MEASURING SNOW COVER USING SATELLITE IMAGERY DURING 1973 AND 1974 MELT SEASON: NORTH SANTIAM, BOISE, AND UPPER SNAKE BASINS

By: E. J. WIEGMAN, W. E. EVANS, and R. HADFIELD

Prepared for:

BONNEVILLE POWER ADMINISTRATION
CORPS OF ENGINEERS, NORTH PACIFIC DIVISION
(Funded by National Aeronautics and Space Administration)

ATTN: F. A. LIMPERT, BPA

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 - U.S.A.
MEASURING SNOW COVER USING SATELLITE IMAGERY DURING 1973 AND 1974 MELT SEASON: NORTH SANTIAM, BOISE, AND UPPER SNAKE BASINS

By: E. J. WIEGMAN, W. E. EVANS, and R. HADFIELD
Stanford Research Institute
Menlo Park, California 94025

Prepared for:
BONNEVILLE POWER ADMINISTRATION
CORPS OF ENGINEERS, NORTH PACIFIC DIVISION
(Funded by National Aeronautics and Space Administration)
ATTN: F. A. LIMPERT, BPA

SRI Project 4122

Approved by:
R. T. H. COLLIS, Director
Atmospheric Sciences Laboratory

R. L. LEADABRAND, Executive Director
Electronics and Radio Sciences Division
Measurements of snow coverage during the snow-melt season in 1973 and 1974 were gathered from LANDSAT imagery for the following Columbia River Subbasins:

- North Santiam Basin (above Detroit Dam), Oregon
- Boise Basin (above Lucky Peak), Idaho
- Upper Snake River Basin (above Palisades Dam), Wyoming.

The principal objective of the program was to provide satellite-derived snow cover inventories for the three test basins for use by the Bonneville Power Administration as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. A secondary objective was to continue investigating accuracy and precision versus cost for several different interactive image analysis procedures currently under study at SRI, using the SRI Electronic Satellite Image Analysis Console (ESIAC). The research was completed under Contract 53442, sponsored jointly by the Bonneville Power Administration and the Corps of Engineers, North Pacific Division, under funding by the National Aeronautics and Space Administration.

Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each date and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Each mask was documented through three different methods:
• Photography.
• A numerical pixel count representative of the total area of snow in the scene and within the basin boundary.
• An array of single digit numbers depicting tenths of snow cover for each 2.5 X 2.5 km cell within the basin.

The cell-by-cell numeric documentation procedure provides a convenient and effective means of comparing the ESIAC-derived results with findings obtained by more conventional photointerpretation or with ground or aircraft surveys. More important, the cell-by-cell machine documentation paves the way for the use of advanced basin modeling procedures—for example, those requiring that snowpack be inventoried in elevation increments.
CONTENTS

ABSTRACT ... iii

LIST OF ILLUSTRATIONS ... vii

LIST OF TABLES .. ix

I INTRODUCTION .. 1
 A. Objectives ... 1
 B. Data ... 1
 C. Method of Approach .. 3

II SUMMARY OF MEASUREMENTS .. 9

III DISTRIBUTION OF SNOW COVER 17
 A. North Santiam Basin .. 17
 B. Boise Basin ... 17
 C. Upper Snake Basin .. 35

IV MEASUREMENT TECHNIQUES ... 41
 A. Off-line Scene Preparation 41
 1. Basin Characteristics 41
 a. North Santiam Basin 41
 b. Boise Basin ... 43
 c. Upper Snake Basin 43
 2. Contour Elevation Masks 48
 3. Basin Outline Masks 53
 4. Grid Overlays .. 53
 B. Radiometric Analysis by ESIAC 54
 1. Edited Single-band Thresholding 54
 2. Measurement of Binary Product 57
 C. Measurement Example .. 59

V REMARKS .. 63

APPENDIX - ESIAC ... 65
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nominal Orbital Tracks and Frame Center Locations over the Columbia River Basin</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>North Santiam Basin, Above Detroit, Oregon--Snow Coverage</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Boise Basin, Above Lucky Peak, Idaho--Snow Coverage</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Upper Snake Basin, Above Palisades, Wyoming--Snow Coverage</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>January 6, 1973, North Santiam Basin Snow Cover Distribution</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>February 11, 1973, North Santiam Basin Snow Cover Distribution</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>April 6, 1973, North Santiam Basin Snow Cover Distribution</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>April 24, 1973, North Santiam Basin Snow Cover Distribution</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>May 12, 1973, North Santiam Basin Snow Cover Distribution</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>January 1, 1974, North Santiam Basin Snow Cover Distribution</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>February 6, 1974, North Santiam Basin Snow Cover Distribution</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>February 24, 1974, North Santiam Basin Snow Cover Distribution</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>June 12, 1974, North Santiam Basin Snow Cover Distribution</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>June 30, 1974, North Santiam Basin Snow Cover Distribution</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>April 19, 1973, Boise Basin Snow Cover Distribution</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>May 7, 1973, Boise Basin Snow Cover Distribution</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>June 12, 1973, Boise Basin Snow Cover Distribution</td>
<td>30</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
TABLES

1. Annotated Listing of LANDSAT Imagery
 Viewing the North Santiam Basin .. 4
2. Annotated Listing of LANDSAT Imagery Available
 for the Boise Basin ... 5
3. Annotated Listing of LANDSAT Imagery Available
 for the Upper Snake Basin ... 6
4. North Santiam Basin Snow Coverage 10
5. Boise Basin Snow Coverage .. 11
6. Upper Snake Basin Snow Coverage 12
I INTRODUCTION

This is the Final Report of Contract 53442 (SRI Project 4122-1), and is intended to fully comply with the requirements of that contract.

A Objectives

Measurements of snow coverage during the snow-melt season in 1973 and 1974 were gathered from LANDSAT imagery for the following Columbia River Subbasins:

- North Santiam Basin (above Detroit Dam), Oregon
- Boise Basin (above Lucky Peak), Idaho
- Upper Snake River Basin (above Palisades Dam), Wyoming.

The principal objective of the program was to provide satellite-derived snow cover inventories for the three test basins for use by the Bonneville Power Administration as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. A secondary objective was to continue investigating accuracy and precision versus cost for several different interactive image analysis procedures currently under study at SRI, using the SRI Electronic Satellite Image Analysis Console (ESIAC).

B Data

Satellite orbital and scene coverage over the Columbia River Basin is shown in Figure 1. Normally it takes one LANDSAT frame to view the North Santiam Basin, two frames for the Boise basin and two to four frames to cover the Upper Snake Basin, depending upon the actual daily orbital
Columbia River Subbasins:

1. North Santiam (Detroit) 4. Dworshak
2. Boise 5. Hungry Horse

FIGURE 1 NOMINAL ORBITAL TRACKS AND FRAME CENTER LOCATIONS OVER THE COLUMBIA RIVER BASIN
position of the satellite. Specifically, the data periods investigated for the North Santiam Basin extended from January through June in 1973 and 1974; for the Boise Basin and Upper Snake Basin the periods extended from late March through June in both years.

The set of LANDSAT imagery available for measurement (and their utility to the project, and therefore reasons for selection) of the three basins are given in Tables 1, 2, and 3.

C Method of Approach

Snow coverage was inventoried using a program which combined objective classification by single-band (MSS-5) radiance thresholding with subjective editing guided by elevation contours and other reference data. The procedure involved the use of the SRI Electronic Satellite Image Analysis Console (ESIAC), which was designed specifically to analyze repetitive satellite data. (A detailed description of ESIAC appears in the Appendix.) LANDSAT imagery were entered into the ESIAC memory at a scale such that the TV screen covered about 55 x 40 km, corresponding approximately to 0.5° of longitude by 0.5° of latitude, essentially to match the display resolution to the resolution available from the LANDSAT imagery. At that magnification it requires eleven TV views to cover the largest basin, Upper Snake; four views to cover Boise, and one view for the smallest basin, North Santiam; each TV view was considered a basin part. In addition to the imagery, a binary basin outline map and Universal Transverse Mercator (UTM) grid in 2.5 x 2.5 km boxes were entered for each view. All components were spatially registered to each other during the data entry process.

Registered time-lapse sequences, in color, were created for each basin. These were used for operator training and to evaluate progressive date-to-date changes in the snowpacks.
Table 1

ANNOTATED LISTING OF LANDSAT IMAGERY VIEWING THE NORTH SANTIAM BASIN

<table>
<thead>
<tr>
<th>Track Row</th>
<th>Cycle</th>
<th>Dates On Hand</th>
<th>Frame Number</th>
<th>Percent of Basin Viewed in Frame</th>
<th>Sun Angle</th>
<th>Cloud Coverage</th>
<th>Overall Picture Quality</th>
<th>Utility to Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-29</td>
<td>9*</td>
<td>6 Jan.</td>
<td>1167 - 18271</td>
<td>100</td>
<td>Low</td>
<td>20%</td>
<td>Good</td>
<td>Fair--20% of basin fog-covered</td>
</tr>
<tr>
<td>49-29</td>
<td>11*</td>
<td>11 Feb.</td>
<td>1203 - 18274</td>
<td>100</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Fair--deep shadows</td>
</tr>
<tr>
<td>49-29</td>
<td>14*</td>
<td>6 Apr.</td>
<td>1257 - 18280</td>
<td>100</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>49-29</td>
<td>15*</td>
<td>24 Apr.</td>
<td>1275 - 18275</td>
<td>100</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>49-29</td>
<td>16*</td>
<td>12 May</td>
<td>1293 - 18274</td>
<td>100</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>49-29</td>
<td>17</td>
<td>30 May</td>
<td>1311 - 18273</td>
<td>100</td>
<td>High</td>
<td>80%</td>
<td>Fair</td>
<td>Poor--too many clouds</td>
</tr>
<tr>
<td>49-29</td>
<td>29*</td>
<td>1 Jan.</td>
<td>1527 - 18241</td>
<td>100</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Fair--deep shadows</td>
</tr>
<tr>
<td>49-29</td>
<td>31*</td>
<td>6 Feb.</td>
<td>1563 - 18225</td>
<td>100</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Fair--deep shadows</td>
</tr>
<tr>
<td>49-29</td>
<td>32*</td>
<td>24 Feb.</td>
<td>1581 - 18224</td>
<td>100</td>
<td>Low</td>
<td>10%</td>
<td>Good</td>
<td>Fair--some cloud obscuration</td>
</tr>
<tr>
<td>49-29</td>
<td>38*</td>
<td>12 Jun.</td>
<td>1689 - 18200</td>
<td>100</td>
<td>High</td>
<td>75%</td>
<td>Fair</td>
<td>Marginal--cloudy</td>
</tr>
<tr>
<td>49-29</td>
<td>39*</td>
<td>30 Jun.</td>
<td>1707 - 18192</td>
<td>100</td>
<td>High</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

* Dates used for evaluation.
Table 2

Annotated Listing of Landsat Imagery Available for the Boise Basin

<table>
<thead>
<tr>
<th>Track Row</th>
<th>Cycle</th>
<th>Dates On-Hand</th>
<th>Frame Number</th>
<th>Percent of Basin Viewed in Frame</th>
<th>Sun Angle</th>
<th>Cloud Coverage</th>
<th>Overall Picture Quality</th>
<th>Utility to Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-30</td>
<td>10</td>
<td>19 Jan.</td>
<td>1180 - 17500</td>
<td>99</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- top tip of basin</td>
</tr>
<tr>
<td>45-30</td>
<td>10</td>
<td>20 Jan.</td>
<td>1181 - 16044</td>
<td>30</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Good not viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>11</td>
<td>6 Feb.</td>
<td>1198 - 17592</td>
<td>--</td>
<td>Low</td>
<td>80%</td>
<td>Fair</td>
<td>Poor -- too cloudy</td>
</tr>
<tr>
<td>44-29</td>
<td>11</td>
<td>6 Feb.</td>
<td>1198 - 17585</td>
<td>--</td>
<td>Low</td>
<td>80%</td>
<td>Fair</td>
<td>Poor -- too cloudy</td>
</tr>
<tr>
<td>44-30</td>
<td>13</td>
<td>14 Mar.</td>
<td>1234 - 17594</td>
<td>70</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-29</td>
<td>13</td>
<td>14 Mar.</td>
<td>1234 - 17591</td>
<td>50</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>14</td>
<td>1 Apr.</td>
<td>1252 - 17594</td>
<td>80</td>
<td>Medium</td>
<td>10%</td>
<td>Good</td>
<td>Good -- some clouds,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80% basin viewed</td>
</tr>
<tr>
<td>44-29</td>
<td>14</td>
<td>1 Apr.</td>
<td>1252 - 17591</td>
<td>55</td>
<td>Medium</td>
<td>70%</td>
<td>Fair</td>
<td>Poor -- cloudy,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80% basin viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>15*</td>
<td>19 Apr.</td>
<td>1270 - 17591</td>
<td>--</td>
<td>Medium</td>
<td>90%</td>
<td>Fair</td>
<td>Poor -- too cloudy</td>
</tr>
<tr>
<td>44-29</td>
<td>15</td>
<td>19 Apr.</td>
<td>1270 - 17594</td>
<td>95</td>
<td>Medium</td>
<td>5%</td>
<td>Good</td>
<td>Good -- 95% of basin viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>16*</td>
<td>7 May</td>
<td>1288 - 17593</td>
<td>100</td>
<td>High</td>
<td>10-15%</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-29</td>
<td>16</td>
<td>7 May</td>
<td>1288 - 17590</td>
<td>10</td>
<td>High</td>
<td>10%</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>18*</td>
<td>12 Jun.</td>
<td>1324 - 17591</td>
<td>90</td>
<td>High</td>
<td>40%</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-29</td>
<td>18</td>
<td>12 Jun.</td>
<td>1324 - 17584</td>
<td>25</td>
<td>High</td>
<td>40%</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>19*</td>
<td>30 Jun.</td>
<td>1342 - 17585</td>
<td>95</td>
<td>High</td>
<td>20%</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-29</td>
<td>19</td>
<td>30 Jun.</td>
<td>1342 - 17583</td>
<td>20</td>
<td>High</td>
<td>20%</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>45-29</td>
<td>32</td>
<td>20 Feb.</td>
<td>1577 - 17594</td>
<td>20</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Fair -- deep shadows</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35% basin viewed</td>
</tr>
<tr>
<td>45-30</td>
<td>32</td>
<td>20 Feb.</td>
<td>1577 - 18001</td>
<td>25</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Fair -- viewed</td>
</tr>
<tr>
<td>44-29</td>
<td>33</td>
<td>9 Mar.</td>
<td>1594 - 17534</td>
<td>20</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- deep shades</td>
</tr>
<tr>
<td>44-30</td>
<td>33</td>
<td>9 Mar.</td>
<td>1594 - 17541</td>
<td>90</td>
<td>Low</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>45-30</td>
<td>33</td>
<td>10 Mar.</td>
<td>1595 - 17595</td>
<td>20</td>
<td>Low</td>
<td>10%</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>44-29</td>
<td>35*</td>
<td>14 Apr.</td>
<td>1630-17530</td>
<td>50</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-30</td>
<td>35</td>
<td>14 Apr.</td>
<td>1630 - 17532</td>
<td>70</td>
<td>Medium</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
<tr>
<td>44-29</td>
<td>36*</td>
<td>2 May</td>
<td>1648 - 17523</td>
<td>40</td>
<td>High</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- 100% basin viewed</td>
</tr>
<tr>
<td>44-30</td>
<td>36</td>
<td>2 May</td>
<td>1648 - 17525</td>
<td>80</td>
<td>High</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- Band 5 missing</td>
</tr>
<tr>
<td>44-29</td>
<td>39*</td>
<td>25 Jun.</td>
<td>1702 - 17505</td>
<td>15</td>
<td>High</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- 100% basin</td>
</tr>
<tr>
<td>44-30</td>
<td>39</td>
<td>25 Jun.</td>
<td>1702 - 17512</td>
<td>95</td>
<td>High</td>
<td>Nil</td>
<td>Good</td>
<td>Good -- viewed</td>
</tr>
</tbody>
</table>

*Dates used for evaluation. For this phase of the study, the beginning of the snow melt season was considered to be 1 April.
Table 3

ANOTATED LISTING OF LANDSAT IMAGERY AVAILABLE FOR THE UPPER SNAKE BASIN

<table>
<thead>
<tr>
<th>Track Row</th>
<th>Cycle</th>
<th>Dates On-Hand</th>
<th>Frame Number</th>
<th>Percent of Basin Viewed in Frame</th>
<th>Sun Angle</th>
<th>Cloud Coverage</th>
<th>Overall Picture Quality</th>
<th>Utility to Project Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-30</td>
<td>10</td>
<td>16 Jan.</td>
<td>1177 - 17413</td>
<td>10 (Low)</td>
<td>100%</td>
<td>Poor</td>
<td>Poor</td>
<td>80% basin</td>
</tr>
<tr>
<td>42-30</td>
<td>10</td>
<td>17 Jan.</td>
<td>1178 - 17472</td>
<td>80 (Low)</td>
<td>10%</td>
<td>Good</td>
<td>Good</td>
<td>viewed</td>
</tr>
<tr>
<td>41-30</td>
<td>11</td>
<td>3 Feb.</td>
<td>1195 - 17414</td>
<td>96 (Low)</td>
<td>10%</td>
<td>Good</td>
<td>Good</td>
<td>100% basin</td>
</tr>
<tr>
<td>41-30</td>
<td>12</td>
<td>21 Feb.</td>
<td>1213 - 17422</td>
<td>90 (Low)</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
<td>viewed</td>
</tr>
<tr>
<td>41-29</td>
<td>12</td>
<td>21 Feb.</td>
<td>1213 - 17415</td>
<td>90 (Low)</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
<td>97% basin</td>
</tr>
<tr>
<td>41-30</td>
<td>14</td>
<td>29 Mar.</td>
<td>1249 - 17423</td>
<td>85 (Medium)</td>
<td>5%</td>
<td>Good</td>
<td>Good</td>
<td>97% basin</td>
</tr>
<tr>
<td>41-29</td>
<td>14</td>
<td>29 Mar.</td>
<td>1249 - 17420</td>
<td>85 (Medium)</td>
<td>5%</td>
<td>Good</td>
<td>Good</td>
<td>viewed</td>
</tr>
<tr>
<td>41-29</td>
<td>15</td>
<td>16 Apr.</td>
<td>1267 - 17420</td>
<td>80 (Medium)</td>
<td>100%</td>
<td>Poor</td>
<td>Poor</td>
<td>too cloudy</td>
</tr>
<tr>
<td>41-30</td>
<td>15</td>
<td>16 Apr.</td>
<td>1267 - 17422</td>
<td>80 (Medium)</td>
<td>100%</td>
<td>Poor</td>
<td>Poor</td>
<td>viewed</td>
</tr>
<tr>
<td>41-30</td>
<td>17</td>
<td>22 May</td>
<td>1303 - 17421</td>
<td>80 (High)</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
<td>95% basin</td>
</tr>
<tr>
<td>41-29</td>
<td>17</td>
<td>22 May</td>
<td>1303 - 17414</td>
<td>80 (High)</td>
<td>Nil</td>
<td>Good</td>
<td>Good</td>
<td>viewed</td>
</tr>
<tr>
<td>41-30</td>
<td>18</td>
<td>9 Jun.</td>
<td>1321 - 17415</td>
<td>80 (High)</td>
<td>15%</td>
<td>Good</td>
<td>Good</td>
<td>95% basin</td>
</tr>
<tr>
<td>41-29</td>
<td>18</td>
<td>9 Jun.</td>
<td>1321 - 17412</td>
<td>80 (High)</td>
<td>15%</td>
<td>Good</td>
<td>Good</td>
<td>viewed</td>
</tr>
<tr>
<td>41-30</td>
<td>19</td>
<td>27 Jun.</td>
<td>1339 - 17414</td>
<td>75 (High)</td>
<td>40%</td>
<td>Fair</td>
<td>Poor</td>
<td>clouds and marginal view</td>
</tr>
<tr>
<td>41-29</td>
<td>36</td>
<td>29 Apr.</td>
<td>1645 - 17352</td>
<td>90 (Medium)</td>
<td>80%</td>
<td>Poor</td>
<td>Band 7 only</td>
<td>too cloudy</td>
</tr>
<tr>
<td>41-30</td>
<td>36</td>
<td>29 Apr.</td>
<td>1645 - 17355</td>
<td>90 (Medium)</td>
<td>80%</td>
<td>Poor</td>
<td>Band 7 only</td>
<td>cloudy</td>
</tr>
<tr>
<td>41-29</td>
<td>37</td>
<td>17 May</td>
<td>1663-17345</td>
<td>85 (High)</td>
<td>80%</td>
<td>Poor</td>
<td>Poor</td>
<td>too cloudy</td>
</tr>
<tr>
<td>41-30</td>
<td>37</td>
<td>17 May</td>
<td>1663 - 17352</td>
<td>85 (High)</td>
<td>80%</td>
<td>Poor</td>
<td>Poor</td>
<td>covered</td>
</tr>
<tr>
<td>41-30</td>
<td>39</td>
<td>22 Jun.</td>
<td>1699 - 17341</td>
<td>90 (High)</td>
<td>10%</td>
<td>Good</td>
<td>Good</td>
<td>97% basin</td>
</tr>
<tr>
<td>41-29</td>
<td>39</td>
<td>22 Jun.</td>
<td>1699 - 17335</td>
<td>90 (High)</td>
<td>10%</td>
<td>Good</td>
<td>Good</td>
<td>covered</td>
</tr>
</tbody>
</table>

*Dates used for evaluation. For this phase of the study, the beginning of the snow melt season was considered to be 1 April. Also, by prior agreement, dates prior to 15 March were excluded because the low sun angle makes interpretation extremely difficult and of doubtful utility.
For each date and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures:

1. Radiance thresholding of the MSS-5 image.
2. Localized threshold adjustment to obtain an optimum visual match to the visually observed snow cover for various sub-regions within the scene.
3. Use of superimposed elevation contours for guidance.
4. Final manual editing of the mask when necessary.

Each mask was documented through three different methods:

1. Photography.
2. A numerical pixel count representative of the total area of snow in the scene and within the basin boundary.
3. An array of single digit numbers depicting tenths of snow cover for each 2.5 x 2.5 km cell within the basin.

The cell-by-cell numeric documentation procedure is an innovation and was used for the first time in this project. In the near term it provides a convenient and effective comparison of the ESIAC-derived results with findings obtained by more conventional photointerpretation, or with ground or aircraft surveys. More important, the cell-by-cell machine documentation paves the way for the use of advanced basin modeling procedures—for example, those requiring that the snowpack be inventoried in elevation increments.
II SUMMARY OF MEASUREMENTS

A summary of the snow coverage for the three selected basins is presented in Tables 4, 5, and 6, and Figures 2, 3, and 4, respectively. The snow coverage reported in these summaries is listed by areal amount (km2) and by relative coverage (percentage) with respect to the basin area measurable on the LANDSAT imagery provided SRI. The measurable basin area may not always equal the full area of the basin because of the presence of clouds in certain portions; nonnominal positioning of the LANDSAT imagery may also preclude measurement of certain limited regions. Fortunately, the total basin area was viewed for the North Santiam and Boise Basins on all days, and no less than 95 percent of the basin was viewed for the Upper Snake Basin on all days. Therefore, the snow coverage percentages derived for the Upper Snake Basin can be assumed to apply to the total basin area with reasonable confidence. For a more justifiable extrapolation, probable snow area for the missing regions could be estimated from the elevation of the missing regions and the date. Section IV B contains additional comments on this subject.
Table 4
NORTH SANTIAM BASIN SNOW COVERAGE

<table>
<thead>
<tr>
<th>Date</th>
<th>Percent of Basin Area Covered by Usable Imagery</th>
<th>Snow Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area (km²)</td>
</tr>
<tr>
<td>1973</td>
<td></td>
<td>74.9%</td>
</tr>
<tr>
<td>6 Jan.</td>
<td>100</td>
<td>858.4</td>
</tr>
<tr>
<td>11 Feb.</td>
<td>100</td>
<td>891.6</td>
</tr>
<tr>
<td>6 Apr.</td>
<td>100</td>
<td>519.1</td>
</tr>
<tr>
<td>24 Apr.</td>
<td>100</td>
<td>475.6</td>
</tr>
<tr>
<td>12 May</td>
<td>100</td>
<td>205.1</td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td>85.1</td>
</tr>
<tr>
<td>1 Jan.</td>
<td>100</td>
<td>975.2</td>
</tr>
<tr>
<td>6 Feb.</td>
<td>100</td>
<td>1,002.8</td>
</tr>
<tr>
<td>24 Feb.</td>
<td>100</td>
<td>1,080.7</td>
</tr>
<tr>
<td>12 Jun.</td>
<td>100</td>
<td>405.7</td>
</tr>
<tr>
<td>30 Jun.</td>
<td>100</td>
<td>190.2</td>
</tr>
</tbody>
</table>

Average elevation ~ 3,900 ft MSL
Basin area = 1,146 km²

*Measured snow area/viewable area.
<table>
<thead>
<tr>
<th>Date</th>
<th>Percent of Basin Area Covered by Usable Imagery</th>
<th>Snow Coverage</th>
<th>Percent of Basin Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area (km²)</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Apr.</td>
<td>100</td>
<td>4,750.4</td>
<td>65.5%</td>
</tr>
<tr>
<td>7 May</td>
<td>100</td>
<td>2,270.4</td>
<td>31.3</td>
</tr>
<tr>
<td>12 Jun.</td>
<td>100</td>
<td>594.0</td>
<td>8.2</td>
</tr>
<tr>
<td>30 Jun.</td>
<td>100</td>
<td>278.6</td>
<td>3.7</td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Apr.</td>
<td>100</td>
<td>5,377.0</td>
<td>74.1</td>
</tr>
<tr>
<td>2 May</td>
<td>100</td>
<td>2,609.5</td>
<td>36.0</td>
</tr>
<tr>
<td>25 Jun.</td>
<td>100</td>
<td>504.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Average elevation ~ 6,000 ft MSL
Basin area = 7,254 km²

* Measured snow area/viewable area.
Table 6

UPPER SNAKE BASIN SNOW COVERAGE

<table>
<thead>
<tr>
<th>Date</th>
<th>Percent of Basin Area Covered by Usable Imagery</th>
<th>Snow Coverage</th>
<th>Percent of Basin Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Mar.</td>
<td>96.9</td>
<td>11,888.0</td>
<td>92.0%</td>
</tr>
<tr>
<td>22 May</td>
<td>95.0</td>
<td>5,128.4</td>
<td>40.5</td>
</tr>
<tr>
<td>9 Jun.</td>
<td>94.9</td>
<td>1,738.8</td>
<td>13.7</td>
</tr>
<tr>
<td>22 Jun.</td>
<td>96.8</td>
<td>1,942.2</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Average elevation ~ 8,000 ft MSL
Basin area = 13,339.6 km²

*Measured snow area/viewable area.
Snow coverage (percentage of basin) = measured snow area/viewable basin area.
Basin area measured = total basin area = 1,146.0 km².

FIGURE 2 NORTH SANTIAM BASIN, ABOVE DETROIT, OREGON, SNOW COVERAGE
Snow coverage (percentage of basin) = measured snow area/viewable basin area
Basin area measured = total basin area = 7,254.0 km2.

FIGURE 3 BOISE BASIN, ABOVE LUCKY PEAK, IDAHO, SNOW COVERAGE
TOTAL BASIN AREA = 13,339.6 km²

Snow Coverage (\% of basin) equals measured snow area/viewable basin area.

[For dates shown in this Figure viewable basin area was follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>% Of Total Basin Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/29/73</td>
<td>96.9</td>
</tr>
<tr>
<td>5/22/73</td>
<td>95.0</td>
</tr>
<tr>
<td>6/09/73</td>
<td>94.9</td>
</tr>
<tr>
<td>6/22/74</td>
<td>96.8</td>
</tr>
</tbody>
</table>

FIGURE 4 UPPER SNAKE BASIN, ABOVE PALISADES, WYOMING, SNOW COVERAGE
III DISTRIBUTION OF SNOW COVER

A North Santiam Basin

The snow cover distributions for the North Santiam Basin by 2.5 x 2.5 km boxes are given in Figures 5 through 14. The values for North Santiam were hand-generated in that the binary count of snow in each box was read from a digital pixel counter by an observer who divided this value by the binary value of a full box area and rounded the quotient to tenths of coverage. In these figures "X" indicates 10/10s coverage.

B. Boise Basin

The snow coverage measurements for the Boise Basin on selected days are given in the printouts captioned Figures 15 through 21. Although to retain the full resolution of the LANDSAT imagery it was necessary to view and measure the snow coverage by sections and then combine the values, only the combined charts of snow coverage over the entire basins are presented in these printouts.

At this point in the research an automated device was developed for the ESIAC which permitted scanning each snow mask in 2.5 x 2.5 km increments and counting the white pixels within each grid box. These values were directly transferred into a PDP-11 computer which turned them into tenths of coverage and printed the results in a Teletype array, simulating the grid box squares.* Four individual Part coverages were then combined manually, resulting in the total basin distribution figures in the printouts. Section IV contains more detail on the recording procedure.

* Distributions of the snow cover for the four individual Parts of the Boise Basin have been submitted to the sponsor under separate cover.
BASIN: N. SANTIAM
DATE (YEAR, MONTH, DAY): 73-1-6
TOTAL BASIN AREA (SQ. KM): 1146
BASIN AREA MEASURED (SQ. KM): 1146
SNOW AREA (SQ. KM): 858.4
(PERCENT OF BASIN): 74.9
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 9
UTM COORDINATES OF UPPER LEFT CORNER,
EASTING (KM): 550
NORTHING (KM): 4970

FIGURE 5 JANUARY 6, 1973, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM
DATE (YEAR, MONTH, DAY): 73-2-11
TOTAL BASIN AREA (SQ. KM): 1146
BASIN AREA MEASURED (SQ. KM): 1146
SNOW AREA (SQ. KM): 891.6
(PERCENT OF BASIN): 77.8
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 9
UTM COORDINATES OF UPPER LEFT CORNER,
EASTING (KM): 550
NORTHING (KM): 4970

FIGURE 6 FEBRUARY 11, 1973, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
FIGURE 7 APRIL 6, 1973, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
FIGURE 8 APRIL 24, 1973, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM
DATE (YEAR, MONTH, DAY): 73-5-12
TOTAL BASIN AREA (SQ. KM): 1146
BASIN AREA MEASURED (SQ. KM): 1146
SNOW AREA (SQ. KM): 205.1
(PERCENT OF BASIN): 17.9
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE:
UTM COORDINATES OF
UPPER LEFT CORNER,
EASTING (KM): 550
NORTHING (KM): 4970

FIGURE 9 MAY 12, 1973, NORTH SAMTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM

DATE (YEAR, MONTH, DAY): 74-1-1

TOTAL BASIN AREA (SQ. KM): 1146

BASIN AREA MEASURED (SQ. KM): 1146

SNOW AREA (SQ. KM): 975.2

(PERCENT OF BASIN): 85.1

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE: 9

UTM COORDINATES OF UPPER LEFT CORNER,

EASTING (KM): 550

NORTING (KM): 4970

FIGURE 10 JANUARY 1, 1974, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM

DATE (YEAR, MONTH, DAY): 74-2-6

TOTAL BASIN AREA (SQ. KM): 1146

BASIN AREA MEASURED (SQ. KM): 1146

SNOW AREA (SQ. KM): 1002.8

(PERCENT OF BASIN): 87.5

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE:

UTM COORDINATES OF

UPPER LEFT CORNER,

EASTING (KM): 550
NORTHING (KM): 4970

FIGURE 11 FEBRUARY 6, 1974, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM

DATE (YEAR, MONTH, DAY): 74-2-24

TOTAL BASIN AREA (SQ. KM): 1146

BASIN AREA MEASURED (SQ. KM): 1146

SNOW AREA (SQ. KM): 1080.7

(PERCENT OF BASIN): 94.3

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE: 9

UTM COORDINATES OF UPPER LEFT CORNER,

EASTING (KM): 550
NORTHING (KM): 4970

FIGURE 12 FEBRUARY 24, 1974, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
FIGURE 13 JUNE 12, 1974, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: N. SANTIAM

DATE (YEAR, MONTH, DAY): 74-6-30

TOTAL BASIN AREA (SQ. KM): 1146

BASIN AREA MEASURED (SQ. KM): 1146

SNOW AREA (SQ. KM): 190.2

(PERCENT OF BASIN): 16.6

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE: 9

UTM COORDINATES OF UPPER LEFT CORNER,

EASTING (KM): 550

NORTHING (KM): 4970

FIGURE 14 JUNE 30, 1974, NORTH SANTIAM BASIN, SNOW COVER DISTRIBUTION
BASIN: BOISE
DATE (YEAR, MONTH, DAY): 73-4-19
TOTAL BASIN AREA (SQ. KM): 7254.0
BASIN AREA MEASURED (SQ. KM): 7254.0
SNOW AREA (SQ. KM): 4750.4
(PERCENT OF BASIN): 65.5
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 11
UTH COORDINATES OF UPPER LEFT CORNER,
ZONE 11 570 km
EASTING (KM): 570
NORTHING (KM): 4885

FIGURE 15 APRIL 19, 1973, BOISE BASIN, SNOW COVER DISTRIBUTION
BASIN: BOISE
DATE (YEAR, MONTH, DAY): 73-5-7
TOTAL BASIN AREA (SQ. KM): 7254.0
BASIN AREA MEASURED (SQ. KM): 7254.0
SNOW AREA (SQ. KM): 2270.4
(PERCENT OF BASIN): 31.3
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 11
UTM COORDINATES OF UPPER LEFT CORNER,
ZONE 11
EASTING (KM): 570
NORTHING (KM): 4885

FIGURE 16 MAY 7, 1973, BOISE BASIN, SNOW COVER DISTRIBUTION
BASIN: BOISE

DATE (YEAR, MONTH, DAY): 73-6-12

TOTAL BASIN AREA (SQ. KM): 7254.0

BASIN AREA MEASURED (SQ. KM): 7254.0

SNOW AREA (SQ. KM): 594.1

(_PERCENT OF BASIN): 8.2

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE: 11

UTM COORDINATES OF UPPER LEFT CORNER:

Easting (KM): 570

Northing (KM): 4885

FIGURE 17 JUNE 12, 1973, BOISE BASIN, SNOW COVER DISTRIBUTION

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
BASIN: BOISE
DATE (YEAR, MONTH, DAY): 73-6-30
TOTAL BASIN AREA (SQ. KM): 7254.0
BASIN AREA MEASURED (SQ. KM): 7254.0
SNOW AREA (SQ. KM): 284.6
(PERCENT OF BASIN): 3.9
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 11
UTM COORDINATES OF UPPER LEFT CORNER,
EASTING (KM): 570
NORTHING (KM): 4885

FIGURE 18 JUNE 30, 1973, BOISE BASIN, SNOW COVER DISTRIBUTION
BASIN: BOISE

DATE (YEAR, MONTH, DAY): 74-4-14

TOTAL BASIN AREA (SQ. KM): 7254.0

BASIN AREA MEASURED (SQ. KM): 7254.0

SNOW AREA (SQ. KM): 5377.0

(PERCENT OF BASIN): 74.1

GRID BOX HEIGHT (KM): 2.5

WIDTH (KM): 2.5

UTM ZONE: 11

UTM COORDINATES OF UPPER LEFT CORNER, ZONE 11

EASTING (RM): 570

NORTHING (RM): 4885

FIGURE 19 APRIL 18, 1974, BOISE BASIN, SNOW COVER DISTRIBUTION
BASIN: BOISE
DATE (YEAR, MONTH, DAY): 74-5-2
TOTAL BASIN AREA (SQ. KM): 7254.0
BASIN AREA MEASURED (SQ. KM): 7254.0
SNOW AREA (SQ. KM): 2699.5
(PERCENT OF BASIN): 36.0
GRID BOX HEIGHT (M): 2.5
WIDTH (KM): 2.5
UTM ZONE: 11
UTM COORDINATES OF UPPER LEFT CORNER,
EASTING (KM): 570
NORTHING (KM): 4885

FIGURE 20 MAY 21, 1974, BOISE BASIN SNOW COVER DISTRIBUTION

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
BASIN: BOISE
DATE (YEAR, MONTH, DAY): 74-6-25
TOTAL BASIN AREA (SQ. KM): 7254.0
BASIN AREA MEASURED (SQ. KM): 7254.0
SNOW AREA (SQ. KM): 504.5
(PERCENT OF BASIN): 7.0
GRID BOX HEIGHT (KM): 2.5
WIDTH (KM): 2.5
UTM ZONE: 11
UTM COORDINATES OF
UPPER LEFT CORNER,
EASTING (KM): 570
NORTHING (KM): 4885

FIGURE 21 JUNE 25, 1974, BOISE BASIN, SNOW COVER DISTRIBUTION

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
C Upper Snake Basin

The snow coverage measurements for the Upper Snake Basin are given in the computer printouts, Figure 22 through 25. To retain the full resolution it was necessary to subdivide the basin into 11 sectors or Parts, view each sector separately, and obtain snow measurements in each sector. The automatic device for reading the binary product in the 2.5 x 2.5 km grid array, described previously, was used to obtain the measurements. At this stage of the research the computer program was extended to combine the snow distributions of the Parts. These total basin distributions are those given in the printouts.

* Distributions of the snow cover for the 11 individual Parts of the Upper Snake Basin have been submitted to the sponsor under separate cover.
BASIN UPPER SNAKE ABOVE PALISADES

DATE (YEAR, MONTH, DAY) 73, 6, 9

TOTAL BASIN AREA (KM^2) 17339.6

BASIN AREA MEASURED (SQ. KM) 12655.8

SNOW AREA (SQ. KM) 1738.8

(PERCENT OF BASIN) 13.7

GRID BOX LENGTH (KM) 2.5

UTM ZONE 12

UPPER LEFT CORNER:
EASTING (KM) 440
NORTING (KM) 4938

ZONE
12

FIGURE 24 JUNE 9, 1973, UPPER SNAKE BASIN, SNOW COVER DISTRIBUTION
IV MEASUREMENT TECHNIQUES

There were three phases of measurement in this research effort: off-line scene preparation; creation of binary snow maps through edited, single-band radiance thresholding; and measurement of the resultant binary product, either directly from the ESIAC or by an interface of ESIAC with a PDP-11 computer.

A Off-Line Scene Preparation

This activity included the study of basin characteristics, and the construction of contour elevation masks, basin outline masks, Universal Transverse Mercator (UTM) grids, and drainage pattern maps as overlays for the LANDSAT imagery.

1 Basin Characteristics

These basins, by virtue of disparate size and terrain, present certain characteristics bearing directly on the problem of snow measurement:

a North Santiam Basin

The North Santiam Basin, about 1,146 km2 in area, is located on the western slope of the Cascade Range. The basin has a mean elevation of approximately 3,865 ft MSL; virtually all of the basin lies above 2,000 ft, but only about 5% is above the 6,000 ft elevation, as shown in Figure 26.

By virtue of its location and exposure, the North Santiam Basin receives the full effect of winter storms that penetrate the area; the Coast Range to the west is not of sufficient elevation to modify
FIGURE 26 NORTH SANTIAM BASIN, SELECTED CONTOUR ELEVATIONS
the weather systems greatly. Snow measurements in this basin are directly
affected by the fact that, because of the relatively low mean elevation,
snow may melt rapidly after occurrence, particularly at the beginning of
the snow season. Since the basic mean slope is rather gentle, large
areas of snow melt can occur with only a 1,000-ft elevation difference.
Also because of its low mean elevation, much of the snow extends into the
forest cover; the basin area above tree line is relatively small. The
region is heavily forested except for the highest elevations of the Cascade
Range from Mt. Jefferson northwards. It is commercially logged, with the
result that the basin is studded with "clear-cuts" or areas devoid of
dense growth. Because snow can be seen in these clear-cuts, they provide
an important check on the extent of snow cover.

b Boise Basin

The area of the basin is approximately 7,254 km², with a
basal elevation of about 4,000 ft and a mean elevation of about 6,200 ft
MSL, as shown in Figure 27. The basin includes the Boise Mountains in the
western portion, with elevations extending to about 6,000 ft; the Soldier
mountains in the central and southern portions, with elevations to 8,000
ft; and the Sawtooth Range in the northeast portion, with elevations to
above 8,000 ft. The entire basin is of sufficient elevation that sig-
nificant areas of snow are acquired and retained through the winter and
spring. The principal permanent snow pack is located on the western
slopes and ridges of the Sawtooth Range, in the eastern portion of the
basin. The western and central portions of the basin are forested, but
vegetation becomes much less dense in the Sawtooth Range above 6,000 ft.

c Upper Snake Basin

This basin includes the drainage systems in Jackson Lake
and the Palisades Reservoir, as shown in Figure 28. The area of the
Surface

4000 ft or higher
Selected Contour Elevation

FIGURE 27 BOISE BASIN, SELECTED CONTOUR ELEVATIONS
5000 ft or higher

6000 ft or higher

FIGURE 27 BOISE BASIN, SELECTED CONTOUR ELEVATIONS (Continued)
FIGURE 27 BOISE BASIN, SELECTED CONTOUR ELEVATIONS (Concluded)
basin is approximately 13,340 km²; virtually all of it lies above 6,000 ft, with a mean elevation near 7,900 ft MSL, as shown in Figure 29. The basin mountain systems extend to over 10,000 ft in height. These include the Pitchstone Plateau in the far north; the Teton Range in the western upper half; the Gros Ventre Range in the eastern central portion; the Salt River Range and the Wyoming Range, which run north-south and parallel to each other, in the southern portions of the basin; and the Webster Range located on the far western edge of the southern portion. There are two broad valleys—Jackson Hole in the northern portion and Starr Valley in the south. The entire basin is of sufficient elevation that snow is present year-round on a substantial amount of the basin area above 9,000 or 10,000 ft. Forest cover ranges from medium to sparse.

2 Contour Elevation Masks

These masks were generated by tracing selected contours, using even 1,000s of ft, onto white drafting paper; then painting black that portion of the basin lying at elevations higher than the contour value (as shown in Figures 26, 27, and 29); and photographing the resulting mask as a negative transparency at the scale of the LANDSAT imagery. In this way the original black areas became clear regions, which, when the mask is overlaid to the LANDSAT imagery, permit that portion of the image that lies above the contour value to be viewed.

Although the number of contour masks needed is conditioned by altitude variations of the basin, there is no need to go above the altitude of the permanent snow line. Constructing these masks by hand can be tedious, but they are an integral and vital tool in assessing snow coverage. In instances of partial cloudiness, these masks can establish a snow line, and, assuming that contoured snow line is similar throughout the basin, sometimes an inferred estimate of snow coverage can be obtained.
7000 ft or higher

Selected Contour Elevation

FIGURE 29 UPPER SNAKE BASIN, SELECTED CONTOUR ELEVATIONS
FIGURE 29 UPPER SNAKE BASIN, SELECTED CONTOUR ELEVATIONS (Continued)
9000 ft or higher

FIGURE 29 UPPER SNAKE BASIN, SELECTED CONTOUR ELEVATIONS (Continued)
10000 ft or higher

FIGURE 29 UPPER SNAKE BASIN, SELECTED CONTOUR ELEVATIONS (Concluded)
for the total basin. Under these cloudy conditions this could not be accomplished using only radiance thresholding.

At the beginning of the project, digitized topographic maps were assumed available from the Defense Mapping Agency (DMA), and these would have greatly simplified the generation of the contour masks. Unfortunately, repeated attempts to obtain these products were unsuccessful. Currently, the USGS is preparing to edit, copy, and distribute the DMA tapes; hopefully, therefore, contour masks for future programs can be prepared largely by computer processing.

3 Basin Outline Masks

The basin outline masks were generated in the same manner as the elevation-contour masks: all of the region within the basin was blackened so that this area became clear in the photographic negative. The purpose of the basin outline is to overlay the LANDSAT imagery, providing the basin boundary within which the binary products will appear during radiance thresholding.

4 Grid Overlays

This task included constructing drainage patterns and UTM grids as overlays to the LANDSAT imagery, to aid in locating and overlaying the basin area on that imagery. The drainage pattern was taken from USGS maps at 1:250,000 scale, copying major rivers, lakes, and other features identifiable in the satellite imagery. This tracing was photographed, reduced to an appropriate scale (1:1,000,000), and developed as a positive transparency on stable film.

The UTM grid was also taken from the USGS maps and subdivided into 2.5 x 2.5 km grid squares. This, too, was photographed, reduced to appropriate scale, and developed as a positive transparency, usable as
an overlay. The UTM values are an aid in locating scenes or portions of scenes when the display resolution is larger than the TV screen.

B Radiometric Analysis by ESIAC

In the ESIAC, while input can be from tape, the normal data sources are positive film transparencies of LANDSAT imagery. The system scans all or selected portions of these images with a high quality television camera, and has provision for storing several hundred TV frames in precise register on an analog video disc memory. At the same time that the scenes are being viewed as images, the scene radiance data is continuously available in electrical form, ready to be measured or operated on. By scanning and storing the gray-scale calibration step tablets along with the images, an operator can then make radiometric measurements on the images with a relatively high degree of accuracy.

1 Edited Single-Band Thresholding

Clean, well-illuminated snow exhibits radiance that is always greater than the radiance (in the visible region) of other scene constituents found in mountain regions. Thus measurements for a significant portion of the complete snow scene can be extracted by the relatively simple process of recording only those scene elements (pixels) where the brightness or radiance exceeds some specified threshold. This process is illustrated in Figure 30.

A key difference between the SRI mask-making procedure and the reported work of others employing electronic or photographic "density slicing" is that the ESIAC allows the operator, while he is adjusting the threshold, to conveniently compare the thresholded mask continuously and critically with the original scene image in full tonal range and sometimes in color. Nonetheless, repeated tests with numerous mountain snow scenes
FIGURE 30 EXAMPLE OF CREATION OF BINARY SNOW MASK BY AMPLITUDE
THRESHOLDING OF THE ESIAC TV WAVEFORM

Display shown is a small section of the MSS-5 record of ERTS Image
1041-18253 of 2 September 1972. The Thunder Creek Drainage Basin
outline has been electronically superimposed. The analog video waveform
is for the single horizontal scan line shown intensified in the upper left
figure. Note that when the video waveform is above the threshold level
(bright portions of image) the binary signal is "high." The binary video
is logically combined with a stored binary basin outline map, and then
used to generate a binary map (mask) and to control a digital counter
which totals the areas-above-threshold within the basin.
and with operator/analysts of different levels of training have shown that a significant percentage of snow is missed by the "first cut" procedure described above. These omissions are owing to low radiance, primarily resulting from shadowing, patchiness, or tree cover.

The mask-making procedure employed for this project employed two additional steps to improve accuracy. First, a revisable "scratch-pad" memory was used to accumulate sections of the mask and permit localized corrections to be made by the operator/analyst. The mask area could be locally biased upward or downward. It would be biased upward (for example, to compensate for poor illumination on north-facing slopes) either by lowering the thresholding level or by actually "painting in" regions believed to be snow covered. Alternatively, the mask area could be locally biased downward (for example, to compensate for obvious image spreading owing to optical flare effects) either by raising the threshold level or by writing small patches of full black and essentially erasing white. In the second step, superimposed elevation contours were used to guide the analyst in making the thematic extractions.

The binary snow mask created by operator/analysts was confined within the basin boundary by performing a logical AND operation between the snow mask and a registered full-basin mask stored in one of the ESIAC memory tracks. The resulting binary product was then stored on another memory track for subsequent photography and digital readout as described in the next section.

Regularly the available imagery provides incomplete coverage of the basin under study. For example, the coverage reference map of Figure 1 shows that whenever the LANDSAT frame center falls west of its "nominal" location (because of cross tracks orbit drift or satellite roll error) the eastern extremities of the Upper Snake basin will not be imaged during the main pass. Only if cloud-free imagery taken from
the adjacent track on the previous day is available can the full snow pack be measured. Data voids owing to partial cloud cover present a similar problem. The linear extrapolation implied in the summary values of Table 6 is obviously only a first approximation. A much preferable procedure would be to substitute "best estimate" snow cover values for those regions where real data is missing. The "inventory by boxes" approach is directed toward the eventual implementation of such a procedure.

2 Measurement of Binary Product

The completed thematic map is composed of TRUE or FALSE (snow or no snow) pixels within the rectangular array approximately 600 cells wide by 500 cells high. The way is then paved for data readout to be accomplished by any method of digital data recording. The choice of method largely depends on the format and detail desired for effective data utilization. The simplest objective procedure is merely to total the number of TRUE pixels, obtaining a measure of the total snow area; the ESIAC is fitted with a counter to provide this value both visually and in a computer-compatible electrical code.

For this project, the mask area was also read out in increments corresponding to 2.5 x 2.5 km segments of ground area. The reasoning behind this particular choice was detailed in the project proposal; basically, it appears to provide a convenient compromise that, within the constraint of a reasonable data storage volume, permits objective comparisons with detailed photointerpretation results and also permits later machine sorting of the data—for example, according to elevation sectors.

For the scale at which the snow scenes were analyzed, each 2.5 x 2.5 km box included 625 TV pixels and each TV view included about 384 boxes, usually in an array 24 wide by 16 high. Thus, significant
data compression was achieved by recording for each box only a single
digital number representing the number of tenths of cover within that box.
An X was used to indicate a full box or 10/10s coverage.

The mechanics of the readout process evolved through several
steps during the course of this project, but all output products generated
were in the same display format. For the first basin analyzed, the North
Santiam, each snow mask was gated with a square "cursor intersection"
patch, 25 pixels wide by 25 pixels high, before being routed to the pixel
counter. The cursor box was then manually indexed across the mask, guided
by a superimposed 2.5 x 2.5 km grid. For each grid box location, the
counter reading was divided by 625, using a hand calculator, and the
resulting value for tenths of cover was manually logged onto a data sheet.

By the time of readout for masks of the Boise basin, the box
stepping procedure had been automated, and an interface had been estab­
lished between the ESIAC pixel counter and a nearby PDP-11 computer, so
that the computer could perform the time-consuming division and recording
processes. For this basin, which could be covered by only four TV views,
the final display printouts for the whole basin were assembled by manual
paste-ups of the computer printed records for the individual parts.

The last basin to be analyzed was the Upper Snake, which
required 11 TV views for full coverage. By this time, a computer program
had been written to assemble the component parts into one full-basin map
on the PDP-11 output line printer.

Thus, as of the end of the first phase of this project (June
30, 1975), all of the reduced (compartmentalized) snow data on Boise
Basin and the Upper Snake Basin for 1973 and 1974 resided in the disc
file of the PDP-11, and the ten masks for the North Santiam Basin which
were read out by hand, can be typed into the same format in a matter of
a very few hours when necessary.
C Measurement Example

Because of the need to make the display resolution of the ESIAC nearly matched to the resolution available from the LANDSAT imagery, the size of the basin may preclude its viewing in a single TV view. As described earlier, eleven TV views were required to cover the largest basin, Upper Snake Basin; four to cover the Boise Basin, and one to cover the smallest, North Santiam Basin; each TV view was considered a basic Part. Therefore, to obtain the total basin coverage of snow in the case of Boise Basin and the Upper Snake Basin it was necessary to obtain snow measurements for each TV view or basin Part and then combine them into a total value of basin snow coverage.* An example of the computer printout of the snow distribution (in tenths) for a single TV view is shown actual size in Figure 31. The "dots" in the horizontal and vertical axes are representative of 2.5 km distances. (The raised asterisks accent the 10-km divisions.)

The standard Pica spacing of most computer printers (ten characters per inch horizontally and six lines per inch vertically) results in a display with unequal scales in the two directions. With 2.5 x 2.5 km boxes, the horizontal scale turns out to be very nearly 1:1 million, but the vertical scale is stretched by the factor of 10/6. An example illustrating the total basin distribution of snow coverage after combining the computer printouts for various basin parts is given in Figure 32. A photographic montage of the binary product for the basin and day represented in Figure 32 is given in Figure 33.

*For reference, the actual computer printout for all of the component parts are being supplied to the sponsor in a separate, single-copy supplement to this report.
FIGURE 31 EXAMPLE OF COMPUTER PRINTOUT

<table>
<thead>
<tr>
<th>x</th>
<th>10 km</th>
<th>1377</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 km</td>
<td>18X4</td>
<td>157789XXX</td>
</tr>
<tr>
<td>24XX6</td>
<td>6XXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>2411263</td>
<td>4XX75XXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>4X7212</td>
<td>2XX98XXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>3X2</td>
<td>17XXXXXXXX9XX</td>
<td></td>
</tr>
<tr>
<td>4X11</td>
<td>28XXXXXXXX9XX9858</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>574XXX6X9138X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7XXX5446XXX</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>5XXX738XXX</td>
</tr>
<tr>
<td>3X4</td>
<td>2</td>
<td>218476X6176X9</td>
</tr>
<tr>
<td>1884</td>
<td>2</td>
<td>299612426998</td>
</tr>
<tr>
<td>673</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>671</td>
<td>3279X9837568958</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>1</td>
<td>7XX753713X8XX</td>
</tr>
<tr>
<td>681</td>
<td>1</td>
<td>5XX837647XXXX</td>
</tr>
</tbody>
</table>

x = \frac{10^4}{10^3} \text{'s COVERAGE}
FIGURE 32 EXAMPLE OF COMPUTER PRINTOUT SHOWING DISTRIBUTION OF SNOW
COVERAGE (IN TENTHS), BOISE BASIN, PARTS 1-4 COMBINED,
19 APRIL 1973

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
FIGURE 33 MONTAGE OF PHOTOGRAPHS OF BINARY PRODUCTS, BOISE BASIN, PARTS 1-4 COMBINED, APRIL 19, 1973

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
As each new satellite snow survey is completed, more information on the complex trade-offs between speed, accuracy, precision, and measurement costs is obtained. As yet, little can be added to what has already been published regarding the accuracy and precision of ESIAC methods. However, the procedure of recording snow cover data by subbasin increments, i.e., "boxes," should be of considerable help in assessing the nature and magnitude of errors in accuracy and precision. Research studies currently underway for Dr. Mark Meier, USGS, in the North Santiam basin are designed to address the problem.

Regarding measurement speed, by the end of this project an average analysis rate of one TV frame per fifteen minutes was being maintained rather consistently when the operator was already familiar with the general characteristics of the basin and the required basin maps contour overlays and reference imagery had previously been prepared and stored in the ESIAC memory. This figure includes time for:

- Registering the new image to a previously stored reference frame.
- A brief study of the scene.
- Creating and editing the mask.
- Bounding by the basin boundary map, and readout of the mask to the computer by 2.5 x 2.5 km boxes.

This processing rate of fifteen minutes per TV view will probably remain a realistic characteristic of the present operating procedure. If the analysis were performed from a display of reduced resolution, so that a basin the size of Boise basin could be covered with a single TV view instead of the four used in this study, a corresponding reduction in measurement time would, of course, result. However, until more is learned about the relation between accuracy and resolution, it appears wise to make the fullest possible use of the available LANDSAT resolution.

For the longer term, the best prospects for achieving operational inventories over large areas at tolerable cost undoubtedly will involve automatic or semi-automatic processing of the full-resolution data. What we learn now through ESIAC processing at near-full resolution will contribute directly to the development of efficient algorithms for more complete machine processing.
Appendix

ESIAC
ELECTRONIC SATELLITE IMAGE ANALYSIS CONSOLE

STANFORD RESEARCH INSTITUTE • Menlo Park, California 94025 • U.S.A.

65
Features

- Time-lapse display of multispectral imagery.
- Input from TV scan or digital tape.
- Magnetic disc storage of 600 TV frames.
- Quantitative measurements of displacements, areas, radiances, and multispectral band ratios for specified scene constituents.
- Binary thematic maps based on monoband or multispectral decisions.
- High interactivity (designed for hands-on use by scientific investigators).
- Tolerable operating cost.

Sample Applications

- Measurement of extent of snow cover.
- Evaluation of simultaneous visual and thermal IR imagery (meteorological, air pollution, and hydrologic uses).
- Cloud motion measurement.
- Enhancement of subtle geologic patterns by visual integration during time-lapse sequences.
- Rapid scaling, positioning, stretching, and contrast manipulation for overlaying imagery from different sources.
General Description

The ESIAC (Electronic Satellite Image Analysis Console) utilizes television scanning, storage, editing, and animation techniques to facilitate rapid qualitative and quantitative analysis of satellite imagery.

The principal feature is the ability to exploit the temporal dimension of repetitive satellite coverage, as provided by ERTS or SMS. This is typically accomplished via time-lapse presentations, but many of the functions required for time-lapse are equally useful in performing a wide variety of image comparisons, such as relating scenes to maps, to thematic extractions, and to other views of the same scene. Numbers in parentheses in the following description refer to callouts on Figure A-1, which shows the equipment configuration.

Normal input is via film transparencies that are scanned by a quality vidicon camera (4). Zoom optics and an extensive system of micropositioners permit scaling of the image and precise registration to scenes or sequences already stored in memory. Images are stored on an analog video disc memory, which has a capacity of 600 full TV frames, often handled in pairs to provide 300 bi-spectral frame pairs. Frames can be assessed sequentially in milliseconds, or randomly in seconds. A fast digital-to-analog interface and cable link to a nearby computer provide a means for loading the disc memory with raw or processed images derived from digital tape.

Storage and handling of the images as TV signals permits quantitative measurements to be made with useful precision at a small fraction of the time and cost required for a fully digital system of comparable versatility. Measurements and logic decisions can be made on radiance data pertaining to any region of the scene while it is being viewed as an image.

An array of small preview monitors (1) continuously displays the contents of the major data sources. The operator can use simple switching and mixing controls to merge positive or negative amounts of imagery from the data sources into a composite image on the main viewing screen (7). Alternatively, the operator can rapidly switch the display between any two data sources to provide flicker comparisons—a very powerful procedure for accentuating small differences. He can also cycle through stored image sequences to generate a time-lapse display and can adjust the animation timing to keep time with mental assimilation.

The color display (3) greatly magnifies the possibilities for data presentation. While complete flexibility is provided for programming signals to all three guns of the color CRT, in practice, it is often desirable to limit the possible combinations in order to avoid confusion.
NOTE: Numbers keyed to descriptions in text

FIGURE A-1 ESIAC EQUIPMENT CONFIGURATION
An arrangement that has been found applicable to a wide variety of multispectral applications has been to operate with a two-primary system. Visible band images are stored on the "A" side of the memory disc (tracks A0 through A300) and are displayed in Cyan (green plus blue). Concurrent infrared images are stored on the "B" side of the disc (tracks B0 through B300) and are displayed in red. Since the moving record/reproduce heads on both sides of the disc can be stepped simultaneously, bi-spectral time-lapse presentation is then possible.

Additional Functions

Overhead Camera (2)--An auxiliary vidicon camera fitted with zoom optics is suspended over the horizontal worksurface. While it can be used for hard copy data entry, its more usual function is to achieve temporary superposition of maps on the displayed image for orientation. Equally useful is its function in output recording. Line drawings sketched on a notebook page or other paper located on the desktop appear merged with the display image without paralax, and features too subtle to photograph well can be documented by hand drawing directly on the paper.

Auxiliary Monitor (5)--The 17-inch monochrome display can be connected in parallel with any of the other displays to facilitate photographic data taking. It is also often used to hold a reference picture for side-by-side comparison to other displays.

Track Ball (6)--The operator controls the position and size of the digitally-derived measuring cursor by means of this device. The cursor can be made to appear in several forms (cross, dot, box, box outline) and is used to measure linear displacements. It can also be used to specify individual pixels or rectangular pixel groups within the image for measurement, rerecording, or other special consideration. The cursor location can be intensified on any or all monitors to help in coordinating the displayed data.

Waveform Monitor (8)--A dual-channel oscilloscope is used to display video signal amplitude versus time for various level setting and supervisory needs. When triggered in time coincidence with the cursor, this display can function as a microdensitometer to provide a radiance profile along any specified scan line or portion thereof.
X-Y Plotter (9)—A pen-and-ink plotter is connected to the Waveform Monitor oscilloscope via a sampling interface unit. It permits large, sharp, hard copy records to be made of radiance profiles or any other repetitive waveform displayed on the oscilloscope. For some applications, the method provides an attractive alternative to photographing the CRO screen.

Color Space Display (10)—This display generates a two-dimensional scatter diagram depicting the distribution of radiances in any two spectral bands for the entire image or selected portions of it. In a typical application, vertical (y axis) displacements are caused to be proportional to infrared radiances at the same time that horizontal (x axis) displacements are made proportional to radiances in a visible band. For imagery such as ERTS, where reference gray scales are available on the film, a unique data entry procedure permits radiometric calibration tics to be added to define both axes and the 45° diagonal. The two-dimensional color coordinates of any pixel or small group of pixels (as specified by the cursor intersection in the main image display) can be read directly from this graphic presentation in units linearly correctable to absolute radiance values for the scene.

A summary impression of the spectral statistics for an entire image can be obtained by observing the brightness distribution over the diagram. Scenes containing significant areas of snow or clouds, for example, produce color maps showing appreciable energy distributed along the "neutral" diagonal. A heavily vegetated scene, on the other hand, will generate a scatter diagram with most of its energy above and to the left of the diagonal. Water bodies normally map into the lower right region. Regions of the color space display can be selectively intensified to show the spectral criteria associated with a thematic extraction map. Thus, the display is of immense help in adjusting the various ratioing and thresholding controls needed to generate such extractions [see also description of item (14)].

Digital Readouts (11)—Numerical displays are provided for cursor location, disc addresses, and area measurements (white pixel count within a thematic mask). Upon command, these readings can be recorded via tele-type and paper tape (12).

Scratchpad Memory (13)—One full frame of digital image storage is provided in addition to the storage provided on the magnetic video disc. This fully addressable memory stores an array of 520 lines × 400 elements
x one bit. Thus, it has no gray-scale capability, but is used principally for temporary storage and editing of line-type overlays and binary thematic masks. Masks created objectively by machine processing of the image data can be revised or "cleaned up" by the analyst-operator using light pen or cursor control. This memory is also useful in storing "keying" or control masks required when measurements are to be confined within some irregularly shaped area, a drainage basin for example.

Level Decision Circuits (14)—Four of these LDCs are provided. Each is a fast-one-bit analog-to-digital converter with a manually adjustable decision threshold. They are used to generate binary thematic masks in accordance with simple mathematical operations on the input video waveforms. The binary outputs can be combined logically to create a mask that is, for example, white or TRUE for all regions of the image where the visible band radiance is greater than X percent of full scale and the infrared radiance is between Y and Z percent of full scale. The LDCs can also be used to create masks based on ratios of responses from two different spectral bands.

Digital Tape Input (15)—An interface unit, and associated cabling, is provided to permit loading the disc memory with image data from digital tapes handled by a nearby PDP-11 computer facility. Loading of a complete TV image can be accomplished in a minimum of 17 seconds. While image manipulation during the data transfer is limited to simple scaling and x-y translation functions currently, any desired amount of digital preprocessing can be performed in separate operations prior to the transfer.
<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning standards</td>
<td>Broadcast TV; 525 lines/frame, 30 frames/second, 2:1 interface</td>
</tr>
<tr>
<td>Video disc storage capacity</td>
<td>16-in. magnetic disc, two movable heads, each covering 300 tracks (TV frames), plus one fixed head for synchronization</td>
</tr>
<tr>
<td>Display horizontal resolution</td>
<td>Approximately 350 picture elements per picture width, limited by the video disc memory bandwidth of 4 MHz</td>
</tr>
<tr>
<td>Cursor resolution</td>
<td>660 steps horizontally and 490 steps vertically (for unblanked portion of raster)</td>
</tr>
<tr>
<td>Gray scale capability</td>
<td>Determined chiefly by the signal-to-noise ratio obtainable from the video recorder (specified at 40 dB). With care, all ten steps of the gray scale on the standard TV test pattern can be resolved.</td>
</tr>
<tr>
<td>Picture slewing rate</td>
<td>Variable: 0 to 15 frames/second either direction</td>
</tr>
<tr>
<td>Data sources</td>
<td>Camera 1 (local)</td>
</tr>
<tr>
<td>Positive or negative amounts of any form</td>
<td>Camera 2 (remote)</td>
</tr>
<tr>
<td>can be mixed simultaneously on the main</td>
<td>Camera 3 (overhead)</td>
</tr>
<tr>
<td>monitor</td>
<td>A disc output</td>
</tr>
<tr>
<td></td>
<td>B disc output</td>
</tr>
<tr>
<td></td>
<td>Thematic mask</td>
</tr>
<tr>
<td></td>
<td>Scratchpad memory</td>
</tr>
<tr>
<td></td>
<td>Cursor</td>
</tr>
<tr>
<td></td>
<td>Rectangular grid</td>
</tr>
<tr>
<td>Positioning repeatability for source</td>
<td>Less than ±0.001 in.</td>
</tr>
<tr>
<td>transparencies (film)</td>
<td></td>
</tr>
<tr>
<td>Field coverage of camera 1</td>
<td>Continuous zoom over 10:1 range. Range is shiftable by means of various auxiliary lenses. Typical coverage range used for ERTS 70 mm transparencies: Max zoom -- 9.3 × 5.5 mm; Min zoom -- 72 × 54 mm; Illuminated light table -- 103 × 80 mm; Hard copy -- up to several feet.</td>
</tr>
<tr>
<td>Solid-state "scratchpad" memory capacity</td>
<td>520 TV lines at 400 bits/line</td>
</tr>
<tr>
<td>Digital computer interface</td>
<td>6400 bit Buffer Memory (8 bits/pixel, 800 pixels/TV line) Output Rate, 12.6 x 10^6 pixels/sec. Input Rate, limited by connected computer and/or tape. For PDP-11, maximum transfer rate is one TV line/disc revolution, 16.3 sec/frame</td>
</tr>
</tbody>
</table>