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1. INTRODUCTION

NASA's LANDSAT (ERTS) program has provided a wide variety ofﬂusers the
opportunity to explore the utility of satellite-based earth resources
observation. Although the full range of applications has not yet been
addressed, the potential of such systems to sarth resource management has
been definitely established. Even at tQis early stage, many commercial
and governmental agencies have expressed strong interest in the operational
use of earth observations. The LANDSAT experiment has also shown that con-
verting this potential into an operational system in which practical earth
resource manégement can be accomplished Fequires extensive investments in
conmunications, data handling, and data processing. These investments are
continually increasing along with user requirements for increased spétia]
énd spectral resolution, earth coverége, and data timeliness which imply
sensor output and daﬁa processing rates of hundreds of megabits per second.

The objective of on-board data compression (source encoding) is to
reduce "costs and/or systems constraints incurred by high data rates in the
sensor-to-ultimate user data handiing chain. When the data rate and volume
are reduced at the sensor, obvious benefits result. These include reduced
on-board storage, simpler data transmission, simpier ground data recording,
and fewer data tapes to-archive. This is accompiished by exﬁ1oiting sta-
tistical dependencies which exist between data samples in order tc reduce
the information rate.

Data compression has been the subject of much research and a large

~ number of papers over many years. In spite of the progress made in this
field, few spacecraft missions have been able to justify on-board data
compression with its attendant risks in reliability and data alteration,
and its cost in terms of size, weight, and power. The situation, however,
has changed recently. Digital Togic has become smaller, more reliable,
less expensive, and much less power consuming for a given amount of proc-
essing. It now appears practical to actually implement an operational data
compression system.

One of the principal considerations in selecting the most feasible
data compression technique is the need for broadbased applicabiiity. Earth
observation experiments are characterized by general purpose sensors which
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are used by hundreds of investigators for many different purposes. Such a
variety of users requires that the designer provide an information manage-
ment system as broadly useful as possible within the cost constraints.
Achievement of this maximum utility in terms of cost benefits and cost.
avoidance is a major tradeoff item.

1.1 NEED FOR DATA COMPRESSION OF EARTH RESOURCES DATA

By surveying the almost continuous studies of user needs for earth
resources data, it is possible to judge trends in data requirements. One
recent survey [150] of these studies related data types, such as ocean sur-
vey, meteorology, agriculture, forestry, geology, and mineral resgurcaes to
user community uses ranging from sea surface effects (temperature, rough-
ness, etc.) to terrain mapping, atmospheric pollution, and severe storm
warning. Additional factors such as data uses, data destination, data
perishability, frequency of observation, apd resolution can then be used to
form candidate missions and sensor groupings to meet emerging needs. Fig-
ure 1.1 presents a summary of typical sensor/mission groupings.
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Figure 1.1. Mission/Sensor Grouping
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1. INTRODUCTION

NASA's LANDSAT (ERTS) program has provided a wide variety of users the
opportunity to explore the utility of satellite-based earth resources
observation. Although the full range of applications has not yet been
addressed, the potential of such systems to earth resource management has
been definitely established. Even at this early stage, many commercial
and governmental agencies have expressed strong interest in the operational
use of earth observations. The LANDSAT experiment has also shown that con-
verting this potential into an operational system in which practical earth
resource management can be accomplished requires extensive investments in
communications, data handling, and data processing. These investments are
continually increasing along with user requirements for increased spatial
and spectral resolution, earth coverage, and data timeliness which imply
sensor output and daQa processing rates of hundreds of megabits per second.

The objective of on-board data compression (source encoding) is to
reduce costs and/or systems constraints incurred by high data rates in the
sensor-to~ultimate user data handling chain. When the data rate and volume
" are reduced at the sensor, obvious benefits result. These include reduced
on-board storage, simpler data transmission, simpler ground data recording,
and fewer data tapes to archive. This is accomplished by exploiting sta-
tistical dependencies which exist between data sampies in order to reduce
the information rate.

Data compression has been the subject of much research and a large
number of papers over many years. In spite of the progress made in this
field, few spacecraft missions have been able to justify on-board data
compression with its attendant risks in reliability and data alteration,
and its cost in terms of size, weight, and power. The situation, however,
has changed recently. Digital logic has become smaller, more reliable,
less expensive, and much less power consuming for a given amount of proc-
essing. It now appears practical to actually implement an operational data
compression system.

One of the principal considerations in selecting the most feasible
data compression technique is the need for broadbased applicability. Earth
observation experiments are characterized by general purpose sensors which
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are used by hundreds of investigators for many different purposes. Such a
variety of users requires that the designer provide an information manage-
ment system as broadly useful as possible within the cost constraints.
Achievement of this maximum utility in terms of cost benefits and cost
avoidance is a major tradeoff item.

1.1 NEED FOR DATA COMPRESSION OF EARTH RESOURCES DATA

By surveying the almost continuous studies of user needs for earth
resources data, it is possible to judge trends in data requirements. One
recent survey [150] of these studies related data types, such as ocean sur-
vey, meteorology, agriculture, forestry, geoiogy, and wineral resources to
user community uses ranging from sea surface effects {temperature, reugh—
ness, etc.) to terrain mapping, atmoseheric pollution, and severe storm
warning. Additional factors such as data uses, data destination, data
perishability, frequency of observation, and resolution can then be used to
form candidate missions and sensor groupings to meet emerging needs. Fig-
ure 1.1 presents a summary of typical sensor/mission groupings.
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Figure 1.1. Mission/Sensor Grouping
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The sensors listed are typical of the major classes of earth resources
sensors to be used in the post 1975 time frame. Among these, the highest
data rates are achieved by the imaging sensors, which are often multispectral,
and the synthetic aperture radar. One convenient way to look at the data
rates of imagers is from the standpoint of the user oriented requirements
shown in Figure 1.2. When projected into the 1980's these sensors lead to
spacecraft missions with instantaneous composite data rates in excess of
700 Mbps and data volumes approaching 1012 bits per orbit. These high data
requirements are solidly based on known earth resources user community needs.
Economic and/or political vicissitudes notwithstanding, the necessity of
considering data compression tradeoffs in future earth resources mission
studies is obvious. This report seeks to provide concrete results on multi-
spectral data compression upon which to base such tradeoffs.
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Figure 1.2. Data Rate vs Ground Resolution
for Imaging Sensors
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1.2 EXPECTED BENEFITS OF DATA COMPRESSION IN NASA EARTH

RESQURCES PROGRAMS

The ultimate aim of data compression is to increase the <cost-
effectiveness of data management in operating earth resources systems. " In
most cases, the incremental cost of adding data compression is modest. -
Benefits, however, are usually realized by designing the data management -
system with integral data compression, not as an add on. There is 1ittle
impact, for example, in reducing the data rate on an existing communications
Tink if the released capacity cannot be used elsewhere to reduce cost. Cost
benefits, in general, are quantitatively related to the compression ratio
which is achievable within fidelity constraints. Although the exact rela-
tionships and demonstrability of cost savings may be complex, reductions
substantially related to the compression ratio are expected. Some of the
more obvious cases in which data compression will yield immediate benefits
to NASA operating data management systems are:

¢ High data rate recording at low cost ground stations

® Relaying of data at moderate to high rates, via common carriers
(e.g., domestic satellite) for quick look or fast reaction needs

¢ Maintenance of digital data bases on image analysis computer sys-
tems (disks, tapes, drums, etc.) ~

e Handling, transportatioﬁ, and capital costs associated with digital
(computer) tape distribution and recovery.

It must be recognized that the compression scheme used should be care-
fully matched to the application. General user applications, such as data
archiving, will usually attain only modest compression (factors of 2 to 5).
Specific users, however, who require only data subsets with specific
characteristics, or who are satisfied with some loss of resolution either
spectrally or spatially, can realize cost benefit ratios of 10 to 100.
Achievement of some gains is immediately poss%b]e in the former case.
Information preserving techniques developed under previous NASA studies
[91] can be implemented to reduce the cost of archiving and recalling data.
In this case, special care is taken that the cost associated with recon-
structing compressed data files is minimum because this operation will be
repeated often. Compression, on the other hand, is performed only once,
upon archiving, and can thus be more complex.
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Two examples of data compression benefits to NASA programs are as
follows:

Earth Observatory Satellite

One feature of this program is the ability to directly transmit imagery
data to Tow cost user stations for their own processing. Cost considera-
tions, however, dictate a reduced data rate from the 240 Mbps provided to
primary stations. A 12 to 1 compression on-board the spacecraft wouyld
allow reception of full resolution data at a reduced rate. The only altern-
atives are various subsampling approaches such as sending 1/4 resolution in
each spatial direction. This decreased resolution would severely Timit the
utility of the imégehy to users, even to the point of jeopardizing the
practicality of low cost stations.

Goddard Space Flight Center to Sioux Falis Link

The EQS system can produce imagery totaling 1012 bits per day. After
GSFC processing, this data must be transmitied to the EOS data center at
Sjoux Falls, S.D. A continuous 10 Mbps 1ink would be required for this
transmission for which costs via domestic comsat can exceed $1,000,000 per
year. A 4 to 1 compression ratio could provide approximately $750,000 in
annual savings.

1.3 PURPOSE OF THE STUDY

The purpose of the study was to provide NASA with comprehensive trade-
off data and specific recommended methods of on-board data compression for
use in planning and configuring both present and future earth resources
programs. This study forms a natural second step to previous NASA funded
studies of data compression techniques for multispectral imagery which were
more 1imited in scope and considered only a few specific algorithms.

General Electric [142] and Philco-Ford [143] restricted their investigations
to rather elementary schemes which were very simply implementable for
on~board use. Purdue University [104] considered more complex (transform)
techniques and demonstrated their performance on both aircraft and satellite
multispectral scanner data. TRW Systems [90] and Purdue University [44]
performed paraliel studies under the ERTS (now LANDSAT) program to compress
multispectral scanner imagery using errorless codes for both archiving and
on-board application.
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These studies exhibited a number of very basic differences. For one,
they were forced to use different data bases due to the sequencing of NASA
programs and thus a meaningful comparison of results was difficult. Further-
more, they did not, in general, include important systems parameters such
as the effects of channel noise and sensor peculiarities on individual
algorithm performance. And finally, the use of differing criteria of
optimality and fidelity caused difficulty in applying their results to
on-going NASA programs.

The present study is much more comprehensive and unified. It applies
a common set of data, criteria, and system parameters and considers a broad
range of data compression techniques. The aim was to find the technigues
most suitable for multispectral imagery and which inject minimum distortion
as measured by a variety of fidelity criteria., Most unique among the
criteria was classification accuracy which recognized that many end users
empioy only specific processing of their data products. Subjective evalu-
ation of typical imagery products was also used. An additional objective
was to obtain parametric results which could be used by NASA in future pro-
gram planning. This included a requirement to deliver all computer simu-
lations to both the Ames and Marshall NASA Centers.

1.4 STUDY APPROACH

The study approach is summarized in the block diagram of Figure 1.3.
[t starts by surveying the current literature on image bandwidth compression
to select the methods which are relevant to the compression of multispectral
imagery. The multispectral data is then analyzed statistically. The results
are used to select a set of candidate bandwidth compression techniques from
the collection of relevant methods. The candidate methods are compared
using various criteria of optimality such as mean square ervor (MSE},
signal-to-noise ratio, recognition accuracy, as well as their computational
complexity. The comparisons are carried out based on the theoretical per-
formance, experimental performance, and the system considerations of the
candidate methods. Based on these results, the candidate methods are fun-
neled down to three recommended methods which are subject to further anal-
ysis. The recommended techniques are compared using the above criteria in
addition to the subjective quality of the reconstructed imagery. The per-
formance of the recommended techniques was also examined in the presence of
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Flow Diagram of the Study

channel noise and a variable rate (Huffman) encoder which further reduces

the bit rate without affecting the system performance.

Finaily, merits and

demerits of the recommended techniques are discussed and a number of recom-
mendations made for future NASA data compression activities.
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1.5 ASSUMPTIONS AND LIMITATIONS
The study has the following Timitations:

(1) Only two sets of multispectral data are used in the analysis and
simulation of the various coding algorithms. One is a set of four-channel
LANDSAT data, and the other 1is a section of 12-channel high altitude air-
craft data. The four-channel LANDSAT data is used to evaluate the perform-
ance of various types of bandwidth compression methods. The 12-channel
imagery is used to verify the major results and conclusions arrived at using
the simulation results with the four-channel data. Although the four-
channel data is quite representative of earth resources data, using one set
of data 1imits the re1%abi]ity of our simulation results to some extent.

The alternative approach would have been to use a number of diversified data
types, but this would have been impractical in view of the large number of
algorithms which have been examined, each performing at several bit rates.
This shortcoming is not significant in view of the agreement between the
theoretical and experiment results and the fact that the performance of the
recomnended techniques is verified using the 12-channel aircraft data. In
addition, the bandwidth compression software developed under this study has
been transferred to NASA Ames Research Center at Moffett Field, Catlifornia
and Marshall Space Flight Center in Huntsville, Alabama. This software
could be used to evaluate the algorithm performance on any multispectral
data which may be considered significantly different from the above mentioned
imagery.

(2) The study considers largely nonadaptive image coding methods for
compressing the bandwidth of the multispectral data. This is because non-
adaptive image coding methods are better established and tested, they are
easier to implement, and in general are Tess data dependent. In addition,
they operate at a fixed output bit rate. This eliminates the need to use a
buffer storage and buffer control at the transmitter. However, in recent
years a number of adaptive algorithms for coding images have been deve]pbed
whicﬁ, in general, perform better than the nonadaptive methods. But they
are more data dependent, require buffer storage and buffer control at the
transmitter, and are more complex. The addifioﬁ of a Huffman encoder to
the nonadaptive coding methods makes these methods adaptive. This s only
one of many ways that bandwidth compression techniques can be adapted to

the statistics of the data.
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(3) The study includes the complexity of various -coding methods and
presents tables for comparing the complexity of variocus coding methods in
terms of the number of arithmetic operations and the storage requirements
for the various coding algorithms. It does not, however, consider the
design complexity and part counts for the various coding methods. A hard-
ware iﬁplementation study that would specify the design complexity of the
various coding algorithms is beyond the scope of this study.

1.6 SIGNIFICANT RESULTS
The most significant results of the study are summarized as follows: -

e Fixed transformations matched to sensors are adequate for spectral
processing (e.g., Haar for LANDSAT data)

e For spatial processing at Tow rates (0.5 to 1.5 bits/pixel), hybrid
encoder using a Cosine-DPCM system is optimal. For high rates
(>1.5 bits/pixel), a two-dimensional DPCM system technique is
optimal.

e The gain due to the addition of entropy coding is 10% for hybrid
techniques and 25% for the two-dimensional DPCM technique.

8 Cluster coding methods:

- Best performer at low bit rates

- Good subjective results for composite color imagery

- Relatively poor subjective resuits for individual bands

- (Classification accuracy is not satisfactory for certain users.
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2. STATE~OF-THE-ART-SURVEY

This section is a survey of the Titerature relevant to data com-
pression of remotely sensed earth resources imagery. The survey is
divided into three basic segments. The first is a general description of
remote sensing, its applications, requirements, and methods. This section
is essential to determine which special properties of remotely sensed
imagery may be taken advantage of in the compression process and what
compression requirements exist. The second category includes the reason
for data compression, and the techniques which are relevant to remotely
sensed imagery. This section also includes approaches to measuring the
error between the original image and the reconstruction of the compressed
image. In the final section, the techniques and applications of automatic
classification to remotely sensed imagery are described. The last segment
is essential since it is by its ability to. preserve useful information that
a data compression technique must be judged.

Several bibliographies and surveys have been sources of references for
this report and should be mentioned here. They are the "Bibliography on
Digital Image Processing and Related Topics," by Pratt [2], "Progress in
Picture Processing: 1969-71," by Rosenfeld [3], "A Bibliography on.Tele-
vision Bandwidth Reduction Studies,” by Pratt [99].

The bibTiography documented in Appendix C is also interesting. In
addition to the normal reference information, keywords from the article
and a brief description of its contents are presented for nearly every
reference.
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2.1 REMOTE SENSING

One of the areas where images have been found to be very useful
sources of information is remote sensing. Essentially, remote sensing is
the field concerned with acquiring data about objects while remaining'at
a distance from them. Although many forms of remotely sensed data, other
than imagery, exist, pictures have been very valuable. The word
"photograph” has purposely been avoided here because remotely sensed
imagery can be obtained in a number of ways besides conventional photo-
graphy. Among the tools used for obtaining imagery are side looking
radar, return beam vidicon tubes, and multispectral scanners [10].

Two questions immediately arise when the use of remotely sensed
imagery is proposed. The first one is, why use remotely sensed data?
The second is, why use imagery?

There are several reasons for using remotely sensed data. The first
and most-obvious is that it may not be possible or safe to go near the
object of interest. This situation appiies to much of man's exploration
of space. In fact, many of the developments in remote sensing have been
related to the study of space - -~ from the telescope to space probes
carrying sophisticated instruments. For earth resources study, however,
the utility of remote sensing is somewhat less obvious. The usefulness
comes from the perspective provided, the frequency with which measure-
ments can be made, the large areas which can be covered, and finally from
the fact that on the earth there are still many inaccessible places.

Having a high vantage point can be valuabie for studies in many
fields [7]. Perhaps the most readily apparent are the geographical and
geological applications of remotely sensed data. Due to the large scale
of geological formations, good persepctive requires that measurements be
made from great distances. Other important areas for remote sensing in
the past have been forestry and road planning, primarily because of
inaccessibility. In agriculture [9], assessment of crop conditions has
been made easier using remote sensing techniques, and in archaeology it
has been found that patterns in the earth caused by buried ruins of man-
made structures can be seen from high above, but are invisible from
ground level. Water pollution [8], because of the Targe areas which must
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be covered, also can be studied usefully with remotely sensed data.

In answer to the question "why use imagery," it should first be
stated that not all remote sensing methods use imagery. For example,
techniques developed to measure water temperature in bodies of water [6]
and to measure amounts of air pollution [13] use spectroscopy and
scattering of laser radiation, respectively. However, a great'percentage
of remote sensing is dore using imagery. Some of the reasons for the
use of pictures are the following. First, all remote sensing measures
radiation of some sort emanating from the object under investigation.
Many methods are used to record the energy of the radiation. The most
familiar is exposing photographic film. -Generaily, the user of sensor =
data exploits two kinds of information: the amount of radiation and the
direction from which the radiation comes. Using an image format, all the
pertinent information can be conveyed. Furthermore, humans are well
practiced at separating patterns visible in a scene or picture. It is
usually these patterns which provide the information sought by the user.
‘Another key value of imagery is its versatility. That is, the same
image which is useful to an agriculturist studying crop type and diseases
may be useful to a soil scientist studying soil conditions, or a geologist
studying rock formations, or a hydrologist studying drainage patterns.

While imagery has been usefully exploited in remote sensing for a
number of years, extremely high altitude imagery has not been available
for civilian purposes until recently. The advantages of satellite
photography have been discussed and studied [14] using pictures taken by
Gemini astronauts, but it has remained for the Earth Resources Technology
satellite (LANDSAT) project to provide an important test [11].

Among the reasons put forth in support of satellite-obtained imagery
are the Targe areas which can be covered in a short time, the frequency
with which overflights of particular areas can be repeated, the great
number of disciplines for which the imagery can provide useful data, and
the synoptic view of large areas which is available. Of course acquisition
of such imagery is extremely expensive since it requires launching a
satellite as well as having appropriate tranducers and communications
equipment aboard. The LANDSAT project was designed to test the value of
satellite imagery for the study of earth resources.
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Since, in many respects, LANDSAT is typical of what can be expected
of an earth resources satellite, we describe it in some detail here.
LANDSAT was launched July 23, 1972, LANDSAT,which orbits the earth at an
altitude between 900 and 950 kilometers, has two kinds of sensors., One is
a set of three return beam vidicon tubes, and the other is a multispectral
scanner. Each of the vidicon tubes records eletromagnetic energy in a
different narrow spectral band. The multispectral scanner records the
energy in a different narrow spectral band. The multispectral scanner
records the energy in four separate bands from .5 to 1.1 microns. Since
the multispectral scanner is probably more typical of future multi-
spectral sensors, we describe it in further detail. Essentially, using
an array of optical fibers, energy is fed to photomultipliers for the
three shortest wavelength bands (.5 to .6, .6 to .7, and .7 to .8 microns)
and to silicon photo diodes for the .8 to 1.1 micron band. The outputs
of the photomultipliers and photodiodes are analogue signals which are
immediately digitized and muitiplexed. The output of the multiplexer goes
either to a modulator for direct transmission to the earth or is recorded
on magnetic tape for subsequent transmission.

A moving mirror aboard the spacecraft permits the recording of one
picture line of approximately 3200 points perpendicular to the vehicle's
path using only one optical fiber per spectral band. In order to allow
for return of the mirror and maintain approximately the same resolution
in the directions paraliel and perpendicular to the satellite's path,
six lines are swept out at a time using six photosensors in each spectrail
band. Motion of the LANDSAT satellite along its flight path makes possible
recording of successive sets of six picture lines. Each fiber passes to
its respective photosensor Tight coming to it from an imaginary four-sided
pyramid extending from the fiber at its apex down to the earth at its
base. The width of the square base of this pyramid is appfoximate]y 79
meters. Since the bases of the adjacent pyramids overlap, the resolution
of the multispectral scanner is slightly less than the width of the base.
In fact, the vertical distance between picture elements represents a
greater distance on earth than the horizontal distance between picture
elements. Also, the images are not rectangular because as the satellite
travels southward, recording succeeding image lines, the earth rotates
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eastward, causing each new Tine to be slightly further west than the last.

Correction of geometric distortion of LANDSAT -imagery done at TRW
is discussed in [12]. On the ground, computer compatible tapes are
produced for distribution to users. Based on the method of recording,
quantizing, and transmitting the image it had been estimated [11] that
the error in radiance recorded on the user-distributed tapes due to causes
other than quantization, is comparabie with the .quantization error. (

However, the following source of error should be noted: As de-
scribed above, each spectral compenent was recorded using six photo-
sensors. These photosensors became Tless uniform in their behavior as
the flight progressed. Consequently, error due to the lack of calibration
of these sensors became significant. An on-board calibration procedure.
using a lamp and calibration wedge had been planned and has been used to
linearly equalize the sensors. However, the calibrator has not been
entirely successful. (See Algazi et al. [18]). Striping with a six
1ine periodicity occurs in much of the later muTtispectra] scanner imagery.
Several methods have been proposed for correcting the streaking a
posteriori, with reasonable success.

2.2 DATA COMPRESSION

Several factors determine the data rate required of a high altitude
earth resources multispectral sensor [123]. They are observational
frequency (hours to months), field of view (1 mile to 1500 miles},
ground resolution {50 feet to 20 miles), spectral resolution (0.2um to
.5um), spectral coverage (.lum to 2.2um), radiometric resolution (2 bits/
sample to 10 bits/sampie). The resuiting data rate can be between 20
and 300 megabits per second.

These high data rates make data compression desirable before data
transmission. The large amounts of data which must be archived on the
ground also make groundbased data compression desirable.

Until now the cost of implementation of data compression schemes has
generally outweighted their advantages. Reductions in size, cost, and
power consumption, as well as improvements in reliability of digital
logic, are making data compression increasingly practical. In order that
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data compression be possible, one or both of two separate conditions must
be satisfied. The first condition is that the data have some structure
or redundancy. This means the data at any point in the image does not
take on all values with equal 1ikelihood or that the value at any point

is not totally independent of the data at every other point. By knowing
something about the data structure, data compression can be accomplished
without Tosing any of the information the data contains. Hence data
compression which relies on knowledge of data structure is called
information-preserving or error-free data compression. Comparison of a
number of such techniques has been done at TRW and appears in [90], [91].
The second condition which leads to compression is that the image user
have interest in only a certain portion or aspect of the data collected.
In this case, data which is of no value to the user can be discarded,
again resulting in data compression. Since information discarded is

permanently lost, compression based on user interest is called information-
destroying data compression. It can now be seen that information-
preserving data compression depends on a property of the data, and infor-
mation-destroying data compression depends on a property of the user.

In an actual application both types of data compression may be used.

Two major types of structure can be exploited for information pre-
éerving data compression of multispectral image data as shown in Figure
2.1. The first type is spatial correlation due to properties of the
scene being scanned and the scanning mechanism itself. The second type
of structure is correlation between the spectral components of a scene.
A relatively high spatial redundancy occurs and the ratio of spectral
band intensities per picture element (pixel) remains relatively constant,
since the reflectivity and incident radiations are reasonable uniform.
Suppose that a cloud shadow is cast over a segment of the desert.- When
the shadowed region is encountered by the scanner, intensities in all
spectral bands should simultaneously decrease and remain at some lower
value until the shadow boundary is crossed. If the scanning system is
such that contiquous pixels represent the intensities of overlapping
ground elements, then even higher spatial correlation exists between
pixels.
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Figure 2.1. Multispectral Image Data

Information-destroying schemes have been regarded with disfavor for
earth resources applications because image users have been unable to
specify in advance which aspects of the data are of importance to them and
which aspects are unimportant. With the increase in data rates, the need
to use some sort of information-destroying compression will increase,
‘particularly for “gquick look" uses. At the same time, users of earth
resources imagery are gradually determining their needs more accurately.
These two factors make incéreasing use of information destroying compression
probabTe.

2.2.1 Fidelity Criteria

In order to determine whether a particular information-destroying
compression algorithm preserves sufficient information for a particular
use, a criterion must be defined by which the information loss can be
measured. Several approaches to the definition of such a criterion have
been widé]y discussed. One approach is the definition of a measure of
error between the original image and the reconstruction of the compressed
image. Such a measure is called a distortion measure [564], [121]. Given
such a measure and the source statistics, it is possible to determine the
maximum compression which can be obtained with a particular anount of
distortion. The functional relationship between the amount of distortion
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and the achievable compression of the source data is given by the rate
distortion and the achievable compression of the source data is given by
the rate distortion function. Unfortunately, although the rate dis-
tortion Ffunction specifies the minimum data rate which will yield Tess
than a specific amount of distortion, it does not reveal what encoding method
will achieve the minimum rate. It does, however, provide a basis for
judging any particular coding scheme. A summary. of the evaluation of
performance appears in [40]. The various aspects of rate distortion
theory are discussed in [29]. A method for bounding rate distortion
functions for cerain memoryless sources is given in [69]. The rate -
distortion function for a class of processes is derived in [113].

The basic problem which is inherent in any use of rate distortion
theory, is the difficulty in choosing an appropriate measure of dis-
tortion. This problem has been studied by several authors in attempts to
obtain reasonable measures for particular applications[88], [112], [127].
These measures have primarily been developed to account for the behavior
of human visual systems and as such include weighting of spatial frequencies.
For earth resources imagery, however, human sensitivity is not of the
same jmportance as in television, for example. Computer classification,
as well as the ability to greatly magnify portions of an image, make
desirable the definition of a disfortion measure independent of spatial
frequency. Because of its mathnematicai convenience, a number of authors
have used mean square error as a measure of distortion. This measure
was used in [115] to compare iline by line encoding and two-dimensional
encoding. Vector valued distortion measures have also been studied. For
such measures, rate-distortion functions have been derived as well. These
functions give the source rate required to keep each element in the
distortion vector below some value.

Another criterion which can be used to judge whether a particular
information-déstroying compression algorithm preserves sufficient
source information is the algorithm's effect on.classification accuracy.
For example, if each raster point in the image is to be classified as
corresponding to some crop or land use, based on the recorded bright-
nesses in the several spectral bands, the increase in the several spectral
bands, the increase in classification errors resulting from performing
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classification on the reconstruction of the compressed data rather than on
the original image is a-measure of the relevant informetion lost due to
compression.

The increased probability of misclassification can be used as a
distortion measure, but, unfortunately, the complexity of the classification
procedure generally precludes calculation of the corresponding rate
distortion function.

2.2.2 Data Compression Techniques

A number of data compression technigues have been used for various types
of data. In this discussion we will Timit ourselves to those methods which
are relevant to imagery, with emphasis on multispectral high altitude
imagery. Most of the methods which have been shown to perform well consist
of concatenations of several techniques. )

Entropy Coding

Entropy coding is one of the most basic approaches to data compression.
Many compression schemes use such coding in the last stage of the coding
procedure. Combination of entropy coding with other techniques will be
discussed in subsequent sections. Entropy coding is applicable whenever
certain data values occur more frequently than others or the data can be
converted into a form in which certain values occur more frequentiy than
others, such as through differentiation. A code is used which has a short
code word length for the freguently occurring values and a long code word
length for infrequently occurring values. The average word length can
thereby be minimized. This approach is similar to that used in Morse
code where the frequent letter "e" is coded with one dot and the infrequent
"z" is coded with two dashes and two dots. To make effective use of entropy
coding, the statistics of the data must be known and the frequency of
occurrence of certain data values must be significantly higher than the
frequency of others. Since codewords have variable length, it is necessary
that there be some means by which succeeding codewords can be separated
by the decoder. Some variable Tength codes can be uniquely decoded with-
out separation between succeeding codewords. Such codes are said to be
“comma free.”



The optimal entropy code, given the probability of occurrence of each
data value, is the Huffman Code [54]. This code is comma free and can
readily be determined from the probabilities of the data values.

A near optimal entropy code, which is likewise comma free, is the
Shannon-Fano Code. It also requires knowledge of the -data value probabilities
but can be developed more easily than the Huffman code.

One approach to the problem of determining the source statistics is
to read in a block of data and make a histogram of the data values. Then
one of several possible variable 1ength.codes can.be chosen based on
these statistics [95], [106]. An additional codeword specifying which
code has been chosen is then required. Rice coding is an example of this
technique in which the data is first transformed into a form where certain
values are more 1ikely than others and then the transformed data is read
in a block at a time. The transformation which has been studied the most
involves differencing of succeeding elements. Since spatial correlation
exists in most imagery, the difference between adjacent elements tends
to be small. Hence the frequency of small difference values is much
larger than the frequency of large difference values. Thus Rice coding
can be applied to the data differences. Other data transformations such
as the Fourier Transferm or Hadamard Transform can be treated in a
similar fashion. Using data differences, Rice and Plaunt [106] obtained
data rates no more than .5 bits greater than the first-order data-entropy
(the minimum obtainable). Studies of the application of such technigues
to earth resources imagery have been done at TRW [90], [91].

A general treatment of Universal Codes (block codes which adapt to
obtain a performance measure arbitrarily close with increasing block
length) is given in [43].

Since codewords are of variable length for all entropy codes, the
source coder output rate is not constant. Consaquently, a buffer is
required in order that the cutput rate is constant. A number of studies
of the properties of such buffers have been made [33], [74]. Buffer
considerations have been studied at TRW as well, and appear in [90], [91].
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Quantization and Sampling

when a continuous signal is sampled and quantized, there is generally
information loss. If the signal is bandlimited,then sampiing at the
Nyquist rate (twice the highest frequency component present in the signal)
without guantization will make possible perfect sighal reconstruction when
infinite samples are obtained [111]. However, sampling is only for a
finite time. Furthermore, for convenience of handling and for noise
protection, quantization is normally desirable in sampled systems. The
sampled and quantized signal expressed in binary form is said to be coded
by pulse code modulation (PCM). PCM is commonly used for the output of
multispectral scanners whose sensors are arrays of photodiodes or photo-
multipiiers. Sampling is inherent due to the discrete nature of the sensor
array. Quantization can be done in equal increments {called linear quant-
ization) or with varying size increments. For example, steps sizes can
vary Togarithmically or as a Gaussian wave. Step sizes can also be de-
signed to minimize some error measure [89].

.The distortion introduced when a signal is sampled and quantiied as
well as optimum sampling and quantization are discussed in [28], [531, [55],
[56], [591, [70], [£72], [89], [129]. Adaptive quantization is discussed
in [31], [108].

The Nyquist rate for scanned sampling is generally higher than the
highest two dimensional frequency. As a resuit, scan-sampling below the
Nyquist frequency can be accomplished bylusing comb filters to eliminate
the aliased signal [58].

" Permutation codes can be used for block quantization [28], [30], as
follows. A block of data values are recorded. The N largest recorded
values are represented by one codeword. The Ny next largest values are
represented by another codeword. This procedure is continued until all
values are represented by some codeword. The number of values to be
represented by each codeword is chosen adaptively depending on the data,
as is the number of codewords to be used for any block. These codes have
been shown to be very good for Tow rates and can be made gocd for high
rates if long block lengths are acceptable.

2-11



Delta Modulation

In delta modulation the signal is sampled and a decision is made to
transmit & positive step or a negative step depending on whether the
reconstructed signal is larger or smaller than the original signal. The
step size is always constant (see Figure 2-2). Thus for each sample 6n1y
one bit is transmitted. An initial value must also be transmitted.
Consequentiy, if the fixed size is A, the delta coded signal requires a
minimum of N steps to change in magnitude by Ra. The result is that if
the original signal has a large change at some peint, the delta modulator
cannot keep up with the signal. This shortcoming is called "siope over-
load." To eliminate or reduce slope overload, several adaptive approaehes
have been tried. One is to sample at a high rate in comparison with the
Nygquist frequency. Another approach is to change the value of A
according to the number of times in a row the delta modulator obtains
the same direction of change [37]. This scheme requires a delay and
feedback. A third approach is to transmit large differences using
differential pulse code modulation (discussed below) and small changes
using deTta modulation [50]. Other approaches are discussed in [15].
Delta modulators have been combined with other compression techniques
such as PCM [60] and their signal to quantizing noise properties studied

[941, [95].

Original Signal/

Delta Coded Signai

Figure 2.2. Delta Modulation
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Predictive and Interpolative Encoding

An important set of compression techniques falls in the category of
predictive and interpolative encoding. Generally, these techniques in
some way use data that has already been obtained to estimate other data.
It is the difference between the estimate and the actual value which is
actually encoded. Predictive and interpolative coding methods are
distinguished by their method of estimating new data. In the interpolative
case, estimates are made of values between already measured points. In
the predictive case estimates are made of data values which are not
between already recorded data values. For example, a zero order predictive
encoder predicts that the next data value will be equal to the most recently
measured data value. It then encodes the difference between the next data
value and.its prediction, i.e., the most recently measured data value.
This type of predictive encoder is very popular and when the difference
is quantized is called differential pulse code moduiation (DPCM}.

DPCM can be used for data compression because signals generally change
slowly compared with the sampling rate, and consequently the difference
between succeeding elements tends to be small. Thus fewer bits are
required to encode the differences than to encode the actual signal values.
‘then few bits are used to encode the differences, the scheme has a sus-
ceptibility to slope overload similar to that discussed in the previous
section [123]. To overcome the problem of slope overload, nonlinear
quantization has been used [51], coding which takes advantage of the
eye's lack of sensitivity to small changes in the neighborhood of Targe
changes has been investigated [75], and block Huffman coding of DPCM
data has been studied [106]. Decoding of DPCM data essentially requires
integration. Consequently, errors tend to propagate [26], [47]. This
sensitivity of DPCM to channel errors makes other predictive schemes
of interest [35]. DPCM is also sensitive to sensor nonuniformity such
as that described in Section 2.

A number of studies and comparisons of a variety of predictive and
interpolative coding schemes have been made [22]}, [27], [341, [38]. [39],
[411, [42], [45], [71], [811, {841, [92], [105].
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Transfbrm Coding

The object of the ideal transform coding system is a Tinear mapping of
a block of correalted sample values into a smaller set of statistically
independent coefficients. A rate reduction is then accomplished by sorting
and quantizing the transformed scene depending on data activity.

Transforms are usually applied to square blocks of data, although they
can be used with other blockings as well or on a line-by-iine basis. - A
survey of various transform techniques appears in [128]. A comparison of
various ‘transform techniques in both performance and compiexity appears in
[22], [661, [110]. The application of transform techniques to color
television is covered in [102]. If the picture is broken up into square
blocks, adaptive coding can be used to take advantage of block non-
stationarities. DPCM, described in the previous section, can be viewed
as a transform technique [65]. A comparison of DPCM and various transform
techniques appears in [62].

The following transforms have received the major attention:

(1} Eigen-Function (Karhunen-Loeve)} Transform [40]. This transform,
also known as the KL transform, the eigenvector transformation, the
principal components transformation, and the Hotelling transformation,
results in uncorrelated { and hence if the data is assumed Gaussian,
independent) transform values. While theoretically optimal in the mean
square sense, this technique is often impractical to implement due to the
excessive computation required and the uncertainty in covariance matrix
determination, since, in practice, the correlation matrix of sample values
must be known or estimated (i.e. scene statistics are required to use it).
This matrix must be diagonalized to find the eigen-values and eigenfunctions
and then the transform performed (a matrix multiplication that is quite
time-consuming for targe block lengths). There is no fast algorithm for
this transformation, in contrast with the Fourier and Hadamard transforms.
Adaptive block quantization using this transform has been studied in [125].
Application to muTtispectral imagery is discussed in [104].

(2) Fourier Transform -The Fourier transform values are asymptotically
{in block size) uncorrelated and for moderate video block sizes (say 32x32
or larger) have been found to be essentially so. Hence, the Fourier transform
is almost as good as the Karhunen-Loeve transform without requiring knowledge
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of scene statistics. In addition, it can be rapidly computed with the Fast
Fourier Transform (FFT) algorithm [57], which requires on the order of
2N21092N operations for an NxN block, compared with N4 operations for the

KL transform. By adaptively quantizing in blocks,this transform has been
shown effective in [19]. Previous work appears in references [24], and [25].

(3) Cosine Transform. The Cosine transform is a modified form of the
Fourier transform where the original sequence of data is first used to
generate an odd or an even sequence [1407. In the discrete case this gives
a sequence of N points for generating an odd or even sequence respectively.
The discrete Fourier transform of the Tonger sequence of data is normalized
to give a set of 2N-1(or 2N) real va]ue§. This transform possesses the
attractive feature of the Fourier transform in addition to the fact that it
has continuous boundary conditions and it performs even closer to the KL
transform for Markov sequences.

(4) Hadamard (Walsh Function) Transform. This transform is computed
using only additions and subtractions and is hence faster than the Fourier
transform. A tutorial appears in [10]. Unfortunately, the transform
values are not asymptotically uncorrelated, although in some sense they are
less correlated than the original data. Hence, the method applies only
where Fourier transform implementations are too complex. —Data compression
is achieved by reducing the signal dimensionality while simuTltaneously
maintaining sufficient subjective image quality. A fast Hadamard transform
(FHT) algorithm reduces the number of operations required in NxN matrix
multiplication to NlogzN operations. The operations are simpier than with
the Fourier transform since only additions and subtractions are required.
In [16], there has been described a simple factorization of the Hadamard
matrix that reduces the FHT algorithm to the equivalent of seven Fortran
statements. An implementation of the algorithm for image bandwidth
compression has been designed by TRW [17]. ‘The Hadamard and KL transforms
have been compared in'[61], [76]. Real time implementation is considered
in [52] and [93]. Computer experiments on two-dimensional Hadamard
transforms were done in [82].

Several other transforms have also been studied:

(5) Other Transforms. The Haar transform also has a fast computational
algorithm [23], and Tike the Hadamard transform, offers greater simplicity
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than the Karhunen-Loeve and Fourier techniques. Relations between the Haar
and the Hadamard Transforms have been examined in [48].

(6) The discrete Tinear basis transform has been proposed in [68].
In simplicity and compression it is between the Hadamard and KL transform
according to the study. The discrete l1#near basds. is defined a priori,
independént of the scene statistics as are the Hadamard and Fourier
transforms, and unlike the KL transform. Additions, subtractions, and
multiptications are reguired for its implementation.

(7) The Slant transform is described-in [1001, and [10], Basis
functions for this transform are sampled and quantized "saw tooth"
waves. Additions,muitiplications, and subtractions are required to
implement this transform. Because the slant transform has basis functions
which change graduaily along an image line, it is suitable for representing
gradual brightness changes. This transform has produced good results in
simulation using sampled imagery.

Rate reduction techniques which are used in conjunction with transform
coding can be ¢lassified under the terms sampling, quantizing, and coding.
Sampling techniques attempt to expioit the clustering of correlated data
in the transform domain. Transform sampling techniques which have been
proposed Tkclude checkerboard sampling, random sampling, zonal sampling,
and threshold sampling [23]). The checkerboard and random sampiing technique
give poor results in practice because of the convolution of their transforms
with the reconstructed image and because they indiscriminately remove some
large enerqgy transform samples. Nonadaptive zonal filtering is also not
useful for images which contain both low and high frequency energy. The
most practical technique which has been investigated is threshold sampling,
or threshold coding, in which samples are included only if they lie above 2
predetermined threshold. Another technique is frequency-dependent threshold
coding which is also quite promising, yielding good comparison for Tow
distortion applications.

Quantizing techniques fall into two general Eategories: 1} distribution
of bits among different frequencies according to power level, and 2) distri-
bution of quantization levels at a given frequency. The simplest, but
not optimal, distribution of levels is uniform. In [61] the distribution
of bits among frequencies is studied. Experiments with the bit distribution
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for orthogonal transform coding appear in [110]. The Togarithmic
quantizer is one means of nonlinearly quantizing the transform domain
samples. Its principal advantage is that it can be implemented by
continuous arithmetic operations followed by 1inear gquantization.
Frequency domain coding has been studied in [25]. The effects of
frequency-dependent bit distributions, high resolution quantizing with
code truncation, and a combination of the two techniques were investigated.
The performance gains achieved vary from 16.7% to 35%. Some distortion
occurred with all of the technigues due to the "convolution effect.”
A technique which should be investigated further is the use of fixed source
(M-ary) codes to coding in the transform domain. Particular promise is
shown by the Rice algorithm, a form of universal coding. TRW and JPL
have studied implementations of the Rice algorithm [90], [91]. Con-
catenation of transform coding followed by predictive coding of adjacent
coefficients does not appear to be useful because the coefficients in
the transform have low redundancy, and the transform is not positively '
definite. The resuliting dynamic range and rapid sign changes result in
the need for impractical edge detection coding methods. However, block
transform techniques followed by predictive encoding between blocks are
considered in [68]. DPCM for coding the error between the original signal
and the reconstruction of the transformed sighal is discussed in [44].

Block Tength and dimensionality are important choices in any of the
transform techniques. There is a tradeoff between achievable performance
and subjective quality, because the distortion criteria permit wide
variability in averaging over blocks. The “Gibbs phenomenon” due to
transform truncation in subsection processing can be reduced by spectral
windows or through a scheme proposed by Algazi [18].
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Convolutional Coding

In order to describe the application of convolutional coding to source
coding, it is useful to first discuss the difference between source coding
and channel coding. This is necessary because convolutional coding is
generally applied to the channel coding problem. Source coding, as we have
already mentioned, is the process of compressing the data stream coming
from the source in order to reduce the amount of data which must be trans-
mitted or stored. Source coding normally results in the removal of re-
dundancy from the data. Channel codina is the process of adding redundancy
to a signal in order to protect against channel errors.

Convolutional coding is commoniy used as 'a way of adding redundancy to
a data stream for the purpose of channel coding. In its simplest form, the
convolutional coder convolves a data sequence with two or more different
functions, each convolution producing a separate data sequence. These data
sequences are interleaved, forming & new, long sequence. The decodef then
reconstructs from the output sequence the actual shorter input sequence. If
channel errors have occurred, the decoder finds the most 1ikely original
sequence given the channel corrupted output sequence.

We now observe that the decoder acts in some sense as a compressor:
It takes Tong sequences as input and produces as output short-sequences,
Hence, a decoder for a convolutional code can be used as a source encoder,
The difficulty is that several Tong streams of data are mapped into the same
short stream of data. Therefore distortion occurs in the compression process.
Methods for applying convolutional encoding to the source coding problem are
discussed in [20], [21], [26]. The average "Hamming distortion" obtained
in encoding binary memoryless sources with certain convolutional codes is
given in [73]. -

Most of the results which are given for convolutional codes have been
generalized to constant rate tree codes, but simulations have been 1imited
to convolutional codes.

Clustering Techniques

Clustering techniques group certain data values or points together
and transmit only a value representative of the group. Consequently,
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however, one defines the various groups, clustering preserves intergroup
differences and destroys intragroup differences. Hence, clustering’
techniques are inherently information-destroying. Clustering methods differ
among themselves primarily in how the groups or clusters are chosen.

These clusters can be predefined or be adaptively selected based on the
structure of the signal. Quantization is itself a trivial example of a
clustering procedure wherein all signal values within half a quantization
level of a prespecified level are represented by the same value. Applications
to multidimensional data such as multispectral data have been developed [46].
Both of these methods choose clusters adaptively based on the data structure,
The former method first clusters in each dimension separately and then re-
fines the estimates using the multidimensional data. The Tatter method
iteratively attempts to find N clusters which minimize the percentage errcr
between the reconstructed ciuster image and the original image. Another
example of a clustering technique appears in [85], and is called plateau
coding. In this case, a luminance and two chrominance signals are to be
transmitted. A threshold is specified and the Tuminance signal is scanned.
Whenever the Tuminance change is larger than the threshold, a flag is set.
Between each pair of flags only the average value of each chrominance signal
is transmitted.

Feature Extraction

As a final compression technique, we discuss feature extraction.
Feature extraction has the potential for very high compression. This
potential must be weighed against the requirement that the user be able to
very specifically define his reguirements. The principal behind feature
extraction is that only measurements directly related to the users' needs
must be transmitted. For example, if a user were interested in determining
the total area covered by water in a specific region, he would require only
that the location of edges of bodies of water be transmitted, together with
information about which side of the edge is water and which side is not.
Although feature extraction has not been practical up to now, in a system
which is adaptable to the individual user, such techniques hold great
promise.
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Feature extraction before classification of muitispectral data has
been done and is discussed in [104], [135], [137]. More general overviews
of feature extraction appear in [83] and [130]. At TRW the possibility of
using spectral sighatures of various classes to estimate boundaries of the
classes has been studied [79]. Once the boundaries have been found, only
the location of the boundaries and the codeword for the class surrounded by
the boundary need be recorded.

2.2.3 Classification

As has been pointed out in the previous two sections, earth reseurces
satellites produce vast quantities of data, In addition to presenting a
data transmission problem, this presents to the users the problem of taking
advantage of all the data. In order to extract the desired information
from satellite imagery, a number of approaches to automatic slassification
have been tried. By comparing classifier performance on an original image
and on the reconstruction of the compressed.image, we can determine the
effect a particular compression technique has on the extraction of useful
information. In order to judge the compression technique we must make the
comparison described for each classification task to which the imagery will
‘be subjected. '

In this section we briefly describe several techniques which have been
applied to the classification of high altitude imagery. 7

General discussions of pattern classification without specific reference
to earth resources imagery appear in [130], [133] among others.

Three kinds of information are available in imagery; radiometric,
cartographic and temporal. Radiometric information is obtained from the
recorded brightness in each spectral band, Cartographic information is
contained in the spatial distribution of the brightnesses. Temporal infor-
mation exists when images of the same area recorded at different times are
available. Use of multitemporal imagery for automatic classification must
generally be preceded by registration of the various images (reduction to
the same scale and orientation, followed by superposition). Studies of
registration appear in [131], [132]. A11 three types of information have
been used in classifiers.
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The most commonly used classifier operates strictly on radiometric
information [134], [135]. A programming package for clustering and class-
ifying multispectral data, developed at TRW, is described in [136]. A
modified version of this program, cql]ed COSMIC, is available through
NASA-JSFC. For each point in the image, the spectral response (spectral
signature) is classified as belonging to one of some finite number of
categories. These categories generally include crop type, soil type, land
use, and so on. Some systems allow clustering into classes which are
defined solely by the data structure and are not prescribed a priori.

Radjometric classifiers are sometimes extended to apply to multi-
temporal as well as radiometric information. This is particularly useful
in crop classification since crops change their reflectance properties in
a fixed time sequence as they mature.

Classification techniques that use spatial information are discussed
in [137], [138]. The first technique optically computes the Fourier
Transform of a small area of an image, then samples and quantizes the
transform. Using a computer, classification of the area according to land
use is done based on the value of some parameters of the transform. The
second technique operates directly on digitized imagery. Various features
are defined which are Tinear combinations of neighboring elements. The
values of these features are usecd for land use classification.

2-21



3. SELECTION OF BANDWIDTH COMPRESSION METHQDS
RELEVANT TO MULTISPECTRAL IMAGERY

The previoms section has compiled a comprehensive Tist of references
applicable to the compression of sampled imagery data for purposes of
transmission or storage reduction. In this section these are specialized
to those which are relevant to on-board compression of multispectral earth
resources data. The technigques are described and listed by categories
organized so as to increase the efficiency of their comparative evaluation.
This listing forms the basis for all subsequent evaluation and synthesis in
the report leading ultimately to three specific recommended compression
techniques.

In selecting compression methods which are relevant to on-board
compression of earth resources data, each class considered in the Titerature
survey is discussed in turn below. Descriptions of the techniques themselves
may be found in the literature survey (Section 2). A1l of the relevant
classes are listed in tree form in Table 3.1.

3.1 GENERAL COMMENTS

A survey of the Titerature in bandwidth compression techniques shows
that the search for efficient techniques of compressing the bandwidth of
pictorial data has led various researchers to a common approach to the
probiem. Briefly, this approach is processing the correlated data (images)
to generate a set of uncorrelated or as nearly uncorrelated as possible
set of signals which in turn are guantized using a memoryless quantizer.
The quantized signal is then encoded using either fixed or variable Tength
code words and is transmitted over a digital channel. This is the general
approach taken in designing differential pulse code modulators (DPCM) and
the techniques that use unitary transformation and block gquantization as
well as erroriess coding methods such as- entropy coding of the difference
signal, contour tracing algorithms, and many other techniques discussed in
the Titerature review.
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The same general approach is applicable to on-board compression of
multispectral earth resources imagery. However the addition of one additional
dimension (spectral) to the 2 spatial dimensions introduces subtleties into
generating uncorrelated signal sets including different correlation functions
in the two domains. In extending intraframe (spatial only) coding techniques
to multispectral data, at Teast two variants may be made:

e Concatenation of two techniques, one applied spectrally, the
other spatially

@ Extending a technique to one higher dimension.

Selection of applicable techniques must thus be kept sufficiently general
to include all variants. Among the more important criteria for use with
earth resources data are ability to achieve Tow distortion without intro-
ducing artifacts and sensitivity to variations in sensor design.

3.2 ENTROPY CODING

These methods have been used for compressing the bandwidth of multi-
spectral imagery as well as imagery data from weather satellites. Entropy
coding methods are most useful for archiving applications since  they can
be usad to reduce the bandwidth of imagery without introducing any dis-
tortion. Variations of entropy coding methods are Huffman Coding, Shannon-
Fano Coding, Bit Plane Coding, Run-Length Coding and the Universal Codes.
They are all relevant in compressing the bandwidth of multispectral imagery.

3.3 QUANTIZATION AND SAMPLING

These methods are not included since compression of bandwidth at a
fixed resolution, which would be the case of satellite data, implies
increased quantization error. Large quantization error results in con-
touring error in the reconstructed imagery. In video (television) data,
the effect of contouring error is often reduced by adding dithered noise
to the signal before quantization and subtracting it from the reconstructed
signal [141]. This is not recommended for earth resources data since for
many users a small distortion is much more acceptable than the introduction
of artificial information or artifacts.-
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3.4 DELTA MODULATORS AND PREDICTIVE CODING

~ These methods have been used with wide success in a large variety of
image app?ications." They are very easy to implement. They require very
1ittle storage capacity and perform well at relatively high bit rates.
These methods are listed under the three general categories of delta modula-
tors, DPCM, and simplified DPCM systems.

3.5 INTERPOLATIVE ENCODING

These methods have not been included. This is because interpolative
methods are sensitive to data statistics [39]. They do not perform as well
as other methods such as DPCM, and the more efficient interpolative encoding
methods are rather compiex to implement.

3.6 TRANSFORM CODING

These methods have been used successfully in compressing the bandwidth
of video data. They are fairly insensitive to data statistics and channel
noise. Included here are the Karhunen-Loeve, Fourier, Cosine, Hadamard,
Slant, Haar and Discrete Linear Basis transforms as being relevant to
multispectral imagery. Table 3.1 also 1ists hybrid encoders that use a
cascade of a unitary transformation with a bank of DPCM systems [140].
-This sytem combines the atiractive features of both transform coding and
the DPCM systems thus achieving good coding capabilities for any imagery
data including MSS imagery without mahy of the limitations of each system.

3.7 CONVOLUTIONAL CODING

These methods have not been included since they are still in the stage
of theoretical development. Some attempts have been made to use convolu-
tional coding for bandwidth compression of speech signals, but as yet there
is no Titerature available on the application of convoiuticnal coding to )
imagery data.
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3.8 CLUSTERING AND FEATURE EXTRACTION

These techniques are particularly relevant to the éompression of
multispectral data since they may be used to achieve bandwidth compression
as well as data classification simultaneously. Three variations of this
technique which are currently in use are contour tracing, the BLOB algorithm,
and the cluster coding methods which are listed in Table 3.1.
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4. ANALYSIS OF MSS-LANDSAT DATA

The bandwidth compression methods which are relevant to the band-
width compression of multispectral imagery are listed in Table 3.1.
Selection of this list from a variety of image bandwidth compression
techniques listed in the 1iterature'survey was discussed in Section 3.
To narrow the Tist to a still smaller number of techniques, first the
MSS data was analysed, then, considering the characteristics of the MSS
data, a list of bandwidth compression techniques most appropriate for
MSS data was selected.

In this section first we describe the MSS data, and then list its
most important characteristics. Section 5 will utilize these character-
istics in funnelling down the Tist of bandwidth compression techniques
to the candidate algorithms. ' '

4.1 DESCRIPTION OF MSS DATA

The multispectral scanner on-board LANDSAT-1 records the energy in
four separate bands from 0.5 to 1.1 microns. The four bands correspond
to red, green, and two near infrared bands. The outputs of the scanner
are analog signals which are immediately digitized and multiplexed. The
output of the multipiexer is either directly transmitted to the earth or
it is recorded on & magnetic tape for subsequent transmission. A moving
mirror permits the recording of one picture Tine of approximately 3200
points perpendicular to the vehicle's path using one optical fiber per
spectral band. To allow for return of the mirror and to maintain about
the same resolution in both directions, six lines are swept out at a
time using ﬁhotosensors in each spectral band. As discussed in Section
2.1, the resolution of a multispectral scanner is different in horizontal
and vertical directions. This is because the vertical distance between
picture elements represents a greater distance on earth than the
horizontal distance between picture elements.

4.2 STATISTICAL MODELING OF MSS DATA

Multispectral data can be modeled by -a stochastic process f{x,y.k)
which is a function of three discrete variables x, y, and k; x and y
refer to spatial variables, and k is the spectral variablie. In
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theoretical studies of image bandwidth compression methods, one often
models the data with a stochastic process having statistics identical

to those of the imagery so that one can evaluate the average performance
of various encoders. This approach to the analysis of algorithms used
for coding video data is often carried out by assuming that the
stochastic model f(x,y,k) is Markov on all three variables x, ¥, and k.
This would imply that the auto-covariance of the assumed stationary
process f(x,y,k) is exponential in all three dimensions [62], 1i.e.,

R(X,%0y,y ok k) = e 1X=X]-02ly-y|-as]k-k| (4.1)

This is a desirable assumption since it simplifies the analysis of the
problem to a considerable degree. The results are valid on most naturally
obtained video data that show ordinary movements in both spatial and
temporal directions. Considering this model for MSS data, one proceeds
with correlation measurements which specify aj,es, and az in (4.1).

These measurements also verify the correctness and the accuracy of the
above model.

Measurements of the spatial correlation of the data reveal that
the correlation of the data in the horizontal and the vertical directions
is indeed exponential. Estimates of values for o, and ap are given in
Table 4.1 along with other statistics regarding the representative MSS
data shown on Figures 4.1 and 4.2. The spectral convariance of the repre-
sentative MSS data is shown in Table 4.2 The entries of this table
show that the spectral correlation does not reduce exponentially by
moving across the bands. Indeed various bands show éimi1arities and
differences which are totally different from interframe behavior of
other video data encountered in television or in reconnaissance
flights. Table 4.2 shows the following spectral characteristics
for the MSS-LANDSAT data:

# Large positive correlation between the red and the
green bands

¢ Large positive correlation between the two infrared bands

e Small negative correlations between the red and the two
infrared bands.

4-2



Table 4.1. Statistics of the Representative
MSS-LANDSAT Data
DATA
PARAMETERS RED GREEN IR#1 IR#2
Max (Amplitude) 84 103 96.0 52
Min (Amplitude) 24 15.0 10.0 2.0
AVE (Amplitude) 47.83 a7 59.58 26.83
a1 0.011 0.039 0.089 0.089
ag 0.019 0.076 0.156 0.156
Table 4.2. Spectral Correlation Matrix of the
Representative MSS-LANDSAT Data
RED GREEN IR#1 IR#2
RED 1.000 .866 .276 -.141
GREEN .866 1.000 .288 -.177
IR#1 .276 .288 1.000 .654
IR#2 -.141 -.177 .654 1.000

This behavior is characteristic of LANDSAT multispectral imagery.
This point was verified by similar measurements on two additional

LANDSAT images.
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5. SELECTION OF CANDIDATE BANDWIDTH COMPRESSION TECHNIQUES

In Section 3 the relevant bdndwidth compression technigues were
selected. They are listed in Table 3.1 in four categories. In this
section we examine each coding method which is Tisted in general form
on Table 3.1, and utilize the characteristics of the MSS data discussed
in Section 4 to get a 1ist of specific bandwidth compression techniques
most suitable for MSS data. These candidate techniques were studied
and compared in detail and were funnelled down to three-multispectral
bandwidth compression techniques which we finally recommend.

5.1 ENTROPY CODING

A study of entropy coding methods for compressing the bandwidth of
MSS data was performed at TRWY. The salient points of the study were
that the entropy coding methods can be used to compress the bandwidth of
MSS data by a factor of about 2 to 1 without any degradation and the
compression technique can be fabricated for on-board processing using an
acceptable number of parts and within reasonable weight, power, and size
Timitations. For details of the study the readers are. raferred to
reference [91]. Because of this comprehensive study we will not consider
entropy cocding methods in compressing the bandwidth of MSS data individ-
ually. Instead, entropy coding methods will be considered in cancaten-
ation with other bandwidth compression techniques. This is because entropy
coding further reduces the bit rate of a bandwidth compression technique
that generates an uneven distribution of symbols at the output receiver.
Here the object is to study the improvements in the performance of each
bandwidth compression technique as a result of concatenating it with
the entropy coding methods. For this reason only the Huffman encoder is
considered. Other methods listed in this category have a similar per-
formance and are in general more compiicated to implement.

5.2 TRANSFORM CODING

MSS data is three-dimensional. As discussed in Section 4.1, it
possesses spectral as well as spatial correlation. Three-dimensional
transform coding methods take advantage of the correlation of the data
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in all thrée dimensions to compress its bandwidth. Among the transforms
1isted in Table 3.1, we chose three-dimensional Fourier, Cosine,

Hadamard, and Slant transforms for further study. The three-dimensional
KL transform is rejected because of its great implementational compiexity.
The three-dimensional Haar transform is rejected due to its performance,
which has been shown to be Tower than that of other transforms such as the
Hadamard transform. The discrete Linear Basis transform is rejected
because it has a performance rather similar to the performance of the
Stant transform and also because it has been used to compress the band-
width of MSS data in other studies [68&].

In addition to the above three-dimensional transforms, two technigues
that use a combination of different types of transforms are alsc considered.
These are the three-dimensional bandwidth compression techniques that use
a combination of KL-2 Dimensional Fourier and KL-2 Dimensional Hadamard
transforms. In both systems the KL transform is in the spectral domain.
These methods are selected because the correlation of the MSS data in the
spectral domain is nﬁt expohentia1, thus the KL transform is expected to
result in substantial impréveméﬁts_over other unitary transforms Such as

Hadamard or Fourier,

5.3 DELTA MODULATORS AND PREDICTIVE CODING

In the class of predictive coding methods, only DPCM systems are
considered. Delta modulators are rejected because for bit rates higher
than one bit per picture element they require sampling the analog signal
at a higher sampling rate. Thus, the implementation requires a variable
sampling of the sensor outputs which increases the complexity of the
system enormously. Besides it has been shown that the performance of
both delta modulators and adaptive delta modulators is suboptimal to
the performance of two-dimensional DPCM encoders for imagery.data [63].

Simplified DPCM encoders are used in the actual design of a system
to approximate the performance of DPCM encoders. The Toss in performance
of the bandwidth compression systems due to this simplification is rather
small. This problem has been studied in recent Titerature extensively [84].

In addition to DPCM and transform coding techniques, the hybrid encoders
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that combine transform coding systems with DPCM encoders give good peﬁform-
ance for both intra and interframe coding-of television signals. These ~
systems can be divided in three categories:

@ Systems that performs a two-dimensional transform of each band

of the MSS data and use a bank of DPCM encoders to process the
transformed data across the individual bands.

o Systems that take a transform across the spectral bands and use
a two-dimensional DPCM encoder to process the data in the.
spectrally transformed domain.

e Systems that follow a spectral transformation in the spectral
domain of MSS data by a second transform in the horizontal
direction {scan direction) and use of a DPCM encoder in the
vertical direction. ’

From the hybrid system in the first category, we studied systems using
two-dimensional Hadamard and Cosine transforms in combination with a DPCM
encoder. From the second category we studied the system using KL-2
Dimensional DPCM encoder. From the third category, two systems combining
KL-Hadamard-DPCM and KL-Cosine-DPCM encoders were selected for further

study.

The reason for including a choice between Cosine (or Fourier) and
Hadamard (or Slant) transforms is the different approaches that can be
taken in the design of these systems. Where Hadamard and STant transforms
are always implemented using all-digital circuitry, the Cosine and Fourier
transforms can be jmplemented using analog transversal filters that utilize
the chirp-Z algorithms [141].

5.4 CLUSTER CODING

Among the cluster coding methods Tisted in Table 3.1, we se]ecfed a
coding technique that uses a Swain-Fu distance to generate an image of
clusters and uti]ized that for a combined bandwidth compression and
classification procedure. This method was selected because a similar
method (using ISODATA for clustering) has been used with success at
Jet Propulsion Laboratory. Compariﬁg its performance with other band-
width compression methods was of considerabie interest to the results
of this study.

The contour tracing algorithm was rejected because it has been shown
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that its performance, when applied to the imagery data directly, is not
as good-as other bandwidth compression systems [149].

The BLOB algorithm was rejected because in its present form [147]
it is not optimal -for multispectral data; it could be extended to
multispectral data but this makes the technique rather complicated.

5.5 LIST OF CANDIDATE TECHNIGUES

The candidate techniques selected in this section fall into
six categories. The number of individual techniques considering various

transforms is actually 12.

1.

6.

Three-dimensionatl tfans%orm coding algorithms

a) 3D Fourier transform with block quantization.
b) 3D Hadamard transform with block quantization.
c) 3D Slant transform with block quantization.

d) 3D Cosine transform with block quantization.'

Mixed three-dimensional coding algorithns

'a) KL transform in the spect§a1 and 2D Fourier transform ’

in the spatial domain.
b) KL transform in the spectral and 2D Hadamard in the spatial

domain.

Two-dimensional spatial transformations with DPCM encoding
in spectral domain

a) 2D Hadamard transform with DPCM coding in spectral domain«
b) 2D Cosine transform with DPCM coding in spectral domain.

One-dimensional KL transform in spectral domain cascaded
with two-dimensional DPCM encoder in the spatial domain.

One-dimensional KL transform in spectral domain followed with

a) Cosine transform and DPCM in spatial domain.
b) Hadamard transform and DPCM in spatial domain.

Cluster coding algorithm using Swain-Fu distance for clustering.

The following sections compare these methods based on their analytical
and simulation performance as well as their complexity of implementation.
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6. CRITERIA FOR COMPARING BANDWIDTH COMPRESSION TECHNIQUES
FOR MULTISPECTRAL IMAGERY

Toevaluate. the performance of a particular bandwidth compression
method,” ohe-must determine whether the. bandwidth compression method
preserves sufficient information for a particular application. To do
this, a criterion of optimality must be defined by which the information
loss is measured. To measure the distortion in imagery data, a variety
of criteria of optimality has been used. These criteria are necessarily
user-dependent. One such criterion is the weighted mean square error
used 1in conjunction‘with video data. This measure weighs the error at
various fréguencies according to the chaﬁgcteristics of human vision.

The imagery data used for applications involving pattern recognifion

and pattern classification use other measures such as the classification
accuracy of the compressed imagery. In addition to these criteria which
are used to evaluate the performance of a bandwidth compression technique,
a different set of criteria exists which relate to the complexity, cost,
and the sensitivity of various image bandwidth compression techniques.
These criteria are discussed under the general heading of system
cons1derat10ns They are also of varying degrees of importance depending
upon the part1cu1ar app]1cat10n

;fﬁ,_:;phthgghstudxufor criteria of optimality we use mean square error,
peak-to-peak signal-to-noise ratio, recognition accuracy of reconstructed
imagery and the system considerations of the various bandwidth compression

methods.
6.1 MEAN SQUARE ERROR (MSE)

Mean square error is the most frequenily used criterion of optimality
in data compress1on as well as in most other estimation and filtering
prob]ems Th1s 1s part1y due to the inherent s1mp11c1ty of this
cr1ter1on wh1ch a11ows for closed-form ana]yt1ca] solutions and partly
to the fact that many sensing systems respond directly to the energy con-
tained in the stimulus and that the energy and mean square error are
closely related. Many image bandwidth compression results are in terms
of mean square error or weighted mean square error.
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Experiments -with the mean square error have shown that it does have
some correlation with the subjective quality of the reconstructed imagery.
Limited experiments show a value of about 50% for this correlation. In
geﬁeral, mean square error shows a better correlation with the subjective
quality of the bandwidth compressed imagery at low levels of degradation.
This correlation also depends on .the type of the degradation as well as
the Tocation at which degradation occurs. Human vision is less sensitive
to uncorrelated error. It also shows Tess sensitivity to the error at
high brightness levels and the error at highly detailed areas.

6.2 SIGNAL-TO-NOISE RATIO (S/N)

A criterion closely related to mean square error is the signal-to-
noise ratio. Indeed this criterion can be considered a normalized form
for the MSE. Peak-to-peak signal to root mean square (RMS) value of the
noise as well as RMS signal-to-noise ratio are widely used by the tele-
vision industry as a measure of television signal quality.

In this study both the MSE and peak-to-peak signal-to-RMS-noise
raetios are used to evaluate and compare various bandwidth compression
methods. These quantities are calculated for each band as indicated by
equations (6.1) and (6.2).

=1 (6.1)

S/N = 20 Tog,, --E (6.2)

where

ﬁij = sample in each band of original imagery
(h;
P = peak-to-peak signal value

X.; = sample in each band of reconstructed imagery

82 ® mean sguare error
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An average for all spectral bands is used to make the evaluation and the
comparison of the bandwidth compression methods. The software used to
parform the calculation of .the MSE and signal-to-noise ratio is documented
in Appendix E.

6.3 RECOGNITION ACCURACY

Many important uses of the earth rescurces data rely heavily on the
use of computerized pattern classification and pattern recognition of the
multispectral earth resources imagery. For many pattern classification
applications, the multispectral data is first used to obtain a clustered
image. This clustered image is then used for image data extraction and
classification. Thus, it is of importance that a particular bandwidth
compression method not result in significant changes in the resuiting

clustered imagery. Thus a criterion of performance which can be employed
for evaluating various coding algorithms is the performance of various
encoders in retaining the classification accuracy of the clustered imagery.
That is, the clustered image obtained from the encoded multispectral data
should be identical to the clustered picture obtained from the original set
of multispectral data.

In order to test the degree of preservation of classification
accuracy, a set of programs was developed for TRW's Interdata 80 image
processing facility. These programs, which are described in Figure 6.1,
make it possible to do classification on multispectral imagery, to compare
results obtained for compressed and uncompressed data, as well as to dis-
play the imagery itself, the clustered imagery, and the difference between
pairs of clustered images. A flow diagram showing the sequence in which
these programs are used in obtaining a measure of preservation of classi-
_ fication accuracy is shown in Figure 6.2 and is explained here.

Multispectral imagery, either reconstruction of compressed imagery or
original imagery, is accepted as input. This imagery is assumed stored as
a set of separate, monochrome imajés which may be "packed" (two picture
element values for every sixteen bits) or “uﬁpacked" (one picture element
for every sixteen bits). If the data is packed, it can be unpacked using the
program STRIP. Once unpacked data has been obtained, the several spectral
bands are interleaved by program. MIXER. In the interleaved form, those
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CLUSE
CLASF
CMPR
EQUCLU
EXTRCT

SCALE
FW1

STRIP

MIXER
DEMIX
PACK

Finds centroids of ciusters given multiband data.

Classifies each pixel in a multiband image based
on which of several centroids produced by CLUSE
it is radiqmetrical]y closest to.

Compares classification obtained on two sets of
data corresponding with the same spatial area.

Determines which clusters correspond with one
another given two clustered images of the same
area.

Extracts every fourth row and column from a picture.
Scales imagery from 0 to 255 for display.

Displaysa picture on the Dicomed/film recoder.
(A Dicomed Image Recorder is discussed in Appendix D.)

Unpacks pictures stored one pixel per 8 bit byte
to one pixel per two bytes.

Interleaves several narrow band images.

-

Reversaes the action of MIXER.

Packs pictures stored one pixel per 2 bytes to one
pixel per byte.

Figure 6.1. Programs Belonging to
Classifier Package
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data from the several spectral bands which correspond with the same picture
element are stored consecutively as shown in Figure 6.3.

In the interteaved image,
the data is stored in the
sequence indicated by the

arrows.

Figure 6.3. Interleaving

At this point we are almost ready to calculate the .centroids of the
ctusters. Unfortunately, calculation of the centroids is an interactive
process which is quite time-consuming. Hence, it is desirable to sample
the available imagery and determine the centroids using a subset of the
picture.elements. For convenience we have chosen to use every fourth
row and column of the imagery in determining the centroids. The subset
of sample values is extracted using program EXTRACT. The pixels which are
retained are shown in Figure 6.4

Using the clustered subset we obtain the centroids of the clusters
using an adaptation of the clustering program provided by NASA Ames
Research Center. By "centroid" is meant the following: Each cluster has
a particular mean value in every spectral band. The centroid of a cluster
is the set of mean values for that cluster. Figure 6.5 shows pictorially
the meaning of centroid for the case of only two spectral bands.
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Figure 6.5. Meaning of Centroid. Each class has
a centroid equal to the average
Tocation of data in that class.

The centroid-finding program, ¢alled CLUSE, block diagram is shown
in Figure 6.6.The program's steps can be summarized as follows: A par-
ticular number of clusters is selected. More or less arbitrarily, a set
of initial centroid values is chosen. Each sample value is assigned to
the category corresponding to the closest centroid. Then the centroids
of the sample values belonging to each class are computed. Once again,
the data samples are mapped into those categories having the closest
of the new centroids. This entire process is repeated until very few of
the sample values change category on one of the iterations. At that point,
the so called "Swain-fu" distance between each pair of classes is measured.
If the minimum distance between classes is less than some preseribed- dis-
tance, the two closest classes are merged and the whole process is repeated
with one fewer class. Otherwise the clustering aigorithm terminates. A
minimum number of clusters is also specified in order that merging not
continue indefinitely.
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After completing determination of the cluster centroids, the entire
256 x 256 image is classified using program CLASF. This is accomplished
by determining to which centroid each sample is closest. The output of this
program is an image in which the value corresponding with any pixel is the
number of the cluster to which it belongs. The cluster values can then
be scaled Tinearly to occupy the entire tontrast range of the display.

In order to compare the clusters obtained on the original imagery and
on the reconstruction of the compressed. imagery, we first determine the
correspondence between clusters in the two sets of imagery. To illustrate
what is meant by finding a correspondence between clusters, consider the
case when cluster 1 in the original image represents water, and in the
reconstruction water is represented by cluster 3. It is the purpose of
program EQUCLU to ascertain the correspondence between clusters 1 in the
original and 3 in the reconstruction in the case of our example, and more
generally to obtain a good mapping from clusters in the reconstruction to
clusters in the original. In order to save time this program does not
determine the cluster correspondence which will minimize the difference in
classification but instead first minimizes the difference in classification

for the subarea of pixels belonging to the cluster with the most elements,
then minimizes the difference in classification error for.the subarea of
pixels belonging to the cluster with the next greatest number of elements,
and so on. '

Once the cluster correépondenée is determined, program CMPR compares
the clusters obtained for the original imagery and the reconstruction and
determines the percentage of differently classified picture elements.

6.4 SYSTEM CONSIDERATIONS

In addition to the criteria of optimality which are used to evalute
and compare the performance of various technigues, there exists a different
set of criteria which deals with the systems aspects of the various
techniques. This set of criteria is particularly important in design and
operation of the system under imperfect conditions of the real world.

These criteria are discussed in the following.
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6.4.1 Computational Complexity

The complexity of any technique is eventually measured in terms of
the total number of parts, weight, power, and the size of that particular
technique. However, befora one can specify the above design parameters
one must specify the number of operations. and the memory which is required
for implementing a particutar bandwidth compression technique. Since the
number of operations and the storage required for a particular bandwidth
compression method is directly related to the design parameters such as
the total number of parts, weight, power, and the size, one could use the
computational complexity as a measure of eventual complexity of the
system. In this study we have defined the computational complexity in
terms of number of adds and multiplies and the number of memory units per
picture element.

6.4.2 Sensor Imperfections

A number of different sensor phenomena -contributes to degraded com-
pression performance compared with that expected for an ideal sensor. In
order to expliain those sensor properties which adversely affect compres-

sion, first two types of multispectral sensors which are most likely to be
used for future satellite based gathering of earth resources data are
studied. They are the thematic mapper and high resolution pointabie
imager (HRPI). The most important sensor parameters which may affect

the bandwidth compression performance of the selected techniques are:

Photodiode Nenuniformity

Signal-to-Noise Ratio

Radiometric Nonlinearity

Spectral Misregistration

Geometric Distortion due to Satellite Attitude Variations
Geometric Distortion due to Scan Pattern

Data Rate.

" ® ®& @ & & G

The effect of these parameters on various bandwidth compression
methods is analyzed by measuring the impact of the above imperfections

6-11



on the correlation of the data and relating that to the expected per-
formance of the selected bandwidth compression algorithms.

6.4.3 Channel-Error Efféct

A different type of imperfection present in most communication systems
is the channel error. This in general includes perturbation of the trans-
mitted signal due to atmospheric turbulence, natural and man-made interfer-
ence, and thermal noise-preserit in the transmitter and receiver of the
system. In digital communication systems, the overall effect of the ahove
imperfections is expressed in terms of bit error rate {BER) which is the
percentage of binary integers which are detected erronecusly. Naturally
this depends on the type of the receiver and the modulation technique that
is used in a particular communications system. A fixed bit-error rate
affects some bandwidth compression methods more severely than others. For
instance, in a transform coding system the channel error occurring at a
particular transform component distorts a specific frequency component of
the image. This degradation appears at all points in the image having a
contribution from that particular frequency component. As such it has a
different effect on a human observer than an equal perturbation occurring
in the spatial domain directly, as happens in DPCM systems.

In this study we will simulate the effect of the noisy channel by a
binary symmetric channel with bit error rates ranging from 10'4 to 10'2.
The effect of the channel error in selected bandwidth compression algorithms
is evaluated by how it affects mean square error signal-to-noise ratio,
classification accuracy, and the subjective quality of the reconstructed
imagery at various bit rates.



7. COMPARISON OF SELECTED BANDWIDTH COMPRESSION TECHNIQUES

This section discusses and compares the 12 bandwidth compression

. techniques Tisted ‘in Section 5. Analytical and experimental techniques are
used. The analytical results are based on the expected performance of these
methods using mean square error as the criterion of optimality. The experi-
mental results are obtained by simulating these bandwidth compression methods
on a digital computer and using them to compress the bandwidth of two typical
multispectral images. The simulated methods are compared based on their
performance on multispectral LANDSAT images and on a 12-channel high alti-
tude aircraft image at various bit rates. In comparing the simulated band-
width compression methods, the criteria of optimality are:

e Mean square error

e Peak-to-peak signai-to~noise ratio

e Recognition accuracy

o Subjective quality of the reconstructed imagery

e Implementation complexity, sensor effects, and channel-error

effects.

The software developed under this study was transferred to NASA Ames
Research Center and Marshall Space Fight Center for use with other multi-
spectral data in the comparison and evaluation of the 12 different band-
width compression methods.

7.1 THEORETICAL PERFORMANCE

Section 4 discussed modeling and some og’the statistical characteris-
tics of two sets of multispectral data. One was a sample of LANDSAT imagery
and the other was a sample of 12-channel high altitude aircraft data. Due
to the fact that our typical MSS data and in particular the LANDSAT data
exhibit a different type of correiation in the spectral and spatial domains,
the analysis of the problem is divided in two parts. Sectijon 7.1.1 dis-
cusses the use of various transforms in the spectral domain and Section
7.1.2 multidimensional coding in the spatial domain. Section 7.1.3 dis-
cusses cluster coding of mulitispectral data.



7.1.1 Transforms in the Spectral Domain

The general form of a transformation of a process f(x,y.k) in the
spectral domain is modeied as

K

up(xay) = ) FlxaysK)iy (k) (7.1)
k=1 -
K .

Flxayak) = D Uy (o )p; (k) (7.2)
-

where ui(x,y) for i=1,2,...,k refers to various two-dimensional signals in
the particular domain which is represented by the discrete basis vector
lg(k). Various transformations that one can use will generate different
sets of transformed data ui(x,y). One can adapt one of many types of these
transformations for multispectral imagery depending upon the applications
and uses of the data as well as the degree of complexity that one is willing
to accept. In what follows we discuss a number of these transformations
using mean square error as the criterion of performance of the coding
algorithms.

Karhunen-Loeve Transformation

Using mean square error as a criterion of performance, the Karhunen-
Loeve transformation is the optimum transformation that one can use on a
set of arbitrarily correlated data to generate an uncorrelated signal. This
also holds true for multispectral data. In this case, ﬁi(k); k=1,2,....K
are the K components of the ith eigenvector of the covariance matrix of the
multispectral data f(x.y.k), i.e., pi(k) are the eigenvectors of the

covariance matrix C where

k

: k
Zf(x,y,j) f(X,¥,2) -% }:f(x,y,J')
y=1 x=1 J=1 =1

o
~
=
W
- ——
Rl
M=
M=
—h
—
>
-
‘e
-
-~
o
]
P

(7.3)
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The eigenvectors for the covariance watrix of the representative multi-
spectral data are shown on Table 7.1. The corresponding eigenvalues of the
covariance matrix are also listed on Table 7.1. Figure 7.1 shows the per-
centage accumulative energy in each band after the Karhunen-Loeve transfor- -
mation. This curve in a sense indicates the significance of each band at
the transformed domain and the mean square error that would result by not
transmitting the signal in that particular band. Naturally the total energy
in all four bands is the same for all transformations. The shortcoming of
the Karhunen-Loeve transformation is that the coding system requires a
knowledde of the auto-covariance of the data. The performance of the sys-
tem is dependent upon the accuracy of this information. This is a serious
shortcoming since it requires the on-board encoder to measure the auto-
covariance adaptively and update the basis vectors accordingly. This is not
an impossible task, especially as the number of spectral bands are rather
limited. However, the on-board transmitter will be much simpler if a deter-
ministic set of basis vectors is used instead. For this reason, we con-
sidered the theoretical performance of a number of other transformaticns in
comparison with the Karhunen-Loeve transformation in their capacity to
reduce the bandwidth of the multispectral data.

Table 7.1. Eigenvalues and Eigenvectors of the Covariance
Matrix of the Multispectral Data

Eigenvalues g (x) up{x) u3{x) w(x) |
0.724 .496 069 -.865 -.021
0.214 .846 141 ) 492 151
0.040 .195 -.869 054 - . 452
0.022 -.033 -.470 -.078 . .879

Hadamard Transformation

A unitary transformation which is simple to implement but which still
performs rather close to Karhunen-Loeve transformation in a number of
applications is the Hadamard transform. The performance of this transfor-
mation on the representative data is also shown in Figure 7.1. The
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performance of the Hadamard transform on the multispectral data is signifi-
cantly inferior to the performance of the Karhunen-Loeve transform. This is
because the multispectral data does not have the correlation properties of
Markovion processes. Other unitary transformations, such as Fourier,
Cosine, and Slant transformations with properties similar to those of the
Hadamard transform, also display performance substantially inferior to that
of the Karhunen-Loeve transformation in their ability to compress the
energy into a small number of coefficients. For this reason, we considered
other linear, unitary transformations that form a better match with the
statistics of the multispectral data. Two of these are discussed below.
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Haar Transform

Considering tﬁe general properties of the multispectral data outlined
in the beginning of Section 4, one would guess that & transformation uncor-
relating two bands at a time performs better than the Hadamard transform in
uncorrelating the multispectral data. Naturally one would choose to make
two infrared bands and the red and the green bands as uncorrelated as
possible. This is because of the large mutual correlations between these
bands. One such transformation is performed by operator A where

{'_1 1 0 0
i o o0 1 1 (7.4)
A= .
.1 -1 0 0
|
.0 0 1 -1
This transformation is unitary, (,Lf1 =" i.e.,
T 0 1 0.
(7.5)
JR 0 N T S B
? H
o 1 0 1
;_p T 0 -1

A is simpler to implement than the Hadamard transform. Indeed a 4 x 4
Hadamard operator H4 is obtained by two consecutive applications of the
& operator; i.e.,

Al
H4 - A (7‘6)

For this reason A 1s called a derivative of the Hadamard transform. Its
performance is shown on Figure 7.1. It is superior to that of the Hadamard
transform using only one or two bands. It becomes inferior if more than
two bands are utilized.
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A second linear transformation considered is the Haar transform which

is denoted by D. This operator and its inverse are defined as

and

- 1

S I

R T T

D= !

V22 o0 o

L0 0 N2 V2
o a]
L1 o1 3k 0 |
-7 l
|1 10 -\Ei
|1 1 o 32
L - |

(7.7)

(7.8)

The performance of the Haar transform is also shown on Figure 7.1.
It performs significantly better than Hadamard and A transforms. Its per-

formance is very close to that of the Karhunen-lLoeve transform.

The

residual correlation remaining in the data after application is shown on

Table 7.2.

Table 7.2.

471
.026
.002
.078

Residual Correlation in the Multispectral Data
after Haar Transform Operation

0.026
.409
~.002
.078

.002
~.002
.034
-.006

7-6

.078
.078

e e

-.006
.086 i



Based on these results, we use Haar transform on the spectral data
as an alternative to the Karhunen-loeve transform prior to using other
methods of bandwidth reduction..in the spatial domain. It generates slightly
inferior results which may be acceptable in view of its simplicity.

7.1.2 Multidimensional Coding-of Multispectral Data

Following the spectral transformation on K spectral bands of the multi-
spectral data one obtains K bands of data ui(k,y), i=1,2,...,K as defined
by (7.1). Each band must be coded and transmitted. A total of M, binary
digits is used for all four bands. The receiver combines the coded bands
u?(x,y) i=1,2,...,K to reconstruct f*(x,y,k) which is different from the
original multispectral data f(x,y.k) because of coding and possibly trans-
mission errors. The spectral transformation generates u;(X.y);i=T,....K
which is almost uncorrelated with a maximum compaction of energy in the
first k of the K components. The allocation of Mb binary digits to the K
bands of ui(x,y) is such that the total resultant error for all spectral
bands is minimum.

To achieve this performance, we proceed with appropriate transformations
in the spatial domain and make the proper bit allocations. This wiil be
shown for all three candidate techniques individually.

Multidimentional DPCM

The block diagram of a DPCM system is shown in Figure 7.2. The
transmitter is composed of a predictor and a quantizer. The predictor
uses n previous samples to predict the present value of the input signal,
The difference between this and the actual value of the signal, called the

differential signal, is quantized and is transmitted over an error-free
digital channel. At the receiver, a similar predictor uses n previously
transmitted values of the quantized differential signal to reconstruct a
facsimile of the signal at the transmitter. It is conceivable to design
a system that would minimize a measure of the overall error between the
input and the outpuf of the coding system. However, the analysis of
such a 'system is hampered by the nonlinear character of the quantizer.
Therefore, the optimization problem is solved in two stages. First, a
best 1inear predictor is des%gned ignbring the quantizer;j then a
quantizer optimized for the distribution of the differential signal is
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Figure 7.2 DPCM System

employed. It has been shown that if the quantizer is outside the
prediction loop, the performance of the system for a Gaussian-Markov process

is not any better than the performance of a PCM system [65]. Since the
predictor was designed neglecting the effect of the quantizer, including the
quantizer in the prediction makes the predictor suboptimum. As a result,
the differential signal becomes more correlated; also, its distribution
changes, thus degrading the .performance of the quantizer. This effect
becomes more crucial as coarser quantizers are employed. O'Neal [62] has
given a heuristic discussion that shows this system actually gives a

higher signal to noise ratio than a PCM system.

Consider a set of correlated random variables {Si} with mean zero
and variance ¢2. The set could represent a set of picture elements where
the mean is subtracted. The 1inear predictor estimates the next sample
value So by §0 based on the previous n sample values as

n
= 7-9
S, 2:'A1'51 (7-9)
i=1

the differential signal corresponding to S0 is e, = S0 - So. The best
estimate in the least mean squared error (MSE) sense is one where the

weighting coefficients Ai are solutions of the n algebraic equations

n 4
- ;= re v (210
R s _E A.iR,ijg 1 ]g 23 L] n ("‘ )



where

_ ' £l

then the mean squared value of the error is

n
= g2 - :E: A.R . © (7.12)

- As n » » the sequence of error sampies can be made completely uncorrelated
. [96]. However, if the sequence of samples {Si} is the nth order Markovian
process, then using only n samples in forming estimates Sd will make the
resulting sequence of error terms uncorrelated. In this case, a further
increase in the number of samples employed in forming the optimum predictor
will not improve the quality of the estimate.

Experimental results indicate that for most typical pictures, the
probability density function of the differential signal e, is Laplacian
(two-sided exponential) probability density function [62]. For a Laplacian,
Smith [145] has determined the least MSE quantizer.It is a uniform quan-
tizer with pre- and post-quantization transforms z(e) and e*(z*) that are
defined as

E0[1 - exp(- me/Eo)]

o) - el el e :(7.13)
z(-e) = -z(e)
and
o*(z%) = :;2.1n [1 - EE—(]-exp(—m))],
o) = ot (7.14)

respectively, where

E. = maximum value of e,

m= =, z* quantized value z.
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and

o= variance of the differential signal
The function E0 is the maximum value that the differential signal can
obtain. That, in turn, is the maximum value of the normalized (zero
mean and unit yariance) picture elements. Note that using a value
smaller than this quantity for Eolmeans clipping some elements of the :
differential signal which corresponds to a coarse quantization in the
tail area of the density curve and a finer quantization of the samples
in the midrange. Since the tails of the differential signal density
_correspond to large variations in the values of picture elements, it
follows that using a smaller values for E, would produce poor results in
the edges and a better resuilt in the region of finer variations of the
encoded picture. Thus , E0 is a parameter which affects the edge quality

in the encoded picture. The optimum value for E0 is one that gives a good
compromise between degration of edges and finer variations in the encoded
picture,

To compress the bandwidth of mu1ti-dimensigna1 data such as multi-
spectral imagery one must first decide on the order n of the DPCM system
that should be utilized. Then each data point S, is predicted using a
weighted sum of n adjacent data points 51, SZ""’Sn‘ For monochrome
imagery it has been shown that a two-dimensional DPCM encoder performs
near its optimum level of performance when only three adjacent elements
are utilized in predicting So' These elements are the element directly to

the left of So° the element directly above So and the element diagonally

across from So. These elements are shown on Figure 7.3 by 51, 52, 83,
respectively. For three-dimensional data one must utilize elements from
the previous frame as well as the previous line. Although a comprehensive
study of the use of a three-dimensional DPCM system is not available,* from

> .
For multispectral imagery, the application of a DPCM encoder across the
spectral bands is not advisable because of the Timited number of spectral
bands available. For television data, some results of a three-dimensional
QPCM encoder are available [146]. However, these results favor other cod-
ing methods such as transform and hybrid coding schemes.
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the study of two-dimensional DPCM systems it can be inferred that for a
near optimal level of performance, one needs to include seven adjacent
points in predicting each element. These samples are indicated on Fig-

ure 7.4 by 81 through 37.
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Muitidimensional Transform Coding

In three-dimensional transform coding algorithms, the spectral trans-
formation is followed by two consecutive transformations in the horizontal
and the vertical directions. Experimental and theoretical results have
shown that the performances of the three-dimensional coding algorithms are
rather insensitive to the particular type of transformations used in the
spatial domain. In implementing the coding system, it is the ease of
implementation and weight-power requirements which dictate the choice of
the particular transformation. It is also shown that different types of

transformations can be cascaded without a substantial change in the quality
of the encoded picture. The spatial transformations of various bands
ui(x,y) i=1,...,k can be modeled as

N M
ik =Z Z u; (x,y) uj(x) wk(y) (7.15)
y=1 x=1
N M
u'i(x’y) =kz; E] u'ijk Hj(x) ‘Pk(y) (7.16)
= J=
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The coding of the coefficients u1Jk introduces quantization error in the
transformed domain. This error is minimum when the total number of Mb
digits assigned-to u1Jk is such that the quantization error for all coeffi-
cients with a variance smaller than this constant need not be transmitted,
thus they do not require any encoding. This is achieved by assigning m; sk
bits to uijk coefficients such that

E

Mb : k n
=D z _ 1 Z : 2
2=1 q= p:

where Ugjk is the variance of uijk and k, m, and n are the number of coeffi-
cients selected for transmission out of K coefficients in the spectral
domain, M coefficients in the horizontal domain, and N coefficients in the
vertical domain, respectively. The above bit assignment algorithm is opti-
mum in a mean square error sense, but in a system where one is interested
in substituting one transformation for the other, making the above bit
assignment becomes rather tedious. Besides, making the bit assignment is a
complicated task for a hybrid encoder which combines a unitary transforma-
tion with & DPCM encoder following the above procedure. For this reason we
will consider a two-step bit assignment procedure which is equivalent to
the above, but can be simulated more simply.

Two-Step Bit Assignment Procedure. In a two-step bit assignment
procedure, one first decides on a number of binary digits out of a total of
Mb thS which would be assigned to each one of the spectral bands
(M ,i=1, 2,. ...k). Then M bits are assigned to the various coefficients
wh1ch are obtained by applying two-dimensional transformation to the 1th
band of the multispectral data. These consecutive bit assignment algorithms
are modeled as

My

M2=k_+ 2(Iog Ag -

~|—

k .
Z Tog xz) 2 =1, 2,...k (7.18)

2=1
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and

M MN A1 = . .

where aij are the variances of the coefficients in the two-dimensional trans-
form domain, and Ags 2 = 1 ..., K, are the variances of elements in the one-
dimensional transform domain. To make the combination of (7.18) and (7.19)
equivalent to (7.17) under the assumption of separable covariances which

ii" it can be shown that (7.18) should be modified as

implies “?jz = 2hi5

L

M m k nn
M
M, = 2+ 2(109 AN L Z log }.EN) (7.20)

where MN is the total number of samples in the spatial domain, and mn is
the total number of samples which are selected for transmission. The ratio
ﬁ%-depends upon the average number of bits per picture element use for cod-
ing the data. From past experience these ratios for typical pictures at
various bit rates are:

Average Bit/Pixel mn/MN

0.5 1/4
1.0 1/2
2.0 or more 1.0

Multidimensional Hybrid Coding

In the hybrid coding of transformed spectral bands uk(x,y), the sampled
image is divided into arrays of M by N samples such that the number of
samples in a line of uk(x,y) {s an integer multiple of M. One-dimensional
unitary transformation of the data and its inverse are modeled by the set
of equations

M
U = D ey g0

x=1

]
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M ,
u (xy) = Z u; (¥) (x) (7.22)

i=1

where qﬁ(x) is a set of M orthonormal basis vectors. The correlation of the
transformed samples uki(y) and uki(y + 1) is given by

M M
Gl = 3 D0 Rl Ky + 1) g0 (®) (7.23)

x=1 X=1

-

where Rk(x, s s ;) is the spatial autocovariance of the kth band of multi-
spectral data.

Note that this equation indicates (1) the correlation of samples in
each column of the transformed array is directly proportional to the cor-
relation of sampled image in vertical direction, (2) the correlation of
samples in various columns of the transformed array is different. Thus, a
number of different DPCM systems should be used to encode each column

of the transformed data. The block diagram of the proposed system is

shown in Figure 7.5. A replica of the kth band of the original image
*
uk(x,y) is formed by inverse transforming the coded samples, i.e.,

=]

1 06y) = D Vg (y) g(x)s nEm o (7.24)
i=1

The mean square value of coding error for the kth band is

N M

:E:: [uk(x,y) - u;(x,y)]2 (7.25)

3!—-‘
=

2 .
Ek-‘E
y=1 x=1

Using (7.21) to (7.24) and assuming that qki(y), the quantization error
encountered in the 1th DPCM system is uncorrelated with uki(Y)’ the coding
error, ei, is
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(7.26)

where the first two terms are introduced because of using n {rather than M)
DPCM systems. Study of DPCM systems has shown that

2, )
E [uki(y) - vki(y)] = E qu;(y) = 6lm;) e, (7.27)

where ei1 is the variance of the differential signal for the kth band in

the ith DpCM system, and G(m } is the quant1zat1on error of a variate with
a unity variance in a quant1zer with (2) 1 jevels.

Analysis of a Lloyd-Max quantizer has shown that G(mi) can be approxi-
mated fairly accurately by

~am,
G(mi) = be (7.28)

where the best fit for a Gaussian variate is obtained using an = 0.5 2n 10
and b = 1.0. Sfudy of other quantization techniques has indicated similar
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results for various probability density functions [64]. For a Laplacian
random variable, values of a = 0.5 ¢n 10 and b = 2 are more appropriate.
Experimental results have shown that the differential signal in the DPCM
systems have a Laplacian histogram.

From pubTished results [62] the variance of the differential signal in
a DPCM system with the mth ovder linear predictor for the kth band is

m

i = Cal0) = D Ari 10k () (7.29)
i=1

where Akij are related to Cki(j) by m algebraic equations.

Substituting (7.21) and (7.22) in (7.20), gi is

n n

2 _ b ~a 4 |
< = R(0,0,0.0) - Z C,1(0) + & Z e e . (7.30)
= = ‘

where the error is defined in terms of n and m: 1=1,.00, nﬁ Treating m

as continuous variables and minimizing ei with a.constraint = Mes = ME
will give =0
M n
-kl a2 1S e
m; =+ 2 (}n e T 1 &n ekj) (7.31)
J=1 . .
th

where n is chosen’ such th%t.ei is minimum* and the quantizer in the i
DPCM system will have (2) ki Tevels. My ; as obtained from (7.25) is modi-
fied as discussed in [62]. Note that expressions (7.24) and (7.25) are
similar to those obtained for coding the transformed data by memoryless
quantizers, the difference being that here the variance of the differential
signal rather than the variance of the transformed data is used.

Ready and Wintz minimize ei with respect to both n and m;. It gives the
same end result requiring less computation [104]. )
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Figure 7.6 shows the theoretical value of the coding error as given by
(7.30) in terms of the peak-to-peak signal to RMS noise ratio for a discrete
random field with an autocovariance ‘

R(x, &, v, §) = e=0l% = XI-8ly -] (7.32)

using Karhunen-Loeve, Hadamaéd, discrete Fourier, discrete Cosine, and
STant transformations fpr o = 0.0545, g = 0.128. These curves are obtained
using a bank of n DPCM encoders with one-element predictors. The quantizers
in the DPCM systems are of instantaneous-companding type and are designed
for a Laplacian probability density function of the differential signals in
the DPCM systems. '

5,60, 0 1 DIM K.L. AND DPCM
< 1 DIM, HADAMERD sDPCH
430 X 1 DIM FOURIER :DPCHM

1 DIM, COSINE » DPCHM

%, 00 U 1 DIM, SLANT . DPCHK ‘

[A)

.20

BIT RATE

25, 90 27.50 30.00 32. 50 35, 09 37. 50 40. 00 12, 30 45, ¢0 47 50
SISNAL TO NJISE.RATIO DB« .

Figure 7.6. Bit Rate vs the Signal~to-Noise Ratio
for the Proposed One-Dimensional
Hybrid Systems for the Discrete
Random Field



Figure 7.7 shows that increasing-the block size M improves the theo-
vetical performance of the proposed one-dimension systems; however, the
improvement becomes negligible for values of M larger than 8. This makes
this coding system less sensitive to the block size than the standard trans-
form coding systems which use memoryless quantizers. '
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Figure 7.7. Theoretical Performance of the Proposed One-Dimensional
. Encoders vs Block Size M. The Solid and the
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7.1.3 Cluster Coding of Multispectral Data

Many important uses of the earth resource 'data rely heavily on the use
of computerized classification and recognition of multispectral imagery. |
For many classification applications, the multispectral data is first used
to obtain clustered imagery. The clustered imagery is then used for image
data extraction and classification. Therefore, the bandwidth compression
method must not produce significant changes in the resulting clustered
imagery. A criterion employed for evaluating various coding algorithms is
the performance of various encoders in retaining the classification accuracy
of the clusterad imagery. That is, the clustered image obtained from the
encoded multispectral data should be identical to the clustered image
obtained from the original set of multispectral data. This presents an
alternative approach to compressing the bandwidth of the multispectral
imagery which involves classifying the multispectral data on-board the
' space vehicle and transmitting only the clustered imagery. The problem with
this approach is that there are many users who are interested in information
contained in the individual bands as well as the classified imagery. For
this reason, in addition to the classified picture which contains an arbi-
trary number of clusters, additicnal information should be transmitted such
that individual bands of the original data can be reconstructed. Naturally,
the number of binary digits used to transmit the classified imagery and the
additional information required for reconstructing the various spectral bands
should be smaller than the number of binary digits needed for transmitting
the original bands. This type of bandwidth compression algorithm has been
discussed in recent literature [147, 148]. In the following sections we will
compare the performance of a cluster coding method with other candidate
methods of bandwidth compression.

Clustering

Clustering techniques group data values into classes. This grouping of
data can be used for data compression if one represents each class by one
value and transmits only the number of the cluster to which a particular data
value belongs.

The concept of a "measurement space" is useful in explaining clustering
procedures. We define a measurement space as it applies to this application.
For the case of multispectral ERTS (LANDSAT) data, for each picture element
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we obtain four measurements (recorded energies in each of four narrow
spectral bands). The four measurement values can be represented by a
4-tuple. This 4-tuple can be plotted as a point in a four-dimensional
space. This space is called the measurement space. Two picture elements
recording approximately the same energy in each band are represented by
points which Tie close together in the measurement space. An example of
sample points in a two-dimensional measurement space is illustrated in
Figure 6-5.

The many clustering techniques differ in the criteria by which they
define similarity and dissimilarity of data samples. One of the most
common measures of dissimilarity is mean square error. If one fixes the
number, N, of classes, the minimum mean square error clustering reduces to
selection of a representative, mss of each class such that

N
3, = Z J; s minimized (7.33)
i1
where '

3= D 1wl (7.34)

xe cluster 1

Equivalently, the average Euclidean distance in the measurement space from

a sample to its cluster representative is minimized. We have used a cluster-
ing techniques that selects cluster representatives that reduce the mean
square error resulting from representing all elements of a cluster by one
value. Because it is essentially a hill climbing procedure, the technique
can find only the Tocally minimum mean square error clusters and conse-
quently depends on the initial choice of cluster representatives.

The cluster representatives are referred to as centroids because each
one is the "center of mass” (in the measurement space) of the sample values
belonging to that class. The iterative for each measurement technique for
finding the centroids is summarized as follows.

A particular starting number of clusters is selected. More or less
arbitarily, a set of initial centroid values are chosen. In our case, the
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initial centroids are chosen to lie along the 1ine of maximum variance of
all the sample data in the measurement space. Their spacing is proportional
to the standard deviation in the specified direction. Each sample value is
assigned to the category corresponding to the centroid closest in the sense
of Euclidean distance. Then the centroids of the sample values belonging to
each class are computed. Once again, the data samples are mapped into those
categories having the closest of the new centroids. This entire process is
repeated until Tess than a prespecified percentage of the sample values
change category on one of the iterations. Clusters having the two closest
centroids are merged and the iterative procedure is repeated with the
smaller number of clusters.

The centroids are real numbers; thus, they must be gquantized and
encoded. We have used the rather inefficient pulse code modulation (PCM)
scheme for coding the centroids for the preliminary results reported here.
The 1jth block in clustered imagery can be coded using [Iogzcij]+ binary
digits where C. i3 is the number of clusters in block indexed by 1i,] and
[IogZC] is the smﬁ11est integer larger than 1ogzc . Using [1ogZC] bits
for coding the 1J7 block in the classified 1magery is a rather inefficient
use of binary digits, since it does not exploit any part of the spatial
correlation in the clustered imagery. Several methods for efficient coding
of the clustered imagery exist. One is using contour tracing combined with
statistical coding algorithms such as Huffman encoding of directionals and
gray levels. The other is use of differential encoders combined with the
statistical coding algorithms. These modifications reduce the bit rate
essential for transmitting the clustered imagery and the centroids, which,
in turn, corresponds to a further bandwidth compression of the multispectral
imagery.

The average bit rate per sample per band of the ijth block of imagery
RIJ for the cluster coding algorithm using PCM transm1ss1og of centroids
and the clustered jmagery is calculated as follows. Let 2° stand for the
number of levels used iy quantizing each centroid element and B refer to

the number of bands in the multispectral imagery then

[10g2(3..]+ P C..
- 1] ij
i 5 + " (7.35)
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where N2 is the number of samples in each block of the multispectral
imagery.

Equat%on (7.35) shows that the bit rate is directly related to the
number of elusters in the classified imagery in each block and the number
of levels that one uses for quantization of centroids. It is inversely
related to the number of samples in each block and the number of spectral
bands in the multispectral data. Since one has to allow for a large number
of clusters in each block to recover the details of multispectral imagery,
this coding method is particularly efficient for a large number of spectral
bands.

The idea of dividing the multispectral imagery into blocks of N2
sampies and c]ustef coding each block is not essential for the coding
algorithm. Indeed if one is interested only in a classified imagery using
the whole image as one block, a very efficient encoder will result. How-
ever, if one is interested in the details in various spectral bands, then
using a large block size requires allowing the classifier to classify the
nmultispectral data to a large number of clusters. The problem with this
apprdach is the extremely large computer time required for the convergence
of the classifier. On the other hand, using relatively small block sizes,
detailed information in various spectral bands can be reconstructed rather
accurately using a moderate number of classes.

Coding Methodology

Classification of multispectral data discussed in Section 6.3 is é
method of quantization in the spectral domain. That is, a number of picture
elements in the measurement domain are represented by a single point in the
four-dimensional space. This is illustrated on Figure 6.5 for a two-
dimensional space. The combination of the clustered imagery and the cen-
troids represents a quantized form of the multispectral data which can be
used to reconstruct an approximation of each band in the multispectral data.
This operation is similar to quantizing the amplitude of a scalar signal.
Reduction of the multispectral imagery to an image of clusters and centroids
for each cluster corresponds to exploiting the spectral correlation of the
multispectral imagery. The spatial correlation inherent in the muiti-
spectral earth imagery is preserved, to some extent, in the form of spatial
correlation in the classified imagery. Naturally in addition to spatiai
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correlation of the classified imagery, both inter- and intracorrelation of -
the centroids can be used for further bandwidth compression.

The cluster coding algorithm discussed here uses the following steps
for encoding and decoding the multispectral data.

& A multispectral image is divided into blocks of 16 by 16 picture
elements in each band.

¢ Using all spectral components each block is classified into a
number of classes. The clustered.imagery and centroids corre-
sponding to each cluster are the output of this step in the
coding operation. The number of clusters in each block can
be fixed or it can be allowed to vary, generating different
numbers of clusters for various blocks. The Tatter corre-
sponds to an adaptive bandwidth compression technique that
operates at a variable bit rate where the former could be made
to operate at a fixed bit rate. Even when the number of
clusters is allowed to vary from one block to the other the
maximum and the minimum number of clusters in each block can
be fixed. This sets a fixed upper bound and a Tower bound on
the output bit rate which can be used for a more effective
control of a storage buffer that has to be used with any
variable rate encoder.

e The receiver reconstructs each block of the multispectral
imagery by generating the individual bands in each block from
the clustered imagery and the corresponding centroids of those
clusters. The procedure is to examine each point in the
clustered imagery and specify to what class it belongs. Then
individual bands corresponding to the particular picture loca-
tion are reconstructed by choosing their values equal to the
centroid of that particular class.
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7.2 SIMULATION OF SELECTED BANDWIDTH COMPRESSION TECHNIQUES

Analytical studies of picture bandwidth compression methods give the
expected performance of a bandwidth compression method for an ensemble of
imagery. This is different from the simulation results for a particular
bandwidth compression method. The main drawback of the analytical results
is twofold: First, the limited form of the criteria of optimality which is
used for evaluation of the performance of the bandwidth compression methods.
Second, the effect of inaccuracy of the assumptions which are made in
developing the analytical models. This is the major reason for differences
between the analytical and the simulated results. Thé analytical results
are in terms of mean square error, or rate diétortion functions. Simulation
of the bandwidth compression methods enables one to compare the various
bandwidth compression methods using other criteria of performance. In addi-
tion, this eliminates the inaccuracies of the analytical results and gives
results which are closer to the performance of the actual bandwidth compres-
sion devices. ‘ '

7.2.1 Methodology

The methodoiogy for computer verification of bandwidth compression
methods is as follows. '

(1} Various bandwidth compression methods are simulated in their
entirety on a digital computer.” The simulated 'systems can accept a fixed-
size multispectral imagery, reduce the bandwidth of this.imagery to a
particular Tevel, and reconstruct the compressed multispectral imagery.

(2) The original and the reconstructed imagery (at a particular bit
rate and using a particular method) are displayed on a COMTAL image display
system for side-by-side comparison.

(3) Hard copies of the original and the reconstructed imagery are
generated using a Dicomed image writing system. The original and recon-
structed imagery are used to generate various measures of the difference
between the two sets of imagery. These are mean square error, signal-to-
noise ratio, and the classification accuracy (consistency) between the
original and the reconstructed imagery. (A detailed description of TRU's
image processing facilities is given in Appendix C.)
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7.2.2 Description of the Imagery Selected

Since the sfudy involved analyzing and simulating a large number of
bandwidth compression methods, it was necessary to restrict performance
evaluation to a few images. Two sets of multispectral imagery were selected.
One is a 256 x 256 sample of a LANDSAT muitispectral image comprised of a
red, a green, and two infrared bands. The other is a set of 12-channel high
altitude aircraft data. Eight out of the 12 channels were selected for
simulation results. These are shown on Figure 7.8. The LANDSAT muiti-
spectral imagery is representative in the sense that it includes a variety
of scenes ordinarily encountered in earth resources data. It is a particu-
larly difficuit scene for bandwidth compression since it involves areas of
high detail as well as lTow detajl. It consists of a rather large number of
edges as well as flat areas. A bandwidth compression method giving accept-
able results using this representative image is expected to produce accept-
abTe results using most other types of imagery.

7.2.3 Program Framework (Flexibility., User Options)

A number of bandwidth compression methods for multispectral data was
developed. These bandwidth compression methods are simulated on digital
computers using a software package that includes:

(1) Three-dimensional coding algorithms using a block size of 4 x 16
X 16 with a block quantizer. The system has the option of utilizing three-
dimensional Hadamard, Cosine, or Slant transformations. The system uses a
Tixed block quantizer for all three options.

(2) A hybrid coding algorithm using an option of Karhunen-Loeve, Haar,
Hadamard, Cosine, or Slant transformation followed by a two-dimensional
differential pulse code modulator (DPCM}. The transformation is in the
spectral domain and the two-dimensional DPCM encoder uses a third-order
predictor. The eigenvectors of the Karhunen-Loeve transform and the
weightings in the two-dimensional DPCM encoder are fixed. They are based on
the statistics of typical data. They could be varied by simply reading a
set of new values in the program.

(3) A hybrid coding algorithm which uses an option of Karhunen-Loeve,
Haar, Hadamard, Cosine, or Slant transform in the spectral domain followed
by an option of Cosine, Slant, or Hadamard transform in the horizontal and
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block of DPCM encoders in the vertical direction. The block size of the
spectral transformation is four, and the block size of the transformation
in the horizontal direction is 16. The system uses a fixed set of DPCM
encoders for all transformations.

A1l three coding methods discussed above have a fixed bit rate. They
encode the multispectral data at bit rates of 0.5, 1, 2 bits per picture
element. The average bit rate can be varied easily by changing the data
card in the program.

The above coding algorithms have the option of using a binary symmetric
channel at bit error rates of 10"2, 10"3, and ]0'4. This can also be varied
to any optional value by changing the input data.

In (2) and (3) we also have considered the additional reduction in the
bit rate that results by adding an entropy coding algorithm at the output
of the DPCM encoders. This results in a reduction in the bit rate without
affecting the degradation levei in the reconstructed imagery. The addition
of the entropy coding method makes the above bandwidth compression methods
operate at a variable bit rate. This increases the complexity of the sys-
tem by requiring buffer storage and buffer control systems.

(4) A cluster coding algorithm using four spectral bands and a block
size of 16 x 16. This bandwidth compression algorithm classifies the ele-
ments of each block in four spectral bands into a prespecified number of
clusters. It also utilizes the Swain-Fu distance to classify each block 1in
four spectral bands to an arbitrary number of clusters. The classified
image along with the centroids are used to reconstruct each 16 x 16 block
of the multispectral imagery.

7.2.4 Statistical Measures

The statistics of the representative multispectral data utilized in the
bandwidth compression methods are the following:

(1) The spectral correlation of the data is utilized in the KL trans-
form of the multispectral data. The correlations for the four bands of
LANDSAT and the eight channels of the aircraft data are shown on Table 7.3.
The spectral correlation of the LANDSAT data is not exponential, thus the
process is not Markovian. The spectral correlation of high altitude data
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Table 7.3. Correlation Matrix of the Representative
Multispectral Data :

(a) LANDSAT Data

1,000 :866 276 —.'HH—_'l
.866 1.000 .288 -.177
276 .288 1.000 .654

-. 141 -.1?7 .654 1,000

(b) High Altitude Aircraft Data

1.00 .82 .94 .77 .91 .63 .62 .69
.82 T.00 .85 .92 .85 .85 .79 .81 |
.94 .85 1.00 .83 .96 .76 .71 .81
77 .92 .83 1.00 .8 .92 .91 .92
.91 -85 .96 .86 1.00 .82 .77 - .87
.69 .85 .76 .92 .82 1.00 .95 .88
62 .79 .71 .91 .77 .95 1,00 .91
69 .81 .81 .92 .87 .88 .91 1.00

also does not appear exponential. However, after rearranging the various
bands, it can be approximated by an exponential function fairly accurately.

(2) The spatial correlation of the multispectral data, after perform-
ing the spectral transformation, is utilized in the various bandwidth com-
pression algorithms. In the system using a two-dimensional DPCM encoder,
these correlations are used in obtaining the optimum values for the weight-
ings in the DPCM predictor. In the three-dimensional transform encoder and
the hybrid encoder, the spatial correlation is utilized in optimizing the
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bit-assignment routine.

Haar transform is shown in Figure 7.9.
decay of the correlation as a function of distance.
mean and the standard deviation of various bands after Haar transform as

well as the optimum weightings in the two-dimensional DPCM system for each

band.

the differential signal for each band.

The spatial correlation of the LANDSAT data after
This figure shows almost exponential

Table 7.4 shows the

The table also Tists the bit assignment and the standard deviation of

Table 7.4. Statistics of Various Bands after Haar Transform and
the Parameters of the DPCM Encoder

— A

Standard No. of
Standard Deviation Bits/Sample
. A A A Deviation of the in Each Band
Various 1 2 3 Average of the Differential {2 Bits/Pel.
Bands {Horizontal) {Vertical) {Piagonal) Value Signal Signal Average)
Band #1 0.8569 0.5347 -0.4004 186.4 1N 6.11 3
Band #2 0.8161 0.5808 -0.4096 13.6 30.96 7.13 3
Band #3 0.5143 0.5250 -0.1479 -6.1 14.34 8.29 1
Band #4 0.5271 0.5203 -0.1434 46.3 11.85 6.54 1
1,0
-~
.
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~
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~
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Figure 7.9. Spatial Correlation of Various Bands after Application
of Haar Transform in Spectral Domain
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7.2.5 Compression and Distortion Results
The simuiation results reported below are intended to:

“{1) Verify for various methods the compression performance predicted
by analytical resuits.

{2) Compare performance of three-dimensional bandwidth compression
methods with those of two-dimensional bandwidth compression methods. Two-
dimensional bandwidth compression methods utilize spatial correlation of
the imagery data where three-dimensional bandwidth compression methods
utilize spectral correlations as well as the spatial correlations.

Since most of our simulation results relate to four-channel LANDSAT
data, the performance of a number of bandwidth compression methods is evalu-
ated using multispectral data with a larger number of bands to evaluate the
consistency of the results.

Comparative performance of the two-dimensional and the three-dimensional
handwidth compression algorithms is shown in Figures 7.10 and 7.11 in terms
of the mean square error and SNR. Each case shows that some improvement in
the performance of the bandwidth compression methods is achievable by -
utilizing spectral correlation of the data. However, the size of this gain
is relatively small (about 1.5 dB). Nevertheless, though small, minimal addi-
tional complexity is required to achieve it. Further justification for
using spectral transformations is that each one of the four channels
obtained after a spectral transformation has attributes from all four
original spectral channels. Therefore for some users, one channel of this
data may be more valuable than any one channel of the original data.

Figures 7.10 and 7.11 show that hybrid encoders perform better than
multidimensional cosine transform encoders. This supports the conclusions

based on the analytical results that:
® The spectral correlation of the LANDSAT data is not Markovian;
therefore, a KL transform or a deterministic transformation

matched to the sensor characteristics (such as the Haar trans-
form for LANDSAT data) should be used for spectral operations.

® The combination of a transform-DPCM encoder performs better than
a two-dimensional transform encoder.
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Figure 7.12 shows reconstructed composite color pictures (consisting of a
red, a green, and an infrared band) at 1 and 2 bits/picture elements,
corresponding to two- and three-dimensional bandwidth compression methods.

The performance of some of the recommended compression techniques on
the eight channels of the high aititude aircraft data is evaluated. The
performance of KL two-dimensional DPCM and Haar two-dimensional DPCM sys-
tems on the eight-channel data is shown in Figure 7.13. These, as well as
other results with the high-altitude data, indicate that:

¢ The performance of the compression systems on eight-channel data

is very similar to the performance of the compression methods on

LANDSAT data. This confirms the generality of our results to
muitispectral data other than LANDSAT data.

8 Since the spectral correlation of the data is exponential, the
performance of Cosine, Slant, and Hadamard transforms in the
spectral domein is better than the Haar transform. However, the
difference is so small that the choice of spectral transforma-
tion should be based on other considerations. Indeed, using
identity transformation instead of the KL transform, there is
a loss of about 1.5 dB.

Experimental results relevant to the performance of the recommended
compression methods are discussed in Section 9.
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Figure 7.12. Bit Rate vs Signal-to-Noise Ratio of KL — 2-Dimensional
DPCM and Haar — 2-Dimensional DPCM Systems for
Eight Channels of the High Altitude Aircraft Data
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Figure 7.13. Bit Rate vs Signal-to-Noise Ratio of KL — 2-Dimensional DPCM
and Haar — 2-Dimensional DPCM Systems for Eight
Channels of the High Altitude Aircraft Data
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7.3 SYSTEM CONSIDERATIONS

In addition to comparing the performance of the candidate bandwidth
compression methods, we have compared the candidate methods based on system
considerations. This involves evaluating the candidate methods in terms of
their implementational complexity., sensor effects, and the effects of a
noisy channel on performance.

7.3.1 Sensor Effects

A number of different sensor phenomena contribute to degraded compres-
sion performance compared with that expected for an ideal sensor. These
effects may require variations of up to half a bit per pixel in the data
rate required to maintain a particular signal-to-noise ratio, based on the
results below. In order to explain those sensor properties which adversely
affect compression, we first describe the two types of multispectral sen-
sors which are most Tikely to be used for future satellite based gathering
of earth resources data. They are the thematic mapper and high resolution
pointabie imager.

HRPI

The high resolution pointable imager (HRPI) is still in the planning
stage. It is a so called push broom device. An array of photodiodes (4864
Tong in the Westinghouse proposed HRPI design) records one Tline perpendicu-
Tar to the vehicle's path. Motion of the vehicle along its orbit makes
possible the recording of succeeding lines. A prism assembly is used to
separate incoming energy into four spectral bands, each band recorded with
2 unique array of sensors. For each image, the HRPI can be oriented
vertically downward or at any angle between plus and minus 30° by use of an
adjustable mirror aboard the spacecraft.

Thematic Mapper

The thematic mapper collects radiation in each of seven spectral bands
by scanning the ground below the spacecraft. Using a system of optics,
light entering the input port is fed to a set of photo sensors for each
spectral band. Each set of sensors is laid out paraliel to the vehicle's
path. A mirror scans the earth in a direction perpendicular to the orbital
path, producing succeeding image lines as the spacecraft moves in its orbit.
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For each spectral band, a set of sensors laid out parallel to the vehicle's
path allows sweeping out several lines simultaneously.

Sensor Effects Which Impact Compression

The factors which may affect compression performance can be explained
based on the descriptions of the HRPI and thematic mapper. A 1ist of the
significant sensor effects is given in Table 7.5. The most critical factor
is the variation in gain and bias of the varjous photodiodes. The photo-
diode nonuniformity has different consequences depending on the compression
technique used. If predictive encoding is used, one can expect that the
energy recorded at-one photodiode will be Tess correlated with the energy
recorded by the adjacent photodiode than it would be if sensor performance
were uniform. Consequently, the error of prediction will have greater
variance than for uniform sensors. This in turn implies poorer compressor
performance. If transform coding is qsed instead of predictive coding, high
frequency coefficients will tend to have greater energy than in the case of
uniform sensors. This will cause the quantizer following the transform to
be inefficient.

Table 7.5. Sensor Effects

J—

& Photodiode nonuniformity

e Signal-to-noise ratio

® Radiometric nonlinearity

@ Spectral misregistration

® Geometric distortion due to satellite attitude variations
@ Geometric distortion due to scan pattern

@ Data rate.

In performing a data compression study for NASA Goddard (NAS5-21746) on
LANDSAT data, TRW encountered the effect of sensor nonuniformity. Band
MSS5 of the LANDSAT multispectral scanner had one sensor which frequently
performed quite differently than the cother sensors. This caused every
sixth 1ine to differ significantly from its neighbor. Thus coding schemes
which assumed approximately the same statistics for succeeding lines
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suffered degraded performance. It is worth mentioning, however, that for
information-preserving compression, a compression ratio of between 1.5 and
2 was still achievable.

Signal-to-noise ratio is an important parameter of a sensor because it
determines the fineness with which the input signal should be quantized.
The sensor noise and quantization error shoy]d be comparable in a well
designed system (finer gquantization is pointless because the small signal
variations are lost in the noise and rougher quantization wastes the sensor's
capabilities). ’

Spectral misregistration tends to reduce spectral correlation and con-
sequently is another factor which may reduce the effectiveness of a data
compression technique. The correlation is reduced because misregistration
means that corresponding pixels from different spectral bands not only have
spectral separation but have spatial separation as well.

The sensor scan pattern is an important source of distortion which may
affect compression. Since the distance from the spacecraft to the ground in
the vertical direction is shorter than the distance to the ground at an
angle, the area on fﬁe ground corresponding to each pixel is not the same.
In fact, the ground area corresponding to one recorded image line has the
shape of a bow tie. Figure 7.14 demonstrates this phenomenon in a highly
exaggerated fashion. This effect applies to both the thematic mapper and
the HRPI since it depends on the varying distance from the spacecraft to the
ground and not on the physical scanning mechanism. As previousiy noted, the
photodiodes record one brightness value for each subarea indicated in Fig-
ure 7.14. The data compressor does not depend on the shapes of the subareas
but rather on the correlation of the recorded brightness values. The cor-
retation between values in succeeding lines will vary due to the overlapping
of succeeding Tines (see Figure 7.15).

Fluctuations in satellite attitude may also cause nonuniform distances
between succeeding 1ines in both the thematic mapper and HRPI-~produced
imagery and within a 1ine in thematic mapper imagery due to its scan.

Radiometric nonlinearity refers to the relation between the sensor's
input and its output. If this function is nonlinear, the statistics of the
output are not the same as those of the input and consequentiy the
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correlation of the output data sequence is not the same as that of the

input sequence. This nonlinearity may not adversely affect compressor per-
formance, however, since it may in fact increase the correlation between the
values of the succeeding picture elements.

The data rate out of the sensor has an influence on achievable data
compression because at high rates only a limited amount of time is available
to perform computations and hence a 1imit exists on the number and kind of
computations.

Relationship of Data Correlation to Compression

We now observe that all of the sensor effects we have described,
except data rate, alter either the spatial or spectral corre1afion of the
imagery. Most compression techniques take advantage of this correlation in
one form or another since correlation is a good measure of the redundancy
in a set of data.

In order to get some idea of the extent to which the various sensor
phenomena affect compressor performance, we make several approximations and
examine the performanece of the optimum compressor of a monochrome image.

We assume that such an image is the sample function of a two-dimensional
Gaussian random process, f(x,y). We further assume that the correlation
function of this process is

- + -
E Do avy) FOu,] = ko 12 * 72l (7.36)

where k is a constant and p is the correlation coefficient of the process.
A somewhat more appropriate assumption would be that

J(xrxz)z * (y1-y2)2_ :
E [f(x'! ,.y'l) f(xzsyz)] =kp (7.37)

However, the form of (7.36) is considerably more convenient mathematically
than (7.37) and can be expected to give comparable results. It can be
shown, under the above assumptions, that the minimum required number of bits
to maintain a specific signal-to-noise ratio given a fixed correlation
coefficient is
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1 2,257 ..
7 log, (1-p7) T bits/sample - (7.38)

For the thematic mapper and HRPI, we expect 8 bits per picture element
and sensor noise to be approximately comparable in size to quantization
error. Thus, the SNR.of the data leaving the quantizer will be approximately

L

8 . 2 _ .15
3 2

~1) = (7.39)

Hence, if the data were totally uncorrelated, %‘1092 215 = 7.5 bits would
be required to permit perfect reconstruction of the quantized sensor output.
If the correlation coefficient is greater than zerb, we see from (7.38) that
we can reduce the number of bits required by -Tog, (1-p?) bits/sample.

The correlation coefficient for typical multispectral scanner imagery
is approximately 0.9. (For the LANDSAT scene processed in this study.
coefficients of 0.937, 0.938, 0.883, and 0.901 for MSS4, 5, 6 and 7 were
measured.} If, for example, the sensor phenomena reduce the correlation
by 10%, then, based on (7.38), 0.86 additional bits would be required to
maintain a specific signal-to-noise ratio.

Up to now, the figures we have mentioned have been based on the
required rate for the optimal compressor. This curve is closely approached '
by both transform and predictive techniques. Hence, results similar to
those given can be expected to apply. In addition, these results have
assumed knowledge of the correlation coefficient. In practice this
coefficient will be unavailabie. Since transform techniques are less
dependent on exact knowledge of the correlation coefficient than predictive
techniques, we can expect performance of transform techniques to be Jess

subject to sensor phenomena.

Correlation Reduction Due to Sensor Effects

‘Based on the EOS System Definition Study performed by TRW for NASA
under contract NAS5-20519, the relative radiometric accuracy from cell to
cell and band to band will be within 1% for both instruménts. This would
imply that sensor gain and bias effects as well as sensor nonlinecarity
would alter the correlation coefficient less than 1%. Spectral registration
for the devices is expected to be within one tenth of a picture element.

7-40



For a correlation coefficient of 0.9, this means a potential change of
1 - 0.91/10 or approximately 1%.

The remaining significant factor in evaluating sensor-caused reduction
in the correlation coefficient is related to the bow tie scan phenomenon
mentioned earlier. Due to this effect, the ground area represented by
thematic mapper pixels may vary by 1.1% and by HRPI pixels by 29%. The HRPI
may have such large variations since it can be pointed 30% from the nadir.
A 1.1% variation in area should have a negligible effect on the correlation
coefficient. To get an approximation to the variation in correlation .
coefficient for the HRPI, due to the bow tie pattern, we compare the cor-
relation between two adjacent squares directly below the sensor and at 30°
from the vertical, the HRPI's range. If we define the ground area directly
below the sensor corresponding to one pixel to be of size one, we chtain
for the correlation of two adjacent pixels

1 1 2 1
cos 8 cos @ cos 8 cos @ ’
p=E f ff(x,y)dxdy f ff(x,y)dxdy 00849 {7.39}
0 0 1 0
cos ¢

where f(x,y) is the energy of the radiation emanating vertically from the
ground, and 8 is the off-nadir angle of view of the sensor. If we assume
tﬁat the correlation function of f can be roughly approximated by a sepa-
rable exponentially decaying function, we obtain

2 1 1 1
cosf® cosf6 cose cos O

p = costo f f f fe'““""’l *1y=# gxdvdydp (7.40)-

1 ¢} 0 0
cos 4

Solving this integral we obtain

4 |: 1 e-—az/cos ] 4] [eoe/cos ] _]] [e~cv/cos g _e-Zo:/cos 9}

.2
P—acosa c0s 8 o o a
(7.41)
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We can use (7.41) to get an idea of the variation bf the correlation
coefficient with 4. Suppose that when 6 equals 0, pequals 0.9. This value
is close to that obtained in typical ERTS imagery. We then find e™® using
numerical techniques to be 0.924.

Substituting a value for ¢ of 30° into (7.41) we obtain
p = 0.886 (7.42)

Thus a variation in p of about 1.5% may be expected as one goes from ¢
equals 0° to ¢ equals 30°.
Thus for the two devices, we expect between 2 and 5% variation in

correlation coefficient due to sensor phenomena. This results in a varia-
tion of less than half a bit/sample in the rate required to maintain a

specific SNR.

7.3.2 Impiementation Compiexity for Compression Technigues

This section discusses the complexity of implementing the various com-
pression techniques in terms of their storage requirements {number of bits)
and computational requirements (number of adds, subtracts, multiples). For
each candidate method, we indicate the approximate storage requirement as
well as the number of computations needed as a function of the_ parameters
of the compression techniques. Then we give a typical value for these
parameters for each compression technique. These numbers are for the
encoders in their most general and optimal form. In practice one can reduce
the complexity of these systems significantly by designing them in a
slightly suboptimal fashion. Experiments with similar bandwidth compression
algorithms has shown that significant design simpiification results when one
uses slightly suboptimal procedures.

The resuits are described below and summarized in Table 7.5. Some
detailed preliminary costing derivations are contained in Appendix B.
Throughout this section it is assumed that the parameters of the technique
will be chosen so that the various fast transforms will have a size which
is a power of 2. The numbers identifying the compression techniques are
those Tisted in Table 7.6.
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Table 7.6. Computational and Storage Needs for
Compression Techniques
COMPUTATLONAL NEEDS . STOMAGE NEEDS (BITS)
COMPRESSIGN TECHNIGUES .
ADDS (OR SUBTRACTS }/PIXEL MULTIPLIES/PIXEL RECORD STORAGE MEMORY
- |TYP!CAL.i [T¥FI [Fyer TYPICAL
|
1. 3-Dimensional Fourier Transform 1.5 log,8%542.5 I loges+2 1685H 4482541604800
and Block Quantization } ]
17.5 ! 12 I3.300,nna 54&‘.'9.‘3
- = " T
1
2 3-Dimensional Hadamard Transform
and Block Quantization 1092323+T 1 16B5W 4857546000
B 1Y PO 121 O X
3, 3-Dimensional Slant Transform 2 3 4 2 , s 4 i 82564100 B4000
and Block Quantization Tog Bt 5« g - AT . T-g-—5 1655H : §+6410g,
e e L8 5,200,900, 70001
1 i 1 1
4,  3-Dimensional Cosine Transform 3 1092(3-1)2“" F)(S—'I)“' §') re 1092(8-1)2(1' E')(S-'I)“' 3 1685H 763?51-32!3'*8000
and Block Quantfzation +7.5- 525 1oy ' B4
N Y Ers [ ] 4,340,000 119,000
5. Karhunen-Loeve Transform in the Spectral
Domain followed by 2-Dimensional Fourder 2 15 2 . 32Bz 4825
Transtorm on the spatial domain followed | |+5 109p87+5+T+1, | TogpBTeS+] GESH +
by Black Quantization . R 1_1:.5“ e e hs.--...,.... . 3,200,000 2,000
6. 2-Dimensional Hadamard Transform in the
spatial domain follewed by a DPCM encoder 'logalla+T+'| 1 T5BSH 10882+BDDD
tn the zpectral domain 10 | 1 — 3,300,000, [36,.000
7. 2-Dimensfonal Cosine Transfortt in the 1 1 1 z
spatial domain followed by a DPCM encoder | 3 lugz(ll-l_)ZU' F)+6*1;+T 2 Tog,(B-1 )2“' E’ 1685W 1408"-328+8000
i the spectral domain [B0 | #-§ [ 34,400000 000
8. 1-Dimensdonal Karhunen-Loeve Transform on
the spactral domain followed by 5HT43 S+ 165M " 1657 +1485+5000
2-Dimensional DPCH
B TR -3 DU - [200,000 SRR 7.
0. arhuner-Loeve Transforsron the
spectral domafn followed:by 2 Had-
wand Transform in the sesn direction 10g,BH54T+1 $+2 3250 B4B5+32B+325 (54148000
(x~direction) with y~direction DPCH
using block quantization. 14 . A 400,000 15,000
1.  Karhuner-Loeve Transform on the {i- 111.) . . (H)('I- %‘) cor & -
2 lox. + 11665+64B4+325(5=1 }+8000
spectral dowain followed by a Cosine 3 Tog, (B-1) +54T43.5- 2 L 325M
Transform in the scan direction
{x-direction) with y-direction DPCH
using block quantization. 20 16 400.000u 18,000




_Three-Dimensional Transform Coding Techniques

Three-dimensional transform coding methods, Tisted as compression
methods 1 through 4 in Table 7.6, differ in the t&pe of the basis functions
they use to transform the data. Slant and Hadamard transforms use basis
matrices that are Targely 1 and -1, thus the need for storing the basic
matrices and the muitipliers is eliminated. However, Cosine and Fourier
transforms require storing the basic matrices and multipiiers. Therefore the
storage and the computational requirements for these methods are different.

A typical LANDSAT picture has 2400 x 3200 spatial points by four
spectral bands, with 7 bits representing each sampie in the first 3 and 6
samples on the 4th band. We will compress the bandwidth of the picture to
an average of T bits/pixel. First the picture is divided into blocks of
size B x B x S. (B = 16 has previously been found reasonable.) We will
consider a block size of 16 x 16 x 4 to be a typical block size. Let each
block be identified by indices 2, m, i, j, and k where & and m index the
blocks in the vertical and horizontal directions respectively. 1 and j index
the elements within each block in vertical and horizontal directions
respectively. k indexes the spectral bands. Then the number of Fourier
coefficients in each block is BZS samples. These samples are referred to
as C m(i,j,k) where 1< T <B, 1£Jd<B,1<K<S. We could combine the
I, d, K into one index IX so that we can think of the coefficients as a
vector Cg,m(IX); IX = ],...,BZS. Leaving out the coefficients that are
redundant because of symmetry, we end up with BZS-rea1 coefficients. Now
for IX=1,...,8%S, C(IX) is transmitted using a predetermined number R(IX)
of binary digits. (R(IX) may be zero for some values of IX.) The numbers
R(IX) have been chosen so that for an average bit rate "T", the expected
distortion is minimized. The strategy is based on the fact that most of the
transform coefficients tend to concentrate in a relatively small number of
spectral coeffients to which most of the available binary digits are
assigned.

Implementation. Collect and store (record, etc.) 16 scan lines of
picture at 8 bits/pixel. After 16 lines, we start processing while simul-
taneously storing the next 16 1ines.
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Processing. For each block, compute the three-dimensional transform
by taking three one-dimensional transforms in the horizontal, vertical, and
spectral directions. When we transform real sequences, the result has con-
jugate symmetry and we need only calculate the transform for about half the
spectrum. Using the symmetry, we find we can represent the results with
B%S real numbers C (IX),

Accuracy. Note that lC S(IX)] is Tess than or equal to

D IByliadk)]
e
(1,J,k) refers to the gray level of pixel specified by indices z myi,d.ks

and could achieve this bound; furthermore, BZs typically equals 16 (4)
= 1000, so |c£m(zx)| could be as big as 1000 max|BEm(1,J,k)|, but more
typical would be /7000 maxlBRm(i,j,k)]. If we scale to avoid losing the
most significant bits, then many of the coefficients will be a factor of 30
or more (= 5 bits worth) smaller than max. We want 8-bit reconstructed
results, which experience has shown requires sending some coefficients with
10-bit accuracy; so we need a minimum of 16 bits computational accuracy.

After calculating the transform coefficients Ckm(Ix) for each block,
we proceed with:

@ Multiply each coefficient by prespecified scale factors SC(IX)

¢ Pass the result through some nonlinear function FQ implemented
using a table look up algorithm (see Appendix B)

@ Quantize each coefficient using a prespecified number of bits
R(IX).

Storage Requirements. The storage requirements for a three-dimensional
transform coder can be calculated by considering the storage requirements
for three successive operations. These are storage requirements at the
input prior to transformation, storage requirements for storing the trans-
form coefficients, and the transform basis vectors (for Fourier and Cosine
traﬁsforms), and finally the storage requirements for performing block
quantization of the transform coefficients.
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To store 2B Tines of the original samples with an accuracy of 8 bits/
pixel, we need 16BWS binary digits. This has to be done prior to any
processing. A typical value for this expression is 3,300,000 bits or about
200K minicomputer words (for B = 16, S = 4, and W = 3200}, This demands a
rather large stoﬁage device. A disk or a drum must be utilized to store
these samples. For an on-board processor, charge-coupled devices can be
used to meet this storage requirement.

The storage requirement for storing the transform coefficients is
approximately B%S words of 32 bits/word for each block of B2 samples. An
additional B/2 words are also needed to store the transform basis vectors
for Fourier and Cosine transform. This requires a total of 32B25+1SB bits
of storage to perform the transform and store the coefficients. A typical
value for this expression is 33,000 words. ’

For block quantization, BZS words are needed at 4 bits/word to store
R(IX) numbers. Another BZS words at 8 bits/word are needed to store scaling
coefficients. 29 words at 16 bits/word are needed to store half of 210
values of the function FQ'1 with 16 bits of accuracy. Since FQ is monotone,
we evaluate it with a binary search on FQ']. 1t is also symmetric so we
nead only half the table. This makes the total equal to 128%s + 213 hits.
For a typical case (i.e., B = 16, S = 4) we need 20,000K bits of mehory to
perform operation of block quantization.

There will be additional storage requirements for the program and for
storing the transform coefficients; however, this is relatively small. We
will not attempt to estimate this factor.

Computational Complexity. See Appendix B for outline giving the trans-
form processing cost. Our cost is the transform cost + (1 multiply/pixel
and T adds/pixel) to do the block quantization.

Depending on the nature of the hardware, there will be additional costs
associated with indexing, looping, fetching, and storing from the computer
input/output bit manipulation operation. This computation and overhead will
be highly dependent on the nature of the hardware and the degree to which it
is specialized to the task at hand. We will not attempt to estimate it at
this level of study.

7-46



The storage and the computational needs for the various three-
dimensional transforms are listed in Table 7.6.

KL - Two-Dimentional Fourier Transform

Implementation. As the data comes in, we transform along the spectral
coordinate by a predetermined transformation. For four spectral bands, each
sample in multispectral imagery is multiplied by a given 4 x 4 matrix. Then,
the resulting coefficients are stored for 16 scan lines before we process
the blocks (as explained below) while the next 16 scan lines are being
stored,

Processing. For each spectral band, the BxB sample array is Fourier
transformed just as indicated in 3-dimensional transforms except there is
no transformation aver the S direction in this case. Then we get S sets of
B2 Fourier coefficients/block of data. For each block these 82
are quantized with specified accuracy and are transmitted.

S coefficients

Storage Requirements. The storage requirements consist of storing the
“input, the transform coefficients, and the transform basis functions, and
finally the storage needs for performing the block quantization.

These requirements are 8BWS bits for storing 2B lines.of the imagery

data, using 8 bits per sample (a typical value is 1,600,000 bits).

Approximately Bz+%-words of 32 bits/word are required to store Fourier

coefficients. This is equal to 3232+1GB bits. The block quantizer .employed
with this technique fis igenticaﬁ to the block quantizer used with technique
1. Thus, it requires 12323+8,000 bits of storage to perform the operation
of biock quantizatidﬁ.

Computational Cqmpléxigx, The computational complexity of this method
is calculated using a procedure identical fo the one employed in technigue
1. The results are shown in Table 7.6.

Two-Dimensional Hadamard/DPCM Encoder

As for technique 1 the imagery is divided into blocks of BxBxS samples.
For each block a two-dimensional Hadamard transform is taken. Then an
array of differential signals along the spectral direction is generated
using the transformed components. These signals are quantized using a bank
of quan?izers and are transmitted. The system is an extension of the

hybrid encoder.
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Implementation. The processing begins by taking the two-dimensional
Hadamard transform of blocks of'B2 samples. Using the transformed blocks
of data a corresponding differential signal is generated. The elements of
the transform domain along with the differential signals are quantized and
transmitted. The quantization procedure is similar to that of technique 1.

Storage Requirements. The storage requirements for this technique are

as follows:

(1) For storing 2B 1ines of picture 16BSW bits of memory are needed
(a typical value of 3,300,000 bits).

(2) For the Hadamard transform B2 words of memory at 32 bits/
word are needed.

(3) For the block of DPCM encoders B2 words at 32 bits/word are
needed.

(4) For the block quantizer B? words at 4 bits/word are needed
for storing the bit-assignment table, BZ words at 8 bits/word
for storing scaling coefficients,. and BZ words at 32 bits/word
for storing DPCM gians and as in technique 1 about 8,000 bits
for the table ysed with a nonlinear quantizer. This reqguires
a total of 44B2+8,000 bits of storage. A typical value for
this number is 20,000 bits.

Computational Complexity. This method requires 10g282 adds/pixel for
the Hadamard transform + (1 add/pixel and 1 multiply/nixel) for the
DPCM + (T adds/pixel and 1 multiply/pixel) for the block quantization. A
summary of the number of computations needed for this technique is given in
Table 7.5. ’

Two-Dimensional Cosine/DPCM Encoder

Implementation. Like technique 6, except that we use the Cosine trans-
form instead of the Hadamard transform.

Storage Requirements. The storage requirements for this technique are
as follows:

(1) F?r storing 2B Tines of S bands at 8 bits per sample 16SW bits
of memory are required. This gives a typical number of
3,300,000 bits for S =4, | = 3200, andyg = 16.

(2} The Cosine transform requires 2B(B-1) words of memory. Storage
of Cosine basis vectors requires an additional (B-1) words of
memory. Using 32 bits/word this requires a tota] of 64B2-32B~32
bits of memory.
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(3) The DPCM encoders require B2 words at 32 bits/words for storing
a BxB biock of sample from the previously processed band of the
multispectral imagery.

(4) Similar to technique 6 a total of 4482+8000 bits are required
for the operation of block quantization.
Computat1ona1 Comp1ex1ty. This method requires (1 - —J [31092(B 'I)2
5 + ~——-] adds and (1 - ~9 [21092(8 1) +4 - —4—] + 1 mu1t1p11es for two-
dimens1ona1 cosine transform of a block of BxB samp]es. Each DPCM encoder
requires 1 add and 1 multiply operation and the block quantizer requires

(T adds and 1 muitiply)/pixel. The total number of operations is shown in
Table 7.6.

KL Transform — Two-Dimensional DPCM Encoder

Implementation. In this method the incoming data is first transformed
in the spectral domain using a SxS KL matrix. The transformed coefficients
are stored. One line of each transformed band needs to be stored before
one can proceed with a two-dimensional DPCM coding of these bands.

Storage Requirements. The storage requirements for this technique
are-as follows: ‘

(1) WS words of 16 bits/word for storing one Tine of each band.
This is assuming that 16 bits/word are sufficient for the
storage of the KL components. This requires a total of 16UWS
bits of digital memory.

(2) 52 words of 16 bits/word are required for storing the KL trans-
form matrix. S words of 16 bits/word are required to keep the
KL transform before or after the transformation.

(3) 35 words are required for storing the coefficients used in the
feedback loop of the DPCM encoder. This requires 16 bits/word
accuracy.

(4) An additional S words at 4 bits/word are needed to store the bit
assignment table (bits/pixel used)}. S words at 16 bits/word are
needed for storing the scaling parameters and as in technique ]
about 8000 bits are required for storing the function FS.

Computational Complexity. The computational compiexity for this tech-

nique consists of (S adds and S multiples)/pixel for the KL transform,.

(3 adds and 3 multiplies)/pixel for DPCM and (T adds and 1 multiply)/pixel
for the quantization. The total number of required computations is shown
in Table 7.6.
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KL — Hadamard Transform/DPCM Encoder

The scan direction is divided into segmenﬁs of 1ength~B_samp1es for -
Hadamard transforming. The quantizers use a different number of quantization
levels which varies with spectral band and position within the Hadamard
transform results, but does not vary from line to Tine or from segment to

segment.

Implementation. In this method the incoming data is first transformed
in the spectral domain using an SxS KL matrix. Blocks of Tength B of the
transformed cbmponents are then formed. Each block of B samples is Hadamard
transformed. One T1ine of the transformed data i required prior to DPCM
processing. Note that a block of B DPCM systems are required vor the

encoder in its most general form.

Storage Requirements. The.storage requirements for this technique are
as follows:

{1) Storing incoming data requires BS words of memory at 8 bits/word.

(2) S2 words of 16 bits/word are required for storing the KL transform
matrix. S words of 16 bits/word are reguired to store the KL
transform. Additional BS words at 32 bits/word are needed to
store the BS elements of the segment being KL and Hadamard
transformed.

(3) BS words at 32 bits/word are needed to store the previously trans-
formed segments which are required for the DPCM encoder. We also
need B words at 32 bits/word to store the starting value for the
DPCM encoder. .

(4) The block quantizer requires BS words at 4 bits/word to store the
bit assignment rule, and BS words at 8 bits/word to store the
scaling coefficients and an additional 8000 bits of memory to
store the function FQ.

Computational Complexity

The number of computations required for this technique is summarized in
Table 7.6.

KL — Cosine Transform/DPCM Encoder

Impiementation. In this method the incoming data is first transformed
in the spectral domain using a SxS KL matrix. Blocks of length B of the
transformed components are then formed. Each block of B samples is Cosine
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transformed. One-line of the transformed data is required prior to DPCM
processing. Note that a block of B DPCM systems is required for the
encoder in its most general form.

Storage Requirements. The storage requirements for this technique are

as follows:

(1)
(2)

Storing incoming data requires BS words of memory at 8 bits/word.

52 words of 16 bits/word are required for storing the KL transform
matrix. S words of 16 bits/word are required to store the KL
transform. An additional 2 BS words at 32 bits/word are needed

to store the BS elements of the segment being KL and Cosine
transformed. We also need (B-1) words at 32 bits/word to store
Cosine basis vectors.

BS words at 32 bits/word are needed to store the previously trans-
formed segments which are required for the DPCM encoder. We also
need B words at 32 bits/word to store the starting value for the
DPCM encoder.

The block quantizer requires BS words at 4 bits/word to store
R(ix,k) and BS words at 8 bits/word to store the scaling coeffi-
cients SC(iy,k) and an additional 8000 bits of memory to store
the function FQ.

Computational Complexity. The number of computations required for this

technique is summarized in Table 7.6.

7-51



8. SELECTION OF THE RECOMMENDED TECHNIQUES

The performance of the candidate bandwidth compression techniques
listed in Section 5.5 were evaluated and compared 1n'3é9tion_7 using
analtytical and simulation results, as well as system considerations. In
this section we examine these techniques and utilize the results of Sec-
tion 7 to recommend three bandwidth compression techniques.

8.1 THREE-DIMENSIONAL TRANSFORMS

Three-dimensional transforms and three-dimensiona] mixed transforms
were not selected as recommended bandwidth compression techniques for the
following reasons. ’

¢ The spectral correlation of the MSS data, in.particular the
LANDSAT data, is not exponential. In this sense it is different
from the spatial correlation of this data. Thus, the unitary
transforms which approximate the performance of the KL transform
for data with exponential correlations do not perform as well in
the spectral domain. For this reason the performance of the
three~-dimensional transform coding methods are not as good as
other candidate methods.

¢ The mixed transform techniques that use the KL transform in the
spectral domain do not have the above shortcoming. In this
sense they perform better than the three-dimensional transform
techniques. However, two candidate techniques Tisted in this
category (KL-2D Fourier and KL-2D Hadamard) follow the spectral
KL transform with two-dimensional Hadamard or Fourier trans-
forms. The result is not as good as one would obtain if the
spectral transformation is followed with a hybrid encoder
(transform-DPCM). This point has been shown in Section 7 by
both analytical and simulation results. In addition, the
implementational complexity of the hybrid encoder (transform-
DPCM) is significantly Tess than the corresponding two-dimensional
transforms. :

8.2 TWO-DIMENSIONAL TRANSFORM/DPCM SYSTEMS

Both methods in the category of two-dimensional spatial transforms
with DPCM coding in the spectral domain were rejectgd for the following
reasons:

e The spectral correlation of the MSS data is not exponential. Thus
it cannot be encoded with DPCM systems very efficiently.
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The number of spectral bands in the MSS data is small. This does
not allow the DPCM encoder to reach its steady state mode of
operation. Also the performance of DPCM systems in the transition
state is very inefficient. As a result, the performance of the
techniques that use a combination of two-dimensional transform with
DPCM encoders is not as good as the other candidate techniques. It~
is worth mentioning that other studies [146] have shown that this
method surpasses the performance of the three-dimensional trans-
form techniques for compressing the bandwidth of television data.

8.3 RECOMMENDED BANDWIDTH COMPRESSION TECHNIQUES

" The following bandwidth compression techniques perform best and were
selected as the recommended techniques of this study. These are:

KL transform in the spectral domain followed by a Cosine
transformation/DPCM ’

KL transform in the spectral domain followed by a two-
dimensional DPCM

Cluster Coding technique using Swain-Fu measure for cluster-
ing MSS data.

These techniques are further analyzed and compared in Section 9.



9. COMPARISON OF THE RECOMMENDED TECHNIQUES

The selected bandwidth compression techniques were narrowed down to
three candidate bandwidth compression methods as discussed in Section 5.
In this section the three candidate methods are discussed based on various
criteria of optimality such as mean square error, signal-to-noise ratio,
recognition accuracy as well as the subjective quality of the reconstructed
imagery. In addition the folTlowing discussion will answer a number of
questions about the recommended bandwidth compression methods. These are:

# The reduction in the bit rate caused by concatenation of the

bandwidth compression algorithms with the entropy coding °
methods such as a Huffman encoder.

8 Most of the experimental results reported in this study relate
to the 4-channel spectral data of LANDSAT imagery. The simu-
lation studies are intended to evaluate the performance of the
Tinally selected coding algorithms for multispectral data with
a Targer number of channels. Results relevant to 12-channel
aircraft data are reported and are compared with the resuilts
obtained using LANDSAT imagery.

9.1 COMPARISON OF THE RECOMMENDED TECHNIQUES BASED ON MSE AND

SIGNAL-TO-NOISE RATIO

Figure 9.1 shows the performance of the three-dimensional hybrid )
encoder using KL-Cosine transforms with the DPCM encoder .in comparison with
the other two recommended bandwidth compression systems using MSE as the
criterion of optimality. One is the system that follows the Karhunen-lLoeve
Transform in the spectral domain with a two-dimensional DPCM encoder. The
other is the cluster coding technique. The cluster coding system uses a
fixed number of clusters in each block of 16 by 16 samplies. In this sense
it is a fixed bit-rate system. It is shown that the performance of the
encoder using KL transformatjon followed by a two-dimensional DPCM encoder
performs significantiy worse than the hybrid encoder (KL-Cosine-DPCM) at
low bit rates. However, their performance is rather similar at higher bit
rates (about 2 bits per sample per band). The performance of the c¢luster
coding algorithms is superior to that of the hybrid encoder at low bit
rates. However, it ines inferior results at high bit rates. In this
aspect, its performance is completely opposite to that of the KL-2 Dimen-
sional DPCM encoder.
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Figure 9.1. Bit Rate vs MSE for KL-2D DPCM, KL-Cosine-DPCM, and
Cluster Coding Methods. Dashed Tines refer
to variable Bit Rate.

Figure 9-1 also shows the performance of the hybrid (KL-Cosine-DPCM)
and KL-2 Dimensional DPCM encoders in concatenation with a variable rate
encoder. The variable rate encoder is the Huffman encoder which reduces
the output bit rate by assigning shorter-length words to more probable out-
put tevels and Tonger words to less probable output Tevels. Addition of the
variable rate entropy coding systems reduces the bit rate for both band-
width compression methods without affecting the coding degradation. The
effect of entropy coding on the performance of the KL-Cosine-DPCM encoder is
less than its effect on the performance of the KL-2 Dimensional DPCM System.
The KL-Cosine-DbCM System uses a bank of-DPCM modulators whereas the’KL-Z
Dimensional System uses a single DPCM modulator. Using a number of DPCM
modulators increases the total number of output symbols, thus reducing the
number of times each symbol occurs. This reduces the effectiveness of the
variable-length encoder in reducing the output bit rate. As a result, the
performance of the KL-2 Dimensional DPCM System improves an aVerage of 25%
while the performance of the KL-Cosine-DPCM System improveé only about 10%.
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The performance of the above two bandwidth compression systems does
not change significantly by substituting the Haar transform for the KL
transform for spectral transformation or by substituting the Hadamard or
Slant transform for the Cosine transform for spatial transformation. The
software delivered to NASA Ames Research Center and Marshall Space Flight
Center has an option for making these substitutions in a variety of ways
(see Appendix E).

Figure 9.2 shows the performance of the two systems using a peak-to-
peak signal-to-noise ratio. As discussed in Section 9.2, this criterion is
a normalized form for the MSE. Thus the comparative performance of the
above systems using this criteria is exactly the same as it is uéing MSE.
The only advantage of this criterion is that it includes a peak-to-peak
signal value in addition to MSE. This value is widely used in evaluating
television signal quality.

© K - 2 DIM. DPCM
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A CLUSTER CODING
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Figure 9.2. Bit Rate vs Signal-to-Noise Ratio for KL-2 Dim. DPCM,
KL-Cosine-DPCM, and.Cluster Coding
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9.2 COMPARISON OF THE RECOMMENDED TECHNIQUES BASED ON

RECOGNITION ACCURACY

Figﬁre 9.3 shows the performance of the three recommended bandwidth
compression methods using as the criterion of optimality "preserving. the
classification accuracy of the reconstructed multispectral LANDSAT imagery."

Using this criterion, the comparative performance of the KL-2 Dimensional
DPCM System and KL-Cosine-DPCM System is basically the same as it was for
using signal-to-noise ratio as the criterion of optimality. This shows a
strong correlation between the signal-to-noise ratio (or equivalently mean
square error) and the classification accuracy. This is further illustrated
in Figure 9.4. Figure 9.3 also shows the performance of the cluster coding
algorithm measured in terms of classification inaccuracy. The classifica-
tion accuracy actually decreases as a result of increasing the number of
clusters in each block up to 16 clusters per block. Then the classification
accuracy increases sharply when 32 clusters per block are allowed. This
behavior is due to the fact that the cluster coding algorithm is using a
classification procedure on blocks of 16 by 16 samples where classification
accuracy is measured using a classification procedure on blocks of 256 by

256 samples. Actually a 64 by 64 sub-sample of 256 by 256 samples is used in
the classification procedure. Of course, a classification accuracy of

100% results if the block size for measuring the classification accuracy

and the block size in cluster coding methods are the same. The reason for
keeping the block size in the cluster coding method small is the complexity
of the clustering algorithms. The complexity of the system in terms of
memory and the speed of processing increases rapidly for larger block sizes.
A larger block size also requires allowing for a larger number of clusters
for high fidelity. This further increases the complexity of the cluster
coding algorithm. Considering the fact that the system is already complex®
for small block sizes, it is inconceivable to envision cluster coding
systems that use block sizes much larger tﬁan 16 by 16. The argument for
using large biock sizes in classifying my]tispectra] data is not very solid.
This depends very much on the users and app]ihations of LANDSAT imagery. How-
ever, classifying LANDSAT imagery using large block sizgs has -many attractive

*The cluster coding system reported in this study requires about 20
minutes of a PDP-85 computer time for bandwidth compression of 4 channels
of 256 by 256 LANDSAT imagery using a block size of 16 by 16,
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features. Large block sizes are Tikely to be used in applications where
one is only interested in a 1imited number of objects in the multispectral
imagery such as in hydrology and urban planning where one is interested

in classifying the imagery using a large segment of the imagery. For this
application the imagery obtained using a cluster coding algorithm has a
rather poor classification accuracy compared to the other two recommended
bandwidth compression algorithms.

Figure 9.4 shows two criteria of signal-to-noise ratio and the
classification accuracy for the three bandwidth compression methods dis-
cussed. A strong correlation between‘the two criteria is displayed for
KL-2 Dimensional DPCM and KL-Cosine-DPCM methods. A much smaller corre-
Tation exists between the two criteria for the cluster coding method.
This is shown by scattered points indicated by circles.

9.3 COMPARISON OF THE RECOMMENDED TECHNIQUES BASED ON SYSTEM COMPLEXITY

The implementational comp]eiity of the selected bandwidth compression
techniques is discussed in Section 7.3.2. For recommended systems using
KL-Cosine-DPCM and KL-2 Dimensional DPCM systems, this is shown on Table 9.1
in terms of the number of computations and memory per picture element. This
table also shows typical numbers for 4 channel data and the block sizes
used in simulating the compression methods. A detailed analysis of the
complexity of the cluster coding method is not performed. But based on
the computer time regquired for compressing the bandwidth of the representa-
tive ERTS data using this system and comparing it with the computer time
required in simulating the KL-2 Dimensional DPCM encoder, it was con-
cluded that the cluster coding algorithm is about one order of magnitude
more complicated than the Haar-2 Dimensional DPCM encoder.

9.4 COMPARISON OF THE RECOMMENDED TECHNIQUES BASED ON CHANNEL
NOISE AND SENSOR EFFECT

Figure 9.5 shows the reduction in the signal-to-noise ratio and the
ctassification accuracy which is caused by introduction of a-noisy channel.
The results refer to a binary symmetric channel with bit-error rates
ranging from 107% to 1072, A bit-error rate of 10°% reduces the signal-
to-noise ratio by less than 0.25 dB for the KL-2 Dimensional DPCM and KL-
Cosine-DPCM encoder. Both algorithms degrade sﬁgnificant?y at higher
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Table 9.1. Summary of Computational and Storage Needs for 3D Hadamard,
KL-2D DPCM, and Kl.-Hadamard-DPCM Methods

o]
COMPUTATIONAL NEEDS STORAGE NEEDS {BITS
ADDS {OR MULTIPLIES/ RECORD MEMORY
SUBTRACTS)/ PIXEL STORAGE
PIXEL - = o}
[Fyorcm Lrypreal I T¥pICA) | T
2. 3-Dimensional Hadamard Transform 1_092325+1- 1 1685H 4482513000
and Block Quantization
TN 3] [ 3,300,004 54,000
g. 1-Mmensional Xarhumen-Loeve Transform, §+T+3 544 e 1652+1485+8000
on the spectral domain followed by
2-Dimensional DPCH —] —)
8 8 IZOD.OUO | 9,000
10.  Karhuner-Loeve Transform on the spec- 84BS+32B+325(5+1)
tral demain followed by a Hadamard +8000
- B+5+T+1 +
Transform in the scan directign Logy 542 325W
{x-direction} with y-direction DPCM
using block quantization
f 14 ‘ 6 400,000 | 15,000
TYPECAL
B, Block size B =16
T, Bits/pixel T=1
S; Spectral Bands 5=4
W; Sample in each scan W = 3200

bit-error rates. The system using the KL-2 Dimensional encoder degrades more
significantly. Figure 9.6 shows the reconstructed form of band 3 of the

ERTS data after bandwidth compression using the Haar-2 Dimensional DPCM encoder
at bit error rates of 10-° and 10-4. The propagation of the channel error

is clearly visible for a bit-error rate of 10"3.- However this-is less
significant than-the effects of channel error for a simple two-dimensional
DPCM system. This is because the recommended system using a Haar-2 Dimen-
sional DPCM encoder utilizes the two-dimensional DPCM encoder in the spectral
domain. The signal at the receiver of the two-dimensional DPCM system is

then transformed by the inverse of the Haar transform to reconstruct the
multispectral data. The total effect of the inverse Haar transform at the
receiver is to distribute the channel error and its propagation among all
spectral bands. Although this leaves the total error unchanged, it distrib-
utes the channel error among all spectral bands thus making it Tess objection-

able to human vision.
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The sensor imperfections that affect th§1performance of bandwidth
compression methods are discussed in Section‘7.3.1. These imperfections
affect the correlation of the data which in turn affects the performance
of the candidate bandwidth compression techniques. The analytical results
reported in Section’7.3.1 show that this effect is minimal and in general
it favors the transform méthods and the methods that rely less on an
exact correlation of the data. For this reason it is expected that the

sensor imperfections would have a smaller effect on the candidate method
using a Haar-Cosine-DPCM encoder.

9.5 COMPARISON OF THE RECOMMENDED TECHNIQUES BASED ON

SUBJECTIVE QUALITY OF RECONSTRUCTED IMAGERY

The simulation results reported in previous sections resulted in the
reconstruction of a large number of images. The reconstructed images were
displayed using a Dicomed color image recorder to generate hard copies. In
addition, side by side comparison of reconstructed imagery was performed on
a Comtal digital image displayer. These devices are discussed in Appendix D.
Due to practical limiations, only a cross section of the reconstructed
imagery is included in this report. A larger number of reconstructed images
was supplied to NASA Ames Research Center as well as Marshall Space Flight
Center and NASA Headquarters during the final briefing on the contract in the
form of 35 mm slides. The color composite imagery was generated using a
red, a green, and an infrared component of the multispectral imagery. Fig-
ures 9.7 and 9.8 show the reconstructed imagery using the recommended method
that utilizes a KL-2 Dimensional DPCM encoder at bit rates of 1 and 2 bits/
pixel. Figures 9.9 and 9.10 show the color composites and classified pic-
tures obtained using the corresponding reconstructed multispectral imagery.
Comparison of these images with the originals shows only a very small degra-
dation at a bit rate of 2 bits/pixel. Of course this bit rate reduces to
1.5 bits/pixel as a result of adding a Huffman encoder to the system.

Figures 9.11 and 9.12 show similar pictures of the recommended technique
that uses Haar-Cosine-DPCM encoder at 1 bit/pixel. Subjectively this is a
closer approximation to the original imagery than the corresponding imagery

shown on Figure 9.7. This is also true for the corresponding composite color
imagery.
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The individual bands as well as the color composite and classified
imagery using the cluster coding method are shown on Figures 9.13 and 9.14.
Comparison of the reconstructed imagery obtained using cluster coding with

the corresponding imagery obtained using a Haar-Cosine-DPCM encoder shows
the following:

o The subjective quality of the individual bands of imagery encoded
using the cluster coding method is inferior to the subjective
quality of the corresponding imagery using a Haar-Cosine-DPCM
encoder. This is because individual clusters are visible in the
individual bands and this makes an undesirable effect on a human
observer. This effect becomes more significant if the recon-
structed imagery is viewed on larger screens. It is worth nothing
that the MSE of the cluster coded imagery at 1 bit/pixel is less
than the MSE of the imagery encoded using a Haar-Cosine-DPCM
encoder at the same bit rate.

e The subjective quality of the color composite imagery obtained
using the cluster coding system is superior to that of a Haar-
Cosine-DPCM encoder. This is because the individual clusters
which degrade the subjective quality of the individual bands
have a cancelling effect when they are used to form a color com-
posite picture.
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10. SUMMARY 'OF RESULTS

This section presents the key results of the study and summarizes the
merits and deficiencies of the recommended techniques.

10.1 SIGNIFICANT RESULTS

(1) * The bandwidth of the MSS data is reduced using either two-
dimensional or three-dimensional bandwidth compression techniques. The
‘simulated results show that, using non-adaptive coding methods, the perform-
-ance of the three-dimensional methods gives about one decible more signal-
to-noise ratio than the corresponding two-dimensional methods. This small
improvement is partially due to the fact that an average value for the
spectral correlation is used in the three-dimensional non-adaptive systems.
Using an adaptive system utilizes different spectral correlation values for
different regions of the imagery, thus the encoder matches the statistics
of the MSS imagery more closely and this is expected to result in a larger
improvement in the performance of the three-dimensional methods over their
two-dimensional counterparts.

(2) The performance of the recommended methods does not change signifi-
cantly when the Haar transform is substituted for the KL transform in the
spectral domain. This is because of the gresent band allocation for earth
imagery. For other multispectral data, a fixed transform matched to the
sensors is also adequate for spectral processing

(3) The effécts of noisy channels and sensor imperfections on the
performance of the recommended methods are negligible. Channel noise
corresponding to bit error rates in the order of 107% or Tower does not
affect the performance of the encoder. A higher channel error is very
untikely for the present communications system.

(4) The simulation results reported in the study show a very strong
correlation between the mean square error and the classification accuracy
of the encoded imagery. This is partially due to the fact that the classi-
fication algorithm is a recursive method that uses Euclidean distance in
classifying the myltispectral data to various clusters.

10-1



10.2 MERITS AND DEFICIENCIES OF THE RECOMMENDED SYSTEMS

(1) The KL-Cosine-DPCM method gives a better result than the KL-2
Dimensional DPCM system at fixed bit rates. However, addition of the
Huffman encoder improves the performance of the latter by about a 25% reduc-
tion in the bit rate. It improves the performance of the former system by
about & 10% reduction in the bit rate. This makes the performances of both
systems at higﬁ bit rates about the same. The complexity of KL-2 Dimensional
DPCM system is much less. Therefore, at equal performance levels {larger
than 1.5 bits/sample) the KL-2 Dimensional DPCM system is recommended.

(2) The cluster codlng technique shows good potential for coding multi-
spectral imagery. The performance of this encoder as studied here is only
preliminary and it could be improved by utilizing the spatial correlation
of the clustered imagery and also inter-and intra-correlation of centroid
vectors. The performance of this method is further improved by making
the system adaptive. This will allow the number of ciusters in each
block to vary according to the amount of detailed information in that
block.

The performance of the cluster coding method in comparison with the
other two recommended techniques is summarized as follows:

. The cluster coding method gives a smaller MSE at 1ow bit
rates. At high bit rates it has a larger MSE.

® The reconstructed imagery using the cluster coding method has
a poor subjective quality when each band of the MSS imagery
is viewed individually. But when these bands are used to
generate a color composite imagery the artifacts in_ various
bands cancel and the composite color imagery has good
subjective quality.

o Classification accuracy of the cluster coding method.is rather
poor. This is due to using different block sizes for bandwidth
compression and for classifying the MSS data. This will affect
the users who must use a large block size for classification of
the MSS imagery.

¢  The biggest defect of the cluster coding technique is its im-
plementational complexity. Its complexity is estimated to be
about one order of magnitude higher than the complexity of the
Haar-2 Dimensional DPCM system.
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11. CONCLUSIONS AND RECOMMENDATIONS

This section discusses the major conclusions and recommendations of
the study. )

11.1 CONCLUSIONS

(1} Fixed rate encoders give excellent quality for the reconstructed
imagery at a 4 to 1 compression ratic. This compression ratio is increased
to &€ to 1 by making the system operate at a variable rate through the addi-
tion of a Huffman encoder. One such system is the recomnended technique
that uses a Haar-2 Dimensional DPCM system. At this compression ratic, it
has a signal-to-noise rat16 better than 35 dB, a classification accuracy
better than 91%, and gives reconstructed imagery which is almost indis-
tinguishable from the original.

(2) At a fixed bit rate and a compression ratios of 8 to 1, a Haar-
Cosine~DPCM system gives acceptable resuits. This corresponds to a signai-
to-noise ratic of better than 31 dB, a recognition accuracy of better than
82%, and slightly degraded imagery.

(3) Cluster coding methods can be used to obtain a compression ratio
of 12 to 1 which corresponds to & signal-to-noise ratio of better than

29 dB, a recognition accuracy of better than 71%, and possibly acceptable

reconstructed imagery. Compression ratios of 16 to 1 and higher correspond
to noticeably degraded imagery which is only acceptable to some users.

(4) This study only considered non-adaptive bandwidth compression
methods. Since adaptive methods result in a higher compression ratio, it
is concluded that for higher compression ratios, adaptive methods should be
considered. )

{(5) The effects of sensor imperfections on the performance of the
candidate bandwidth compression methods are minimal. These imperfections
have a minimal impact on the choice of recommended techniques.

(6} Channel error effects are minimal for transform and DPCM systems
for bit error rates less than 107



11.2 RECOMMENDATIONS

11.2.1 Recommended Systems

The recommended systems are presented in Tabie 11.1. Three systems
are recommended based on the desired bandwidth compression ratios.

Table 11.1 Recommended Multispectral Image Data Compression Systems

COMPRESSION SYSTEM DESCRIPTION

RATIO SPECTRAL SPATIAL COMPLEXITY FIDELITY/ACCURACY
FIXED THO EXCELLENT FIDELITY

6 701 TRANSFORM DIMENSIONAL LOW RECOGNITION ACCURACY >81%
{HAAR) DPCH SIGNAL/NOISE »35dB
FIXED tODERATE FIDELITY

8701 TRANSFORM HYBRID MODERATE RECOGNITION ACCURACY >82%
{HAAR) COSINE-DPCH SIGNAL/NOISE >31dB

12701 CLUSTER CODING VERY HIGH . RECOGNITION ACCURACY »71%
SIGNAL/NOISE >29dB

11.2.2 Recommendations for Future Activities

We recommend the following for future activities in compressing the
bandwidth of muitispectral imagery.

(1) Build a prototype data compression unit around the Haar-2
Dimensional DPCM technique.- We recommend integrating this data compression

unit with an operational multispectral scanner, such as a thematic mapper,
which could be tested in aircraft flight to demonstrate the following two

points:
© 6 to 1 increase in data recorded per tape
e Realtime data Tink to ground for quick observation.

We also recommend providing this reconstructed data to users to evaluate
and test their acceptance of the compressed data.



(2) Perform system application studies by using representative earth
resources projects 'such as LANDSAT or EOS. One such study could be the
application of image data compression to the E0S spacecraft. The block
diagram of this system is shown in Figure 11.1. Data compression can be
performed at a number of Jocations. A Haar-2 Dimensional-DPCM system with
& compression ratio of 6 to 1 will reduce the bit rate for this system
from 120 Mbps to 20 Mbps. Then extrapolating the LANDSAT results to the
6-band thematic mapper, the bandwidth compression system gives a signal-to-
noise ratio of about 32 dB with a classification accuracy of over 85%. The
system benefits for this application for a 6 to 1 data compression ratio
are:

o Full thematic mapper data to local users
¢ Reduced bandwidth compression
o Simpler tape recorder-extended storage

¢ Potential for increased sensor data on the 120 Mbps 1ink.

THEMATIC
HAPPER T 770 ama 20 MBPS
L F-—-: D/C :_ ED;T N
. jHUKE I t - FORMAT tﬁﬂmm
. A/D 1 p/C :.___
: conv ! i
——— - -
' | 120 MBPS
[ t
100 LINES [ oe | -
6 BANDS e e KDPE
LINK
' ! TAPE
' D/C RECORDER
¥
]

SYSTEM BENEFITS WITH 6:1 DATA COMPRESSION
e FULL THEMATIC MAFPER DATA TO LOCAL USERS
o REDUCED BANDWIDTH TRANSMISSION VIA TDRSS
e SIMPLER TAPE RECORDER - EXTENDED STORAGE
¢ POTENTIAL FOR INCREASED SENSOR DATA ON 120 MBPS LINK

Figure 11.1 Image Data Compression Applied to EQS Spacecraft



(3) Perform user acceptance studies. This is of major importance in
the evaluation of bandwidth compression methods since at.present it is not
known just which recanstructed images are acceptable to which users. This
can be performed by selecting current users of the multispectral data and
verifying the effects of the bandwidth compressed data on their standard
processing.

(4) Study use of adaptive techniques for greatef compression ratﬁos.

(5) A furthef study of the c1ustet coding method is recommended to
determine its implementational feasibility.
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APPENDIX A
OPTIMUM BIT ALLOCATION USING VITERBI ALGORITHM
/
A:] INTRODUCTION

Rate allocation is a classiéal isoperimetric probtem, A fixed
resource, the channel capacity, must be distributed among several signals
of unequal power such that the distortion is minimized. This problem can
be solved by variational calculus if rate is a continuous variable (block
coding). Integer solutions, suitable for computer evaluation, are
obtained by dynamic programming methods. The classical analytical solution
gives intuitive insight.

The function to be minimized has the general form

I L6 (x)1dx (1)
Q

and is subject to the constraint

C < fh(x) ¢ {x)dx (2)
R
where ¢(x) is the distribution of resources and «(x) is a positive weight-

ing function. The summation over a set of measure,n, includes the multi-
dimensional case.

Form the Lagrangian

L= [ fle(x)ddx + alC- Jolx} o(x)dx] (3)

Q Y

Stationary values of L occur when 4({x) satisfies the equations .

sl _ f[awx] _m(x)] dx = 0 (4)
2
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and

L _ ¢ . fa(x) s(x) dx = 0 (5)

[T
)

Thus, ¢(x) satisfies the optimizing relation

E%ET’ §f%%%§%3- = A, . Tx e 2 (6)

-

This analytical relation applies to allocation problems in coding, quan-
tization, rate distortion theory, search theory, thermodynamics, and the
economic theory of production.

For an example, assume N Gaussian variables }X1, XZ""’ XNl with zero-

mean and variances 512, og,..., GNZ . Shannon showed that the <ideal

quantizing relation between rate, Ri’ and distortion, Di’ for a zero mean,
variance 042, normal random process is

D, = 0,2 "Ry (7)

for ng_i < N, provided that D, < 012.

If D= zDi is sufficiently small, (rate sufficiently large) the distortion
is uniformly distributed.

Dy =D/N 3 T<i<N (9)
The rates Ri obey the recurrence relation

R. = R +J._‘]0 f.:‘_) {10)
i =R T3 104, 2
J
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As the rate is reduced, some truncation is necessary. The best way to do

this is as follows. Arrange the 012 in monotonic order, such that

R, > Ry o if k > 1.

Then
L ) L 5 2
- . 1 il
R-Z:R1 = LRj +? 21092 02
i=1 i=1 3
or
L B 2
=] 1 i
Ry =T [R -7 D Tog, —.z]
i=1 %
where L is the largest integer such that
L 2
R > ] 210 O
z7 92 —7
i=1 %
Then, the sampling error, due to truncation, is
N
S 3%
sampling 9. 2
i=L+]
the quantization error is
1
N -R/L
D =L Tr (UE)T P
quantization i *

i=]
and the total distortion, which is minimized, is

D = Dyyantization T Dsampling.

(11)

(12)

(13) .

(14)

(15)

(16)

(17)



By arranging the variances in monotonic order, the sampling error is
minimized for a given total rate, R, and the allocation rule (13) min-
imizes the quantization distortion. .

The optimum allocation rule produces a uniform distribution of distortion
for large rates. As the rate is reduced, some truncation is necessary,
resuiting in sampling error. To minimize the sampling error, the variances
are arranged in monotonically decreasing order so that the sampling error
is as small as possible.

A.2 INTEGER SOLUTION OF THE RATE ALLOCATION PROBLEM

In the previous disébssion of the rate allocation problem, analytical
solutions were presented, to give intuitive insight. But the analytical
solution has its shortcomings. It is necessary to assume continuity of
rates, and the Lagrange multiplier method cannot handle inequality (one-
-sided) constraints. Without block coding, however, only integer rates can
be assigned, and the rates must be positive. '

An integer solution by dynamic programming is easily implemented by
an application of the Viterbi algorithm. The total number of bits is

Bmax/b]ock, with N samples/block. After transformation these bits are to

be allocated in N stages, so as to minimize the quantizing distortion for

the block. To formulate the problem for dynamic programming solution, let
th
ket

the state variables, Bk’ be the total number of bits used as of the

stage. Form a trellis as shown in Figure 1.
K=0 K=1 K=2

BO=D B-! =0' BZ=O BB=
SOURCE |

= B,= = B B=3
B'l "'3 2_ 83_3 B =3 5_
DESTINATION

Figure 1. Trellis Diagram
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Let the branch length be labelled with the distertion resulting from a
transition between nodes in adjacent stages. The optimum solution corresponds
to the shortest path through the network from k=0 to k=N, where the .initial
nede corresponds to Bo=0 and the final node corresponds tq BN = Bmax

For a computer solution, the following storage is required.

Storage:
k index of stage

N

Ek s Bk-] 5-Bk 5-Bmax survivor sequgfces terminating in Bk‘

D, (B), By_; < B <B . survivor lengths

The states are initialized as

B =0 (18)
D,(B,)) = 0 (19)

The succeeding are computed by the recursion:

) 3 .
At each node, only the transition branch corresponding to the shortest total

path entering the node from the previous stage is retained.

" The simple form of the treilis makes it easy to calculate the complexity
of the algorithm as & function of block length and bit rate. For N stages
"“and M+1 states an exhaustive search of the trellis requires a search of

sin,n) = (n-1) ML) 4 oy - (21)

This relation is evaluated and the results are shown in Table 1,

If the special case M=N is considered, the number of branches is seen
to grow proportionally to the cube of the block length.
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Table 1. Number of Trellis Branches

e~ 1l 2] a8 16! 321 6.
8 o | 25| 78] 268

16 17 | 49 ['158 | 556 | 2072 |

32 33 | o7 | 318 1132 | 4248 |16a32°

64 65 | 193 | 638 |2284 | 8600 [66592 | 131168

If the special case M = N is considered, the number of branches is
seen to grow proportionally to the cube of the block length,

Actually, the number of branches searched is much Tess than this
because the algorithm only requires that the minimum path length be
found at each node. Typicaliy, about two branches per node is searched
before finding the minimum is found, averaged over the block. In a
64 x 64 trellis, 6.6% were searched, in a typical run on voice source
data. There were 4096 nodes in a 64 x 64 trellis. This means that the
average depth of search was 2.13 branches/node.” If one branch could be
searched in a microsecond, it would take 8.721 milliseconds to complete
the bit allocation for 64 samples.

At 8000 samples/second in hlocks of 64 samples, there were 125 usecs

between samples or 8 milliseconds/frame, By averaging over 5 frames, quan-
tizers could be allocated every 0.04 secs. Over 20 frames, the quantizer
is allocated every 0.16 sec. Over 64 frames, quantizing is allocated every

0.512 seconds.

The memory reguirements are presented in Table 2, below.

Table 2. Algorithm Storage Requirements

MXN 8 x8 16 x 16 32 ¥ 32 64 x 64
Distortion Table 72 272 . 1056 4160
Path Map 72 272 1056 4160
Path Costs 18 34 66 138
Total 16210 57810 2178]0 845010
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APPENDIX B

DETAILS OF PROCESSING COST

B.T PRELIMINARIES

In this section the number of adds-multiples to perform a particular
transformation is referred to as the cost of the particular transformation.
For instance cost of N point complex FFT is 3N log, N adds and 2N 10g2 N
multiples.

Now for N real points, referred to by function F(n) we form add and
even functions go(n) and ge(n) such that

ga(n) = F(2n) n=0,00 51
go(n) = F(zn + 1)

Referring to %—point FFt of the complex sequences 9a and 90 by Ge and GO
respectively,we have

G

]

k) + G(-k
. F(ge) = g{ )2+ {(-k)

G(k) - G(-k)

%

[p]
1

I

Fg,)

when F is used to dencte Fourier transform and the overbar to denote
conjugate now

N
N-] 2~

k)= 20 FpWy = 20 g (n) w2KM 4 g (n) wrRkn-K
n=0 n=0 ° °

N N ~k
Ge(k mod ?9 ¥ Go(k mod QJ W

since F is real F(k) = F(-k}, k=0, %-. Note that F(0) and F(%-) are real.
Now, given &, and Go’ we can get F(k);-k=0,:.-, %—with (g—-l)(cmu1*+cadd*)
+ 2 adds.

* cmul and cadd are notations for complex add and complex multiples.
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We need G, (k). G,(k) for k=0, H——T but g, g,. are real, so these values
are only needed fer k=0, %-wh1ch requires a tota1 of N adds. Thus,

the total cost of taking the fourier transform of N points is (2N-4)
multiples and (3N-2 adds. If we wish to calculate the fourier transform
of only real arrays then the cost of getting G is (1-+ 1) adds. and the
cost of gett1ng G, adds where ca]cu]at1ng F( )} from G, and G,
.requ1res (§-+ 2) adds and (N-2) muTtiples. This gives a tota] of

(—N + 3) adds and (N-2) mu1t1p1es

Hadamard transform of an array of N points requ1res only N 1ogzN
adds, using fast Hadamard transform [103].

The cost of Slant transform is (N1og2N + (g& -2) adds and (2N-4)
multiples using fast slant transform []p]].

B.2 COST OF PERFORMING MULTIDIMENSIONAL TRANSFORMS

To perform a multidimensional transformation one has to follow the
following procedure;

(1) First transform in the X
g direction. {See Figure 1)
B _— - This is a real transform.
#—-;—b
B
Figure 1

%-B Tog, g'adds + 3B adds - 2 adds

X direction transform cost =SB 8
B 1092 E-mu1s + 2B muls - 4 muis
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/ *EQ\ {2) For the y direction transform

we have the -following situation.
5+ 1 point (See Figure 2)

First and the last p01nts are real, the rest of the points
are compiex.

The cost of performing 2S real transforms 1is

(%—B Tog, B + %—BLZ) adds
28

(B 1092 B + B-4) muls
and the cost of (g--T)S compiex is

B 3B log, B adds
(?'-1)5
2B 1092 B muls

y d1rect1on transforms has a total cost of BZS [{ 2 ]og2 B+ = 2)] adds

and BZS [(Tog2 B + g- -B )1 multiples.



(3) For the S direction transform

2 — we have the diagram shown
on Figure 3. We need to
' / m perform S real and
8 (B( - 1) + S( NI comp1ex S
B 01n% transformg Th1s costs
AL 4[(35 log, S + 35S - 2)] adds and
| 4 [(STog, S+ S -4) + % (8-4)]
— multiples’
B -
v 1

Real Points

The total cost of S d1rect1on transforms is B% [(2 Togy S + —-2 - §-2— )]
B

adds and BZS [(Tog, S + = 4 - — )] multiples B"S
B B S

B.3 COST OF VARIOUS TRANSFORMATIONS

B.3.17 Three-Dimensional Fourier Transform

Cost of three-dimensional fourier transform per sample is the total

cost divided by B%S. This is equal to (—g— Tog, B%S + -g—+ é + 2— - 82 ) add
B B™S
and (log B%S + 1 - g— - g—z- - ég— ) multiples. Typical values for B=16,
S S

S=4, are 16.5 adds and 11 multiples.

B.3.2 Two-Dimensional Fourier Transform

The cost per sample for two-dimensional fourier transform is
(3 Tog, B2 + 3+ L - %) adds (Tog, 82 + 1- & - &) muitiples. Typical

values for B=16, S=4 Gre 14.5 adds and O multiples

B.3.3 Three-Dimensional Cosine Tranform

The cost for the cosine transform is calculated by going through
the same procedure. Let C{B) refer to cost per sample of a 8-point
cosine transform. Then for a three-dimensional cosine transform the cost
per sample is 2C(B) + C(S). To perform an N point cosine transform we
form a 2(N-T) real sequence and, as before, calculate the fourier
transform of this real seguence by means of an intermediate N-1 point
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complex transforms. Gost of (N-1) point complex transform is 3(N-1) 1092
(N-1) adds and 2(N-1) log, (N- 1) multiples.

To obtaine the cosine transform we want, -we modify our complex
transform as 1nd1cated in section B.1 This requ1res a total of (3 ]og2
(N-1) + 5 1) adds and (2 tog, (N-1) + 2 - ) multiples for an N
po1nt cos1ne transform Then the cost of cos1ne transform cost/p1xe1 is
(1- & [3 Tog, (B: 1%+ 5+ —] + (1 ~) [3 Tog, (5-1) +3:31 adds/
sample and (1- —0[2 Togz(B 1) + 4- ] + (1 - wJ[Z Tog2 (S-1) + 2 2 ST
multiples/pixel. This gives typical va]ues of 34 adds/pixel and 24
multipies/pixel for B=17, S=5.

B.3.4 Two-Dimensional Cosine Transform

For the two-dimensional cosine transform one must drop the second
term (one's with S's) form the above expressions. This gives typical
values of 28 adds/pixel and 19 multiples/pixel for B=16, S=4.

B.3.5 Three-Dimensional Hadamard Transform

Cost of three-dimensional Hadamard transform is BS[B logz B] adds
for X and Y direction transforms and B [s Tog2 $] adds for the S
direction. This gives a total cost of 1og2(B S) adds/pixel for the three-
dimensional Hadamard transform. This gives a typical value of 10 adds/
pixel for B=16, S=4.

B.3.6 Two-Dimensional Hadamard Transform

For two-dimensional Hadamard transform one needs 1092 (Bz) a~d/pixel
which gives a typical value of 8 adds/pixel for B=16.

B.3.7 Three-Dimensional Slant Transform

Cost of a three-dimensional slant transform is calculated using the

same procedure this gives (1og2 825 + %-- é—- §9 add/pixel and
(6 - -— —J multiple/pixel. Typical values are 10.75 add/pixel and

4,5 mu1t1p1es/p1xe1 for B=16, S=4.
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B.3.8 Two-Dimensional Slant Transform

For two- d1mens1onal slant transform the cost is (Iog2 82 +1 - —J

adds/pixel and + (4 - —J multiples/pixel. Typical values are 9 adds/pixel
and 3.5 mu1t1p1es/p1xe1 for B=16, S=4.
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[30] T. Berger, F. Jelinek, J.K. Wolf, "Permutation Codes for Sources," IEEE
Transactions on Information Theory, January 1972.

Keywords:

1
2
3.
4.
5
6

7.

source coding

entropy coding
permutation coding
algorithms

rate distortion theory
comparison

analysis

Computer algorithms and simulation results.
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[31] W. T. Bisignani, G. P. Richards, J. W. Whelan, "The Improved Gray Scale
and the Coarse-Fine Systems, Two New Digital TV Bandwidth Reduction
Techniques," Proceedings of the IEEE, vol 54, No. 3, March 1966,
pp 376-390. T

Keywords: 1. pulse code modulation
2. coarse-fine PCM

3. contouring
4

bandwidth reduction

Only the n most significant bits are transmitted. However, the Teast
significant bits are used {o alter the subsequent significant bits.
Contouring is eliminated and the average signal value over small areas
is correct.

[32] R. C. Brainard, J. C. Candy, "Direct Feedback Coders: Design and Performance
with Television Signais," Proceedings of the IEEE, vol 57, May 1969,
pp 776-786. i =

Keywords: 1. direct feedback coding
2. television signals

Comparison is made between direct feedback (of the decoded signal)
coders and differential coders.

[33] Z. L. Budrikis, J. L. Hullett, D. Q. Phiet, "Transient Mode Buffer Stores
for Nonuniform Code TV," IEEE Transactions on Communication Technology,
vol 19, December 1971, pp 913-922.

1. buffer store

2. differential pulse code modulation
3. simutation

4. small-capacity stores

Keywords:

Deterministic constraints on sending and receiving stores are estab-
lished, and store sizes are related to bit transmission rate and storage
delay. Sending store's random behavior is modeled as a Markov chain
with an absorbing state (overflow). Simulation of small capacity
buffer stores to study overflow incidence is reported as well.

[34] D. Chan, R. W. Donaldson, "Optimum Pre- and Post-filtering of Sampled Signals
with Application to Pulse Modulation and Data Compression System§," IEEE
Transactions on Communication Technology. vol Com~19, No. 2, April 197T,
pp 141-157.

sampling
pre-emphasis )
pulse modulation systems

Keywords: 1
2
3.
4, PCM
5.
6

PAM
DPCM

Joint optimization of pre-emphasis and post-emphasis filters (minimum
mean square error criterion).

C-10



[35] D. J. Connor, “Techniques for Reducing the Visibility of Transmission
Errors in Digitally Encoded Video Signals," IEEE Transactions on
Communications, Vol 21, June 1973, pp 695-706.

Keywords: 1. transmission errors
2. differential pulse code modulation

Prediction techniques which minimize propagation of errors are
discussed. :

.[36] D. J. Connor, R.C. Brainard, J.0. Limb, "Intraframe Coding for Picture
Transmission," Proceedings of the IEEE, vol 60, No. 7, July 1972,
pp 779-791.

Keywords: 1. survey article

2. DPCM

3. M

4. source-receiver encoding
5. adaptive

6

reversible enhcoding

Main approaches are (1) noise frequency weighting, (2) source-
receiver (psychovisual) céding, and (3) M-ary reversible coding.

[37] C. C.Cutler, "Delayed Encoding: Stabilizer for Adaptive Coders,” IEEE
Transactions on Communication Technology, vol. 19, No. 6, December
1971%

Keywords: 1. adaptive coding
2. 1 bit delta modulation
3. predictive encoder

Code is positive pulse if signal is increasing, hegative if signal is
decreasing. Size of step implied by pulse depends on number of pulses
in a row of the same sign. Sampling done at 3 times the Nyquist
frequency.

[38] L. D. Davisson, "An Approximate Theory of Prediction for Data Compressicn,"
IEEE Transactions on Information Theory, vol. 13, April 1967, pp 274-278.

Keywords: 1. prediction

2. data compression

3. stationary Gaussian time series
4. open-loop predictor

5. closed~loop predictor

6. polynomial approximation

7. simulation

Simulation confirms theoretical results implying closed-loop prediction

is significantly better than open-loop prediction for a stationary
Gaussian time series.
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[39] L. D. Davisson, "Data Compression Using Straight Line Interpo]atibn,“

1EEE Transactions on Informati

on Theory, vol. IT-14, No. -3, May 1968,

pp 390-394,
Keywords: 1. Interpolation
2. analysis
3. fan interpolation

Analysis and computer results

show sensitivity to source statistics.

[40] L. D. Davisson, "Rate-Distortion Theory and Application," Proceedings of the

IEEE, July 1972, pp 800-808.

Keywords: analysis
transform
K~L
Fourijer
Hadamard
DPCM

1
z
3
4
5.
6.
7.
8
9, wuniversal
0

1.

10.
1

comparison

coding

entropy coding

coding

optimum line coder
optimum area coder

Basic summary of rate distortion approach to evaluation of performance.

[41] L. D. Davisson, "The Theoretical Analysis of Data Compression Systems,"
Proc. of the IEEE, vol. 56, No. 2, February 1968, pp 176-187.

Keyvords: , analysis

1.
2
3.
4. Markov
5.
6
7

prediction
interpolation

figures of merit
comparison
channel errors

Considerations in the analysis of data compression systems are
discussed together with some of the exact and approximate results

which have been obtained.

[42] L. D, Davisson, “Theory of Data Com
1964, pp 800-808.

pression,” USC Report No. 64-46, September,

Keywords: 1. data compression
2. analysis
3. predictive

Ph.D. Dissertation.

coding



[43] L. D. Davisson, “Universal Noiseless Coding," IEEE Transactions .on

Information Theory, vol. 19, November 1973, pp 783-795.

Keywords: 1. wuniversal coding
2. Rice coding

Discussion of blockwise memoryless coding where a performance
measure is attained arbitrari]y closely as block length approaches w.

[44] J. R. Duan, P. A. Wintz, “Error Free Cod1ng," LARS Information Note
_ 022073, Purduc University, 1573.

Keywords: 1. error free coding
" 2. DPCM
3. adaptive transform coding
4, quantization level expahsion
5. ERTS
6

Karhunen Loéve Transform

Transform coding is followed by DPCM where the difference is taken
between the original and the reconstructed transformed data. An
average reduction of 2:1 can be achieved for ERTS data with no error,

[45] -L. Ehrman, "Analysis of Some Redundancy Removal Bandwidth Compression

[46] n. J.

Techniques," Proceedings of the IEEE, vol. 55, No. 3, March 1867,
pp 278-287.

Keywords: 1. bLandwidth compression

2. redundancy removal

3. floating aperture prediction
4. zero-order interpolator

5. fan interpolator

The mean square error resulting from use of floating aperture
prediction, zero order interpotation, and fan interpolation are
compared for a signal which is a sample function of a first-order
Gaussian Markov process. Conclusion is that fan interpolator is
best.

Eigen, F. R. Framm, R. A. Northouse, "Cluster Analysis Based on
Dimensional Information with Applications to Feature Selection and
Classification," IEEE Transactions on Systems, Man ahd Cybernetics,
vol. 4, May 1974, pp 284-294.

Keywords: 1. ERTS
2. multispectral scanner
3. cluster analysis

A method for clustering multidimensional data such as multispectral
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scanner data is discussed. Clustering is done dimension by dimension
and the results are combined.

[47] J. E. Essman, P. A. Wintz, "The Effects of Channel Errors in DPCM Systems

and Comparison with PCM Systems," IEEE Transactions on Conmunications,
vol. COM-21, No. 8, August 1973, pp 86/-877.

Keywords: 1. <channel errors
2. DPCM

3. PCM

4, sampling

5. quantization

6

comparison

Optimum prediction coefficient depends on the channel noise. Simula-
tion results are shown.

[48] B. J. Fino, “"Relations Between Haar and Walsh/Hadamard Transforms," Proceedings

[49] L. E.

of the IEEE, May 1972, pp 647-648.

Keywords: 1. wunitary transforms
2. Haar transform

3. Hadamard transform
4. HWalsh transform

5. fast algorithms

6. comparison

For some applications, the Haar transform performs as well as, and
faster than, the Walsh/Hadamard transform. Computations for a vector
of order 2" requires 2(2n-1) operations for Haar and n2" for Walsh/
Hadamard,

Franks, "A Model for the Random Video Process," Bell System Technical Journal,
April 1966, pp 609.
Keywords: 1. Gaussian/Markov
2. correlations
3. optimum Tinear filters

Continuous part of power spectral density if characterized as a product
of three factors based on effects of point-to-~point, line-to-~line, and
frame-to-frame correlation.

[50] A. Frei, H. Schindler, P. Vettiger, "An Adaptive Dual-Mode Coder/Decoder for

Television Signals," IEEE Transactions on Communication Technology, Vol.
19, December 1971.

Keywords: 1. adaptive coder
2. delta modulation
3. differential pulse code modulation
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[61] T. Fukinuki, "Optimization of D-PCM.for TV Signals with Consideration: of

Visual Property," IEEE Transactions on Communications, 'vol..22,.June
1974, pp 821-826. o ’

Keywords: 1, differential pulse code modulation
2. nonlinear quantization
3. properties of vision

Optimal.quantizgtion for DPCM is derived based on statistical
propert1gs of the signal and properties of human vision.

An adaptive coder is developed which uses delta modulation in sTowly
varying areas and DPCM in areas-of larger variation. A bit rate of
1.5 bps was achieved using this method. ;

[62] T. Fukinuki, M. Miyata, "Intraframe Image Coding by Cascaded Hadamard Trans-
forms," IEEE Transactions on Communications, vol. 21, March 1973,
pp 175-180. '

Keywords: 1. Hadamard transform
2. differential pulse code modulztion
3. redundancy reduction

Implementation of Hadamard transform for real time videophone trans-
mission. Three bits per sample are required for good picture quality
in the case of a two-dimensional (4x2} transform.

[53] G. G. Furman, Removing the Noise from the Quantization Process by Dithering:
Linearization, RM-3271-PR, The Rand Corporation, February 1963.

Keywords: 1. quantization

2. dithering

3. contouring

4. analysis

Sawtooth dithering Tinearizes the quantizer and reduces the contouring
effects. ' ‘ o '

[54] R. G. Gallager, Information Theory and Reliable Communication, John Wiley and
Sons, 1968. )

Keywords: 1. information theory
2. distortion measure .
3. source coding

4, Huffman code

g. data reduction

bandwidth compression

This book covers information theory and coding.
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[55] H. Gish, J. N. Pierce, Asymptotically Efficient Quantizing, IEEE Trans-
actions on Information Theory, vol. 14, September 1968, pp 676-683.

Keywords: 1. sampled data systems
2. quantizing
3. asymptotic efficiency

It is shown, under weak assumptions oh the density function of a
random variable and under weak assumptions on the error criterion,
that uniform quantizing yields an output entropy which asymptotically
is smaller than that for any other quantizer, independent of the
density function or the error criterion. The asymptotic behavior

of the rate distortion function is determined for the class of vth
low 1oss functions, and the entropy of the uniform quantizer is
compared with the rate distortion function for this class of loss
functions. The extension of these results to the quantizing of
seguences is also given. It is shown that the discrepancy between
the entropy of the uniform quantizer and the rate distortion function

apparently is a consequence of the inability of the optimal quantizing
shapes to cover large dimensional spaces without overlap. A compar-
ison of the uniform quantizer and of the minimum-aiphabet quantizer

is also given.

[56] T. J. Goblick, Jr., "Analog Source Digitization: -A Comparison of Theory
and Practice," IEEE Transactions on Information Theory, April 1967,
pp 323-326.

Keywords: 1. quantization

2. symbol coding

3. block coding

4, entropy coding

5. Max quantizer

6. uniform guantizing

g Gauss-~Markov sources

comparisen

Gives performance bounds and comparisons of quantizers.

[57] B. Gold, C. Rader, A. V. Oppenheim, T. G. Stockham, Jr., Digital Processing
of Signals, McGraw-Hill, 1969,

1. digital signals

2. quantization

3. sampling

4, Fast Fourier Transform

Keywords:

Discussion includes effects of quantization and sampling in filtering and
derivation of the Fast Fourier Transform.
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[581 L. S. Golding, R. K. Garlow, "Frequency Interleaved Sampling of a Color

Television Signal,” IEEE Transactions on Communication Technology,
vol. 19, December 1971, pp 972-979.

Keywords: 1. sampling
2. comb filtering

A color television signal is separated into luminance and chrominance
signals, then sampled below. the Nyquist rate. Since most energy in
signals is at harmonics of the line and frame rate, proper choice of
sampling rate results in dinterleaving of aliased energy in the gaps.
NTSC quality color television can be transmitted using a sampling
rate of 8.7 MHz. -

[69] L. 5. Golding, P. M. Schultheiss, "Study of an Adaptive Quantizer,"
Proceedings of the IEEE, vol. 55, No. 3, March 1967, pp 293-297.

Keywords: 1. quantization

2. adaptive systems

3. uniform quantizing
4. adaptive algorithms

Shows how a reduction in quantization error can be achieved by
allowing the guantization scheme to depend on measurements of the

short-term range of the signal. Reductions of up to one bit per
sample obtained.

[60] D. J. Goodman, L. J. Greenstein, "Quantizing Noise of AM/PCM Encoders,"
Bell System Technical Journal, vol. 52, No. 2, February 1973, pp 183-204.

Keywords: 1. delta modulation

2. quantizing noise

3. Gaussian random process
.4, digital filters

5. analysis

6. PCM

Delta modulator for A/D, followed by fixed length PCM coder and digital
filter. Curves relate S/N to filter order, aM sampling rate, and PCM
word length.

[61] L. M. Goodman, "A Binary Linear Transformation for Redundancy Reduction,"
Proceedings of the- IEEE, March 1967, pp 467-468.

. linear transformation
. block guantization
Hadamard -transform
bit allocations

. comparison

Keywords:

1
2
3
4
b

Comparison of K-L and Hadamard transforms on Gauss-Markov data on the
basis of a defined efficiency.
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[62] A. Habibi, "Comparison of nth Order DPCM Encoder with,Lineér Transformations
and Block Quantization Techniques," IEEE Transactions on Communication
Technology, vol. COM-19, No, 6, December 1971, pp 948-956.

1. DPCM

2. unitary transform
3. Hadamard

4. Fourier
5.
6.
7.

Keywords:

Karhunen-Loeve
picture coding
data compression comparison

The performance of the DPCM system improves by using higher-order
predictors even though the change in the variance is not significant
past the third-order predictor.

The performance in terms of output signal to noise ratio of a DPCM
system with a third or higher order predictor is superior to all
2-dimensional transform techniques when the system is optimized for
the particular picture. However, for the more realistic case of

unmatched statistics, the performance of the transforms is superior.
Other considerations favor DPCM. )

[63] A. Habibi, "Delta Modulation and DPCM Coding of Color Signals,” International
Telemetering Conference.Proceedings, 1972.- ’

Keywords: 1. delta modulation
: 2. differential pulse code modulation

3. color signals

4. adaptive

5. simulation

Various DPCM and delta modulation schemes are simulated using lu-
minance and chromaticity components of color video signals. The
results are compared at various rates.

[64] A. Habibi, Performance of Zero-Memory Quantizers Using Rate-Distortion
Criteria.

Keywords: 1. quantizing
2.- comparison

The performance of uniform, Max,and instantaneous companding quantizers
in coding single variates of Gaussian and two-sided exponential probab-
ility density functions are studied. The uniform quantizer with entropy
coding is superior to the other quantizers used with symbol coding when
the results are compared with the rate~distortion function.
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(651 A. Habigi, R. Hershel, "A Unified Representation of DPCM and Transform
Coding,"

Keywords: 1. differential pulse code modulation
: 2. transform coding

A method of coding is described in which blocks of data are transmitted.
The first element in the block is transmitted. The nth transmitted
message is a linear combination of the first n elements of the block.
For a Markov source this coder reduces to DPCM.

[66] A. Habibi, P. A. Wintz, "Image Coding by Linear Transformation and Block
Quantization," IEEE Transactions on Communication Technology, vol.
COM-19, No. 1,"February 1971, pp 50-62.

Keywords: 1. Tinear transformations
2. block quantization

3. K-L

4. Fourier

5. Hadamard

.6. Gauss-Markov data

7. theory

8. comparison

Comparison of transform performance, discussion of complexity.

[67] R. M. Haralick, I. Dinstein, "An [terative Clustering Procedure,“ IEEE
Transactions on Systems, Man, and Cybernetics, vol. 1, July 1977,
pp 275-289. )

Keywords: 1. clustering
2. remote sensing
3. multispectral imagery

4: principal components

Multispectral data is clustered into several groups based on spectral
signature. Only a value indicating which cluster an element belongs to
is transmitted. ’

[68] R. M, Haralick, K. Shanmugam, "Comparative Study of a Discrete Linear
Basis for Image Data Compression," IEEE Transactions on Systems, Man,
" Cybernetics, vol. 4, January 1974, pp 16-27.

Keywords: 1. image data compression
2, Hadamard transform

3. Karhunen Loéve transform
4., comparison

5. DPCM
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6. siant transforms
7. discrete Tinear basis transform

Discussion concerns .use of the discrete linear basis transform for
image data compression. Authors say results are, in simpilicity
and accuracy, between Hadamard and K-L.

[69] B. G. Haskell, "Computation and Bounding of Rate-Distortion Functions
for Certain Message Sources and Distortion Criteria," Ph.D. dissert-
ation, University of Berkeley, June 1968, (Sep 531).

Keywords: 1. rate distortion functions
2. computation and bounding for certain memoryless
message sources. S

Methods are given for the numerical computation of Shannon's rate
distortion function, R(D), for certain memoryless message sources. It
is assumed first that U, the set of possible message-source outputs,
and V, the set of possible destination symbols, are countable. The
computation of R(D)} for this case is reduced to a minimization problem
in which the variables are the destination-symbol probabilities.

For arbitrary U and V, upper and lower bounds on R(D) are derived by
partitioning U and V each into a countable collection of disjoint
subsets and employing the results derived previously for the case of
countabie U and V. Conditions are then discussed under which these
bounds can be made arbitrarily close to each other by choosing
sufficiently fine partitions of U and V. Two examples are included
to illustrate the results in detail.

[70] H. Heffes, S. Horing. D. L. Jagermar, “On the Design and Analysis of a Class
of PCM Systems," Bell System Technical Journal, vol. 50, No. 3, March

1971, pp 917-918.

Keywords: .

1. noiseless coding

2. PCM

3. sampling rate

4. quantizer

5. reconstruction filter
6. analysis

Design for peak error criterion. Tradeoffs between sampling rate,
guantizer and reconstruction filter.

[71] D. Hockman, H. Katyman, D. R. Weber, "Application of Redundancy Reduction
to Television Bandwidth Compression,"“-Proceedings of “the IEEE, Vol. 55,
No. 3, March 1967, pp 263-266. i

Keywords: 1. bandwidth compression
2. redundancy reduction
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3.
4.

interpolator
predictor

Encoding using one-dimensional first order predictors s discussed..
TV bandwidth compression ratios of up to 4 are obtained.

[72] J. J. Y. Huang, P. M, Schultheiss, "Block Quantization of Correlated
Gaussian Variables," IEEE Transactions on Communication Systems,
September 1963, pp 289-296.

Keywords: 1.
2.
3.

transforms
guantization
bit allocation

An approximate expression is obtained for the manner in which the

availahle binary digits should be assigned to the quantized variables.

{731 F. Jelinek, "Study of Sequential Decoding," Quarterly Progress Report
to the National Aeronautics and Space Administration, NASA Contract
NAS 2-5643, December 1969. '

Keywords:

1
2.
3.
4,
5.
6.

convolutional code
fidelity criterion

Hamming distance

binary source

constraint length
discrete memoryiess source

Gives the mean Hamming distortion attained by certain convolutional

codes as a function of constraint length.

Theoretical optimum is

0.11 for a rate % code.

[74] F. Jelinek, K. S. Schneider, "On Variable-Length-to-Block Coding," IEEE

Transactions on Information Theory, November 1972, pp 765-774.

Keywords: 1.
2.
3'
4,
5
6

source coding
variable-Tength coding
block coding

run length coding
buffer overflow
complexity

Obtains codes that minimize probability of buffer overflow for a
given rate and buffer length and presents asymptotically optimum
coding algorithms whose complexity grows linearly with length.
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[751 W. Kaminski, E. F. Brown, "An Edge-Adaptive Three-Bit Ten-Level Differ-
ential _PCM Coder for Television," IEEE Transactions on Communication
" Technologys vol. COM-19, no. 6, December T97T, pp 944-947.

1. adaptive data compression
2. edge adaptive DPCM

3. psychovisual coding

4. direct feedback coding

Keywords:

Psychovisual tolerance to brightness errors in the neighborhood

of brightness boundaries permits restricting coding accuracy

near boundaries. Effective rate (DPCM) of 3-bit picture increased
to 3-1/3 bits/pel (DPCM) by edge-adaptive coding.

o

[76] J. D. Kennedy, et al., Digital Imagery Data Compression Techniques,
McDonnell Douglas Astronautics Co., MDC G0402, January 1970,

1. transform image processing
2. Hadamard transform

3. K-L transform

4. comparison

Keywords:
Comparison of fast Hadamard and Karhunen-Lo&ve, with reductions
of 5:1.

[771 C. M. Kortman, "Redundancy Reduction - A Practical Method of Data Compression,"
Proceedings of the IEEE, voi. 55, no. 3, March 1967, pp 253-263.

1. data compression

2. redundancy reduction
3. predictor

4. interpolator

Keywords:
One-dimensional predictive and interpolative encoeding are discussed.
For imagery, bandwidth compression ratios of 6 are obtained,

[78] E. R. Kretzmer, "Statistics of Television Signals,” Bell System Technical
Journal, vol. 31, July 1952, pp 751-763.

Keywords: 1. statistics
2. correlation
3. imagery

The correlation function of the process of which an image is a sample
function is estimated experimentally for several different images.
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[797 R. L. Kuehn, E. R. Omberg, G. D. Forry, "Processing of Images Transmitted
from. Observation Satellites," Information Display, September/October
1971.

1. border following

.2. spectral signature

3. classification

4. maximum 1ikelihood detection

Keywords:

A method for finding borders of areas separating different classes
is demonstrated. Each class 1§ defined by a spectral signature.
Boundaries are tracked, once one boundary point is found,using-
maximum Tikelihood estimation.

[80] T. Kummerow, "Statistics for Efficient Linear and Non-Linear Picture
Coding," International Telemetering Conference Proceedings, 1972.

Keywords: 1. differential pulse code modulation
2. video signals
3. Tfixed code word Tength
4, synchronous bit rate
5. adaptive

6. one~dimensional prediction

7. two-dimensional prediction

Spacing between quant1zat10n Tevels is done adaptively for DPCM.
The number of levels is fixed,

[81] R. L. Kuta, J. A. Sciulli, “The Performance of an Adaptive Image
Compression System in the Presence of Noise," -IEEE Transactions on
Information Theory, vol. IT-~14, no. 2, March 1968, pp 273-279.

1. adaptive data compression

2. predictive coding

3. channel errors

4. comparison of adaptive prediction techniques

Keywords:

Average bit compression ratios between 2.5 and 3.5 can be attained
with zero-order hold predictor and runn1ength coding. Such a
system can perform satisfactorily wlth,10 channel error rate.
Synchronization errors unknown.

[82] H. J. Landau, D. Slepian, "Some Computer Experiments in Picture Processing
for Bandw1dth Reduction," Bell System Technical Journal, vol. 50,
No. 5, May-Jdune 1671.
Keywords: 1. 2-D Hadamard transform
2. quantizing
3. bit allocations
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Computer experiments in processing with 2-D Hadamard transform..
Good quality pictures obtained at 2 bits/pel. Scme general
comments on the encoding of pictures are included.

[83] M. Levine, “Feature Extraction: A Survey," Proceeﬂings of the IEEE,
vol. 57, August 1969, pp 1391-1405.

Keywords: 1. Feature extraction

Discussion of various features which can be defined and how they
can be extracted from imagery.

[84] 4. 0. Limb, F. W. Mounts, “Digital Differential “Quantizer for Television,"

Bell System Technical Journal, September 1969, pp 2583-2599.

Keywords: 1. predictive coding

2. digital integrator time constant tracking
3. quantizing

4. dithered quantizing

5. transmissioh error protection

Report on construction and testing of 3-bit DPCM system with digital
integrator. Dithered quantizing used to reduce contouring.

[85]1 4. 0. Limb, C. B. Rubinstein, "Plateau Coding of the Chrominance Component
of Color Picture Signals,” IEEE Transactions on Communications, vol. 22,
dJune 1974, pp 812=820

Keywords: 1. chrominance
2. plateau coding

Chrominance is coded by transmitting only the average chrominance
value between two Targe changes in luminence. The address of the
area having the particular chrominance value need not be transmitted
since the Tuminence information reveals the address. The technique
rﬁ]ies on the fact that generally chrominance changes imply Tuminence
changes.

[81 J. 0. Limb, C. B. Rubinstein, K. A. Walsh, "Digital Coding of Color
P1ctureph0ne Signals by Element-Differential Quantization, IEEE
Transactioms on Communications, Vol. 19. December, 1971. pp 992-1006.

Keywords: 1. color signal
2. element differential quant1zer
3. real time

Coding of all the chrominance information with one bit per picture
element Teads to a high quality color display. A rate of 6.3M bits/sec
for video is adequate. Only one chrominance component is transmitted
each Tine, and the missing component is obtained by 1ine averaging.
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'[87] J. 0. Limb,.I. G. Sutherland, "Run-Length Coding of Television Signals,"
Proceedings of the IEEE, February 1965, pp 169-170.

Keywords: 1. source coding
2. run-Tength coding
3. effects of video noise on channel saving from
simple run-length coding

Only marginal results are obtained from attempts to exploit statistical

redundagcy of the video signal. -Elimination of irrelevant information by
psychovisual coding is required. )

[88] J. L. Mannos, D. J. ‘Sakrison, “The Effects of a Visual Fidelity Criterion
on the Encoding of Images,“ IEEE Transactions on Information Theory,
vol. 20, July 1974, pp 525-536.

-
p—

1. rate distortion

2. visual fidelity criterion
3. simulation

4, frequency weighting

Keywor&s:

A visual fidelity criterion is developed experimentally by simulating
the optimum coding at a fixed rate for a variety of criteria and
letting various subjects view the resulting images. The observers
order the images in order of subjective quality.

[89] J. Max, "Quantizing for Minimum Distortion," IRE Transactions on Information
Theory, March 1960, pp 7-12.

Keywords: 1. quantizing

2. minimum mean square error

3. entropy

4, optimum quantizing

5. quantizer recursion relations

Contains tables for the design of optimum (minimum mean square error)
quantizers and for optimum uniform quantizers.

[90] C. L. May, D. J. Spencer, T. A. Zimmerman, "Data Compression Techniques,"

TRW IRAD Report 7132.44-04, August 1972.

Keywords: data compression

multi-spectral imagery
spectral~spatial-delta interieave
shell coding i
implementation considerations
Rice algorithm .
hardware implementation
. rate distortion function
differential pulse code modulation

OO~ A WR —

A study and comparison of various data compression techniques as they
apply to muitispectral imagery.
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[91] C. L.

May, D. J. Spencer, ERTS Imége Data Compresé%&ﬁ_Tééﬂngqﬁe
Evaluation, Final Report for NASA Contract NASH-Z1746., April, 1974,

1. data compression

2. multispectral imagery
3. Huffman code

4, Rice coding

Keywords:

The application of various information preserving techniques to
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Three dimensional Hadamard transform is implemented in real-time on
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and the third represents temporal information. The application is

data compression for transmission of television signals. A compression
ratio of 11.6 to 1.0 has been obtained.

0'Neal, "A Bound on Signal-to-Quantizing Noise Ratios for Digital
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S1mu1at1on Results for Gaussian and Television Input Signals,"Bell System
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Keywords; 1. delta modulation

2. quantizing
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4, computer simulations
5. granular hoise

4]

slope overload
Slope overload formulas derived for Gaussian signals are shown to
apply quite well to videc signals for picturephone data.

Delta mod quantizing noise is subjectively less annoying than the
same amount of additive noise.

[96]1 J. B. 0'Neal, "Entropy Coding in Speech and Television Differential PCM
Systems," IEEE Transactions on Information Theory, November 1971.pp 758-761,

Keywords: 1. entropy coding
2. DPCM

3. Huffman coding .
4

Shannon/Fano coding

Much of the redundancy in a speech or television signal is-
eliminated when it is encoded by DPCM. Additional coding using
entropy coding techniques can result in a further increase of 5.6 dB
in signal-to-quantizing noise ratio without increasing the trans-
mission rate.

[97] J. T. Pinkston, “An Application of Rate-~Distortion Theory to a Converse of
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Basic rate distortion theorems.
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slant transform
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Use of sawtooth basis functions for transform data compression,
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stant transform

image coding

sawtooth basis vector
unitary transform

fast computational algorithm
monochrome imagery

color imagery

zonal sampling

two dimensional transform

Good quality imagery with 1 to 2 bits/pixel for monochrome imagery and
2 to 3 bits/pixel for color imagery by transmitting only values in the
transform domain which exceed some threshold.

[172] W. K. Pratt, “Spatial Transform Coding of Color Images," IEEE Transactions
on Communication Technology, vol. 19, December 1971, pp 980-992,
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orthogonal pictures

1
2
3.
4.
5.
6

transform coding

Hadamard transform coding
Fourier transform coding
Karhunen-Loéve transform coding
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?nals are transformed into various sets of three
e.g., Tuminance, and two chrominance images).

These new sets are encoded using various techniques such as the K-L
transform and Hadamard transform. Bit rates as Tow as 1.75 bits/

pixel are obtained.
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Good tutorial article on the fast Hadamard transform. Computational
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Discussion of the application of the principal components or Karhunen-
Logve transformation to data compression, feature extraction, signal
to noise ratio improvement, and classification accuracy.

[105]7 R. L. Remm, "Ana1ysi§ and Implementation of a Delta Modulation Pictorial

Encoding System," 1966 International Telemetering Conference Proceedings,
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A 2 to 3:1 reduction in bit rate is achieved without &ppreciabie
information loss, using 2 bit DPCM. Error rates of 0.01 and 0.00%
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[106] R. F. Rice, J. R. Plaunt, "Adaptive Variable-lLength Codfng for Efficient
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M-ary reversible coding

Using sample-to-sample prediction, the coding system produces output
rates 0.25 bit/pel from the one-dimensional difference entropy between
0 and 8 bits/pel. Performance improvements of 0.5 bit/pel can be
simply achieved by previous line correlation.

Adaptation, using concatenated codes, selects one of three codes to
use for a block.
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Efficient Communication of Planetary Imaging Data," Jet Propuision
Laboratory, Technical Memorandum 33-695,

Keywords: 1. data compression

2. 1imaging data

3. system considerations
4, channel coding

5. pulse code modulation
6. rate

7

quality
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High activity data is coarsely quantized. Redundant data is finely
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reproductions, relative to 6-bit PCM.
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Final report on transform study. for NASA-MSC.
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The sampling theorem is one of many ‘topics in communication theory
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A distortion criterion is proposed which consists of the mean square
error between some transformation of the signal and the same transformation
applied to the source coded signal.
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The distortion function which applies to an enti
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mean-square error distortion measure

Parametric expressions for the rate distortion function of a Gaussian
process under a weighted mean-square error criterion is derived, The
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that transient effects were ignored; the
tractability in applying the results,
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»¢ IEEE Transactions on Information Theory,
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Using a mean square error distorti
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rate-distortion function
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encoding
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on measure, a comparison is made of

the rate required to encode an image using Tine by Tine encoding and

using two dimensional encoding.
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Ziv iterative coding
Forney's concatenated coding
sequential decoding

The computational work and the time required to decode with reljability

E at code rate R oh noisy channels
of these measures are developed.

are defined, and bounds on the size
A number of ad hoc decoding procedures

are ranked on the basis of the computational work they require.
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After survey, a subjective optimization based on the point of
marginal ijmprovement is suggested.
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Bit-plane encoding divides a group of bits into subgrcups so that
some of the groups can be summarily described,
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Color images modulate carriers of different spatial frequencies for
combining three color signals on one freguency domain image.
Carriers are implemented using gratings.

[120] K. Sharmugam, R. M. Haralick, "A Computationally Simple Procedure for
Imagery Data Compression by Karhunen-Loéve Method," IEEE Transactions

on Systems, Man, and Cybernetics, vol. 3, March 1973, pp 202-204.
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Computations required to obtain the eigenvectors and eigenvalues of
a covariance matrix are reduced by a factor of 4.
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Source paper for theory on {n, k) algebraic codes {rate > 1).
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Original article on permutation coding.
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A survey of approaches to data compression of spacecraft imagery.
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An upper bound on the rate distortion function for discrete ergodic
sources with memory is found.
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Use adaptive eigenvalue transformation on small blocks of data,
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Derives a bound on the average per ltetter distortion achievable by a
time~varying convolutional source code of fixed constraint length.

[127] W. C. Wilder, Subjectively Relevant Error Criteria for Pictorial Data
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1207 R. C. Wood, On.Optimum Quantization, IEEE Transactions oﬁ Information- ‘
(129] Vol. 15.Harcﬁi 1969 pp 248-252 - 1ation- Theory,

Keywords: 1. quantization error minimization
2. sampling of stochastic signals

The problem of minimizing mean-square gquantization error is considered
and simple closed form approximations based on the work of Max and Roe
are derived for the guantization error and entropy of signals quantized
by the optimum fixed-N quantizer. These approximations are then used
to show that, when N is moderately large, it is better to use equi-
internal quantizing than the optimum fixed-N quantizer if the signal is
to be subsequently buffered and transmitted at a fixed bit rate.
Finally, the problem of optimum quantizing in the presence of buffering
is examined, and the numerical results presented for Gaussian signals
indicate that equilevel quantizing yields nearly optimum results.
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[1307 H. C. Andrews, Introduction to Mathematical Techniques in Pattern Recog-
nition, John Wiley & Sons, 1972.
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2, classification

Discussion of feature selection and pattern classification.

[131] p. E. Anuta, “Digital Registration of Multispectral Video Imagery," Journal of
the Society of Photo-Optical Instrumentation Engineers, Vol, 7,
-September 1969, pp 168-175.

Keywords: 1. multispectral imagery
2. registration
3. adaptive

Measure of difficulty of registration is defined and algorithm is
changed depending on this measure.

[132] P. E. Anuta, "Spatial Registration of Multispectral and Multitemporal
Digital Imagery Using Fast Fourier Transform Techniques," IEEE Trans-
actions on Geoscience Electronics, vol 8, October 1970.
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5. multispectral imagery
6

multitemporal imagery

Description of a method for registration of multispectral or muiti-

temporal imagery where the correlation step is implemented using the
Fast Fourier Transform.

[133] R. 0. Duda, P. E. Hart, Pattern Classification and Scene Analysis, Artificial
Intelligence Group, Stanford Research Institute, Menlo Park, California,
1970.

Keywords: 1. pattern classification
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The theory of pattern classification is discussed.

[134] K. S. Fu, "On the Application of Pattern Recognition Techniques to Remote
Sensing Problems," Purdue University Schoel of Electrical Engineering
Report No. TR-EE 71-13. June 1971.

Keywords: 1. remote sensing
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3. spectral sighature

. 4. crop classification

Discussion of the application of various classification procedures to
earth resources problems using multispectral imagery.
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Remotely Sensed Agricultural Data," Proceedings of the IEEE, vol 57,
April 1969, pp 639-653.
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2. crop classification
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4, classification accuracy
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Discussion of the application of pattern recogn1t1on techniques to
classification of crop type using multispectral imagery.

[136] A. S. Gliniewicz, H. M.~ Lachowski, W. H. Pace, P, Salvato, ASTEP Users'
Guide and Software Documentation, TRW Note No. 74-FMT-939, Document
No. 25990-H028-R0-00.
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2. Tfactor analysis
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4, transform

5. maximum Tikelihood
6

multispectral imagery

Descriptions of programs for doing clustering and classification of
multispectral imagery.

[137] R. M. Haralick, D. E. Anderson, "Texture-Tone Study with Application to
Digitized Imagery.," The University of Kansas Center for Research,
Inc., Technical Report 182-2, November 1971.

Keywords: 1. texture analysis
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3. remotely sensed imagery

Texture features are defined and measurement of these features is used
for land use classification.

[138] G. G. Lendaris, G. L. Stanley, "Diffraction Pattern Sampling for Automatic
Pattern Recognition," Proceedingsof the IEEE, vol 58, February 1970,
pp 198-216.

Keywords: 1. Fourier transform
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Spatial Fourier Transform used as basis for land use classification in
imagery.
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[139] K. Preston,.Jdr., "A Comparison of Analog and Digital Techniques for
Pattern Recoghition," Proceedings of the IEEE, vol 60, October 1972,

pp 1216-1231.

Keywords: 1. earth resources analysis
2. Tland use analysis

3. pattern recognition

4. analog techniques

5.

digital techniques
It js shown that the analog computer offers workers using low-precision

high-speed linear~discriminant analysis a significant advantage in
hardware performance in ¢ertain important areas.
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APPENDIX D
TRW IMAGE CODING FACILITIES

A block diagram of TRW image coding facilities is shown in Figure 1.
This includes an Interdata 85 IBM computer. a Dicomed color image recorder,
and an 8000 COMTAL digital image displayer. Both the Dicomed and Comtal
systems are interfaced with the Interdata computer. The Interdata computer
is used for simulating and processing simple aigorithms; TRW's time sharing
system is used for simulating and processing more complicated algorithms.

> COMTAL
9 TRACK DIGITAL
IMAGE
TP 10 DISPLAYER {-
1I:lqE HARING INTERDATA 85
o | IBM COMPUTER
SYSTEM
r(" =1 7 TRACK >
——->1 TAPE 1/0 ry—
COLOR
IMAGE
RECORDER

Figure 1. TRW's System Engineering Laboratory Image
Coding Facilities ’

D.1 COMTAL DIGITAL IMAGE DISPLAYER

The COMTAL 8000 Series digital image displayer produces a high spatial
resolution video image presentation over the full range of brightness levels
in shades of gray, pseudo color, or full color. The displayer is com-
pletely self-contained, including the display monitor, digital refresh
storage, the associated electronics, power supplies, and complete off-line
diagnostic capabilities. Installation of a system requires only the appli=
cation of the digital input information and 110 Vac power.

Operationally, this unit performs in a manner similar to other com-
puter peripheral devices. It is unique only in the type of data processed
and the resulting display presentation. It is designed to provide simple,
inexpensive interfacing with all common sources of digital data. The entire
display unit may be controlied either locally or from a remote source, using
the same data structure for both commands and data. Local control of a
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display unit is achieved with the control panel which provides the capa-
bility of generating all the required display commands. This control panel
js connected into the basic interface structure in the same manner as an
externél.device. The control panel also provides a logically oriented data
pattern generator. Off-Tine diagnostic operations are performed using the
facilities of the control panel.

.0.2 DICOMED COLOR IMAGE RECORDER

The DICOMED color image recorder is a high performance cathode ray-tube
(CRT) film recorder capable of producing photographs in black and white or
color from digitally encoded pictorial data. This data may be achieved from
an on-Tine computer system or from an off-Tine Dicomed image digitizer or -
magnetic tape unit. The data is converted into exposure energy levels with
values up to 256, which make up the picture elements (pixels) and is
recorded at resolutions of 512, 1024, 2048, or 4096 pixels per axis. Three
resolutions are selectable on a unit: 512, 1024, 2048, or 1024, 2048, 4096.

The recorder has an automatic color filter advance which may be con-
trolled from the operator panel or from an externally connected unit. The
three primary color filters selectable are blue, green, and red, with a
neutral selectabie for black and white.

The image recorder constructs either single or multiple images by using
a full raster scah or a random position format. A command and status struc-
ture is provided in the Togic which allows the image recorder to be operated
manually or under program contrel. The recorder utilizes a parallel 8-bit
digital interface.
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APPENDIX E
DOCUMENTATION OF THE BANDWIDTH COMPRESSION SOFTWARE

INTRODUCTTION

TRW has developed a number of bandwidth compression algorithms for
muttispectral ERTS data. These bandwidth compression algorithms are simulated
on a digital computer using the following software package. The software
includes the following coding algorithms.

1.

Three-dimensional coding algorithms using a block size of
4x16x16 with a block quantizer. The system.has the option
of utilizing three-dimensional Hadamard, Cosine or Slant
Transformations. The system uses a fixed block quantizer
for all three options.

A hybrid coding algorithm using an option of Karhunen-Loeve

or Haar transformation followed by a two-dimensional Differential
Pulse Code Modulator (DPCM}. The-transformation is in spectral
domain and the two-dimensional DPCM encoder uses a third-order
predictor. The eigenvectors of the Karhunen-Loeve transform

and the weightings in the two-dimensional DPCM encoder are fixed.
They are based on the statistics of a typical data. They could
be varied by simply reading a set of new values in the program.

A hybrid coding algorithm which uses an option of Karhunen-Loeve
or Haar transform in the spectral domain followed by an option of
Cosine, Slant, or Hadamard transform in the horizontal and a block
of DPCM encoders in the vertical direction. The block size of the
spectral transformation is four, and the block size of the trans-
Formation in the horizontal direction is 16. The system uses a
fixed set of DPCM encoders for all preceding transformations.

A1l three coding methods discussed above have a fixed bit rate.
They encode the muitispectral data at bit rates of 0.5, 1, 2 bits
per picture element. The average bit rate can be varied easily by
changing the data card in the program.

The above coding algorithms have the optiogzof uséng a binaﬁy
symmetric channel at bit error rates of 10 =, 1077, and 1077,
This can also be varied to any optional value by changing the
input data.

E-1



Main Programs

I — SPXT;
Definition - It performs spectral transformation {and the Inverse)
on the 4 bands of ERTS multispectral data.
Specifications; 1. Transformation is one of the following:

ITYPE = 1 Haar
= 2 Cosine
= 3 Hadamard
=4 Slant
=5 Karhunen-Loeve

2. 2b6x256 real data for each band at input
and output.
3. Input; on Units 1, 2, 3, 4
Output; on Units 17, 12, 13, 14
4. The output of SPXT is saturated to levels
bounded by 0.0 and 255.
Inputs; on Unit 5.
1. ITYPE, IFR; Format (212)
ITYPE specifies type of transformations.
IFR = 1 forward transform.
-1 inverse transform.
2. AA(4,4); Format (10F8.3)
AA is the matrix of spectral correlation of
the original 4 bands. Note only upper
triangular form is read in.

(]

1

Subroutines;

1. KLMAT (AA,Z)
AA; 4x4 covariance matrix.
Z; matrix of eigenvectors of AA.

2. Haar (C,D,SQ,IFR); Haar transform of size 4.
C{4} Input-Real
D(4) Output-Real
IFR=1 Forward
IFR=-1 Inverse

Sq = /2.
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HAD4{C,D,IRR); Hadamard transform of size 4.
c(4) Input-Real

D(4) Output-Real

IFR=1 Forward

IFR=-1 Inverse

€0S4 (C,4,IFR); Cosine transform of size 4.
C(4) Input/Output - Real

IFR=1 Forward

IFR=-1 ¥nverse.

SLNT4 (C,D,5Q5,IFR); Slant transform of size 4.
(€4} Input-Real

D(4) Output-Real

IFR=1 Forward

IFR=-1 Inverse

SQ5 = ¥5.

KLT (C,D,Z,IFR); Karhunen-Loeve transform of size 4.
C{4) Input-Real

D(4) Output-Real

Z(4,4) Matrix of Eigenvectors - Real

IFR=1 Forward

IFR=~T Inverse
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II - DPCMCH ‘
Definition - It encodes and reconstructs up to 4 bands of 256 by 256 real
imagery data. Original or spectrally transformed data can
be used as input. The system performs the following tasks as
shown on Figure 1. Starting values II=1, JJ=1]

1. Find mean and variance of data {256x256) on Unit JJ.
2. Normalize data on Unit JJ and put it on Unit 7.

3. Find hoaizontal, vertical and diagonal correlation of
data on Unit 7.

4, Encode data on Unit 7 and renormalize and write it
on Unit II.

5. Repeat above for II=2, .., IBAND and JJ=12,...

Specifications; 1. Input on Units 11, 12, 13, 14.
Output on Units 1, 2, 3, 4.

Inputs; on Unit 5
1. IBAND, IRATE, IREP (Format 3I2)

IBAND is the no. of bands which needs to be coded/dec.
This depends on no. of bits/pixel aliowed. For
0.5 and 1 bit/pixel only 2 bands are coded
for 2 bits/pixel all 4 bands are coded.

IRATE specifies bit-error rate in the channel. Values
of 0, 1, 2, 3, 4 correspond to bit error rates
of 0.0, 0.7, 0.01, 0.001, 0.0001 respectively.

IREP IREP=0 is the normal mode for the program
IREP=1 1is a feature used to avoid measuring the
statistics of a data repeatedly. For this mode
weightings of predictor, correlation of data and
mean, standard deviation of the signal,and the

variance of the differential signal are read in.
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2. IALI; (Format 12)
IALY specifies the number of bits/sample in spectrally
transformed domain that one desires to use for coding each
band, f.e.,for an average of 0.5 bit/pixel values for IALI
are 1, 1, 0, O.Fbr 2 bits/pixel values for IALI are 3, 3, 1, 1.
Note; one value -for [ALL is read for each band.

Subroutines;
1. QUAN (E,EQ,dd,1I,1Z)
Quantizes the differential signal non-Tinearly.
E; differential signal-real.
EQ; quantized value of differential signal-real
1Z; Magnitude of quantized level - integer
11; sign of quantized level - integer
JJ; combined sign and magnhitude of quantized level - integer.

2. EROR (ER.X,Y)
Calculates mse for one line of imagery
X(256); one 1ine of original data-real
Y(256); one Tine of encoded data-real
ER; MSE between X and Y-real

3. STAT (B,S,V)
Calculates first and 2nd moments of one line of imagery
B(256)! one line of data-real
S; mean value of B{256)-real
V; second moment of B(2566)-real

4, CORL (R,V,D)
Calculates horizontal, vertical and diagenad} correlation of
normalized imagery on Unit 7.
R; Horizontal correlation of normalized real data on
Unit 7 - real '

V: Vertical correlation of norma]ized. Real data on
Unit 7 - real

D; Diagonal correlation of normalized, real data on
Unit 7 - real. E-6



COEF (R,V,D,A}

Finds optimum weightings for 3rd order predictor

R; Horizontal correlation of an imagery data.

V; Vertical correlation of an-imagery data.

" D; Diagonal correlation of an imagery data.

A(3); Optimum weightings of a 3rd order predictor for
a 2 dim. DPCM encoder.

LEQT2F; TRW/TSS Document attached

CNLER (1Z,IZ0,IIX,IBIT,II)

Simulates a binary symmetric chamnel.

1Z; Magnitude of quantized level as input to noise channel.
I1Zp; Magnitude of quantized level as output of noisy channeil.
II; Sign of quantized level (at input/output) of noisy channel.
IIX; Seed for generating a -normal random variable.
IBIT; Bits/sample allowed for encoding.

RECHN (1I,1Z,IIX,EQ,IBIT}

Uses output of channel to generate a quantized value

II; Sign of quantized level

1Z; Magnitude of quantized level at input of noisy channel
IIX; Seed for generating a normal random variable.

EQ; Quantizgd va1de of the differential signal at the output
of the noisy channel.

IBIT; Bits/sampie allowed for encoding.
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111 - TRB3D;

Definition - It performs two-dimensional transformation and a block
quantization for up to 4 bands of 256x256 sampies imagery
(or spectrally transformed forms). The system operates as
follows: Initial value for II=1 and JJ=10+II, (See Fig. 2).

1.

Specifications -

Horizontal and vertical correlation of the imagery data

is used to find the variance of the elements in the transform.
domain. The elements in transformed domain are ordered
according to the size of their vakiances.

¥ a

Imagery data is divided into blocks of 16x16 and 2 dim.
transform of each block is obtained.

Each block is quantized using Max's optimum quantizer
using the variances in the transform domain, then the
inverse 2 dim. transform of quantized components is performed.

The image is put in proper format and is written on Unit II.
Above operation is repeated for 1I=2,...,IBAN.

Transformation is one of the following:

ITYPE=1 Hadamard
=2 Cosine
=3 Stant

Inputs; on Unit 5.

1.

1BAND, ITYPE,IRATE (Format 312)

IBAND is the no. of bands which needs to be coded/dec.

This depends on no. of bits/pixel allowed. For 0.5
and T bit/pixel only 2 bands are coded/decoded. For
2 bits/pixel all 4 bands are coded.
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ITYPE  Specifies type of the 2 .dim. transform.

ITYPE=1 Hadamard
=2 Cosine
=3 Slant

IRATE  Specifies bit error-rate (BER)

IRATE=1 BER=0.1
=2 =0.01
=3 =6.001
=4 =0.0001

=0 =0.0

2. (MFI{1),1=1,9) Format (918)
MFI(I} indicates that I bits are used in coding ordered
' samples in transform domain indexed from
MS(1) to MF(I). Where MS(I)}=MF(I)+1 for
1=2,...,9. Ms(1)=1.

3." CORH,CORV - (Format 2F6.3)
CORH; Horizontal correlation of imagery data on Unit JJ
CORV; Vertical correlation of imagery data on Unit Jd.

Subroutines;
1. Channel (K,R,VALUE,VYMAX,IEROR,IX)
Simulates a binary symmetric channel.
K No of bits.
R Parameter in Max's optimum quantizer.
VALUE Output of the noisy channel.
VMAX  Specifies bit error rate. It's related to IRATE

in TRB3D.
IEROR No of times error happens.
IX Seed for generating a normal random variable.
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FNRN (IX,V); TRW/TSS Subroutine

generates a normal random variable n(6,1)

IX; seed for generating a random number. Should be
specified the first time FNRN is used only - integer
V; random variable (zero mean, unit variance) - real

COVTRS (C,D,A,ITYPE)

Finds the covariance of transformed data from the covariance
of the original data.

c{16x16) Covariance of original data - real.

A(16) Diagonal elements of D - real.
ITYPE =i Hadamard

=2 Cosine

=3 Slant.
GTRSF(A,ITYPE,IFR)

Performs one-dimensional transformation for block size=16.
A{186) Input/output - real
ITYPE =1 Hadamard
=2 Cosine
=3 Slant
IFR=1 Forward, IFR=-1  Inverse

Subroutine HADD (A,B)

One-dimensional fast Hadamard transform for a block size of 16.
A(16) Input - real ’

B{16) Output - real

Both forward and reverse. For reverse divide by 16.

Subroutine COST (A,ISIZE,IFR)

One-dimensional fast cosine transform for a block size of 16.
Simple to modify for Targer length up to 512.

A(16) Input/output - real

ISIZE = 16 )

IFR = 1 forward, IFR=~1 Inverse
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. Stant (A,M,IFR)

One-dimensional fast Slant transform for block size 8 to 512.
A(16) Input/output - real

M Block size = 2|

IFR=1 forward, IFR=-1 Inverse.
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1V - HYBCH

Definition - It encodes and reconstructs (using one-dimensional transform/
DPCM systems) up to 4 bands of 256x256 real imagery data.
Original or spectrally transformed data is used as input. The
system performs the following tasks as shown on Fig. 3.
Starting for II=1 and JJ=10+I1.

1. Finds one-dimensional transform (block=16) of 16x256
samples of data on Unit JJ. '

2. Finds-corre1ation of transformed dqta for maximum of 16 rows
and uses these for designing up to 16 DPCM system.

3. Reconstructs the data at the receiver of DPCM decoders and
finds the iaverse transform.

4. The above is performed for all 16x256 blocks then the
reconstructed imagery is put on Unit II.

5. Above is repeated for II=1,...,IBAND.

Specifications; 1. Input on Units 11, 12,113, 14.
Qutput on Units 1, 2, 3, 4.

Input on Unit 5; 1. ITYPE,IBAND,IRATE (Format 312)
ITYPE specifies type of transform
ITYPE=1 Hadamard
=2 Cosine
=3 Slant. ]
IBAND 1is the no. of bands which needs to be coded/dec.
This depends on-no. of bits/pixel allowed. For
0.5 and 1 bit/pixel only 2 bands are coded/decoded,
for 2 bits/pixel all 4 bands are coded.

IRATE  specifies bit-error rate in the channel. Values
of 0, 1, 2, 3, 4 correspond to bit error rates
of 0.0, 0.1, 0.01, 0.001, 0.0007 respectively.
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Subroutines;

Ks (Format 12)
K#= no of coefficients to be encoded 1 < K < 16.
i.e. for 2 bits/pixel  K=16

for 1 bit/pixel  K=8

(BIT(I),I=1,K); Format (16F3.0) -
BIT(I) 1is the number of bits allocated to the Ith row
in the transform domain.

1. HADD (A,B)
2. COST (A,16,IFR)
3. SLANT (A,M,IFR)

HADD, COST and SLANT are documented in Section III (TRB3D)

4. QUAN (E,IT,IBIT,EM,EMAX,EXPM,LEVEL,EQ,IZ)
5. RECHN (II,IZ,IIX,LEVEL,EXPM,EMAX,EM,EQ,IBIT)

4 and 5 are same as QUAN and RECHN documented in Section II
(DAEMCH) . The difference is that here parameters EM,EMAX,
EXPM, LEVEL and IBIT are passed by the Subroutine rather
than using a common statement. ‘

6. CNLER (1Z,I1Z4,I11X,IBIT,II)
As documented in Section II (DPCMCH).
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V. MSE
Definition; Finds mean square ervor between the original ERTS data and
the encoded ERTS data.

Specification; Origiral ERTS data on Units, 1, 2, 3, 4.
Encoded ERTS data on Units 171, 12, 13, 14..

Output; on Unit &
1. Mean square (MSE) for each band.

5. (MSE)

STgnal Energy % 100 for each band

3. Peakato-peak_signa1 to rms noise for each band.
4. Average of the above values over all 4 bands.
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Data Sets Usage

DTFST SPXT for forward transform

DTRST SPXT for inverse transform
DT5PCM DPCMCH for 0.5 bit/pixel
DT1PCM DPCMCH for 1 bit/pixel
DT2PCM DPCMCH for 2 bits/pixel
DT5HYB HYBCH for 0.5 bit/pixel
DTTHYB HYBCH for 1.0 bit/pixel

" DTIHYB HYBCH for 2.0 bits/pixel
DT5T3 TRB3B for 0.5 bit/pixel
DTIT3 TRB3D for 1.0 bit/pixel
DT2T3 TRB3D for 2.0 bits/pixel

The above data sets specify the bit rate as well as the type of transformation
and the bit-error rate in the channel.
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