physical temperature most commonly thought of but a
 

c'omparison to a black body temperature. The original count.
 

values were used in-this analysis rather than conversion to
 

-radiance-measure and. then to effective temperature.
 

Thermal infrared image interpretation
 

Wiosaics of the imagery from the red band and the thermal
 

-

band have been assembled. The red band has been used primarily
 

as means of reference for purposes of locating points on the
 

thermal band imagery. Some problems were encountered in in

terpretation of the imagery. Major variation in topographic
 

features, cities or. climatic variations were limited for this
 

.pass over almost complete snow cover. This was verified by
 

interpretation of SI0B photography and aircraft .photgraphy,
 

as well as by ground truth information.-gathered from a number
 

of weather stations in the area.
 

A comparison between the S90B and a color enhanced image
 

of the Topeka, Kansas area made from the S192 th6rmal channel
 

data is shown in Figure 37. The lack of geometric similarity
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Figure 37 Comparison of S190B (upper) and S192 thermal data
 

for Topeka, Kansas and vicinity, January 11, 1974.
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is due to the uncorrected scan lines. Close examination of
 

this area immediately permits the interpreter to identify cer

tain major features. Topeka (A) can be more readily distin

guished from its background on the thermal channel than on
 

the color photography. Similarly, the Kansas River (B) is
 

also immediately obvious. Both features are identified in
 

blue on the thermal output. To the immediate southeast side
 

of Topeka is an area of apparently warmer temperatures (C);
 

this area is identified on the mosaic in green. While this
 

area seems somewhat coherent and related to the city of Topeka,
 

ground information of sufficient detail to support such an
 

interpretation is not available.
 

Looking at other smaller areas it is possible to relate
 

isolated points on the thermal channel to their counterparts
 

on the photograph. Several small stream channels can be dis

tinguished on local areas along their lenghts (D). Although
 

in almost all cases the streams are frozen and covered with
 

snow, there appears to be an influence of the stream bands up

on the signal. Such a situation may be due to a lack of snow
 

on steep surfaces and differential heating of snowy and bare
 

surfaces. Other areas such as (B) can also be distinguished
 

on the thermal channel as on the photography. These are steep

er slopes and hill tops which have been swept clear of snow
 

and are therefore more susceptible to heating.
 

In general, it is.possible to detect major landscape fea

tures with minimal difficulty. Small streams can be detected
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occasionally, however, this is probably dependent upon their
 

being sufficiently incised that th& banks do not retain sig

nificant depths of snow. Other features are not immediately
 

detectable on this set 6f data; however, it is quite likely
 

that this is due to the relatively low and uniform temperatures
 

within the test area. It is quite possible that in an area of
 

greater temperature range and surface diversity, the sensor
 

would show more local features and regional trends.
 

Thermal infrared correlations with snow characteristics
 

Variations in snow depth throughout the study area are
 

shown in Figure 38. The contours generated by the Surface II
 

mapping program vary from 6 to 10 inches of snow. The actual
 

data values measured at the individual locations varied from
 

4 to 11 inches. The Surface II program calculates values and
 

fits a surface to individual data points. Although the ther

mal infrared data is much more detailed, comparisons were at

tempted between the generated surface for snow depth and S192
 

thermal infrared data points. The surface trend mapping for
 

the limited number of stations having snow depth information
 

(18 locations) generated 518 data points for the entire test
 

site.
 

The thermal infrared data, on the .other.hand, consisted
 

of about 350,000individual data points for the test site. These
 

data had to be generalized because- of the. cearseness Z tlhe
 

ground truth data. The individual thermal data points together
 

with their, coordinates were ied into the Surface II mapping
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program which averaged tha data down to. 518. data points. The 

conical nature of the thetral infrared scanlines was- circnn

vented by using the location of the individual data points
 

in the plotting program. This allowed a correlation between
 

snow depth and the thermal infrared data for the 518 grid
 

points which were uniforly spaced throughout the test site.
 

The 'scatter-diagram for the 518 data points is shown in Fig

ure 39. Increasing snow depths gave lower thermal infrared
 

counts as anticipated, although the correlation-coefficient
 

is quite low, -0.12. A similar comparison between water e

quivalent within the snow cover and thermal infrared data is
 

shown in Figure 40. The relationship is somewhat better with
 

a correlation coefficient of -0.28.
 

Figure 41 shows the scatter diagram relating maximum
 

temperature within the test site to thermal infrared data.
 

Most of the weather stations are between 15 and 30 miles a

part. When considered-in light of the much smaller resolu

- tion:ofthethermal,infrared system, it is obvious.that great
 

generalization has taken place. Therefore, much of the
 

detail which- i piesent in the scanner data can be interp

reted. A prime example of this problem is the city of Topeka,
 

which shows up as a cold spot from the temperature distri

bution, but.as a wam area on the S192 scanner output. This
 

anomalous situation is created by the fact that the scanner
 

is teading the temperature of the city of Topeka in detail,
 

-while the -weather station is located at the airport, a location
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Figure 41 	 Scatter diagram relating the maximum measured
 
temperature with the S192 thermal infrared data.
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which has, on the basis of previous data, been shown to be
 

colder than the surrounding landscape. Similarly, this sit

uation may occur throughoutmuch of the test area, as one
 

weather station cannot represent all of the local variations.
 

For this reason, a good correlation cannot be expected between
 

the thermal infrared data and groundtemperature. For these
 

data, the S192 data may be so much more detailed than the
 

.ground data that comparisons are impossible. A very detailed
 

snow mapping and surface temperature measurement program would
 

be required to match the resolution of the S192 sensor and
 

provide a sound basis for testing the response of the instru

ment.
 

S193 data analysis
 

Although five sets of data were collected for the soil
 

moisture experiment, only two sets of S193 data were comparable;
 

pass 5 over the Texas site and pass 38 over the Kansas site.
 

Pass 15. would also have been comparable except that the soil
 

moisture samples were taken in southeast Kansas and the S193
 

instrument started to collect data in Oklahoma. Therefore,
 

the soil moisture data did not match the Skylab data and could
 

not be used in the analysis.
 

The data from pass 5 oVer Texas is a very good data set,
 

because it satisfied the original requirements,for the soil
 

moisture ekperiment and covered the whole test area, Antenna:- _
 

temperatures in the *test site ranged from 2400K to 280 0K and
 

scatter coefficients from -8.0 -to -11.0 dB. -The distribution
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patterns of antenna temperature and scatter coefficient are
 

shown in Figures,42 and: 43.
 

Although the radiometer and scattefometer data were ana

lyzed for individual footprints these figures were developed
 

to show the general distribution of the radiometric tempera

.ture and the backscatter coefficient. They were generated by
 

computing a least squares trend surface for the individual
 

data points located throughout the test site.
 

During pass 16, data were collected by the S193 micro

wave sensors over the southeastern part of the Kansas test
 

site, where soil moisture content was lower, one to eight per

cent by weight in the layer from the surface to 2.5 cm. There

fore the range of data were smaller than those for pass 5,
 

-9..5 to -11.3 dBfor the scatter coefficient and 280*X to 287 0K
 

for the antenna temperature. In addition, a gap of two sweeps
 

occurred at the south part of the test site (Figure 44). This
 

figure also shows the individual values of the scatter coef

ficient for this pass.
 

In pass 38, the S193 microwave system collected data at
 

40.10 pitch angle-over the two test sites, with vertical pol

arization,for the Texas site and horizontal polarization for
 

the Kansas site. Data from the S193 instrument covered about
 

-one-third of-the Texas .tes't site. The antenna tempeatures
 

varied from 27'K to 287 0K and the scatter coefficients ranged-

ftom -8.7-to -13.0 dB. For the Kansas test site with soil
 

moisture content-greater than in the Texas test site, the
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Figurm 42 	 The distribution of S193 radiometric temperature
 

throughout the Texas test site on June 5, 1973.
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-9.5 to -10. 0 

-10. 0to -10. 5 

Less than -10. 5 

Figure 43 	 The distribution of S193 scattering coefficient
 

throughout the Texas test site on June 5, 1973.
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antenna temperatures ranged from 2500 X to 2720 K and the scat

ter coefficients from -8.5 to -21.5 dB.
 

For the S193 sensor at 00 roll and 29.4' pitch forward,
 

the radiometer footprint was about 17 x 21 kilometers in size
 

whereas the scatterometer footprint was about 13 x 16 km. The
 

location of each of the S193 footprints was plotted and an
 

overlay was made for the soil moisture content distribution
 

(Figure 15) to determine the soil moisture content within
 

each footprint for comparison and correlation. If individual
 

footprints covered an urban area or large lake, these data
 

were not included in the analysis.
 

Relationship Between Soil Moisture and S193 Data
 

The relationship between the S193 radiometric temperature
 

and the soil moisture content and scatter coefficient as a
 

function of soil moisture content are shown in Figures 4S and
 

46 for pass S through the Texas test sites. These data obtain

ed for a forward pitch of 29.40 and vertical-vertical polar

ization gave a correlation coefficient of -0.91 between the
 

S193 antenna temperature and soil moisture content and a cor

relation coefficient of 0.53 between the S193 scatterometer
 

and soil moisture content. The soil moisture content in both
 

cases is th6 moisture in the upper 2.5 'cn of soil.. The cor

relation between the 2.1 cm passive radiometer and-soil mois

ture. content is quite good and is considerably better than the
 

correlation with the scatterometer as shown in these figures.
 

Th6-same type of analysis is -hown in Figures 47 and 48
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Figure 45 The S193 antenna temperature as a function of soil 
moisture content for pass S. 

133 



-7.5' 

-8.0"Pass 

-8.5

r 0-5a 

5 
29.40 Pitch

VV Polarization 

U 

U 

V 

U,< -10.0-

0 
so 

0 

ra 0 

0 
c o 

00 GoO 

0 400 

oo I 

0 

a, 14 0; coo 

*1.5 0-
Do 

00 

0 

0-

Oq 
00 

-0 

a 

SOIL MOISTURE (%fBY WEIGHT) 

Figure 46 The S193 backscatter coefficient as 
soil moisture for pass 5. 

a function of 

134 



290, 

00
 

0, 0C0 otc o 0 C 00
0 oeo ee 0 

285 a 00 
CD) 

0 0 0 0 *"0 70• 0 

C0 a 00 0 0 00 0 0 

a a 0 0 

280 

0 " 

r-i 

r =-O. 29270 Pass 16 

Pitch: 29.40 
Polarization: VV 

265 
0 2 4 6 8 10 

Soil Moisture (%6 by Weight) 

Figure 47 The S193 radiometric temperature as a function of
 

soil moisture for pass 16.
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Figure 48 .The 3193 scattering coefficient as a function of
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for pass 16 on August 8, 1973 over the Texas test site. At
 

this time, the soil moisture variations were much smaller and
 

all of the moisture contents were less than 10%. Since the
 

variations were much less than for pass 5, the correlations
 

could not be expected to be as good. Figures 47 and 48 show
 

that the correlation between the S193 radiometric temperature
 

and soil moisture content for pass 16 was -0.29 and the cor

relation coefficient between the S193 scatterometer and soil
 

moisture content was only 0.04. In addition to the small
 

range of soil moisture values, the water in dry soils below
 

the wilting point is held very tightly by the soil particles.
 

The absorbed state of the liquidvater at very low moisture
 

content would cause it to have a smaller influence on the di

electric constant. The lack of response of microwave sensors
 

at very low soil moisture levels has also been noted by
 

Schmugge, et. al, (1974).
 

Since there are slight variations in the incidence angle
 

between the center and the edges of this test site which amount
 

to about two degrees for the forward pitch mode at 29.4*, the
 

influence of angular variations was investigated by plotting
 

data from-these central four lines from the microwave sensor
 

as a function of soil moisture content as shown in Figures 49
 

and 50 for pass 5. This improved the correlation coefficient
 

for the passive radiometer. from a value of -0..91. to -0.95 and
 

for the scatteroetet, from 0'.32 to 0.75. This indicates that
 

small variations in incidence angle are more important for the
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scatterometer return than for the passive radiometer. The
 

small improvement in the radiometer correlation probably re

sults from more accurate ground truth near the center of the
 

test site rather than effect of angle on the performance of
 

th& sensor.
 

During pas's 38 the S193 sensor atO0 roll and 40.10 pitch
 

forwardpToduced a 14 x 22 kilometer footprint for the scat

terometer and a 20 x 29 km footprint for radiometer. The in

dividual footprints of the S193 RADSCAT were analyzed for pass
 

38 for the relationship between soil moisture content and the
 

passive and active microwave data in a manner similar to those
 

for pass 5.
 

The S193 data over the Texas site were collected with
 

vertical-vertical polarization.. The plots of antenna temper

ature and scatter coefficients with soil moisture content are.
 

shown in Figures 51 and 52. The correlation coefficients are
 

-0.69 and 0.72 for the radiometer and scatterometer, respec

tively.
 

The data sets for the-Kansas site were plotted as shown
 

in.Figures 53 and 54. There were low correlation coefficients
 

for both the scattetometer and radiometer, 0.14 and -0.34.
 

Surface roughness and vegetative cover may contribute to these
 

poor correlations at this pitch angle. In addition, Lee
 

(1974) has found that roughness has less effect on vertical 

polarization meisuements than on.horizontal polarization. 
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Composite Data S193 Microwave System
 

Since some of the S193 data were taken with various pitch
 

angles and polarizations, fewer of the data sets are comparable
 

than for the S194 sensor; however, two of the passes, 5 and 16,
 

were taken at the same pitch angle and polarization (29.4' for

ward pitch and vertical-vertical polarization). These data
 

were combined to determine the composite relationship between
 

the S193 passive radiometer and soil moisture content. This
 

relationship is shown in Figure 55. When these two passes
 

are combined, the resulting correlation coefficient was -0.93
 

for the central four data lines which should represent the
 

best data base for analysis. This result obtained by combin

ing data across Texas on June 5 and August 8, 1973, indicates
 

that the S193 passive radiometer has a potential for remote
 

sensing the moisture content of the upper 2.5 cm of soil. Al

though this sensor operating at 2.1 cm wavelength is more sen

sitive to the amount of vegetative cover and the amount of
 

cloud cover than the S194 instrument, it has the advantage of
 

a smaller resolution cell so that more detail can be obtained.
 

A similar analysis for the S193 active scatterometer is.
 

shown in Figure 56. The resulting correlation coefficient
 

when the data from pass 5 and pass 10 are combined is -0.72.
 

These data also represent .the .center four lines ,Qf data through
 

the test site.- While this correlation coaficaint is not as
 

good as for.th& passive radiometer operating at .the same wave

length, it is much better than the correlation for some of the
 

individual passes.
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S194 Radiometric Data Analysis
 

The corrected antenna temperature of the S194 21 cm ra

diometer was used for evaluation of the response to soil nois

ture of the earth. The maximum and minimum temperatures of 

each pass over the test sites are shown in Table VIII. Since 

the reported spacecraft pitch and roll angles were unstable 

during pass 15 over the Kansas site, almost' all fields of view
 

of the S194 antenna missed the Kansas site (Table IX). Thus,
 

this set of data could not be used in the analysis for the
 

soil moisture experiment. Pass 48 over the Kansas test site
 

could not be used because of rainfall immediately after the
 

Skylab data collection which terminated soil moisture measure

ments. Therefore, five out of seven sets of S194 radiometric
 

,data were analyzed for response to soil moisture content.
 

Table VIII 

Pass 5 10 15 16 38 38 48 
38 

Date (1973) 6-5 6-13 8-5 8-8 9-13 9-13 9-18 

2Xest.Site Texas Kansas Kansas Texas -Texas Kansas Kansas 

Maximum T 276.0 254.3 273.0 2.74.-0-271.0 228.8 225.0 

Minimum T 229.1 232.1 .250.0 .251:.7 249.1 218.8 220.0
 

Relationship Between Soil Moisture
 

and S194 Land Radiometric Data
 

The response of the S194 L-band radiometer to th& 10ois

ture content of the soil was analyzed by determining the- soil
 

moisture contett within each of the S194 footprints which
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Table IX. 

S294 EPHEERIS DATA 

PROJECT 
nlSSIOr, 3 
SENSOR 5194-LSR 

4-OPCA-I-35-8e-A-aR 
CRBT 15 
RECORDING FORMAT PCRZL-IRORPS 

SITE a 
FLIGHT DATE S AUG 73 

START TIME 16 FR 37 HIM 2.14 SEC STOP TI E 16 HMR37 MIN 58.30 SEC 

GCT 
- ALT 

CUl LAT. LONG. 
2-Lv 
PITCH 

Z-LV 
YAW 

Z-LV 
ROLL BETA 

SUN 
ELEV. 

FIELD
OF VIER 
LAT 

FIELD
'OF VIER 
LONG. 

16:37: 2.14 
16:37: 3.13 
36:37: 4.12 
16:37: 5.31 
36:37. 6.30 
38:37:7.09 
36:37:8.09 
16:37: 9.08 
16:37:10.07 
16:37:11.06 
16:37:12.05 
16:37:13.05 
16:37:14.04 
16-37:15.03 
18:31:16.02 
18:37:17.01 
1S:37:18.01 
18:37:39.00 
16:37:19.99 
t6:37:20.98 
16:37:21.97 
16:37-22.97 
16:37:23.96 
16:37:24.95 
16,37,25.94. 
16:37-:44.35 
36:37:45.35 
16:37:46.35 
S16:37:47.34 

16:37:49.33 
16:37:50.33 
16:37:51.33 
16:37:52.32 
6:37.53.3a 

16:37:54.31 
16:37:55.31 
16:37:56.33 
16:37:57.30 
16:37:58.30 

235.370 
235.369 
235.368 
235.357 
235.365 
35.363 
235.362 
235.361 
235.350 
235.358 
235.357 
235.356 
235.355 
235.354 
235.353 
235.351 
235.349 
235.348 
235.347 
E35.346 

.. 235.345 
235.344 
235.342 
235.343 
235.30 
235.337 
235.31 
235.315 
235.333 
2:37:49.34235.312 
a 5.311 
235.309 
235.308 
235.307 
235.306 
235.305 
235.303 
235.302 
235.301 

.,35.300 

39.351 
39.315 
39.280 
39.244 
39.208 
39.173 
39.137 
39.098 
39.053 
39.027 
38.991 
38.956 
38.920 
33.891 
3e.648 
38.810 
38.774 
39.736 
38.700 
39.664 
33.526 
38.590 
38.555 
38.516 

.. 38-.80. 
37.1 
37.755 
37.717 
37.879 
37.643 
37.604 
37.566 
37.527 
37.49 
37.453 
37.415 
37.376 
37.33 
37.299 
1?.744 

-100.868 
-100.802-
-100.742t 
-100.676-' 
-100.630' 
-100.549 
-100,483 
-100.423 
-100.357 
-|00.291. 
-100.231' 
-100.165. 
-100.10 
-100.038t 
-99.98% 
-99.932 
-99.852, 
-99.79, 
-99.725, 
-99.659, 
-99.599. 
-99.539, 
-99.473 
-99.412, 
-69.346 
-98.1S9 
-98.13. 
-90.077. 
-98.Ofl 
-97.957 
-97.826 
-97.936 
-97.770-
-97.709 
-97.649, 
-97.589. 
-97.528 
-97.46 
-97.407 
- . 

360.0 
0.0 

360.0 
360.0 
359.9 
359.9 

0.0 
0.0 

360.0 
359.9 
359.5 
359.4 
359.6 
359.9 

0.0 
359.8 
359.6 
359.6 
359.8 
360.0 

0.1 
0.0 
0.1 

360.0 
.. 359o 
360.0 
359.9 
360.0 

0.0 
350.0 

9.8 
25.9 
10.8 

338.6 
325.4 
350.6-
2.5. 
5.3 
2.7 

.3ra8. 

360.0 
0.0 

360.0 
360.0 
359.9 
360.0 

0.0 
0.0 

360.0 
359.9 
360.0 

0.0 
0.0 
0.0 

360.0 
0.0 
0.0 
0.0 
0.0 
0.0 

360.0 
0.0 
0.1 

360.0 
39. 
360.0 
359.9 
360.0 

0.0 
360.0 

5.8 
12.5 
3.8 

356.8 
l.a 
0.5 

359.9 
359.7 
359.7 

3..5t 

360.0 
0.0 

360.0 
359.9
359.7 
359.9 

0.1 
0.1 

359.9 
359.7 
359.6 
359.7 
359.8 
359.9 

0.0 
359.9 
359.8 
359.8 
359.9 
360.0 

0.0 
0.1 
0.2 

359.9 -

9.7 
-459.S 
359.7 
359.9 

0.0 
360.0 
351.7 
341.5 
354.2 
5.7 
0.3 

" 0.1. 
359.9 
359.8 
359.7 
359.7 

3.% 
3.4 
3.4 
3.4
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.1$ 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
).4
3.4 
3.4
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3.4 
3:4--
3.4 
3.4 
3.4 
3.4 

53.5 
53.6 
53.6 

- 53.7
53.8 

53.8 
53.9 
54.0 
-54.0 
54.1 
54.2 
54.2 
54.3 
54.3 
54.4 
64.5 
54.5 
54.6 
54.7 
54.7 
54.8 
54.9 
54.9 
55.0 
550 
56.2 
56.3
56.3 
56.4 
56.5 
56.5 
56.6 
56.7 
56.7 
56.8 
56.9 
56.9 
57.0 
57.1 
57.1 

39.357 
39.324 
39.265 
39.24439.295 

39.173 
39.145 
39.109 
39.065 
39.013 
38.964 
38.931 
38.906 
38.883 
38.954 
38.807 
39.758 
3a.722 
39.695 
39.60 
3e.640 
38.604 
38.579 
38.519 

-39.464 

37794 
37.744
37.720 
37.69 
37.648 
37.269 
37.000 
37.547 
36.953 
35.676 
3b s § 
37.525 
37.640 
37.448 
37.197 

-100.9 
-100.92s 
-100.763 
-400.703-100.643 

-100.577 
-100.511 
-100.445 
-100.384 
-100.32% 
-100. 264 
-100.198 
-100.13a 
-100.066 
-100.000 
-9.S*40 
-99.879 
-99.919 
-99.753 
-96t687 
-99.621 
-99.561 
-99.495 
-99.440 
-99.379 
-99.06. 
-99.173-99.105 
-98.039-
-97.979 
-97.95. 
-99.418. 
-98.011 
-96.765 
-94.97 -
-97.012 
-97.709 
-97.814 
-97.605 
-97.314 
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were 115 km in diameter. This was accomplished by preparing
 

a circular overlay for use with the so±1 moisture distribu

tions generated by the computer as shown in Figure 15. The
 

S194 weighted brightness temperature from every 7"1M along the
 

flight trackwascompared with the appropriate average percen

tage of soil moisture content within the circular area of 115
 

Im diameter. Scattergrams'for the three passes over the Texas
 

site and two passes over the Kansas site for the upper 2.6 cm
 

of soil depth are shown in Figure 57. The correlation indices
 

of the second degree curve ranged from -0.99 to -0.95. There
 

is obviously a very good relationship between the weighted
 

brightness temperature from the L-band radiometer and the soil
 

Moisture content for all five sets of data. These correlation
 

coefficients were obtained by using all data points as if they
 

were independent. Analysis of independent samples (see page
 

158) shows, however, that the correlation is indeed extremely
 

.good.
 

In order to verify that the high correlations obtained
 

between the radiometric temperature and soil moisture content
 

were not the result of a third factor,- comparisons were made
 

for the soil mpisture-radiometric temperature over similar
 

terrain with changing moisture patterns. Two passes, S and
 

16, were 'chosen for further comparison of S194 brightness temp

erature 'and soil•moisture content. These two passes were par-.
 

allel to each .other over the Texas site (Figure 8). The S194
 

brightness .temperature and soil moisture content are 'shown in
 

Figure 59. "For pass'S on June 5, soil moistur6 contents:in7
 

creased from northwest to southeast, with a reversal for pass
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Figure 57 The relationship between the S194 brightness temp

erature and soil moisture content for the five
 

separate data sets.
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Figure 58 	 The location of the Skylab passes across Texas on
 
June 5 and August 8, 19-73.
 

152
 



SO
IL M

O
ISTURE (6 BY W

EIG
HT)
 

000 

C
 

* 
a 

•~ 

C
4
, 

U
. j,0$ 

U
 

o * 
.
0
'
 

0 D
o

 
0 

.0
' 0 

0
' 

DC 
C

-n 

F
i
u
e
 

C
 9
 

5
~
t
 

a
n
z
u
u
t
8

9
3
 

1
1
5
 

* 
0'0 

*o
 

10t
0C

 

O
 

C
 

C
 

iN
%

 

5
1

9
4

 A
N

E
N

A
T

M
E

R
T

R
 

V
r
i
t
o
s
 

f
S
1
4
a
t
e
n
 

m
o
i
t
u
r
 

c
o
t
n
0
c
o
s
>
h
 

S
 
a
n
d
A
u
g
u
t
8
,
1
9
7
5
 

e
m
e
a
t
r
 

e
a
 

s
t
 

n
d
s
i
 

n
J
n
 

1
5
3
a
 



16 so that decreasing soil moisture contents occurred from
 

northwest to southeast. This provides convincing evidence
 

that the radiometfic brightness temperature was responding
 

to soil moisture content, since the distribution patterns of
 

soil moisture were quite different for the two passes over
 

similar soil types and vegetation patterns.
 

In order to further investigate the relationship between
 

the S194 weighted brightness temperature and soil moisture con

tent at various depths below the surface, data have been plot

ted and correlation coefficients have been calculated. Table
 

_X compares the correlation coefficients for various depths for
 

two of the data sets. The surface 2.5 cm depth gave the best
 

correlation with the weighted brightness temperature for four
 

of the five data sets with the pass five data over Texas giv

ing a slightly higher correlation for the top five cm depth.
 

Since four of the five data sets gave a higher correlation..
 

for the first 2.5 cm depth, the following analysis will con

centrate 6n the soil moisture content in the upper 2.5 cm of
 

soil.
 

Since more return from the ground may come from near the
 

center of the footprint in comparison to the edges, revised
 

soil moisture contents in the S194 footprint circle of 115 km
 

diameter were computed by weighting the soil moisture content
 

by the appropriate antenna pattern factors (Sensor Performance
 

ReportS194, NASA, 1974). The weighted soil moisture contents
 

correlated with the -brightness tempetatures of the S194 radio-


Meter are shown in Tigure 60 for pass five in Texas and pass 38
 

in Kansas. The correlation indices are -0.99 and -0.97 for
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Table X 

CORRELATION BETWEEN SKYLAB L-BAND RADIOMETER
 

Soil Moisture 

Layer (cm) 


0-2.5 


2.5-5.0 


5.0-7.5 


-7.5-10.0 


10.0-12.5 


12.5-5.0 


0-5.0 


0-7.5 


7.5-15.0 


0-15.0 


AND SOIL MOISTURE
 

Pass 5- Texas 

Correlation 

Coefficient 


-0.991 


-0.990 


-0.951 


-0.923 


-0.885 


.-0.880 


-0.993 


-0.987 


-0.899 


-0.966 


Pass 38-Texas
 
Correlation
 
Coefficient
 

-0.973
 

-0.959
 

-0.938
 

-0.952
 

-0.954
 

-0.955
 

-0.968
 

-0.960
 

-0.954
 

-0.957
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pass 5 and pass 38, respectively. These nQrrelations are so
 

similar to those obtained by the previously determined average
 

soil moisture content over the whole footprint circle that it
 

was concluded that it was unnecessary and impractical to use
 

such weightings.
 

Composite Relationship From Five Sets of Data
 

Since the five data sets were taken at different times
 

of the year and different places, the differences in ground
 

temperature among the five data sets varied form IC to 5'C as
 

estimated by air temperature. While the near surface ground
 

temperature tas large fluctuations at low moisture contents
 

and clear skies at midday, the soil temperature below the sur

face is closer to fluctuations of air temperature.' Due to
 

the greater skin depth of the S194 radiometer, the probable
 

error of the estimated ground temperature had little effect
 

on the S194 radiometer temperature (Poe and Edgerton, 1971).
 

For comparison and combination, the weighted brightness temp

eratures were adjusted to a ground temperature of 300'K by
 

the following procedures.
 

The brightness temperature measured by a downward looking
 

microwave radiometer is given by:
 

T=-Le + ThcJ +ATu 

where L is the .atmospheric transmittahnce, s is the target emis

sivity, Tg'is the ground temperature, Tsc is the upward scat

tered radiati n afid Tu is the upward eiission by the atmosphere. 

For a plane surface model, Tsc can be expressed in terms of 
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the downward emitted radiation Td and the surface r.eflectiiri

ty, r =-c:
 

Tsc -e)Td
 

At 1.4 GHz (S194 frequency), L and Tu-at nadir were cal

culated to be about -.993 and 20 K, respectively (Bagleman and
 

Ulaby, 1974). Td includes downward emitted atmospheric radi

ation as well as galactic radiation and is estimated to be a

bout 70K. Attenuation by clouds in this frequency range is
 

very small (Benoit, 1968) and hence can be neglected. There

fore, the adjusted-weighted brightness temperature was obtain

ed by:
 

Tb = TB + 0.993 c(30 0-Tg)
 

The five data sets were combined to form a composite re

lationship between the adjusted brightness temperature and
 

moisture content of the upper 2.5 cm layer of soil as shown in'
 

Figure 61. Correlation index for the second degree curvilin

ear relationship is -0.96. This relation is quite good con

sidering the various differences between the soil and vege

tation characteristics for the different data sets.
 

For the half-power footprint of 115 km diameter, the
 

footprint overlap from one measurement point to the next was
 

approximately 92%. The independence of the data points is,
 

therefore, of concern i: all the -data are used in the analy

sis. Independent footprints,based on the bait-pQwer footprint
 

of the S194 wete also analyze& to see .what effect .this would
 

have on the correlations (Pigure,62). There were .three
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independent footprints for pass five and .16, two for pass 10
 

and four for pass 38. These. 12 independent samples also re

sulted in a correlation index oR -0.96. Therefore, the high
 

correlations cannot be discounted on the basis of overlapping
 

footprints.
 

Vegetation Effects
 

The amount-of vegetation cover has been shown to influence
 

the capability of passive microwave radiometers to detect soil
 

moisture (Newton, et al., 1974 and L6e, 1974). The effect of
 

vegetation-shielding of soil moisture varies for different
 

radiometer wavelengths. The S194 radiometer should be less
 

affected by vegetation than higher frequencyradiometers, al

though there were indications of slight vegetation effects in
 

the S194 radiometric response during the different passes.
 

Vegetation cover modifies the soil emission through scat

tering, attenuation and augmentation of the original emission
 

due to the presence of vegetation and emission from it. Sibley
 

(1973) has made extensive theoretical studies on the effect
 

of vegetation on radiometric data and has developed apparent
 

temperature-models incorporating the yegetation .effects for
 

the natural .terrain. In -this model of apparent temperature of
 

terrain as a function of soil moisture .content, the thermal
 

emission of'soil and vegetation only were considered.
 

Sibley's model for a smooth'surface and unifvrmly yegeta

ted surface was used to calculate 'the effect of vegetation
 

.cover of various heights on the S194 radiometric temperature.
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Figure 63 shows a comparison of the radiometric temperature
 

variations for different soil moisture content and heights of
 

vegetation. A canopy volume of 3% was assumed for the volume
 

occupied by plant material for the various heights. Even
 

though the composite data gave a correlation of -0.96 between
 

radiometer temperature and soilmoisture content there are
 

slight differences between the different passes that may be
 

related to vegetation. The three Texas passes for June, Aug

ust.and September are displaced in the direction of more vege

tation cover as the growing season progresses. The June and
 

September passes across Kansas do not have this pattern, how

ever. There are several possible explanations for this. The
 

winter wheat in Kansas provides more cover than many crops in
 

Texas during the early part of the growing season. The June
 

13 data are also probably the least reliable of the five data
 

sets. In addition to cloud cover over the Kansas test site,
 

precipitation occurred in parts of the test site close to the
 

timeof Skylab data-collection. Even though precipitation and
 

evapotranspiration adjustments were made to the measured soil
 

moisture, the data could not be expected to be perfect. Errors
 

here1 would be-expected to cause a low correlation rather than
 

a displaced curve, however. Another possible explanation 4

rises from the abnormally high temperatures observe -;fr the
 

.cold load #1 and #2 for pass -10 (Sensor Performance Report-


NASA, 1974) It was cdncluded -in the sensor performance evalu

ation, that this should-not .affect.the quality of the data,
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Figure 63 	 Comparison of the radiometric temperatures for
 
different soil moisture content and height of
 
vegetation for the five Skylab data sets.
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but the comparison shown in Figure 63 lends some doubt, since
 

abnormally high radiometric temperatures would also explain
 

the difference observed for the June 13 data.- Even so, the
 

maximum discrepency in radiometric temperature between the
 

different passes is about 150 K which corresponds to 5% soil
 

moisture. It is worth noting that this difference arises when
 

comparing different passes and the composite of the five data
 

sets still gave a very high correlation (-0.96). It was con

cluded, therefore, that the S194 passive radiometer was very
 

sensitive to soil moisture content even under varying vegeta

tion, atmospheric and soil conditions.
 

Analysis of Aircraft Microwave Data
 

The soil samples were taken on the average about 2.5
 

miles apart and the aircraft microwave data were taken about
 

every 165 feet. Therefore, the ground truth was very coarse
 

in comparison with the aircraft data. Microwave data were ob

tained across the Texas test site with an active and passive
 

microwave system operating at 2.1 cm wavelength at an angle
 

of 30' with vertical-vertical polarization. It-was decided
 

that a visual inspection of the flight path be conducted to
 

compare the soil moisture map with the aerial photograph to
 

detect any gross errors. A discrepancy was found in an eight
 

mile segment about one-half of the way through the flight from
 

point A to B in Figure 64. The computer generated map for
 

June 5, 1973 in Texas (Figure 16) depicts a gradient from high
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to low moisture values in this area. The aerial photographs
 

clearly revealed wet fields with some standing water through
 

most of the segment and then an abrupt change to dryer condi

tions within one to two miles. The closest soil sample to
 

segment AB was at least five miles away. This segment was,
 

therefore, not included in any of the aircraft data analysis.
 

No other contradictions could be detected from the aerial
 

photographs.
 

The next step was to correlate the aircraft microwave
 

data with the soil moisture. Correlations were computed by
 

calculating the best fit least squares first and second de

gree equations.
 

Given the aircraft's altitude and cross angle, the angle
 

from nadir of the sensor, and the time that the data was tak

en,by simple geometry the location,of the footprint for that
 

data could be found on the aerial photograph. Using this pro

cedure, data points-were taken from terrain which was used as
 

range land only. The vegetation covering this type of land
 

was fairly homogeneous throughout the entire flight. A ran

dom selection of points throughout the flight was correlated
 

to the soil moisture values for the points for both the ra

diometer antenna temperature and the scatterometer coefficient.
 

Correlation coefficients were low, -0.15 for the radiometer
 

and 0.13 for the scatterometer. (Figures 65 and 66)
 

It was noted that large fluctuations occurred in the data
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as the aircraft moved short distances. Two plots of all the
 

data, one for the scatterometer and one for the radiometer
 

were generated by the computer showing sensor measurements
 

along the entire flight path to investigate these fluctua

tions. For-the radiometer antenna temperature fluctuations
 

of 10 to 200 K were noted to occur over bodies of water. An

other correlation was run for the radiometer using the aver

age antenna temperature for fifty data points. The fifty
 

points covered approximately 1.5 miles on the ground. Indiv

idual data values showing very large fluctuations were ig

nored and the average computed from those remaining.- These
 

correlations were not much better than the first, -0.17 for
 

the radiometer and -0.30 for the scatterometer. Indeed, the
 

slope of the line for the scatterometer correlation was neg

ative which was opposite the expected relationship since
 

with an increase in moisture an increase in the scatter- coef

ficient should occur.
 

Since the aircraft measurements are-for very small areas
 

further refinements in the data analysis were necessary. The
 

best results- were obtained for bare cultivated fields for
 

50 data-point.averages. Since over 70% of the land in Texas
 

in June was under cultivation, 50 data point averages were
 

computed by the same procedure as before and for an average
 

to be considered for the correlation at least 75% of the
 

points had to come from cultivated fields. The resulting
 

correlations showed considerable improvement for both the
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radiometer and scatterometer. Figure 67 shows the scatter
 

diagram for the radiometer data with a correlation coefficient
 

of -0.69.
 

The scatterometer data, however continued to have a low
 

correaltion (-0.27) and the persistant negative slope, Fig

ure 68. From all of the correlations conducted it'was evi

dent that other factors besidei soil moisture were affecting
 

the 2.1 cm scatterometer data. A correlation was run between
 

the radiometer and the scatterometer data for individual
 

points to see if the sensors were reacting similarly to the
 

same footprint. A correlation of -0.11 indicated that the
 

sensors were reacting differently to the same area.
 

In order to try to further understand the response of
 

these microwave sensors, a qualitative study of the reaction
 

of the sensors to-the-terrain features was conducted by plot

ting the sensor's measurements on the aerial photographs.
 

Figure 69 depicts the sensors' reaction to a section early
 

in the flight just east of Ballinger, Texas. From point A
 

to A' there is a transition from cultivated land to range land;.
 

but there is little change in both sensors which should mean
 

little change-in moisture from one area to another. On the
 

other hand there is a significant change from B to B'. The
 

ground looks equally wet in either field but different crops
 

are growing in the two fields. At point C the footprint of
 

the sensors crosses the river and opposite reactions are not

ed-with the radiometer indicating the low temperature from
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the water but less return for the scatterometer. This would
 

be expected as the water surface is smooth and nearly all of
 

the incident energy is reflected away from the sensor. At
 

the point immediately following the river, C', opposite reac

tions are again received. Perhaps the radiometer detected
 

the warmer, dry trees along the bank while the scatterometer
 

received much more return from the trunk, branches and leaves
 

of the trees. In Figure 70 the values obtained at and around
 

point D can be explained similarly. Fluctuations between C
 

and D could not be explained from the photographs.
 

Point E is in a field which is located on the flood plain
 

of the river. The center of the field looks wetter than the
 

edges next to the river bank. A possible explanation would
 

be that the water table is closer to the surface in the mid

dle than right next to the river where the surface is slight

ly higher due to the natural levee. The radiometer detected
 

the wetter conditions of the middle of the field. The scat

terometer, however, only registered two points at the wettest
 

portion of the field and then remained consistent until point
 

F gave values that would indicate lower moisture. The only
 

explanation would be that the orientation of the rows of the
 

crop in the field, possibly wheat, is parallel to the look
 

direction of the sensor. Therefore, less return would be
 

expected than if the rows were perpendicular to the look
 

angle.
 

At point G the antenna temperature drops, similar to
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points C and D, but in this case, the scatterometer reading
 

decreases also. Of all the river crossings investigated this
 

was the only one that reacted in this manner and it remains
 

unexplained.
 

A wet spot at H was detected by the radiometer and
 

from I to J both sensors indicated wet conditions as does the
 

photograph. Two peaks can be seen in the scatterometer data
 

which correspond to free standing water in the field.
 

Another factor which greatly affects the return of the
 

scatterometer, and to a lesser extent the antenna temperature,
 

is the slope of the land. A slope of thirty degrees could
 

mean an incident angle varying between ninety and thirty de

grees, depending on the orientation of the slope with the look
 

direction of the sensor. Figure 71 is in the northwest por

tion of the flight where the high plains are cut by the Brazos
 

River. From point K to L the slope has been determined to be
 

approximately 100 for the four data points investigated. A
 

large increase in the scatterometer return results once all
 

of the footprint is on the slope. A decrease in the radio

metric antenna temperature probably detects the slight in

crease in moisture which also is reflected in the slight in

crease of vegetation.
 

It is obvious from the analysis of the aircraft data
 

that other factors besides soil moisture affect the values
 

obtained by the radiometer and the scatterometer. These
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fluctuations are of the magnitude to completely mask the ef

fects of soil moisture. The scatterometer was more suscepti

ble to this than the radiometer. These factors need to be
 

investigated further in order to understand how much each con

tributes to the total response of the instrument.
 

Vegetation types and orientations are factors which can
 

subtract or add large amounts to the values received by the
 

scatterometer. Trees and large bushes tend to increase the
 

amount of return in most cases. In addition, smaller vegeta

tion, such as corn, milo or wheat has a larger return when
 

the rows are perpendicular to the look direction of the sen

sor than when the rows are parallel.
 

Slope is another important factor that can greatly af

fect values obtained by the 2.1 cm scatterometer. A slope of
 

30* on the ground, coupled with the 300 from nadir look dir

ection of the sensor, can vary the incident angle of the sen

.
sor from 900 to 300 This factor by itself would give differ

ent readings for a homogeneous surface in addition to the com

plications from a surface where there are different types of
 

vegetation and varying soil moisture content. Slope also af

fects the radiometer, but to a lesser degree.
 

Surface texture can be an important factor in returns
 

from the scatterometer. It has been shown in the examples
 

that water surfaces which were smooth along the rivers reflec

ted the incident energy and therefore diminished the return.
 

Other surface textures will also affect the amount of the re

turn with very rough surfaces having more return than plowed
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fields and-ihose more t ii_ sooth.diske. ields, Also, ol
 

texture sh6uldbe.(Qnsdered: fnce l silswill have 'difr
 

ferent emissivties -andeflectivities than sandy loam -soils,
 

-for example.
 

The results of these qualitative investigations and the 

raw correlations show that better results were obtained with 

the radiometer than with the scatterometer. Also with the 

scatterometer correlations, the persistent negative slopes 

indicate that better understanding of the scattering process 

of soil moisture in the region of lower moisture is needed. 

The radiometric measurement of soil moisture is affected less 

by the various factors mentioned above. Since the aircraft 

microwave instrument senses such a small area on the surface, 

greater detailed ground truth would be necessary for an ac

curate assessment of the capabilities of this system.
 

Skin Depth Calculations
 

Since the thickness of soil providing the electromagnet

ic radiation to'be measured by remote sensors varies with
 

moisture content and incident angle, microwave response to
 

water content in a constant thickness of the soil is subject
 

to this influence. The return of an active radar and-the im-'
 

age of a passive radiometer depend largely on the complex di

electric constant of the ground and incident angle. It is
 

important, therefore, to consider the skin depth of electro

maghetic radiation in the ground which can be computed from
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a knowledge of the dielectric properties of soil and water.
 

The presence of water in most earth materials causes
 

high attenuation of microwave radiation. Microwave radiation
 

will, therefore, penetrate deeper in places where there is low

er liquid water; The attenuation as a function of water con

tent is valid for a large range of soil types but for rela:
 

tively few of the other soil characteristics (Hoekstra and
 

Delaney, 1974).
 

The exact nature of the influence of the water content
 

of soil on the complex dielectric constant has not been well
 

defined since slightly different results have been obtained
 

by various investigators. Therefore, the several measurements
 

of soil dielectric constant (Wiebe, 1971, Newton et.al, 1974
 

and Teschanskii, et. al, 1971) are shown in Figures 72 through
 

75. Each of these have been used to compute the skin depth.
 

The skin depth of each soil sample from the Texas test site on
 

June 5 was computed using the definition of skin depth (6) as
 

the following equation:
 

f c(z)dz = 1 
0
 

where z is depth of soil-and a is attenuation coefficient in
 

nepers per meter.
 

The skin depths of the 66 moisture profiles for the June
 

5, 1973 pass over the Texas site were computed by considering
 

cumulative attenuation of soil layers 0.1 cm thick for the
 

Skylab S194 sensor, Figure 76. For the S193 sensor, the skin
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depth was calculated using Snell's law of refraction with the
 

results shown in Figure 77. These calculations are helpful
 

in understanding the relationship between the microwave sen

sors and the moisture content at various depths within the
 

soil. For the S194 radiometer, the radiation emitted from the
 

soil is coming primarily from the first 2.5 cm if the soil
 

is wet and from the first 15 cm if the soil is very dry. Cor

relations between the S194 radiometric temperature and the
 

experimentally determined soil moisture content of various
 

layers have been best for the first 2.5 cm for four Skylab
 

passes and for the first 5 cm for the fifth pass.
 

As expected, the skin depth of the shorter wavelength
 

S193 instrument is not as great as for the S194 for the same
 

moisture content as shown in Figures 76 and 77. Radiation is,
 

emitted from the first 2.5 cm-of soil for all moisture con

tents except very dry soils. Radiation from wet soils comes
 

from an even shallower layer. These figures indicate that
 

the experimental data from Skylab might have been expected to
 

correlate better with the 0 to 15 cm average soil moisture
 

for some of the drier dates for the Texas test site. However,
 

the lower sensitivity of the microwave sensors to moisture
 

content below about 5% probably precludes obtaining this type
 

of result from experimental data.
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Comparison of the Skylab Microwave Sensors
 

An accurate comparison of the various microwave sensors
 

on Skylab is complicated by the different resolutions of the
 

sensors. The analysis of the aircraft data has indicated that
 

the soil moisture sampling network was much too coarse for
 

these data. The S193 analysis may also be affected by this
 

same factor. Each S193 footprint had from one to three soil
 

sampling sites within it, while the S194 footprints had as
 

many as thirty five different sample sites in one footprint.
 

Although this limitation of the data was minimized by using
 

computer calculated surfaces of the geographical distribution
 

of soil moisture, other means of comparison seem warranted.
 

The June 5, 1973 data across the Texas test site serve
 

as a good basis-for comparison since both S193 and S194 data
 

were obtained with fairly good variations in soil moisture
 

content across the site. These variations along with the S194
 

antenna temperature variations were illustrated in Figure 59
 

which showed the antenna temperature decreasing in response
 

to soil moisture increases across the test site. Figure 78
 

compares the variation in antenna temperature of the S194 and
 

S193 radiometers for the-same data set. The S193 radiometer
 

also decreased somewhat as the moisture increased across the
 

test site, but not as much as the S194.
 

In an effort to make quantitative comparisons between
 

the two passive radiometers and the active saatterometer, the
 

data for the various footprints of the S193 sensor were
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averaged for the same large area as for the S194 sensor and
 

then correlated with the average soil moisture throughout this
 

area. Figure 79 shows the results of this analysis. The S193
 

scatterometer gave the poorest relationship with no uniform
 

variation with moisture content of the soil and a correlation
 

coefficient of 0.63. Both the S193 and S194 passive radiome

ters show a decrease in antenna temperature with increasing
 

soil moisture content with correlation coefficients of -0.988
 

for the S193 and -0.996 for the S194.
 

It can be concluded from these data that passive radio

meters have more potential for accurate measurements of soil
 

moisture than the active systems. While both the 2.1 and 21
 

centimeter passive radiometers.show good response to soil mois

ture, the longer wavelength seems to have the greater potential
 

because of less influence from clouds and vegetation. Also
 

from Figure 79 the longer wavelength radiometer has a perfect
 

straight line relationship to soil moisture for moisture con

tents greater than 4% and has a range in antenna temperature
 

of 470 K compared to a range of only 160K for the S193. There

fore, noise in the system would be a much smaller problem for
 

the longer wavelength radiometer.
 

The conclusions regarding the scatterometer must be more
 

equivocal. The correlation with soil moisture; as indicated
 

above, was less than for -h& radfoe.ters. 'However, obserya

tions'using.gwund-based sensors -have etiimade CUlaby, 1974)
 

since the 8193 operational parametets were selected and these
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indicate 'that an angle oof the :order of 150 should have been
 

much more sensitive to soil moisture than th 50+* angles used
 

in the Skylab S193 expeiimet. This is particularly import

ant when vegetation is-fairly dense over the soil whose mois

ture is to be determined. Consecfuently, the moderate core

lations observed with S193 are encouraging and consistent
 

with ground-based measurements; and this leads to the con

clusion that a scatterometer operating at a steeper incidence
 

angle should give results much more like those of the radio

meter.
 

Accuracy of Remotely Sensed Soil Moisture Data
 

The standarderror of soil moisture estimated from radio

metr'ic data was computed as a measure of the expected accur

acy of remotely sensed data. Table XI gives the standard er

ror for individual passes where S194, S193 or aircraft radio

metric data were available as well as the composite of five
 

passes combined into one data set for the S194 sensor. The
 

standard error was least (only 0.83% moisture)'for the S194
 

data obtained on June5 , 1973. Thus, about two-thirds of new
 

estimates-of soil moisture based- on this pass could be expec

ted to fall within a range of only 10.83% soil moisture. This
 

would provide very accurate -measurements of soil moisture from
 

passive radiometers. However, when the S194 data are combined
 

for various Skylab passes over different -terrain The standard'
 

.error increases o 5.05% soil moisture. This is still an ac

ceptable accuracy considering all the advantages of a remote
 

sensing system.
 

192
 



TABLE XI
 

The Standard Error of Estimate, Correlation Coefficient
 

and other Data for the Various Microwave Sensors.
 

Sensor Regression eluation 

$194 RAD SM=253.03-1.4898 AT&0 .0021AT2 

$194 RAD 5M=124.36-0,4478AT 

$194 RAD SM=82,70-0.2930 AT 

S194 RAD SM=188.75-0.6992 AT 

5194 RAD SM-93.50-0.3339 AT 

S194 RAD SM=127.23-0,4571 AT 

S194 RAD SM=409.49-1,7213 AT 

$193 RAD SM=1 85.63-0.6379 

5193 SCAT SM=43.98-3.7182 SC 

S193 RAD SM=64.47-0.2153 AT 

5193 SCAT SM=4.6588+0.1290 SC 

S193 RAD SM=203.86-0.6994 AT 

5193 SCAT SM=32.41+2.2829 SC 

S193 RAD SM=275.87-0.9316 AT 

S193 SCAT SM=41.91 + 1.2453 SC 

Aircraft PAD SM=241.79-0.7920 AT 

Correlation 

Coefficient 


-0.96 


-0.94 


-0.99 

-0.95 

-0.92 . 

-0.97 

-0.94 


-0.91 


+0.53 


-0.28 


0.04 

-0.69 


0.72 

0.34 


0.14 

-0.69 


Standard 

Error 


3.05 
3.09 


0.83 

1.59 

0.98 
0.88 


2.05 
2.42 


4.75 


1.64 


1.78 


2.86 


2.62 


6.66 


7.11 

5.8 


Range of Pass and 
Soil Moisture Site 

1-34 Composite 
1-34 Composite 

2-19 5 Texas 

10-25 10 Kansas 

2-13 16 Texas 

3-14 - 38 Texas 

15-34 38 Karsas 

1-23 5 Texas 

1-23 5 Texas 

,1-8 16 Texas 

1-8 16 Texas 

3-17 8 Texas 

3-17 38 Texas 

15-40 38 Kansas 

15-40 38 Kansas 

1-27 Texas 
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Chapter VII
 

ANALYSIS AND RESULTS OF THE
 
SNOW EXPERIMENT
 

Snow depth, water equivalent and water equivalent/snow
 

depth were the principal parameters examined in this study.
 

Quantitative areal mapping of these parameters was generated
 

via the least squares surface contour mapping technique used
 

in the soil moisture experiment.
 

Two of the three data sets for the snow experiment have
 

been analyzed. These were the Skylab passes on January 11
 

and January 14, 1974. No analysis of the January 24 test
 

site in South Dakota-Iowa was conducted. Of the 65 stations
 

utilized in the test site area, 23 of them revealed snow
 

depths from zero to one inch, 25 more from two to three inches.
 

Thus, nearly 75% of the stations revealed snow depths three
 

inches or less. Due to the possible error in measuring snow
 

depths of these small magnitudes, the ground truth data is
 

very questionable. Also, this was the 10th day of a pro

longed melt period and any water equivalent data would be
 

quite meaningless. For these reasons the analysis was not
 

on the S194 data for the 24th of January. Therefore, the
 

results of the analysis of the January 11 and 14 data follow.
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Kansas: January 11, 1974 - Ground Truth
 

As previously mentioned, the January 11 test site area
 

extended from the Texas Panhandle into southern Iowa. The
 

Kansas and extreme northwest Missouri region was extensively
 

surveyed on January 11 through the efforts 6f the National
 

Weather Service. At each of the 24 station sites in Kansas
 

and four in Missouri, the snow depth and corresponding water
 

equivalent was measured. 
The ground truth for the remainder
 

of the test site area was generated from Climatological Data,
 

but only snow depth data was adequately available. In addi

tion, S90B imagery was available for a portion of the test
 

site area; this included the Kansas and extreme northwest
 

Missouri region. The southern portion of the test area in
 

thr Texas Panhandle and Oklahoma as well as the northern por

tion in Iowa were not included in the imagery. Inasmuch as
 

the most intensive data coverage coincided with the S190B
 

coverage, it was deemed advisable to focus the brunt of anal

ysis upon the Kansas region of the test site area.
 

The meteorological weather factors operative during
 

the first 11 days of January 1974 resulted in cP/cA air
 

mass movement into the.Central United States (for more
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detail, see Chapter 1). Thus, mean temperatures in the
 

Dansas test site area ranged from only 2-7°F., north to
 

south, on January 11. Maximum temperatures there did not
 

rise above 150 F. Snow depths generally ranged from 4-10
 

inches throughout Kansas.
 

Colorado-Nebraska: Pass 83, January 14,1974-Ground Truth
 

The January 14 test site area extended from Denver,
 

Colorado to Mankato, Minnesota. Snow depth data collected
 

from Climatological Data revealed amounts ranging from a
 

trace at Colorado Springs, Colorado, to eleven inches at
 

Cambridge and Culbertson, Nebraska. Thirty one weather ob

servations were employed to develop the. snow contour field.
 

Water equivalent data was extracted from contour maps ob

tained from the River Forecast Center Office in Kansas City,
 

Missouri. In addition, S190A and B coverage was available
 

for the entire test site area.
 

Chinook-type adiabatic warming on January 14 ushered in
 

a pronounced warming trend throughout the remainder of Janu

ary. The western portion of the January 14 test site area
 

revealed meximum temperature of 580F. at Denver, Colorado,
 

while Nebraska City, Nebraska, reported an overnight low of
 

8 F. Due to the variation in temperature over the January 14
 

test site area, the ground truth data was divided into two
 

sets: subfreezing and superfreezing. Snow depths generally
 

ranged 4-9 inches along the track, increasing northeastward.
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Background -for Radiometric Response to Snow
 

One of the principal objectives of the SL-4 mission cen

tered upon the various sensors' potential capabilities in
 

quantifying the moisture parameters in a snow field. As pre

viously demonstrated by the soil moisture experiment, the 21
 

cm passive radiometer exhibits high correlations between per

centage of soil moisture versus antenna temperature that is
 

responsive to the emissivity. This dependence of emissivity
 

upon soil moisture content stems from the role the dielectric
 

constants of water, soil and air play.
 

Since emissivity = 1 - reflectivity (neglecting transmis

sivity), the more reflective mediums will exhibit the lower
 

emissivities. The reflectivity, however, is directly depen

dent upon the dielectric constant. The contrast between the
 

high dielectric constant of water as compared to air and soil
 

is such that the presence of water is the principal factor
 

which regulates changes in microwave response.
 

Yet Edgerton et.al., (1971) noted that "the relationship
 

between microwave brightness temperature and snow water con

tent bears no resemblence to that observed in soils". Where

as an increase in soil moisture results in a decrease in ra

diometric temperature for a soil medium they discovered that
 

the microwave brightness temperatures rise with increasing
 

water content of a snow medium. Their Dillon reservoir snow
 

study also revealed that microwave brightness temperatures
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remained unresponsive when moisture values (free water con-.
 

tent) exceeded 2.5% by volume. In addition, Edgerton et al.,
 

(1971) indicated that the effective microwave emissivity
 

decreases with increasing snow depth under the conditions of
 

dry snow over frozen soil. These effects can be explained in
 

terms of attenuation in the snow and the small value of the
 

reflection coefficient at the snow-air interface.
 

It should be pointed out that air temperatures had aver

aged well below freezing in Kansas since January 1. A thin
 

blanket of snow had also covered the state since that time
 

and one to two inches of fresh snow had fallen in the test
 

site area on January 9-10. Under the preceding and prevail

ing meteorological conditions described, the ground possibly
 

was frozen and the snow definitely was quite dry. Thus, the
 

areal situation is similar to the two Edgerton studies.
 

S194 Radiometer Response - January 11, 1974
 

With regard to the above, the analysis of the S194 data
 

for the test area was conducted. Beginning in the southern

most portion of central Kansas, antenna temperature measured
 

approximately 242 degrees Kelvin and declined to 223.6 in the
 

vicinity of Topeka, Kansas (Figure 80). A rapid reversal in
 

microwave response occurred there and emissivity increased
 

for the remaining portion of the track, ultimately reaching
 

the levels observed in the earliest portion of the run.
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A distinctly different type of ground cover in the Topeka
 

area and northeastward is revealed by the S190B coverage. al

though Climatological Data indicates as much as 12 inches of
 

snow existed in parts of Missouri and Iowa, significant areas
 

of bare ground are-apparent. Therefore, this area was not in

cluded in correlation analyses. Since the dielectric constant
 

of ice is very low compared to that of water, frozen ground
 

would yield higher microwave emissivities when compared to
 

unfrozet ground. The increase in brightness temmperature from
 

Topeka northeastward most likely was coused by the contribu

tion of the frozen exposed ground to the L-band radiometer.
 

Utilizing the data obtained by the NWS survey in Kansas,
 

contour maps of snow depth, water equivalent, and water equi

valent/snow depth (WE/SD) were generated by the computer.
 

Thirty S194 overlapping footprints were capable of resting
 

inside the contoured surfaces. Overlap was employed, because
 

only two completely independent footprints existed within the
 

NWS survey area.
 

The correlation analysis utilizing the overlapping foot

prints must be viewed with caution because of the dependency
 

that exists-between the data points. However, even if they
 

do not represent the true independent statistical values, they
 

are indicative of trends in the data. Figures 81,82, and 83
 

do indicate a trend between the variables snow depth, water
 

equivalent, and WE/SD and the S194 radiometric temperatures.
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In determining these trends, three important variables
 

were not considered which potentially couild.alter the micro

wave response. These factors, subsequently analyzed, includ

ed ground temperature, snow surface temperature and soil mois

ture. Since measurements of these parameters were not record

ed in the test site area at overpass time, indirect techni

ques were employed to estimate them.
 

Due to the season of the year, any possible variability
 

in soil moisture in Kansas was entirely attributed to all
 

potential contributions of melt water from the overlying snow
 

cover. 
This index of melt water is termed the Antecedent
 

Possible-melt Index (APMI) and is a modified version of the
 

Antecedent Precipitation Index commonly utilized in various
 

hydrologic investigations. The APMI is given by the following
 

equation:
 

APMI =P kt
 

where NP = melt water, k = recession constant and t = antece

dent days before January 11. Any decrease in the water equi

valent of the snow was attributed to melt and the melt was as

sumed to totally infiltrate the soil. Thus, an attempt was
 

conducted to account for the maximum possible infiltration of
 

melt water into the soil.
 

Water equivalent values were obtained from eight stations
 

in Kansas, in addition to 39 others in Colorado, Nebraska, Iowa,
 

South Dakota and Minnesota. The APMI values calculated for
 

the eight Kansas stations, less one, equaled zero. This
 

truly reflects the sub-freezing conditions (lack of melt) of
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this period from January 1 to 11.
 

Another potential source of error centered upon the var

iation in snow surface temperature in the test site. Higher
 

surface temperatures would result in greater emissivity.
 

Temperature data was not available for the entire site at the
 

overpass time. However, an analysis of the diurnal temper

ature range at Lawrence, Kansas on January 11 revealed the
 

following:
 

maximum temperature = 11 degrees F @ 2:30 P.M.
 

minimum temperature = -3 degrees F @ 9:00 A.M.
 

temperature at overpass time = 3 degrees F @ 12:35 P.M. 

mean temperature on 1/11/74 = 4 degrees F. 

Assuming the diurnal variation of temperature in eastern and
 

southern Kansas was similar to the Lawrence situation, the
 

mean temperature appeared to be an excellent parameter to
 

estimate snow surface temperature. The following equation
 

was utilized to adjust the antenna temperature to reflect
 

this variation in mean temperature:
 

Taw = Tac + 0.993 E(300-Tg)
 

Where:- Taw = adjusted weighted antenna temperature
 

Tac = actual antenna temperature
 

E = emissivity of Snow
 

Tg = mean temperature of the air
 

The emissivity utilized was 0.6 which is similar of slightly
 

lower than other studies would indicate. Figures 84-86 indi

cate the adjusted temperature variation along the test site
 

track compared.to snow depth, water equivalent, and WE/SD.
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The correction for ground temperature proved to be the
 

most difficult. The only available source for ground temper

atures in January was Climatological Data. A dearth of sta

tions existed in Kansas, but Nebraska kept ground temperatures
 

for 5 stations.. Under the snow cover pres&nti the recorded
 

ground temperature measurements revealed no direct relation

ship to the prevailing air temperature. The lack of suffi

cient time precluded the possibility of estimating ground
 

temperature through the use of a model. Its contribution
 

to the microwave emission received by the L-Radiometer could,
 

therefore, not be estimated.
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S194 Radiometer Response - January 14, 1974 

The original S194 antenna temperature track across the
 

test site revealed an extremely small range of temperature,
 

i.e., 4.8 K. This makes difficult the justification of any
 

trends discovered in this pass. The time of Skylab data
 

collection corresponded with the initiation of a prolonged
 

warming trend in the Central United States which persisted
 

throughout the remainder of the month of January.
 

For the January 14 test site in Nebraska and Colorado,
 

only 3 independent footprints of the S194 would have been
 

available. Due to this factor, the type of correlation
 

analysis performed on the llth of January utilizing overlap

ping footprints was utilized., Again, the correlation coef

ficients are misleading and only trends can be inferred.
 

Figures 87-89 indicate the relationships between the variables
 

snow depth, water equivalent, and WE/SD and the S194 Radio

metric Temperature..
 

Although low-, these correlation trends are quite under

standable. The melt condition of the snow pack is such that
 

the free water content at the surface of the snow is probably
 

greater than 2.5% by volume, a condition discovered by
 

Edgerton, et.al. (1968) to affect 37 and 14 GHz sensors. More
 

important, however, may be the non-equilibrium condition exis

ting between absorptivity and emissivity. The basic conser

vation of energy equation E = 1-R is predicated on the assump

tion that:
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1) an equilibrium exists between absorptivity and emis

sivity in the target material, and
 

2) the target material is sufficiently thick so that
 

the amount of energy transmitted through the material
 

is nill.
 

Although the second condition may well be satisfied, the first
 

probably isn't. According to Edgerton, et. al. (1968),
 

"It is not readily apparent that the assumed condition of
 

thermal equilibrium is valid for snow systems. Substantial
 

amounts of energy are used during phase changes (melting and
 

refreezing)". It is postulated that the incipient melt con

ditions of January 14 upset the thermal equilibrium neces

sary to satisfy the conservation of energy equation. Examina

tion of the computed Taw for January 14 vs. snow depth and
 

water equivalent (Figures 90 and 91) reveals the complex
 

nature of the response pattern. Early portions of the Taw
 

vs. snow depth reveal opposing trends in Colorado, yet simi

lar trends in Nebraska. Taw vs. water equivalent is more
 

varied than for snow depth.
 

The mean adjusted antenna temperature (Taw) accounting
 

for variations in air temperature (snow surface temperature)
 

in Colorado-Nebraska was calculated in a manner identical
 

to the January 11 data. The correlations between Taw and
 

snow depth, water equivalent, and water equivalent/snow depth
 

were poor.
 

One final analysis to account for melt conditions was
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Figure 90 	Variations of snow depth and S194 brightness temp
erature on January 14, 1974.
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attempted. Since mean temperature eas available for each
 

footprint, all footprints exhibiting mean temp6ratures above
 

freezing were eliminated from consideration. This technique
 

was employed to eliminate the effects of free water in the
 

snow system. The remaining subfreezing S194 footprints were
 

subsequently compared with the previously utilized snow para

meters. The resulting trends are revealed in Figures 92-94.
 

Note the high positive correlation between snow depth, and
 

water equivalent vs. Taw(subfreezing footprints).
 

The remaining S194 footprints displaying above freezing
 

(superfreezing) temperatures were similarly analyzed. The
 

resulting trends were extremely poor.
 

Just prior to press time, one final adjustment to Taw
 

was utilized; i.e., an emissivity of 0.9 was substituted for
 

0.6. The assumption was simply that 0.9 would probably be
 

a closer approximation to the emissivities of freshly fallen
 

snow at microwave wevelengths. This higher emissivity Taw
 

(Tawhe) was subsequently correlated with snow depth in Kansas
 

and Colorado. The resulting trends are indicated in Figures
 

95 and 96.
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depth on January 11, 1974 in Kansas
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Figure 96 	 S194 brightness temperature (Tawhe) as a function of snow
 
depth on January 14, 1974 in Colorado-Nebraska (subfreezing)
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Conclusions; S194 Response to Snow
 

In the final analysis, any conclusions based upon find

ings derived from only two sites is tenuous at best. On the
 

basis of these, however, it does appear that L-Band may pos

sess the capability of locating the freeze-thaw line, and
 

under certain circumstances reveal relative snow depth.
 

It is common knowledge that although the albedo of fresh
 

snow at short wavelengths is high (0.8-0.9), snow's reflec

tivity at longer wavelengths (i.e., L-Band) is extremely low
 

(0.005). with respect to longwave radiation, therefore, snow
 

behaves almost like a black body. Due to the density of the
 

emitting media, we suggest that S194 is more sensitive in
 

determining soil moisture differences than snow depth varia

tions. When the soil moisture freezes, however, the snowpack's
 

black body influence may furnish the principal control over
 

microwave emissivity received by the S194.
 

Thus, the high positive correlation between snow depth
 

and Tawhe (subfreezing footprints) in Colorado-Nebraska sug

fests that L-Band is responding to changes in snow depth
 

rather than .any moisture changes in the underlying soil. Since
 

the soil moisture phass of the report conclusively demonstra

ted that S194 inversely responds to changes in soil mois

ture, it would appear that the ground was frozen. Thus, the
 

radiometer directly responded to increasing snow depth.
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The S194's unresponsiveness (Tawhe) to snow depth loca

ted in superfreezing footprints must principally be a result 

of the violation of the conservation of energy equation; i.e., 

absorptivity $ emissivity during melt periods. 

The high negative correlation between snow depth and
 

Tawhe in Kansas indicates that the snowpack is not the prin

cipal contributor to longwave emission. If such was the
 

situation, higher snow depths should result in higher emis

sivities. It appears, therefore, that L-Band is responding
 

to soil moisture changes; i.e., the soil is unfrozen. Snow
 

depth probably indicates the degree of wetness of the under

lying soil. The sudden upswing of antenna temperature in
 

Northeast Kansas may indicate that frozen ground has been
 

encountered. The Climatological Data Bulletin has also indi

cated that up to 13 inches of snow had accumulated in por

tions of Northwest Missouri and Southern Iowa, which would
 

contribute to the increase in antenna temperature.
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S193 Scatterometer Response - January 11, 1974
 

Several constraints were operating upon the S193 mecha

nism in January, 1974. The displacement of the antenna cap
 

and subsequent distortion of the footprint has previously
 

been mentioned. In addition, the instrument's sweep mechanism
 

had suffered extensive damage on the left(+) side. For these
 

reasons, it was initially determined to utilize the right side
 

(minus) readings at four distinct angles between nadir and 6
 

degrees, these being 0,!,3,and 5. These four categories were
 

further subdivided according to the instrument direction of
 

motion, i.e., left to right and right to left. This was em

ployed because minor angle differences dependent upon the
 

direction of motion were observed in each class. [At a later
 

date the analysis was extended to include 90 and 120 (L-R)] 

During the January passes (except January 24), roll 0 pitch 0
 

was utilized.
 

Increased return is noted for the first four angles in
 

the vicinity of 38 degrees north latitude (Figures 97-100).
 

An increase in microwave response of this type has been obser

ved by Schmugge, et. al. (1974)with a 1.55 cm. passive radio

meter. They attributed this to an increase in liquid water
 

content at the snow surface layer. The area of interest lies
 

in the Flint Hills region of Kansas which is characterized
 

by moderately undulating topography. The south-facing slopes
 

in this area could augment a surface melt that may be re

sponsible for the increased response. The corresponding S190B
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Figure 97 
 S193 scatter coefficient measured at angles near
 
zero degrees on January 11, 1974.
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Figure 98 S193 scatter coefficient measured at angles near
 
one and one-half degrees on January 11, 1974.
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imagery reveals virtually 100% snow cover, although drainage
 

patterns are quite evident.
 

The linear correlations between the S193 scatterometer
 

data and snow depth, water equivalent, and water equivalent/
 

snow depth (WE/SD) have been computed for Kansas and are
 

shown in Table 12 for different angles. In general, the
 

correlations coefficients tended to increase as the look
 

angle moved from nadir to 5 degrees. This is quite expected,
 

because at angles near nadir (0-3 degrees) small errors in
 

pointing accuracy result in greater interpretative problems.
 

These near-vertical correlations should therefore be discoun

ted. The correlations between snow depth or WE/SD are quite
 

good for the 50 angle,-0and for snow depth at 9 as well. Some
 

of these better relationships are shown in Figures 101-104.
 

S193 Scatterometer Response - January 14, 1974
 

Correlation coefficients in the Colorado-Nebraska test
 

site area between S193 and various snow parameters are shown
 

in Table 13, and Figures 105-108. These minimal correlations
 

have previously been observed with the passive system.Edger

ton et. al. (1968) stated that thete is probably "...no hope
 

of discovering any free moisture content data from 13.4 or
 

37 dHz microwave [passive,(author note)] studies when the
 

free moisture exceeds 2.5%". It appears highly likely that
 

a significant amount of free water existed in the snowpack
 

on the 14th of January.
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Figure.101 S193 scatterometer as a function of snow depth "on January
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Figure 102, S193 scatterometer as a function of snow depth on January
 
• .. . 11, -1974 in Kansas (9 degrees)
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Figure 105 	S193 scatterometer as a function of snow depth on January
 
14, 1974 in Colorado-Nebraska (5 degrees)
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Figure 106 S193 scatterometer as a function of snow depth on January
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..14, 1974 in Colorado-Nebraska (14 degrees)
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Recall, however, the improved correlations obtained when
 

S194 footprints were divided into subfreezing and super

freezing categories. Performing an identical division upon
 

the S193 Scatterometer in Colorado-Nebraska produced an in

crease in correlation coefficient (see Tables 14-15 and Figures
 

109-112). Especially note the increased correlation upon
 

snow depth and WE/SD as the angle increased to 140.
 

In the Colorado-Nebraska test site area, we find that
 

the range of snow depth is not very great for subfreezing
 

footprints,at the most 2 inches. The question may well arise
 

concerning the accuracy of the snow depth data when a range
 

of only two inches exists. Thus, the correlation derived
 

from this analysis may be suspect in that only a minute.range
 

of potential snow depthswas examined. An attempt to deter

mine the validity of these correlations was undertaken using
 

the moment arm principle. Under the assumption the assump

tion that dry soil (i.e., zero snow depth) and frozen ground
 

behave similarly (i.e.,similar scattering coefficient), .we
 

introduced one zero intercept scatterometer value into each
 

data set. These values were obtained from previous S193
 

analyses performed in the Texas Panhandle on January 11, 1974
 

(no snow condition). There is reasonable justification for
 

using these zero intercept values for the January 14 run.in
 

Colorado-Nebraska. Even though soil types are different for
 

the two sites, the terrain type is similar. Both exhibit
 

flat or slightly rolling topography. The absence of living
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Table 12 

Correlation coefficients between the S193 scatterometer 
and various snow parameters obtained across the 

Kansas test area on January 11, 1974 

Look Angle 

Movement 

0 

L to R£ 

10 

L to R 

30 

L totoR 

50 00 10 30 

R to L 

50 

Linear Correlation Coefficients 

Snowdepth 

Water Equivalent 

WE/SD 

-0.38 

0,. 09 

0.53 

-0.30 

-0.17 

0.06 

0.29 

-0.51 

0.79 

0.86 

-0.25 

0.87 

-0.38 

0.17 

0.47 

",-0.62 

-0.41 

0.25 

0.37 

-0.54 

-0.79 

0.78 

-0.36 

-0.87 

Curvilinear Correlation Coefficients 

Snowdepth 

Water Equivalent 

WE/SD 

0.40 

0.12 

0.53 

0.50 

0.34 

0.14 

0.29 

0.51 

0.79 

0.89 

0.39 

0.88 

0.45 

0.18 

0.54 

0.76 

0.56 

0.28 

0.37 

0.57 

0.80 

0.79 

0.57 

0.90 
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Tabli ! 13 ! 

Correlation coefficientstbetween the S193 scatterometer 

and various snow parameters obtained across the Colorado-Nebraska 

test area on January 14, 1974 with antenna movement from left to right. 

Look Angle 00 20 30 50 90 


Linear Correlation Coefficients
 

Snowdepth -0.03 0.26. 0.25 -0.22 -0.66 -0.23 

Water Equivalent 0.13 -0.32 -0.16 0.04 +-.32 

WE/SD -0.05 0.19 0.24 0.07 0.78 0.52 

Curvilinear Correlation Coefficients
 

Snowdepth 0.25 0.33 0.28 0.33
 

Water Equivalent 0.51 0.38 0.28 0.28
 

WE/SD 0.18 0.29 0.29 0.37
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Table, 14
 

Correlation coefficients between-the-S193 Scatterometer
 

(subfreezing footprints) and various snow parameters obtained
 

across the Colorado-Nebraska test site area on 1/14/74
 

Look Angle 00 20 30 50 9 140
 

Snow depth 0.68 0.36 0.10 0.59 -0.68 -0.89 

Water Equivalent 0.03 -0.61 -0.80 0.11 0.47 --

WE/SD 0.08 -0.31 -0.79 -0.01 0.55 0.91 

Table 15
 

Correlation coefficients between--the S193 Scatterometer
 

(superfreezing footprints) and various snow parameters obtained
 

across the Colorado-Nebraska test site area on 1/14/74
 

Look Angle 00 20 30 50 90 140
 

Snow depth 0.27 0.50 0.35 0.06 -0.69 0.06
 

Water Equivalent 0.12 -0.32 -0.25 -0.27 -0.63 0.52
 

WE/SD -0.27 0.29 0.45 0.34 0.02 -0.11
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vegetation at this time of year is common to'both sites, as
 

well. We therefore assume that the winter return should be
 

similar for both, even though we realize the possible sig

nificant differences in soil moisture or temperature which
 

may exist.
 

The slope value thus obtained is termed moment arm one
 

(MAI), because only one data point representing a zero snow
 

condition was introduced. In addition, a second slope deter

mination was calculated for Colorado-Nebraska using an equal
 

number of data points and zero intercept points. It was
 

deemed advisable to analyze such a data set due to the limit

ed range of the original data set, and to equally weight the
 

probable zero intercept value. Equally weighting these two
 

data clusters would subsequently result in a balanced moment
 

arm (MAx). [Note: The Kansas test site area was subject to
 

the MAI) procedure only, because of the wider range of snow
 

depth and scattering coefficient originally present]. Tab

les 16-22 and Figures 113-115 reveal the outcome of these
 

proceedings.
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IFigure 109 	S193 scatterometer as a function of snow depth (subfreezing)
 
bn,January 14, 1974 in Colorado-Nebraska (5 degrees)
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'Figure 111 S193 scatterometer as a function of water equivalent (sub-..

Sfreezing) on January 14, 1974 in Colorado-Nebraska (3 degrees)
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Figure -11:! 	 S193 scatterometer as a function of WE/SD (subfreezing) on
 
January 14, 1974 in Colorado-Nebraska (14 degrees)
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Table 16
 

Slopes calculated between the 5S193. aSatterometer and various
 

snow parameters obtained across the Kansas test site
 

area on 1/11/74 (sweep R-L)
 

30 90
Look Angle 00 10 50 


Snow depth .47 - .44 - 0.37 0.87 0.82
 

Water Equivalent 1.47 - 2.06 - 3.49 - 2.11 - 0.47
 

WE/SD 23.85 7.50 -30.95 -32.15 -19.41
 

Table 17
 

Slopes calculated between the S193 Scatterometer and various
 

snow parameters obtained across the Kansas test site
 

area on 1/11/74 (sweep L-R)
 

Look Angle 00 10 30 50
 

Snow depth 0.44 - 0.22 ..27 0.96
 

Water Equivalent 0.72 - 0.85 - 2.62 - 1.71
 

WE/SD 26.48 1.99 -31.20 -36.00
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Table 18
 

Slopes calculated between the S193 Scatterometer and various
 

snow parameters obtained across the
 

Colorado-Nebraska test site area on 1/14/74
 

Look Angle 00 20 30 50 90 140
 

Snow depth - 0.02 0.13 0.15 - 0.12 - 0.42 - 0.13 

Water Equivalent 0.42 - 0.89 - 0.52 0.13 1.63 --

WE/SD - 1.94 7.12 10.49 0.12 83.19 35.69 

Table .191
 

Slopes calculated between the .193 Scatterometer
 

(subfreezing footprints) and various snow parameters obtained
 

across the Colorado-Nebraska test site area on 1/14/74
 

Look Angle 00 20 30 50 90 140
 

Snow depth 3.46 1.66 0.15 0.69 - 1.14 - 1.83 

Water Equivalent 0.11 - 1.31 - 0.76 0.17 2.95 --

WE/SD 6.04 -13.63 -12.15 - 0.15 63.33 54.92 
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Table 20
 

Slopes calculated between the S193 Scatterometer
 

(superfreezing footprints) and various snow parameters obtained
 

across the Colorado-Nebraska test site area on 1/14/74
 

Look Angle 00 20 30 50 90 140 

Snow depth 

Water Equivalent 

WE/SD 

0.11 

0.27 

5.38 

0.21 

- 1.14 

9.89 

-

0.22 

1.79 

32.47 

-

0.03 

1.12 

33.15 

- 0.18 

- 1.50 

3.80 -

0.01 

17.56 

4.22 

Table 21
 

Comparison among slopes (original, moment arm (1), moment arm (x));
 

S193 Scatterometer vs. snow depth obtained across
 

the Colorado-Nebraska test site area on 1/14/74
 

Superfreezing Subfreezing
 

Orig MA(l) MA(x)
Slopes Orig MA(1) MA(x) 


50 0.03 0.16 0.23 0.69 0.10 0.08
 

go -0.18 -0.08 0.28 -1.14 0.03 0.06
 
140 0.01 0.11 0.18 
 -1.83 0.01 0.03
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Table .22
 

Comparison among slopes (original,-moment arm (1), moment arm (x));
 

S193 Scatterometer vs. snow depth obtained across
 

the Kansas test area on 1/11/74
 

Slope Orig MA(1) 	 Correlation Orig MA(l)
 
Coefficient
 

50 .92 .73 	 .82 .78
 

90 .82 66 	 .82 .81 
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Figure 113 S193 scatterometer as a function of snow depth (moment arm 1) 
on January 11, 1974 in Kansas (5 degrees) 
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Figure. 114 S193 scatterometer as a function of snow depth (moment arm X)
 
- 1 on January 14, 1974 in Colorado-Nebraska (subfreezing,-5 degrees)
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Figure 115 S193 scatterometer as a function of snow depth (moment arm X)
 
Ion January 14, 1974 in Colorado-Nebraska (superfreezing,
 

5 degrees)
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Conclusions; S193 Response-to Snow
 

After the best possible corrections were made to the S193
 

scatterometer data sets, all data sets indicate a positive
 

correlation between snow depth and scattering coefficient; the
 

variability, however, of the relation seems so great-that
 

other factors are clearly important. The small size of the
 

winter set severely hampered the attempts to determine the
 

degree of correlation and almost completely precluded deter

mining what other factors may be important. In the January
 

11 pass over Kansas, where a wide range of snow depths was
 

available and the ground was cold and probably mostly frozen,
 

the correlations at 50 and 90 seem quite good. In the Colo

rado -Nebraska pass on January 14, the correlations are not
 

so consistent. In fact,xif one uses the correlations based
 

on only the small set of snow depths observed in the below

freezing part of the pass, the correlations are negative.
 

This procedure, however, seemed inadequate because the lack
 

of precision in snow depth estimates probably made the errors
 

in these estimates as great as the spread of the data them

selves. Consequentlylacrude estimate, based on snowfree
 

areas in the Texas panhandle was used to prepare a "best"
 

value for the zero-snow-depth intercept to go with the deeper
 

snow in Nebraska. Only when this value was used with a weight
 

comparable to that assigned to the snow-covered areas did all
 

the correlations become positive.
 

Thus, it appears that some snow-related quantity, perhaps
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snow depth, is proportional to the scattering coefficient,
 

so that future systems might be able to survey snow. In
 

the Kansas area water equivalent/snow depth, a measure of
 

per-unit density, also correlated positively with the scat

tering, but no meaningful-correlation of this kind could be
 

made in Nebraska, for the zero-snow value associated with
 

this quantity would be indeterminate:
 

Although this first attempt at surveying snow from space
 

with a radar is somewhat promising because of the positive
 

correlations, the lack of sufficient data prevents drawing
 

strong conclusions. More extensive experiments are clearly
 

needed.
 

Since the S193 only operated at angles quite near ver

tical in these experiments, and because operational spacecraft
 

imaging systems sill probably operate much farther from ver

tical, additional experiments in the other ranges of angle
 

of incidence are particularly important. It is regrettable
 

that difficulties with the scan mechanism on S193 prevented
 

the planned experiments using about 300 incidence angle.
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Chapter VIII
 

APPLICATIONS
 

Estimation of SoilMoisture
 

Using the S194 Radiometer
 

The composite relationship between the S194 bright

ness temperature and soil moisture content for five different
 

Skylab passes across the two test sites shows that the
 

3194 L-band radiometer is quite sensitive to the moisture
 

content of soil. These passes were over different types
 

of terrain including variations in soil type, vegetation
 

type and amount,and soil moisture content; thus, these
 

data may be useful for the remote sensing of the soil mois

ture content of large areas of the earth's surface. The
 

regression equation from Figure 61 is:
 
2
 

SM ' 253.03 - 1.4898 T + 0.00210 T
 

where SM is soil moisture content in percent by weight and
 

Vis the measured brightness temperature. This equation with
 

adjustments for differences in ground temperature was used
 

to estimate the distribution of soil moisture across the
 

United States along SL2 and SL3 tracks for several passes
 

(Figure 116). This figure illustrates the potential for
 

gaining quantitative information on the moisture content
 

of the earth's surface quite rapid-if for large areas. The
 

values above 40% correspond to the Great Salt Lake and
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Figure 116 The distribution of soil moisture (% by weight)
 
determined from Skylab's L-band radiometer fot
 
three passes across the United States.
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Lake Michigan. The lowest values in the figure occur.over
 

the mountainous western states. These are the most ques

tionable locations in this illustration, since roughness
 

and slope of this magnitude may influence the results.
 

However, the moistures indicated are similar to that anti

cipated from precipitation patterns. In fact, individual
 

-variations throughout the United States correspond closely to
 

prior rainfall history.
 

These results indicate that an L-band radiometer opera

ting from a satellite can be used for obtaining precise in

formation on the near-surface moisture content. The im

plications are great in terms of utility to agricultural
 

endeavors that depend on soil water resources, flood fore

casting-for-large,watersheds, as .el--as-a host-of other
 

possible applications.
 

Estimation of Various Other Moisture Parameters
 

From S194 Data
 

The quantity 9f runoff produced by a storm depends on
 

.the"moisture deficiency of the basin at the onset.of rain
 

and the storm characteristics, such as rainfall amount,
 

intensity and duration. The storm characteristics can be
 

determined from an- adequate network of precipitation gages,
 

but the direct determination of moisture conditions through

out the basin at the beginning of the.storm is not feasible.
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Because of the importance of this parameter, several
 

indices have been used to establish the soil moisture con

ditions, i.e., ground water discharge, basin-accounting
 

'techniques from pan-evaporation or the climatic water balance,
 

and'the antecedent precipitation index (API). These ap

proaches can only estimate relative values for soil moisture
 

conditions. The microwave sensors have great potential for
 

obtaining the soil moisture conditions of an area, since they
 

responde to an average value of soil moisture content for the
 

entire resolution cell which may be quite large.
 

An effort has been made to compare the S194 radiometric
 

temperatures with several current estimation techniques
 

for soil moisture, such as the APIi calculated soil mois

turd content from the climatic water balance, and an aridity
 

indet. The weather stations, where both daily temperature
 

and -daily precipitation were recorded within 60 kilometers 

- on either side of the Skylab track have been selected for 

pass 48 (Figure 117). There were a total of 150 weather
 

stations for these calculations.
 

The .- most common index for initial moisture conditions
 

for estimating the volume of storm runoff is based on ante

cedent precipitation. The form of characterizing the ante

cedent precipitation index (API) is:
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n t
 

API= -, Pk 

t=0
 

Wherer k=-Recession factor
 

t= Number of days previous to the
 

Skylab pass
 

p= Daily precipitation
 

The value of the index theorectically depends on precipitation
 

.over an infinite antecedent period, but the computed index
 

will closely approach the true value within a few weeks.
 

Thus the API has been computed for various antecedent periods.
 

The value of k is related primarily to evapotranspiration.
 

The actual evapotranspiration is a function of the potential
 

value, the available moisture, soil type and vegetation cover.
 

.The average API within the circular area of 115km diameter
 

was computed by the weighted factor of area for every 115
 

km from the border of Mexico to the Lake of Michigan along
 

the track of pass 48. All footprints used in the analysis
 

were independent in terms of the half-power resolution cell
 

of the S194 radiometer. The average ground temperature in the
 
0 0
 

halt-power footprint ranged from 303-K to 288 K. The S194
 

radiometric temperatures were adjusted to a ground tempera
0
 

ture of 293 K. The correlation coefficient and regression
 

equations between average API and the S194 radiometric tem

perature are shown in Table 23., The k value of .9 and the
 

31-day antecedent period provided the best relationship
 

(Figure .118) and will be used later for projections of this
 

parameter.
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Table 23 
Correlation coefficients for the Skylab L-band radiometer 
and various applications oriented soil moisture parameters 

k t Regression Equation Standard Error Correlation Coefficent 

API 

0.95 

0.90 
0.85 

0.90 

0.90 

31 

31 
31 

21 

11 

15.041 -"0.0546 AT 

9.459  0.0343 AT 
6.809  0.0249 AT 

9.932  0.0364 AT 

6.804 - 0.0250 AT 

0.565 

0.256 
0.197 

0.282 

0.3007 

-0.82 

-0.90 
-0.88 

-0.89 

-0.78 

EstimatedSoil 

Moisture 

* AE/PE 

100(1-AE/PE) 

Eagleman's method 

Thornthwaite's method 

0.90 31 

0.90 31 

152.804 - 0.5550 AT 

153.447 - 0.5555 AT 

-32.518 - 0.11777 AT 

-42.6764 + 0.2611 AT 

5.347 

5.840 

0.833 

3.472 

-0.84 

-0.82 

-0.90 

0.75 
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Figure 118 The relationship between the antecedent 
precipi

tation index (API) and S194 antenna temperature.
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The technique of calculating the water balance from
 

climatic data on a daily basis provides a reasonably ac

curate estimate of soil moisture storage and can be used
 

as an index to runoff and irrigation. This approach is
 

laborious and it is difficult to collect .the data of soil
 

texture, vegetation cover and available water of the soil.
 

This analysis used the Thornthwaite equation (1948) to
 

estimate potential evapotranspiration (PE). The Thornthwaite-


Mather method (1955) and the Eagleman method (1971) were
 

used to estimate actual evapotranspiration (AE). The soil
 

moisture content in percent by volume for the surface 15

cm layer was calculated for 150 stations. The average mois

ture content of each footprint was computed and related
 

to the S194 antenna temperature. The correlation coeffi

cient (-0.84) using Eagleman's method (Figure 119) was bet

ter than that for the Thornthwaite-Mather methods (-0..81)
 

and was, therefore, used for projecting soil moisture from
 

other Skylab passes. The available water of the soil was
 

assigned on a regional basis depending on the soil type
 

(Aandahl, 1972),, since the specific available water for each
 

station could not be obtained.
 

An aridity index (AI) was suggested by Eagleman (1975)
 

which is defined:
 
AE 

AI = .10(1 - V-) 

Where: AE = actual evapotranspiration 

PE = potential evapotranspiration 
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Both AE and PE were calculated from the climatic water
 

balance as described previously. The index provides a number
 

between zero and one hundred whichsspecifies the aridity
 

of the location. An antecedent aridity index (AAI),
 

30 t 
AAI = E AI 0.9 

t=o 

was used in this study to compare with the S194 antenna 

temperature. At the same time, a different antecedent 

aridity index (AAIX),
 

30 AE t 
MIX = PS 0.9 

t=o 

was also calculated. The correlation coefficient for MI
 

and the S194 antenna temperature.was 0.75, and for AAIX
 

was -0.90 (Figure 120).
 

The regression equations shown in Table XIV relating
 

the S1942antenna temperature and the API using a k value of
 

.9 and an antecedent -period of 31 days, the soil moisture,
 

percentage by volume, calculated by the methods of Thornthwaite
 

(1948) and Bagleman (1971), and the antecedent aridity in

dex were used, after adjustments for differences in ground
 

temperature, to estimate distributions across the United
 

States for passes 16 and 38. Soil moisture calculations
 

are for the surface 15 cm layer. These distributions shown
 

in Figures 121 and 122 illustrate the potential of the S194
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Figure 120 	The relationship between the antecedent aridity
 
index (AAIX) and S194 antenna temperature.
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Figure 21 	 Calculated distributions of three different sol
 
moisture or aridity measures based on 5194 antenna
 
temperature measured by Skylab pass 16.
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Figure 122 Calculated distributions of three different soil
 
moisture or aridity measures based on S194 antenna
 
temperatures measured by Skylab pass 38.
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system for accessing regional moisture characteristics
 

whether the soil moisture parameter of interest is :soil
 

moisture content, antecedent precipitation for flood fore

casting or an aridity index describing the general dryness
 

of a region.
 

Economics of Remotely Sensed Soil Moisture Data
 

In addition to other disadvantages, direct measure

ments of soil moisture are time consuming and costly. Our
 

experience in collecting the soil moisture data from the
 

field can be used for a comparison with the data collected
 

by=Skylab. It required about 80 man hours in the field to
 

collect soil moisture information along 350 km of the Skylab
 

track. An additional 30 man hours were required in the
 

-laboratory for weighing and drying the soil samples. Thus,
 

110 man hours were required for obtaining data along only
 

350 1cm of one of the-Skylab tracks.
 

Consider the cost of obtaining direct soil moisture
 

measurements over the areas shown in Figure 101 for the
 

Skylab passes where the soil moisture content was determined
 

for three tracks across the United States. Skylab data
 

extended over about.9,210 km and would have required 2,894
 

man hours. At $5.00 per hour the cost would have been
 

$14,470 to obtain data by direct measurements for the area
 

covered in Figure 101. It should also be pointed out that
 

the coverage from the direct measurements would not be as
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complete as the Skylab data since it correponds .to the
 

average soii moisture of a region; neithet could the direct
 

measurements all be taken at the game time. Add to this
 

the potential for routinely-measuring m.t onIi:thtee,'strips
 

across the United States but the whole area of the United
 

States and it is easy to see why there is so much interest
 

in remote sensing techniques.
 

272
 



Chapter IX
 

IMPLICATIONS FOR FUTURB SYSTEMS
 

The results of this study of the Skylab microwave
 

sensors indicate that it is indeed possible to measure soil
 

moisture over relatively large areas with reasonable pre

cision by the use of microwave radiometers, and the preci
0
 

sion is somewhat less with scatterometers, at least at 30
 

incidence angle and 13.9GHz, where the scatterometer data
 

were available.
 

Surprisingly, when averaging is done over the kind
 

of large area represented by the S194 footprint, the dif

ference between 1.4 GHz of the S194 and 13.9GHz of the S193
 

radiometer response to soil moisture is not great. This
 

was unexpected because it was thought that both the vegetation
 

.effects and the atmospheric effects would make the corre

lation between brightness temperature and soil moisture
 

significantly poorer at the higher frequency. One may even
 

assume that the results would be similar at the two fre

quencies if a correction were applied for the cloud and
 

vegetation effects.
 
0
 

The use of the 29.4 pitch angle for the majority of the
 

S193 scatterometer measurements of soil moisture was, in
 

retrospect, unfortunate. At the time the angle was selected
 

indications of the angular sensitivity of the scatterometer
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soil moisture responses were based on a single measure

ment of irrigated and unirrigated fields (King and Moore,
 

1973); this experiment- suggested that any angle out to about
 
0
 

40 would be satisfactory. Since that time, more extensive 

soil moisture measurements have been made (e.g., Ulaby, 

1975) and it has been shown that angles of incidence should 
0
 

be kept under about 20 for soil moisture determination.
 

Fortunately, the radiometer turns out to be less sensitive
 
0
 

to angle of incidence, so the radiometric results at 30
 

were satisfactory.
 

Future systems that are to measure soil moisture must
 

fall into at least two classes: those that determine soil
 

moisture in very localized areas and those that are intended
 

to provide the "big picture". Probably the first kind of
 

measurement will be made with imaging radars because radio

meters cannot be built to have fine resolutions at suitable
 

frequencies. The results of the Skylab measurements show,
 

however, that the second class of applications can be met
 

with spaceborne radiometers.
 

Although the S194 demonstrated what can be done with
 

a very poor resolution system, even with this resolution some
 

sort of scanning would be needed for an operational system.
 

If the operational system is to provide valid data, the
 

repetition cycle should not exceed about six days, which
 

means a swath width to be covered that is of the order of
 

600 km. In the case of a system with the resolution of the
 

274
 



S194 this means that the beam would have to have at least
 

six positions across the track of the spacecraft to allow
 

adequate coverage. Thus, a system as simple as the S194
 

itself would not be adequate even if this resolution were
 

to be used.
 

The resolution cell for the S194 was too large to be
 

of value for many applications, but it demonstrated the
 

principle of sensing s6il moisture and the smoothing effect
 

in both ground truth and microwave data that comes~from
 

averaging over a large area. A cell about 1/4 the diameter
 

of the S194 does however, appear to be useful for regional
 

soil moisture studies, since it would be adequate to deline

ate:.regions about 25 km across and to identify boundaries
 

between wet and dry soil regions t6 within a few kilometers.
 

Thus, we recommend that a future soil moisture system have
 

a resolution cell at least as good as 25 km across to the
 

half-power points. A system may of course have much finer
 

resolutions needed for other purposes and still be used for
 

soil moisture measurement, either using its-full resolution
 

to produce a finer grain soil moisture map or averaging
 

together many of its cells to produce a map of soil moisture
 

like the one that would be produced using a 25km diameter
 

resolution cell.
 

For the radiometer the comparable quality of the results
 

observed at 1.4 GHz and 13.8 GHz when the same resolution cell
 

size was used indicates that the choice of microwave radiome

ter frequency for soil moisture measurement may not be as
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critical as it was originally thought to be. Nevertheless,
 

the 13.9 GHz frequency is too high for such a sensor because
 

it is much more affected by the presence of clouds and rain
 

than a lower-frequency system would be. A frequency below
 

about 8 GHz seems called for because of the cloud and rain
 

effect. It will also be more useful in areas having heavier
 

vegetation than the test site for which S193 and S194 radio

meters were compared with the same resolution cell size, since
 

part of the good performance of the S193 must surely have
 

been predicated on a less-than-lush vegetation cover, on the
 

average, over the large cells in Texas.
 

To produce a scanning radiometer requires either the
 

ability to scan a reflector or other antenna element mechani

cally or the ability to scan an array electrically as with
 

the ESMR systems in Nimbus. A fixed antenna like that of
 

the S194 might be made large enough to give rather good
 

resolution even at 1.4 GHz, but a scanning antenna bigger
 

than about six meters square seems impractical. Thus, we
 

fix our attention on square arrays with electronic scanning
 

and with dimensions not to exceed six meters on a side. Table
 

24 shows the type of resolution that can be obtained normal
 

to the plane of an array of one, three or six meters on a
 

side at frequencies-of 1.4, 5 and-14 GHz. These numbers
 

assume a spacecraft altitude of 500 km, and are scaled in
 

direct proportion to the altitude.
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Table 24
 

500 Km Resolution Cell Sizes at Vertical Incidence
 

Antenna size 14 GHz 5 GHz 1.4 GHz 

1 M 10.7 km 30.0 km 107'km 
3 m 3.6 km 10.0 km 36 km 
6 m 1.8 km 5.0 km 18 km 

The criterion of a 25 km diameter can be met at vertical by
 

even a one meter antenna at 14 GHz, but it requires somewhat
 

more than one meter at 5 GHz and it requires an antenna al

most six meters on a side at 1.4 GHz. Of course the finer
 

resolutions possible with the larger antenna could always be
 

used to advantage. Hence, such a radiometer probably should
 

have the largest antenna possible for a frequency of 1.4 or
 

at the most, five GHz.
 

The design of a scatterometer for similar measurements
 

cannot be predicated successfully on the data measured here.
 

The correlation between scattering coefficient and soil mois

ture is definitely significant, but at the near-30 ' angles
 

of incidence used in the passes analyzed, so many other fac

tors entered into determining the return that the correlation
 

is not high enough to justify such a sensor. The greater sen

sitivity of the scatterometer signal to vegetation at this an

gle of incidence is probably the culprit, for measurements on
 

bare fields indicate that even at this angle, the correlation
 

should be strong, and the correlation actually observed is
 

high enough to indicate that this mechanism must indeed be
 

working in a significant part of the data set.
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Fortunately, since the beginning of the Skylab mission
 

when the decisions were made regarding the parameters for S193
 

design and flight conditions, a great deal of information a

bout soil moisture response of the scatterometer had been col

lected, for example, Ulaby (1975). The response is clearly
 

quite strong under the right conditions; the conditions seem
 

to be a frequency below about eight GHz, and an angle of inci

dence that is a function of the frequency but in any case
 

should be under 200, if possible.
 

A scatterometer for such a-purpose could use a scanning
 

antenna like that mentioned above for the radiometer, except
 

that use of the two-way gain pattern would mean a reduction
 

in illuminated diameter of about one third. On the other
 

hand, radar systems need not use such large antennas. Thus,
 

a radar can get by with an antenna large in only one dimension'
 

by using either a range measurement or a Doppler-frequency
 

measurement to separate the cells in the direction along the
 

beam. Since a radar may also use a synthetic aperture, it
 

may achieve very fine resolutions not possible with a real
 

aperture antenna. Thus, Ehe greatest promise for the use of
 

the active system lies not in duplicating a passive system
 

with its bulky antenna but rather in taking advantage of the
 

inherent ability of the radar to achieve resolution without
 

as large a total aperture area as the radiometer needs.
 

As a consequence of these analyses of the situation, we
 

believe that a future design for either an active or a passive
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system should aim at the region near 1.4 GHz or 5 GHz at the
 

most --the radiometer doing so to achieve reasonable resolu

tion with a feasible antenna and the radar doing-so because
 

this may be a near-optimum frequency when the various factors
 

are considered. The radiometer design for such a system must
 

have an antenna several meters in diameter with three meters
 

being a good size for 5 GHz and six meters for the 1.4 GHz
 

radiometer, to give resolutions comparable with those achiev

ed by the S193. The scatterometer probably should not be a
 

separate instrument, but rather should be included in a syn

thetic aperture imaging system that can produce resolutions
 

fine enough to accomplish other water-resourse related tasks.
 

Designs are presently being developed at Kansas University for
 

a system that will be able to cover a wider swath than the
 

usual synthetic-aperture system, this wider swath being im

portant'to obtain the frequently repeated coverage necessary
 

for water problems.
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Chapter.X
 

SUNIMARY AND CONCLUSIONS
 

Although a number of interesting results 'ave been
 

obtained by this investigation,/the most significant result
 

is the good response of the passive radiometers, particularly
 

the L-band radiometer, to changing soil moisture conditions
 

near the surface of the earth. The Skylab soil moisture
 

experiment was designed to evaluate the ability of the various
 

microwave sensors on Skylab for their response to changing
 

soil moisture patterns on earth. The first step of the analysis
 

consisted of obtaining detailed soil moisture information
 

by direct measurement techniques on the ground at the time
 

Skylab was collecting data from space. Detailed soil moisture
 

information was collected from test sites in western Texas
 

and eastern Kansas for evaluating the response of'the Skylab
 

microwave-sensors. A total of 2,250 soil samples were collected
 

at 375 different sites and at six layers at each site so
 

that the moisture content of the surface to 15 cm was obtained
 

by 2.5 cm increments. The geographical distribution of soil
 

moisture patterns was obtained throughout the test sites
 

for comparison with the microwave sensors.
 

The response of the S194 L-band radiometer to changing
 

soil moisture conditions was very good for the five Complete
 

data sets consisting of three passes across Texas and two
 

passes across Kansas. The comparisons between the L-band
 

radiometer and soil moisture content within the footprint
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of the radiometer gave correlation coefficients ranging
 

from -0.99 to -0.95 for these five data sets. Two of these
 

passes were over the same general terrain of Texas so that
 

it could be established that the antenna temperatures were
 

responding to changing moisture conditions rather than some
 

other variable. The correlations between the L-band radiome

ter and various layers beneath the surface was completed
 

for each of the 2.5 cm layers in order to evaluate the depth
 

of influence for the L-band radiometer. For these five
 

data sets the average moisture content within the top five
 

centimeters gave the best correlation with the antenna tem

perature in one case. For all of the other four passes the
 

best correlation was obtained for the average moisture cone
 

tent in the top 2.5 cm of soil. This agreed very well with
 

skin depth calculations, and indicates that the effective
 

depth for determining the response of a radiometer is about
 

a third of the skin depth, a depth at whicha plane wave
 

is attenuated to about half its power.
 

When data for the five different passes were combined,
 

the correlation between the S194 radiometric temperature
 

and soil moisture content remained quite high with a value
 

of -0.96. Therefore, these data indicate that the L-band
 

radiometer has a very high potentidl for being able to ac

curately monitor the soil moisture content of the earth.
 

Using the established relationship between the L-band radiomet7
 

rc-temperature and the moisture content of the surface
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2.5 cmof soil, the soil moisture content variations across
 

the United States were calculated, along with an aridity and
 

antecedent precipitation index, for several different times
 

during 1973 to illustrate the application of this instrument.
 

The performance of the S193 passive radiometer was less
 

consistent than for the S194 L-band radiometer; however,
 

one data set gave a very high correlation of -0.95. A further
 

comparison between the two passive radiometers was conducted
 

by averaging several of the S193 footprints so that the same
 

area was compared with the soil moisture measurement as for
 

the S194 footprint. For the same data the correlation bet

ween the S194 antenna temperature and the average moisture
 

content was -0.996 in comparison to the S193 correlation
 

which was -0.988 for this particular pass across Texas on
 

June 5, 1973. It was-therefore concluded that passive
 

radiometers were quite sensitive to moisture content. This
 

same comparison showed that the range in antenna tempera

tures was quite different for the two radiometers operating
 

across the same test area. The longer wavelength S194
 
0
 

radiometer had a range in antenna temperature of 47 K com
0
 

pared to a range of only 16 K for the shorter wavelength
 

S193 radiometer. Because of this response as well as the
 

greater influence from clouds and vegetation upon the shorter
 

wavelength radiometer, it would appear that the L-band
 

radiometer would be the proper choice for a system designed
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to measure the moisture content of the earth on an opera

tional basis. For an operational system, an L-band radiometer
 
0
 

with a 15 conical scan would provide the ideal system for
 

earth monitoring from space, especially if the antenna could
 

be made large enough to give a smaller resolution cell than
 

for the Skylab radiometer. Although a resolution cell of
 

about 25 km would have considerable application in hydrology
 

and agriculture as well as in other areas, a smaller re

solution of perhaps 10 km would be even better. An accurate
 

thermal radiation sensor should be a part of this system
 

in order to monitor, as accurately as possible, the surface
 

temperature during cloudless skies for comparisons between
 

areas with widely differing surface temperatures.
 

'The scafterometer response to soil moisture at incidence
 
0
 

angles near 30 was not as good as ,for the radiometers.
 

Nevertheless, a correlation coefficient of 0.75 was obtained
 

when the effect of varying angle of incidence was removed.
 

In view of the more-recent ground-based measurements that
 

indicate a more suitable angle of incidence for the scatterome
0
 

ter would have been in the neighborhood of 15 , and a lower
 

frequency would have been much better for soil moisture pur

poses,the modest 0.75 correlation coefficient is encouraging,
 

but not conclusive, for the use of radar in soil moisture
 

determination since the only hope for obtaining fine resolution
 

is by using synthetic aperture radars.
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The superior performance of the radiometers relative
 

to the radars,for space observation of soil moisture, combined
 

with the possibility for finer resolutions only with radars,
 

suggests that future systems may well use combined radar

radiometer systems in which the radfometer provides more
 

precise measures of the average soil moisture over, larger
 

areas and the radar provides less precise moisture measure

ment for small well defined points in space.
 

The analysis of Skylab photography has shown some
 

areas where the infrared bands of the S190A and S192 sensors
 

were able to segregate areas where s6il moisture varied
 

significantly from adjacent areas. An area in Texas was
 

identified where a clay loam soil was surrounded by sandy
 

soils with a significantly different water holding capacity.
 

This area can be identified on the black and white infrared
 

and color infrared bands of the S190A and the black and
 

white infrared of the S192 system.
 

Direct measurements of subsurface soil moisture content
 

by optical and multispectral scanner data is impossible. Also
 

the presence of a vegetation cover completely shields any
 

soil moisture information by these methods. This .means that
 

quantitLtive soil moisture information cannot be gathered
 

on a practical basis by optical or multispectral scanner
 

data. However, good quality high resolution optical and MSS
 

data can be used very effectively with microwave sensors
 

in order to increase the accuracy of'soil moisture measure

ments by using imagery as a means of providing vegetation
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type and density information and by using a thermal band
 

to collect and assemble surface temperature. The data
 

would then supplement, effectively, data collected with
 

microwave sensors.
 

The analysis of the aircraft data have shown that it
 

is necessary to have ground truth information on an entirely
 

different scale in order to calibrate or evaluate the air

craft sensor. For some applications it may be very impor

tant to have detailed variations of soil moisture in small
 

areas. In this case, an L-band radiometer mounted in an
 

airplane with the same angle and scanning system as for a
 

satellite could provide important information because of the
 

finei resolution system.
 

-Two data sets were obtained for determining the micro

wave response to snow characteristics. The S193 scatterometer
 

data indicated a positive correlation between snow depth and
 

scattering coefficient; the variability, however, of the
 

relationship seems so great that other factors are clearly
 

important. The small amount of winter data severely hampered
 

attempts to determine the degree of correlation and almost
 

completely precluded determining what other factors may be
 

important. Although this first attempt at surveying snow
 

from space with a radar is somewhat promising the lack of
 

sufficient data prevents drawing strong conclusions.
 

On the basis of.the same two winter data sets it appears
 

that the 21 cm passive radiometer possesses the capability
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of locating the freeze-thaw line, and under certain circum

stances reveals relative snow depth. However the S194
 

sensor is so sensitive to soil moisture differences that
 

snow depth variations may be secondary to changes in the
 

soil moisture beneath the snow. When the soil moisture
 

freezes, however, the snowpack's black body influence may
 

furnish the principal control over microwave emissivity
 

received by the S194 radiometer. If these microwave tech

niques for determining the amount of snow pack can be
 

perfected they would be quite useful in river basin runoff
 

forecasting.
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APPENDIX I
 

SOIL MOISTURE MEASUREMENTS
 

(See Figures 6 to-1l for site locations)
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Field Measurements of Soil Moisture
 
In Percent by Weight


For Pass 5
 

0- 2.5- 5.0- 7.5- 10- 12.5-


Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

6/5/73 1 ;2-9 4.6 9.4 11.5 13.4 13.8
 

2 5.9 13.3 14.8 14.9- 15.0 15.1
 

3 3.7 11.2 15.4 16.4 16.7 18.2 

4 21.1 23.6 26.2 22.7 20.7 21.71
 

5 6.3 10.1 15.3 14.7 16.0 19.8
 

6 5.1 9.7 12.0 15.6 14.9 16.2 

7, 5.3 13.3 17.1 17.3 17.7 18.1 

8 5.7 10.4 13.6 21.3 16.5 20.7
 

9 4.0 10.6 13.3 15.0 16.9 17.4
 

10 4.6 11.4 17.8 19.3 1&.9 18.9
 

11 0.7 1.7 2.7 8.9 8.3 7.7 

12 13.5 22.3 32.8 37.1 33.4 33.01 

13 2.5 4.4 9.2 10.0 9.8 10.3
 

14 1.9 2.7 4.8 5.7 6.1 6.4
 

15 2.6 5.9 7.5 6.6 8.8 10.5 

16 2.6 4.6 4.5 6.1 9.2 6.1
 

17 2.4 3.1 5.0 8.9 9.6 9.7 

18 G.8. 1.4 1.5 3.0 6.2 7.2 

19 1.1 1.9 3.4 7.9 9.7 10.6 

20 0-6 1.4 3.8 8.3 8.5 6.0 

21 0 0.6 0.7 1.0 2.6 3.0 

22 2.0 5.8 7.9 11.3 11.2 11.5 

23 1.2. 3.0 5.7 7.2 6.8 6.6
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0- 2.5- S.0 7.5- .10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

24 1.3 4.5 6.2 6.7 7.8 8.0 

25 3.2 1.8 3.1 4.1 4.4 3.4 

26 5.0 8.2 10.4 10.8 10.5 11.2 

27 1.2 2.4 3.5 5.1 6.3 6.0 

28 1.8 4:6 6.7 9.3 13.2 13.8 

29 2.8 5.8 9.0 13.4 14.2 10.8 

30 1.8 6.5 11.1 14.6 15.8 14.4 

31 4.1 8.3 9.1 8.5 10.1 11.9 

32 2.2 7.8 11.7 11.1 11.2 10.5 

33 2.6 2.3 9.7 9.7 9.3- 8.8 

34 2.2 5.0 10.7 6.2 )6.6 6.8 

35 9.3 14.2 16.1 16.9 16.7 15.5 

36 13.7 15.9 11.6 13.7 13.5 9.0 

37 4.9 14.9 16.2 16.6 16.8 16.1 

38 3.1 9.2 II.5 13.2 13.4 13.9 

39 3.1 9.3 12.2 12.2 11.7 12.6 

40 4.0 12.2 14.0 16.-0 16.8 16.0 

41 8-.2 7.5 7.2 .8.1 9.4 9.6 

42 12.9 13.4 12.7 13.2 10.5 9.7 

43 4.7 6.2 4.3 4.1 4.0 4.0 

44 4.2 5.4 6.0 6.5 6.6 5.7 

45 2.4 4.7 4.1 5.1 4.3 5.9 

46 4.0 7.0 8.4 11.4 11.6 12.1 

6/6/73 47 16.5 1.7.8 17.2 14.8 14.8 12.9 

48 35.0 28.6 26.6 25.9 26.0 24.61 

49- 18.6 18.7 19.4 19.2 18.3 20.01 
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0- 2.5- 5;0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

50 6.3 9.0 9.6 12.2 11.6 9.2 

51 8.4 21.8 9.4 10.6 10.7 9.4 

52 23.6 19.5 16.6 15.4 14.9 14.4 

53 4.8 5.0 4.7 3.6 4.3 4.8 

34 9.5 16.3 15.2 14.4 12.2 13.1 

55 13.6 15.8 15.2 15.8 15.7 17.8 

56 26.9 26.4 25.5 24.5 25.6 26.0 

57 7.7 10.8 9.9 11.7 10.0 9.3 

58 25.1 21.9 21.0 23.5 23.7 42.0 

59 13.9 13.1 13.5 14.9 15.6 15.8 

60 19.3 19.7 22.7 22.2 23.7 23.3 

61 17.2 17.1 15.6 16.7 17.9 19.3 

62 19.0 22.1 25.1 26.0 23.8 25.6 

63 34.2 34.3 33.3 36.3 36.5 36.1 

64 39.9 35.3 33.6 33.0 34.0 33.8 

65 23.5 23.6 22.0 22.6 22.5 22.5 

66 10.4 20.1 20.6 20.4 20.1 16.3 
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Field Measurements of Soil Moisture
 
In Percent by Weight 

For Pass lo 

0- 2.5- 3.0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

6/13/73 1 19.4 17.7 28.2 21.1 18.5 18.0 

2 28.7 29.3 24.0 24.6 24.8 24.8 

3 25.7 26.7 27.7 27.3 25.0 24.9 

4 22.6 23.6 22.9 20.1 19.8 20.1 

5 20.5 21.9 22.6 22.0 20-.5 19.3 

6 19.1 20.9 19.6 18.1 2'0.2 18.7 

7' 31.2 26.9 20.9 21.5 17.4 1-5.3 

8 41.0 40.4 32.3 30.7 29.4 25.4 

9 30.7 32.5 23.5 13.7 19.5 20.5 

10 30.4 24.7 22.8 22.8 18.1 16.5 

1 23.1 21.7 20.0 22.2 24.5 23.4 

12 20.-6 7.2 8.6 8.6 8.6 7.8 

13 23.7 22.5 21.1 22.9 24.7, 28.5 

14 27.4 30.8 27.5 29.8 29.0 30.0 -' 

15 37.4 30.2 24.2 25.7 28.1 28.5 

16 39.7 39.8 36.0 32.2 28.6 19.5 

17 37.8 35.0 36.0 31.9 32.9 34.2 

18 36.1 34.8 34.3 32.4 34.2 36.8 

19 30.9 32.7 31.3 29.9- 28.9 28.5 

20 - 44.3 42.2 41.1 41.1 38.8 37.9 

21 52.9 35.2 28.3 25.0- 25.4 28.0 

22 17.0 23.4. 26.1, 26.6 28.0 27.3 

23 13.3 13.4 14.6 16.7 19.1 21.0 
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0- 2.5- 5.0- 7.5- 1 0- 12.5-

Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

24 21.0 16.8 22.6 20.0 20.7 21.6 

Z5 7.2 10.9 17.9 18.8 18.3 17.9 

26 9.6 14.6 16.1 18.1 18.1 18.7 

27 10.0 16.8 19.2 19.1 20.1 22.1 

28 16.8 20.5 20.7 21.8 21.3 23.8 

29 19.9 12.8 24.0 25.6 26.5 27.1 

30 13.8 18.5 17.0 17.3 17.9 17.5 

31 7.0 12.0 14.7 15.5 15.5 15.6 

32 7.5 15.6 21.0 19.2 22.5 23.7 

33 12.9 14.0 17.9 19.2 19.3 22.9 

34 10.1 15.9 14.4 14.0 14.0 13.7 

35 -12.1 19.3 24.2 35.9 47.4 49.7 

36 19.9 18.4 18.0 18.8 18.3 18.9 

37 6.0 13.3 29.3 27.8 36.9 30.8 

38 12.7 15.0 18.1 23.5 26.4 28.3 

39 5.7 8.6 16.7 18.9 21.2 21.8 

40 15.7 21.0 25.4 26.2 28.4 28.2 

41 32.2 39.3 37.7 35.5 33.6 32.2 

42 39.5 35.6 33.9 31.0 25.4 20.2 
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Field Measurements of Soil Moisture
 
In Percent by Weight
 

For Pass 16
 

0- 2.5- 5.0- 7.5- 10- 12.5-

Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

8/7/73 1 1.3 4.0 2.5 3.0 3.0 3.6

2 7.3 19.6 21.8 24.0 28.2 28.1
 

3 1.6 2.1 ]2.7 3.6 4.0 5.0 

4 5.3 12.0 11.0 11.6 13.3 13.1
 

5 2.9 3.6 4.4 6.3 7.6 8.1
 

6 1.6 3.1 4.2 4.5 5.7 5.6 

7 0..7 1.8 2.1 3.2- 3.6 3.8 

8 1.3 1.8 2.8 3.3 3.6 5.0 

9" 1.3 1.5 2.1 12.6 2.8 2.6 

10 3.5 6.1 9.0 11.2 10.6 12.0
 

11 2.8 8.7 13.8 15.0 15.9 18.3 

12 0.9 1.8 6.0 3.8 4.3 5.0
 

13 1.6 
 2.2 3.6 4.6 4.9 4.9
 

14 5.2 12.8 16.6 20.7 20.9 21.7
 

15 3.3 13.3 17.3 17.4 18.9 19.7 

16 4.3 7.2 12.6 15.6 15.1 16.3
 

17 
 1.3 2.3 4.8 7.0 9.4 8.1
 

18 0.9 1.0 3.6 5.0 5.4 7.5
 

19 1.1 1.9 2.9 5.0 6.7 6.8 

20 1.3 13.1 10.5 1703 17.3 12.9 

21 2.5 4.0 7.6 8..8 9.5 9.7 

22 0.6 -.- 8 1.0 1.2 1.8 2.8 

23 2.0 :'1.4 - 8 4.8 5.9 6.0 
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0- 2.5- 5.0- 7.5- 10- 12.5-

Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

24 2.4 3.8 5.0 5.9 7.1 6.5 

25 1.2 5.6 9.5 10.2 15.0 15.9 

26 2.6 5.6 11.4 15.9 18.6 19.9 

27 "7.1 7.3 15.1 10.2 8.3 10.7 

28 2.2 3.4 4.7 5.1 5.2 5.2 

29 8.1 8.6 8.1 7.6 8.2 8.5 

30 7.1 1.3 1.8 3.4 5.3 5.8 

31 9.3 15.8 12.9 12.9 1JJ4 16.2 

32 3.6 9.9 11.9 12.S 1-3.8 15.6 

33 -3.3 10.4 10.9 -11.6 15.9 17.9 

34 1.3 3.7 4.2 4.4 5.2 5.8 

35 1.7 4.4 10.8 10.5 12.1 11.4 

36 2.8 5.6 6.6 6.5 6.4 6.4 

37 0.5 2.7 7.5 9.3 8.6 8.7 

38 1.7 5.1 8.5 15.4 16.0 17.4 

39 0.5 3.1 5.8 5.4 7.0 8.5 

40 0.3 1.0 2.7 4.5 5.0 6.0 

41 1.9 3.3 6.4 6.7 7.1 6.4 

42 0.5 0.9 3.6 4.1 4.8 4.5 

43 0.6 5.3 5.4 5.4 6.6 6.5 

44 0.3 0.5 2.0 2.7 7.2 5.7 

45 0.3 0.4 0.9 2.1 4.0 3.6 

46 0.1 0.8 0.4 3.1 3.4 3.4 

47 0.5 1.1 1.6 2.3 2.2 2.4 

48 0.3 0.6 1.1 1.6 2.6 3.0 

49 0.5 1.3 2.4 7.6 7.5 8.5 
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0- 2.5- 5.0- 7.5- 10- 12.5-

Date Site No. 2.S cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

50 1.81 3.7 8.9 10.9 10.0 9.4 

51 1.1 2.4 5.3 .6.0- 10.3 20.4 

52 2.6 7.3 13.5 16.2 16.4 16.7 

53 1.3 2.4 3.9 6.7 7.6 8.8 

8/8/73 54 11.0 10.6 10.0 9.2 8.8 8.4 

55 14.1 13.6 13.0 12.6 12.0 11.3 

66 17.5 15.4 13.6 13.7 13.5 12.5 

57 8.6 8.0 9.8 9 6 9.3 9.6 

58 10.5 8.9 10.2 10.8 9.6 8.7 

59 17.8 17.9 18.2 18.4 16.3 14.0 

60 15.5 14.2 12.5 10.8 10.3 10.1 

61 18.1 16.9 15.6 7.6 7.5 7.9 

62 2.1 1.0 1.2 2.2 2.3 4.9 

63 5.3 3.5 3.9 5.5 5.3 5.7 

64 1.2 0.4 0.4 0.3 1.0 0.9 

65 0.4 1.3 1.4 1.4 2.6 5.6 

66 2.5 3.0 3.9 4.6 6.0 7.1 

67 1.4 2.7 2.9 7.4 11.4 12.3 

68 4.0: 8.9 15.4 16.1 16.6 17.2 

69 1.3 2.6 5.9 7.2 9.2 10.3 

70 1.1 2.0 2.5 3.5 5.3 5.3 

71 0.9 1.4 2.3 3.1 5.1 6.0" 

72 0.3 0.2 2.3 2.2 3.0 3.2 

73 0.5 0.9 7.6 2.3 3.0 2.6 

74 "0.2 1.1 -1.7 310 3.4 5.0 

75 2.9 4.1 :5.2 7.6 9.3 11.4 
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2.5- 7.5-0- 0 5.0- 10- 12.5-
Date Site No. 2.5 cm .0 cm 7.5 cm I0 cm 12.5cm 15 cm
 

76 4.6 6.8 9.3 10.7 11.8 11.8 

77 1.6 5.2 6.7 9.3 10.5 10.9 

78 2.0 5.0 7.4 7.7 8.8 7.5 

79 4.8 10.3 12.5 13.7 12.7 13.5 

80 1.3 3.0 5.3 7.4 11.3 11.7 

81 2.1 4.4 7.0 10.6 13.2 14.0 

82 2.7 4.6 7.8 11.2 15.1 14.8 

83 20.4 20.1 25.0 24.2 27.1 22.6 

84 0.8 1.9 2.9 4.2 6.1 7.0 

85 1.5 5.1 6.7 9.3 17.3 15.5 

86 1.2 3.5 5.9 8.5 9.5 8.9 

87 13.8 16.7 17.2 18.0 17.5 17.6 

88 3.1 6.5 11.2 13.4 13.8 15.9 

89 -2.8 6.5 11.8 13.8 13.0 13.4. 

90 1.8 2.7 3.3 20.0 15.4 14.3 

91 3.6 5.8 8.0 10.8 10.7 10.0 

92 4-.5 5.3 6.9 7.2 6.6 6.9 

93 3.1 6.7 8.2 9.2 9.7 11.1 

94 4.7 3.6 5.9 11.8 13.1 13.7 

95 4.0 6.4 9.2 9.7 10.2 10.7 

96 4.9 7.0 8.4 10.6 11.1 10.9 

97 7.7 7.9 8.3 8.2 8.9 9.1 

98 5.4 8.6 11.5 13.8 13.4 14.1 

99 13.6 14.0 12.6 10.8 10.1 11.2 

100 0.6 1.1 3.6 4.1 5.7 5.8 

8/9/73 101 2.1 2.4 3.9 6.0 5.9 6.4 
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0- 2.S- 5.0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

102 0.9 1.4 2.1 3.5 5.3 6.1 

103 0.5 1.5 3.0 4.5 5.8 6.2 

104 0.6 3.9 6.0 6.6 6.8 7.9 

105 1.0 1.8' 3.2 4.2 5.5 6.4 

106 1.0 9.6 10.7 12.2 12.1 12.1 

107 2.1 5.1 9.9 12.6 13.0 12.0 

108 3.6 6.4 8.8 11.8 12.0 10.7 

109 2.4 3.0 5.0 6.3 7.1 8.7 

110 4.7 6.9 7.6 6.5 6.4 6.1 

ill 1.1 2.3 3.4 4.1 4.3 4.6 

112 4.2 20.3 22.0 23.3 24.9 22.8 

113 4.3 7.7 11.4 16.8 28.8 19.6 

114 3.2 7.5 10.7 11.9 11.9 10.5 

115 1.9 2.7 4.9 6.5 7.7 9.0 

116 2.5 4.1 5.7 6.3 7.4 7.4 

117 3.2 5.7 6.8 8.7 4.4 7.7 

118 1.8 3.1 5.1 7.2 7.4 7.7 

119 4.1 6.8 12.4 15.0 15.7 15.5 

120 2.5 S.3 9.6 11.3 9.0 9.4 

302
 



Field Measurements of Soil Moisture
 
In Percent by Weight
 

For Pass 38

Texas 


-

0- 2.5- 5.0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

9/8/73 1 14.0 14.4 14.7 14.4 13.4 16.2
 

2 17.4 17.6 17.2 16.8 18.3 18.1
 

3 18.8 19.4 18.8 18.0 15.8 14.3
 

4 12.3 13.1 13.1 13.2 14.6 17.0 

5 33.9 37.4 33.0 35.3 30.2 31.7
 

6 17.2 17.5 17.5 17.7 17.7 16.8 

7 21.7 22.3 22.0 20.5 19.9 20.3
 

8 21.8 19.2 18.9 17.6 17.8 15.8
 

9 9.8 10.6 12.4 13.8 13.9 14.2
 

10 11.0 11.7 12.1 11.9 11.4 7.8
 

11 11.3 11.8 11.8 11.5 11.0 9.7
 

12 10.0 11.2 11.1 10.5 8.5 7.1
 

13 12.1 13.0 12.7 12.4 10.5 6.1
 

14 9.4 -9.8 8.8 5.0 5.8 6.0
 

15 12.1 13.0 12.4 11.8 11.5 9.0
 

16 12.0 14.5 13.9 13.6 6.5 7.7
 

17 11.2 1-1.9 11.6 11.4 9.8 8.4
 

18 -11.0 11.6 11.4 8.7 8.7 10.3
 

19 11.0 13.8 14.3 13.7 13.0 11.7
 

20 11.0 .11.8 12.6 12.5 12.2 11.6
 

21 6.5 10.6 10.8 10.9 9.8 9.6
 

22 3.8 6.1 6.5 7.7 8.1 8.9
 

23 6.6 9.5 9.6 9.8 9.7 8.8
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0- 2.S- 5.0- 7.5- 10- 12.5-

Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm I cm
 

24 	 6.3 8.8 8.3 -10.1 8.7 7.8

25 	 . , 7.5 0. 3. 3 2.S 2.5. 
- 1k j , kk, ,, n 

26 	 7.). 12.0 1 .8 ,9 7.. 6.o 

i.7 	 q,,.9 ",9 it. 9 ..
,,,,7j°.2 1 , ,,:j," .. I 
-T 	 7 

28 	. .3 - 7. .1 7,3 s.8, ,7
 

$, 4 - 6 9 -. ,
4.9 I. 8,4 " '. ' 0 

7.4 .31 	 .Skk 6.2 " 6.7 7.0 7.3-

32 	 8.0 - 6.9, 7.1 7_I1. .3, 5 . 

I tk di 

I30.8 z.4 6.6 211"2 V1
 

34 10.3 -l.1 .1 6.1 6.2 , 7.1
 
lOS 	 ?,9 

136 7,-.2 7.9 4.9 6.7 29
 

'37 7.8 10'. 7 11'.4 11.5 -. 11.2,
 

S55 .1JK,. 12KS 	 ,7.S...... S.7, , 

11.3. 

I it'8, 4, _,,0'. 2_, 12'. 6. 18.2 12.2. 13.8 

9 6.8 9'.8 11.1 10.0 ,1 ,0,,, _10.3,,
A 'Z • 

'',.2 ,

I40. " 7 'l I i 1. o 'iA.'.ihi "k(Ill .k k ll h"...... 


' 11 13"- ,"ikd.gC' O I."A41 "' 	 A ) "."'1SJ '7' ,'JI V 

I- . 5: " . '6-, .. '-; Q 
"12 ,, fI -l4fi ' MI "s lIP" 2_1 " .."v , 

I Z " 'Q 6 8 

Aq7, 9 I1 3.61 .7 - .
" I, 	 .Co .- ,_7.4
.	 71,1 7 . 6.8 

~ Z' 	 %3_81. 	 5 1 *4: i6 

3./I69 2-9 2.6 

_" " . -... I ... 
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0- 2.5- 5.0- 7.5- 10- 12.5
cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
Date Site No. 2.5 


50 -1-.3 2.2 3.1 3.5 4.0 4.3 

51 @ f - 2.0 1.5 2.9 1.9 2.0 

52 1.2: 1.3 2.5 2.3 1.7 1.3 

53 -0.4- 0.8 1.3 1.6 0.9 1.0 

54 0.9-- 0.9 I.I 1.6 1.5 1.1 

55 0.61 0.8 0.9 1.4 1.9 1.2 

56 ..5- 1.3 1.6 1.4 1.7 1.6 

57 0.3 1.2 2.0 1.7 .1.4 1.2 

58 0.3 0.9 1.1 2.1 2.3 2.3 

59 0.5 0.8 1.1 1.9 2.1 1.6 

60 2.1 21.5 1.9 2.0 -2.6 1.6 

61 1.4 2.9 4.9 5.3 5.0 5.1 

62 1.9 3.6 4.5 3.3 3.1 2.6 

63 1.6 6.2 6.1 6.3 5.9 5.2 

64 1.4 4.5 4.6 4.8 4.8 4.4 

65- 3b 4.4 4.8 4.4 3.3 3.8 

66 -1.3 6.4 6.3 6.5 6.7 7.3 

67 2.- 4.3 9.2 5.9 4.9 4.7 

68 1.-S 6.9 8.8 7.6 7.7 8.6 

69 2.7 5.6 5.8- 5.5 5.8 5.3 

70 2.6- 6.8 6.6 7.6 7.5 7.0 

71 1.4 4.4 6.9 4.5 4.2 3.9 

72 2;2 6.0 6.7 6.8 6.8 6.4 

73 2.1 5.4 6.7 7.5 6.0 5.0 

9/10/7 74 -ri7- 2.6 3.6 3.5 2.8 2.2 

75- 3.9 4.7 5.2 5.3 5.9 5.7 
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0- 2.5- 5.0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

76 2.5 

77 2.6 

78 4.5 

79 5.7 

80 8.7 

81 3.7 

82 19.5 

83 14.6 

84 16.9 

85 8.6 

86 8.1 

5.1 


4.2 


5.7 


8.5 

10.3 

7.4 


17.4 

12.6 

14.8 


10.7 


9.6 


5.6 


5.4 


7.5 


11.3 

10.2 

8.4 


16.4 

12.5 

14.2 


12.0 


8.9 


4.8 


6.7 


6.3 


12.6 

10.3 

8.6 


16.0 

10.0 

14.2, 


11.6 


8.0 


5.7 5.4
 

6.4 11.0 

6.9 6.9
 

8.8 11.8 

10.1 9.3 

8.7 -8.2 

15.5 15.3 

9.8 9.8 

12.0 11.1 

11.8 12.0 

-- 8.58.0 
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Field Measurements of Soil Moisture
 
In Percent by Weight
 

For Pass 38
 
Kans as 

0- 2.5- 5.0- 7.5- 10- 12.5-
Date Site No. 2.5 cnv 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

9/13/73 1 37.0 30.8 25.8 24.0. 25.0 24.8 

-2 40.7 38,6 38.0 35.2 34.7 34.2 

3 32.4 30.9 30.6 29.6 29.3 26.4 

.4 45.3 41.3 38.4 33.4 33.7 35.5 

5 42.0 39.9 36.4 32.0 32.2 30.8 

6 34.0 35.4 27.3 22.1 21.8 23.0
 

7 38.6 29.8 27.2 27.5 26.3 27.7
 

8 53.4 48,4 37-.5 35.0 27.8 28.0
 

9 32.4 26.0 24.0 23.0 23.8 24.6 

10 33.1 22.1 23.5- 28.6 28.3 27.9 

11- 42.6 39.5 37.1 36.9 30.2 28.5 

12 27.4 23.1 21.9 21.6 21.5 22.9 

13 55.2 47.6 4-3.8 38.2 39.5 38.4 

14 52.5 44.7 36.2 32.3 31.6 31.7 

15 43.3 38.9 31.2 27.4 27.9 26.6 

16 30.3 24.5 22.6 21.2 20.7 20.6
 

17 27.0 23.3 *22.7 21.6 21.2 21.1
 

18 28.4 27.6 27.5 25.9 24.7 24.8

19 33.5 30.1 30.4 31.1 32.0 32.6
 

20 27.3 27.2 27.8 26.7 26.9 27.3
 

21 35.2 35.0 35.8 36.8 32.4 31.2
 

22 45.7 39.8 37.6 35.5 34.6 33.5
 

23 41.5 33.8 30.4 27.4 27,4 28.9
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0- 2.5- 5.0- 7.5- 10- 12.5-

Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm
 

24 34.6 29-.7 27.3 26.2 23.2 21.2 

25 26.3 24.0 23.0 19.9 16.4 18.2 

26 17.7 13.7 11.5 9.1 9.5 15.6 

27 14.3 20.2 19.0 20.2 20.5 19.5 

28 12.2 19.3 21.2 21.4 22.7 31.3 

9/14/73 29 12.7 16.7 18.8 18.3 20.1 20.0 

30 33.1 31.7 26.9 26.7 26.6 25.2 

31 22.6 20.5 21.2 21.2 21.0 22.6 

32 35.0 30.1 29.8 28.5 29.3 27.9 

33 38.3 35.0 31.5 31.1 30.7 30.1 

34 24.6 24.8 22.5 22.1 21.8 21.2 

35 9.3 16.9 18.8 18.0 16.0 14.5 

36 32.1 27.1 27.8 24.9 23.7 22.0 

37 24.1 23.9 22.5 20.8 21.1 18.3 

38 20.4 20.1 20.4 20.6 21.3 22.0 

39 17.3 16.3 15.9 15.9 15.8 15.9 

40 29.3 30.0 29.6 '28.7 28.2 27.1 

41 25.7 24.1 22.9 22.5 23.1 22.4 

42 24.8 23.4 20.8 21.0 21.4 21.8 

43 41.9 31.9 29.2 26.4 24.9 22.5 

44 20.7 16.4 i1'6'.,0 16.0 13.8 12.9 

45 24.1 22.8 23.6 23.4 24.0 25.3 

46 18.7 18.0 17.7 17.5 17.4 16.2 

47 33.0 32.7 29.0 27.3 29.6 30.0 

48 33.9 82.4 30.8 28.7 26.6 24.7 

49 37.4 32.4 29.3 30.5 24.8 27.5 
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0- 2.5- 5.0- 7.5- 10- 12.5-
Date Site No. 2.5 cm 5.0 cm 7.5 cm 10 cm 12.5cm 15 cm 

50 37.7 

51 31.0 

52 23.9 

53 42.2 

54 33.0 

55 45.1 

56 43.4 

57 27.9 

58 29.1 

59 33.0 

32.3' 


34.7 


23.4 


41.9 


25.0 


43.1 


39.2 


27.8 


30.7 


31.0 


31.0 


29.4 


22.3 


36.5 


23.6 


53.7 


34.5 


27.1 


29.3 


29.3 


29.5 


26.S 


23.3 


32.1 


23-.7 


37.2 


31.9 


26.3 


30.5 


27.6 


29.0 27.6 

24.5 22.7 

23.7 23.2 

30.0 33.7 

24.3 24.6 

36.7 33.8 

28.8 27.1 

25.0 23.6 

29.8 28.8 

26.5 26.4 
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