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NIMBUS-5 SOUNDER DATA PROCESSING SYSTEM
PART II: Results

W. L. Smith, H. M. Woolf, C. M. Hayden, W. C. Sher.

National Environmental Satellite Service
National Oceanic and Atmospheric Administration

Washington, D. C.

ABSTRACT.	 The Nimbus-5 spacecraft carries infrared and
microwave radiometers for sensing the temperature distribution
of the atmosphere.	 Methods have been developed for obtaining
temperature profiles from the combined set of infrared and

.	 microwave radiation measurements. 	 Part I of this report
described the algorithms used to determine (a) vertical tempera-
ture and water vapor profiles, (b) cloud height, fractional F	 `
coverage, and liquid water content, (c) surface temperature,
and (d) total outgoing longwave radiation flux.	 This second ?,
part of the report presents the various meteDrological results
obtained from the application of the Nimbus--i sounding data

T	 processing system during 1973 and 1974. a
i

f

1.0	 INTRODUCTION
s	 ^i

The Nimbus-5 spacecraft (launched December 11, 1972) carries several
radiometers for sensing the temperature, water vapor, and cloud distribu-
tion of the atmosphere.	 The Infrared Temperature Profile Radiometer
(ITPR), a second generation scanning infrared radiometer, observes the
temperature distribution of the earth's surface, the troposphere and
lower stratosphere with a spatial resolution of 15 n.mi. 	 The Selective
Chopper Radiometer (SCR), developed in the United kingdom, enables
temperature profiles to be obtained up to the stratopause. 	 The Nimbus-E
M1CxOWdve Spectrometer (NEMS), observes the vertical temperature distri=
bution through and below clouds.

Since the infrared and microwave radiometers on Nimbus-5 provide
I

highly complementary observations, one would expect to obtain better
temperature profile results using the combined set of infrared and
microwave observations than with either set individually.	 The National
Environmental Satellite Service (NESS), with the financial support

is
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of the National Aeronautics and Space Administration (NASA) and with the
technical cooperation of the NEMS and SCR experimenters at the Mass--
achusettes Institute of Technology and Oxford University, respectively,
has developed algorithms for obtaining temperature profiles on a
global basis using infrared and *Microwave radiances individually and
in combination as described in Part I of this report (Smith, et al.,
1974). This data processing system was developed to provide global
meteorological data sets to support the Global Atmospheric Research
Program (GARP) and other research programs. The essential charac-
teristics of this data processing system are reviewed and some of the
significant meteorological results obtained during 1973 and 1974 are
presented in this report.

2.0 MEASUREMENT CHARACTERISTICS OF THE NIMBUS-5 SOUNDERS

{

	

	 Figure 1 shows the ITPR, NEMS and SCR instruments aboard the Nimbus-5
spacecraft. The ITPR (Smith, et-al., 1972) measures radiation in seven
different spectral intervals. Two of the spectral intervals are in the
window regions at 3.7 ism and 11 pm for the purpose of detecting clouds

'f	 and for obtaining surface temperatures, even when a partial cloud cover
exists in the instrument's field--of--view. There are four atmospheric
temperature profiling channels in the 15-] gym CO2 band and a single water
vapor channel at 20 pm in the rotational water vapor absorption band.
The instT:ument has a linear spatial resolution of 15 n.mi. and spatially
scans in order to circumvent clouds and to obtain uniform earth coverage.

The NEMS instrument (Staelin, et al., 1972) is composed of five
channels, three of which are in the neighborhood of the 0.5-cm oxygen
absorption band and whose measurements are therefore useful for ob-
taining atmospheric temperature profiles. The instrument has relatively
low spatial resolution (100 n.mi.) and does not spatially scan. However,
these limitations are offset by its most important characteristic: the
radiances it senses are not attenuated significantly by clouds. Thus,
this instruments measurements will yield temperature profiles through
and below clouds. Also because it is possible to achieve much higher
spectral resolution at microwave frequencies, the weighting functions
are relatively sharp. This characteristic is particularly helpful in
resolving the tropospause region.

The SCR (Houghton and Smith, 1972) is composed of sixteen channels.
Four of its channels are in the most strongly absorbing portion of
the 15-pm GO2 band and employ GO2 gas cells to separate absorption line
center emissions from contributions from the line wings. When combined,
they provide unique measurements, with relatively narrow weighting
functions, of the temperature of the middle and upper stratosphere.

i	 .'
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Figure 2 illustrates the vertical weighting functions for various
spectral channels of the Selective Chopper Radiometer (SCR), Infrared
Temperature Profile Radiometer (ITPR), and the Nimbus-E Microwave
^Pectrometer (NEMS) instruments flown aboard the Nimbus--5 satellite.
The weighting function curves depict the layers Most vividly sensed
by the particular spectral channels. The SCR weighting functions
pertain to high spectral resolution measurements of radiation due to
the strong absorption lines at the center of the 15-Pm CO2 band. The
ITPR weighting functions are due to four spectral intervals of the 15-µm
CO2 band ranging from the center to the wing of the band. The NEMS
weighting functions are due to a complex of oxygen absorption lines
near 0.5 cm. Differences in the weighting function widths and peak values
are due to differences in the effective spectral resolutions of the
various instruments.

The earth fields of view for the ITPR, NEMS, and SCR are shown in
figure 3. As shown, the ITPR cluster samples within three different
grids, one to the right of the orbital track, one in the center, and one
to the left. NEMS and SCR samples only along the orbital track. The
instantaneous resolutions of the ITPR, NEMS and SCR are 35 km, 192 km,
and 43 km, respectively,

2.1 'The ITPR Experiment

For useful temperature profile determinations from infrared
radiation data, it is necessary to detect the existence of any cloud
contributions to the observed radiances and to correct for these contri-
butions before attempting to calculate the atmospheric temperature profile.
For this purpose, the ITPR experiment employs moderate spatial resolution
(15 n.mi.), spatial scanning, and channels for obtaining simultaneous
radiance observations in the 3.7-} gym and ll-}gym windows. Since clouds im-
pose 'the major obstacle to sounding using infrared measurements, it is
worthwhile to explain how the ITPR experiment attempts to alleviate this
deficiency.

Since molecular absorption is small in the 3.7-um and 11-um
window regions, these ITPR window channels sense only the radiation from
the earth's surface and any clouds within the instrument's field of view.
When sensing a uniform and opaque scene (e.g., the earth's surface) they
observe the same brightness temperature. However, when sensing a non-
uniform or non--opaque scene (e.g., broken clouds within the instrument's
field-of view) they observe different brightness temperatures. This is
because of the vastly different radiance dependence upon scene temperature
for the two different wavelengths, a phenomena described by Planck's law.
At 11 Pm the radiance is approximately proportional to the fifth power of
temperature, whereas at 3.7 pm the radiance is approximately proportional
to the fifteenth power of temperature. Consequently, when looking at a
scene composed of targets of different temperature, the 3.7-um radiance
will have a much larger relative contribution from the higher temperature
target than dill the 11-Um radiance. As a consequence the 3.7-pm channel

r
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senses a higher brightness temperature than the 11-um channel when
the instrument t s field of view is composed of a non-uniform temperature
scene.

Figure 4 shows black and white images created from the ITPR
brightness temperature data obtained in two different scan grids. Each
picture is generated from observations for the 140 fields of view with-
in the instrument's 200 n.mi. x 300 n.mi. scan grid area. The first
scan grid (figure 4a) was observed over the South Pacific Ocean. The
images of both the ll-um and 3.7-um window channel data clearly reveal
the clouds (colder light regions) within the scan grid. The cloud
features, especially the highest cloud bands, are even more clearly
depicted in the pictovial image of the brightness temperature difference
for the two window channels. The light regions correspond to the large
negative window channel differences observed in cloudy fields of view and
the dark regions to observations of the opaque ocean surface w,.ere the
window channel brightness temperature difference is near zero. The
second grid (figure 4b) was observed just two minutes later over the
Northeast coast of Australia. In this case both window channels sense
the cold (light) land surface in contrast to the slightly warmer (dark)
ocean surface. It is evident from the window channel difference image
that this feature is a surface coastline and not a cloud edge since the
window channel differences are small (indicated by the dark shade) and
their image is uncorrelated with either of the window channel images.
These examples illustrate how simultaneous measurements in the 3.7--pm
and ll-pm window channels detect the existence of cloud within the
instrument's field of view unambiguously from a temperature contrast
caused by a change in surface characteristics.

The images shown in figure 4 reveal the sensitivity of the
ITPR-observed radiances to mesoscale features of the surface and atmos-
phere. Channel 7 water vapor brightness temperature images reveal dry
(wet) vertical columns when the temperatures are high (low). Channels
3, 4, 5 and 6 depict variations in the temperature of atmospheric layers
centered near the 2 -, 6-, 12- and 20-km levels. Of particular interest
is the dry zone (dark shaded region) sensed by Channel 7 and shown in
figure 4b. This is apparently due to strong downward vertical motion
associated with an intense high pressure: system centered near 2405,
1560E. Temperature and water vapor determinations from this radiance
data revealed that in the region of sharpest gradient the water vapor
concentration tripled in magnitude in a distance of less than 50 miles.

Simultaneous 3.7-pm and 11-pm window observations by the ITPR
are used to specify surface temperature even when partial cloudiness
exists within the instrument's field of view. This is possible using
a set of geographically independent observations in which the radiance
variation from one element to another is due primarily to clouds rather
than surface temperature. Variations in cloud cover produce linear
variations of the radiance in one window channel with respect to the

y
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other and this characteristic is utilized to extrapolate the observa-
tions to their corresponding values for the cloudless sky condition.
Once the clear-column window radiance is defined, clear column radiance
values for the sounding channels are defined from their linear radiance
relations to the window channel radiances. This technique is demon-
strated graphically in figure 5 which shows a plot of 3.7-pm, 11-pm
and 13.4-pm radiance observations in two adjacent scan elements, both
of which possess some broken clouds but of different amounts. Also
shown is the Planck function which relates the 3.7-pm to the 11-pm
radiances for an opaque surface (i.e., a curve of equal 3.7 -pm and
11-um brightness temperature). Linear extrapolations of the observed
values to the zero cloud amount condition, which is the intersection
of the observation line with the Planck function curve, yields the window
radiances which would have been observed if no clouds had existed within
the instrument's field of view. The brightness temperature corresponding
to this radiance is the surface skin temperature (in this case 293.5 1K).
Once the clear column radiance for the window regions have been determined,
the clear column radiance for any sounding channel (e.g., the 13.4-pm
CO2 channel shown) can be specified. In the ITPR data processing, obser-
vations from groups of 16 geographically independent and contiguous ITPR
fields of view are used to define "clear-column" radiances. This enables
temperature profiles down to the earth's surface to be obtained under
most cloud conditions with a geographical resolution of about 75 n.mi.

The vertical temperature profiles are obtained from Nimbus-5
radiance data using the "Minimum Information" inverse solution of the
radiative transfer equation. The bias vector (guess profile)
used in this solution is obtained from a regression model whose coe-
fficients were derived from a historical sample of twelve-hundred
radiosonde-rocketsonde profiles and corresponding theoretically calculated
radiances. Since the routine data processing does not use contemporary
conventional data, determinations in remote areas of the world are of
the same quality as determinations in conventional data rich areas.
(The details of the processing system are presented in Part I of this
report.)

Shown in figure 6 is a vertical cross section of the atmosphere's
temperature distribution calculated from the ITPR radiance data taken
along the orbital -track of Nimbus--5. Also shown are the cloud heights
and amounts, total water content, and outgoing longwave flux which are
also deduced from the ITPR data . As demonstrated, the temperature
distribution down to the earth's surface could be specified from infrared
data even under relatively severe cloud conditions. The latitudinal
temperature distribution obtained is typical for this time of the year.
The tropical regions possess a relatively warm lower troposphere and cold
lower stratosphere. The polar regions have a moderately cold lower tro-
posphere with a nearly isothermal stratosphere. A region of relatively
warm air in the lower stratosphere exists in the temperate latitudes of
the southern hemisphere.
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Figure 7 shows how the ITPR data can be used to improve the
specification of the atmospheric temperature distribution in the
vicinity of intense weather systems. Shown are the ITPR derived 500-mb
temperatures as the Nimbus-5 passed over an intense low pressure system
over the Northern Pacific. (The symbol. M denotes missing data due to
extensive cloudiness above the 500-mb level.) It is worthy to note that
the spatially random error of the deduced 500--mb temperatures appears to
be of the order of a few tenths of a degree. As shown, the adjustments
required to fit the National Meteorological Center (NMC) operational
objective analysis to the sat—ellite data in the rrea where conventional
data are sparse are substantial, especially between 35 0 and 500N. These
adjustments result in improvements in the specification of the wind field
in this area which could lead to an improved weather forecast.

Figure 8 shows a similar example, but over Northern Japan where
there are numerous radiosonde observations which verify the ITPR measure-
ments. As can be seen, the ITPR-deduced temperatures as well as the
radiosonde temperatures reveal a much more intense temperature gradient
than the NMC objective analysis. In fact, the hand analysis of the ITPR
and radiosonde data implies maximum thermal wind speeds (which are pro-
portional to the horizontal temperature gradient) and hence jet core
winds which are twice the magnitude indicated by the operational analysis.
It is significant to note that these small-scale features were accurately
diagnosed from the ITPR radiance data even though more than half the
area was covered by cloud, most of which was above the 500-mb level.

2.2 The NEMS Experiment

The NEMS experiment was conducted to show that sounding through
clouds can be accomplished using microwave sensors. The absorption by
clouds and aerosols in the 4.5--cm oxygen band is known to be orders of
magnitude less than that in the infrared. Theoretical calculations show
that most ice clouds are completely transparent to 0.5-cm radiation and
liquid water clouds are only partially absorbent, the opacity depending
on the total liquid water content. Since liquid water clouds are usually
confined to the lower atmosphere, the effects of clouds on the microwave
soundings would be expected to be negligible, unlike the case with infrared
soundings.

Figure 9 shows several comparisons of soundings obtained from the
NEMS microwave radiances with those obtained from ITPR infrared observations
and by conventional radiosondes. These cases were selected be-
cause the cloudiness observed (by the ITPR) was extensive, probably of
the convective type, and penetrated to high levels, thereby being repre-
sentative of somewhat complex cloud conditions. Examples are shown in
figures 9a and 9b of the general case where the microwave and infrared
soundings both show good correspondence with the conventional radiosonde
observation even though extensive cloudiness penetrated into the upper
troposphere. The discrepancies between the satellite soundings and the



conventional radiosonde near the earth's surface are probably due to
the time differences between the two observations, the satellite observa-
tions being taken at midnight and the radiosonde observations being taken
four hours earlier. Figures 9c and 9d show similar cloud situations but
in these cases the infrared soundings are erroneous below cloud level
whereas the microwave soundings showed good agreement with the conven-
tional radiosonde observations. In fact, the errors incurred in the
calculation of the clear-column infrared radiances for ease(d)were
drastic enough to cause a ridiculous result from the highly error sensi-
tive algorithm for radiance to temperature inversion. In the data pro-
cessing such results are usually diagnosed to be erroneous from objective
and internal checks on temperature lapse rate and the disagreement of the
observed and calculated radiances. This, however, is not the case for
the more subtle but relatively large (about 3°C) bias error in the infrared
sounding shown in figure 9c.

Figure 10 shows the effect clouds associated with a tropical
storm have on the HEMS microwave radiances and the soundings obtained
from them. Shown at the top of this figure are the brightness temperatures
observed by the HEMS 0.5-cm (50 GHz) oxygen channels and ITPR 15-um CO2
channels as the Nimbus-5 satellite passed over an intense tropical storm
in the South Pacific at 9 0S and 154.50W. The maximum attenuation due to
the storm is only 2.5°C for the microwave oxygen radiances whereas it is
as much as 55°C for the infrared carbon dioxide radiances. As a result
reasonable temperature profiles could be obtained from microwave
radiances through the clouds down to the earth's surface, even at the
center of the storm. Shown in the bottom portion of figure 10 is the
difference, at each level, between the atmospheric temperatures obtained
within the storm and those obtained in the cloudless air at the storm's
boundary. Assuming that no actual variation in free-air temperature
exists, the largest error incurred by this worst case cloud condition is
only 3.5°C. (In practice the liquid water content of the cloud is also
estimated from the NEMS 22-and 31-GHz channel data so that the attenua-
tions by the cloud at 53.7 GHz can be accounted for in the temperature
profile solution.) This latter example indicates that microwave instru-
ments have almost complete cloud penetration capability under less
drastic cloud conditions.

2.3 The SCR Experiment

As stated earlier, the SCR experiment has four channels at the
center of the 15-um CO 2 band which employ gas cells in the optical systems,
each cell containing a different amount of CO2. The CO 2 in the gas cells
absorbs the radiation from the atmosphere near absorption line centers,
the degree of which depends upon the amount of CO2 in the cell. The upper
layers of the atmosphere are observed by extracting the radiation from
neap+ the line centers. This is done by differencing the incoming radia-
tion through a cell containing considerable CO2 with that coming through
a cell containing a smaller amount of CO 2 . By this means unique obser-
vations of the temperature of the middle and upper stratosphere are achieved.
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Figure 11 shows an example of temperature profiles obtained
(1) from SCR upper channel radiance data combined with ITPR radiance
data, (2) using only ITPR radiance data and (3) by a conventional
rocketsonde observation. As illustrated, the SCR upper channel radiance
data greatly improve the temperature profile specification in the middle
and upper stratosphere.

3.0 CHARACTERISTICS OF THE AMALGAMATED NIMBUS-5 SOUNDING DATA

The amalgamated sounding data processing technique is centered
around the ITPR measurements, with the NEMS and SCR providing supple-
mentary data. The NEMS data is used only where it overlaps with the
ITPR data along the orbital track. The SCR data is interpolated horizontally
using an objective analysis routine so it can be used with off--nadir ITPR
data grids.

Each ITPR data grid is divided into twelve 4 x 4 data subgrids,
with some overlapping. The processing method yields "clear-column"
radiances and a temperature profile from the ITPR data for each of the
subgrids which are spaced about 150 km apart. The twelve subgrid clear
column radiances are averaged over the grid and combined with the NEMS
and SCR data to yield mean temperature profiles from (1) ITPR + SCR
data, (2) NEMS + SCR data, and (3) ITPR + NEMS + SCR data.

Table I shows the results of a statistical analysis of ITPR and
NEMS brightness temperature data and radiosonde observations of free
air temperature in the troposphere and Lower stratosphere. As can be
seen from the individual channel brightness temperature correlations
with radiosonde free air temperature observations, the ITPR and NEMS
radiance channels are very complementary. The standard errors shown in
figure 12 indicate that significantly better profile results can be
achieved from the combined set of infrared and microwave measurements
than can be achieved by either set used individually. This appears to
be most dramatically evident in the tropopause region (i.e., the 100- to
300-mb region). This characteristic is illustrated in figure 13 which
shows an example comparison between soundings obtained from ITPR and
NEMS independently, and in combination, with a conventional radiosonde
observation.

Figure I N shows an analysis of the Southern Hemisphere 500-mb
temperature distribution obtained solely from the amalgamated Nimbus-5
radiance data over a 24-hour period on April 5, 1973. Available radio-
sonde observations are given to validate the Nimbus-5 data. The
agreement between the satellite--derived temperature distribution and the
radiosonde observations is generally within 2°C. The significance of
this result (and those for other levels not shown) is that it indicates
that the temperature distribution of the atmosphere can be diagnosed
accurately krom the proper satellite radiation data without the aid
of conventional observations.
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Table 1--Statistical relations between ITPR and NEMS brightness temperature measurements
and radiosonde air temperature observations (all latitudes, March-April, 1973).

Channel Individual correlation coefficients
Multiple	 Standardand Standard

correlations (r)	 error (Se) deviation

Press\
(mb)j

13.4 pm 53.7 GHz 14.0 um 54,9 GHz 14.5 um 56.8 GHz 15 um ofITPR NEMS ITPR 8 NEMS
level radiosonde

(K)r Se(K r Se(K) r Se(K)

1000 0.99 0.95 0.94 0.34 -0.47 -0.86 0.63 0.99 2.3 0.98 4.0 0.996 1.9 20.2

850 0.94 0.98 0.96 0.45 --0.55 --0.91 0.51 0.98 2.5 0.98 2.2 0.984 2.1 12,1

700 0.93 0.98 0.97 0.48 -0.54 -0.90 0.50 0.99 2.1 0.99 2.1 0.991 1.6 12.0

500 0.91 0.98 0.97 0.55 -0.52 --0.89 D.50 0.98 2.2 0.98 2.3 0.987 1.9 11.7

400 0.86 0.97 0.96 0.b2 -0.50 -0.87 0.47 0,98 2.3 0.97 2.5 0.983 2.0 10.9

300 0.71 0.86 0.87 0.79 -0.36 -0.78 0.42 0.95 2.5 0.96 2.3 0.965 2.1 7.9
LO

250 0.08 0.2B 0.32 0.77 -0.02 -0.27 0.02 0.81 3.8 0.88 3.1 0.908 2.7 6.4

200 -0.59 -0.46 -0.42 0.30 +0,39 +0.41 0.31 O.B3 3.3 0.85 3.1 0.903 2.6 6.0

150 -0.84 -0.85 -0.84 -0.22 +0.54 +0.85 0.45 0.89 2.8 0.91 2.5 0.925 2.3 6.0

100 -0.83 --0.91 --0,90 -0.42 +0.57 +0.93 0.43 0.95 2.8 0.94 3.0 0.967 2.3 8.9

70 --0.81 -0.90 --0.87 -0.44 +0.61 +0.93 0.38 0.95 2.5 0.94 2.6 0.957 2.3 7.8

50 -0.78 --0.83 --0.79 --0.27 +0.74 +0.93 0.26 0.93 2.0 0.93 2.0 0,.940 1.9 5.5

30 -0.15 --0.10 -0.04 +0.26 +0.57 +0.30 0.27 0.67 2.8 0,51 3.2 0.686 2..7 3.7
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4.0 AN INTERCOMPARISON OF THE METEOROLOGICAL PARAMETERS DERIVED
FROM NIMBUS-5 AND THOSE FROM RADIOSONDE AND NOAA-2 VTPR

VERTICAL TEMPERATURE CROSS SECTIONS.

Comparisons are made of vertical cross-sections of radiosonde,
Nimbus-5, and NOAA-2 Vertical Temperature Profile Radiometer (VTPR)
temperature profiles which were observed at near.,= the same time about
a line extending from 60

0
S to 50

0
N on April 6, 1973. Figure 15 shows

the distribution of the radiosonde, Nimbus-5, and NOAA-VTPR profile data
analyzed. The satellite profile observations selected were those which
were geographically closest to the radiosonde stations. Since the VTPR
was spatially scanning, better space coincidence with the radiosonde
observations wis achieved than with the suborbital track-restricted
Nimbus-5 data.	 However, the more uniform north--south distribution of
the Nimbus-5 data makes it more amenable to vertical cross-section analysis
than the radiosonde or VTPR data.

'i

Figure 16 shows the north-south distributions of cloudiness in
percentages reaching various pressure levels, total precipitable water
as derived from both the NFM S-microwave and the ITPR-infrared data,
the total outgoing longwave flux (langleys/day) as derived from the
Nimbus-5 radiance observations. Also shown is a pictorial image of
the cloud distribution obtained from the 4 n.mi. resolution scanning
Temperature Humidity Infrared Radiometer (THIR) instrument aboard
Nimbus-5. Note in the THIR cloud photograph that apparently there are
two jet streams (indicated by the cirrus streaks) crossing the Nimbus
orbital track, a sub-tropical jet near 25

0
N, and a merging polar front

jet near 35 0N. As will be shown, the existence of these jet streams
is verified by the thermal winds derived from both the satellite and
radiosonde data.

Before proceeding with a discussion of the results, it is impor-
tant to point out certain differences between the NOAA-2 and Nimbus-5
satellite temperature profile retrieval methods (for details of the
NOAA-2 algorithms see McMillin et al., 1973).

(1) The NOAA-2 VTPR retrieval method uses the 12-hour forecast
as an initial guess. The temperature profile obtained using the
'Minimum Information Solution" (Fleming and Smith, 1972) is the minimum
perturbation of the initial profile required to satisfy the outgoing
radiance observations. As a result, vertical structure in the 12-hour
forecast below the vertical resolution of the radiance observations
is retained in the satellite profile retrieval.

The Infrared Temperature Profile Radiometer (ITPR) an Nimbus-5 was
designed with an east-west scan capability. Owing to a scan mechanism
malfunction, however, the ITPR was restricted to the nadir-looking
position during this orbit.
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(2) As mentioned earlier, the Nimbus-5 (ITPR + NEMS + SCR)
retrieval system utilize, regression equations relating temperature to
radiances, generated from a climatological sample of radiosonde data,
to obtain the initial profile used in the minimum-information solution.
-onsequently, the Nimbus retrievals are independent of contemporary
radiosonde or forecast information.

(3) Figure 15 shows that the Nimbus-5, NOAA-VTPR f and RAOB data are
not entirely coincident geographically. The most important systematic
geographical discrepancy is north of 30 0N, where the Nimbus data are
located over China and the VTPR and radiosonde data are located over
Japan.

Figures 17, 18, and 11 are cross-sections of RAOB, Nimbus-5, and
VTPR temperatures. Figures 20 and 21 show the difference of Nimbus-5
and VTPR retrievals with respect to the radiosonde observations. In
the troposphere, differences with the radiosonde (RAOB) are generally
small except around 250N where +6°C (Nimbus-5) and near 25 0N where 10 °C (VTPR)
differences occur. Looking at figure 14, however, we see that the RAOB location
is seven degrees west of the Nimbus-5 and VTPR observations. In the
tropopause region, 300 to 100 mb, large differences of Nimbus-5 and
RAOB observations result from vertical resolution limitations of the
satellite sensor. The VTPR-RAOB differences are smaller because of
the good "first guess" used in the VTPR retrievals. This is verified
by the differences, shown in figure 22, between the 12-hour forecast
(used as the VTPR first guess) and the RAOB. Since the Nimbus--5
retrievals do not use such contemporary first guess information,
larger differences in the tropopause region are expected.

Note the vertical compensation of the errors. Probably the most
important feature illustrated in figures 20 and 21 is that the errors
(or differences) are spatially correlated so that one would expect
smaller differences between the spatial gradients than between the
point values.	 :. f

Figure 23 shows comparisons of the horizontal gradients, over three
degrees of latitude, at isobaric levels of temperatures derived from
the RAOB and Nimbus-5 soundings. There is very good correspondence be-
tween the two fields of temperature gradients. The differences are
probably within the noise level expected to exist between two RAOBS
spaced 3 0 of latitude apart and those due to the different locations
of the RAOB and the Nimbus-5 data.

Figure 24 shows comparisons of the geostrophic wind derived from
the Nimbus-5 and RAOB temperature cross-sections. The overall agree-
ment of the distaribution of wind associated with the jet streams is quite
good. This experimental result confirms the study based on theoretical compu-

-	 nations presented by Togstad and Horn (1974). The different location of the

r'

i	 ^^
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wind maximum is probably a result of the different longitudinal orien-
tation of the RAOB and Nimbus--5 data (see figure 15). The fact that the
Nimbus-5 pattern displays more character and stronger maximum winds is
probably due -to the higher density of Nimbus-5 soundings.

Figures 25 throuLrh 28 present various statistics obtained
from the entire 60 0S and 506N cross-sections. Part (a) of each figure
shows the standard deviations of the differences between the radiosonde profiles
and those obtained from the dynamical forecast (i.e., the initial profile
used in the VTPR solution), the VTPR soundings, and the Nimbus-5
soundings. Part (b) of each figure shows the correlation of the differ-
ences between the satellite soundings and the radiosonde observations
with the differences between the forecast soundings and the radiosonde
observations. Finally, part (c) shows the minimum standard deviation
expected between the radiosonde observations and an analysis constructed
by updating the forecast with the satellite soundings. This analysis
procedure, initially suggested by Bonner (1974), consists of prescribing
the analyzed temperature at each level as a linear combination of the
forecast temperature and the satellite-derived temperature. The weight-
ing coefficient of this linear equation is obtained through a minimiza-
tion procedure. Its numerical value is a function of the expected
standard errors of the forecast and the satellite retrieval, as well
as the expected correlation of forecast and satellite profile errors.
(In this analysis the radiosonde observations are taken as "truth"
in computing these statistically expected values.)

Since here the weighting coefficient has been defined in an optimum
way, using "the radiosonde truth" for its determination, the final
analysis result is bound to be more accurate than either the forecast
or satellite value. Although an optimum weighting coefficient cannot
be defined in practice (since "truth" is always unknown), this analysis
procedure is still a convenient way of illustrating the added infor-
mation content of the satellite soundings over that already contained
in the dynamical forecast.

In figure 25(a), we see that below the 500-mb level the Nimbus data
agree much better with the radiosonde data than do the VTPR observations.
This result is most likely due to the superior ability of the Nimbus-5
sounders to probe into, between, and through clouds. (The Nimbus-5 ITPR
has four times the area resolution of the NOAA-2 VTPR, and the Nimbus-5
NEMS microwave instrument is able to probe directly through clouds.) In
the tropopause region, however, the Nimbus-5 soundings are inferior to
the VTPR profiles. The superiority of the VTPR profiles is probably a
result of the incorporation of the 12-hour forecast in the solution.
Evidence of this is given in the correlation coefficient profiles shown in
part (b). We see that in the upper troposphere the error of the VTPR
retrieval is highly correlated with the error of the 12-hour forecast,
indicating that the forecast has a dramatic influence on the VTPR profile
result.
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It is interesting to note the high correlations of the error of
the forecast-independent Nimbus-5 retrievals and the error of the
forecast in the surface layer below 700 mb and in the 200- to 500-mb
region. This is apparently due to the fact that both the forecast
profiles and Nimbus-5 satellite profiles tend to smooth through fine
scale vertical structures such as surface and tropopause inversions.
Consequently, since both the forecast and satellite retrievals resolve
a similar vertical scale which is larger than that resolved by the
radiosonde, a high correlation results in regions where fine scale
structure exists. The fact that the VTPR error is slightly less
correlated than the Nimbus-5 error in the lower troposphere is pro-
bably a result of cloud noise.

Combining the satellite data with the 12-hour forecast using
optimum weights yields the analysis result shown in figure 25(c).
Note that the most dramatic influence of the satellite data is above
the 700-mb level for both the Nimbus--5 and VTPR retrieval cases. The
minor influence below 700 mb is a result of the relatively high error
correlations (the vertical scale correlation discussed above), and
the fact that the forecast profiles are relatively accurate.
Remember, however, that the forecast is probably unrepresentatively
accurate for this case since the cross-section area is within, and down-
stream of, a dense network of radiosonde data. Also, note
that the large differences between the Nimbus-5 and VTPR standard
deviations with radiosondes are greatly diminished when retrievals are
combined with the 12-hour forecast using optimum weights to produce the
analysis result. This result suggests that the differences between the
two satellite profiles shown in figure 25(a) mainly are_due to the difference
in the initial profile used in the retrieval process and not to the
information content of the radiance observations. The differences in
information content of the two satellite sounding systems are more
accurately reflected in 25(c).

Figures 26, 27, and 28 show similar statistical results for temp-
erature gradients, geopotential heights, and geostrophic winds. In
viewing the standard deviation portions (a) of each figure we note
that, except for the Nimbus-5 derived geopotential height, the
satellite results are generally inferior to the relatively accurate
12-hour forecast results. However, portion (c) of each figure

reveals that the satellite data, when added to the forecast profiles
to construct an analysis, leads to a significant reduction of the error
of the forecast even though that error is relatively small (in this case).
Of course one would expect to see an even more dramatic impact of the
satellite data in situations where the forecast error is much larger,
which is more likely to be the case in areas where radiosonde data
are sparse.

In summary, this limited case study has revealed the following
characteristics of the Nimbus-5 and VTPR temperature retrieval data:

r
x
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I	 (1) Much better agreement exists between temperature gradients
derived from Nimbus-5, VTPR, and radiosonde data than between the
absolute temperatures. (Compare figures 25 and 26.) This better agreement
indicates that the satellite retrievals possess large horizontal, scale bias
errors which could be caused by (a) biases in the initial d used
in the retrieval. process (i.e., statistical or dynamical forecast
data), (b) biases caused by aerosols or undetected large-scale
cloudiness, or (c) systematic errors in the weighting functions.

(2) The geostrophic wind distribution associated with intense
baroclinic phenomena such as the jet stream can be diagnosed accura-
tely from the satellite temperature retrieval data. The results shown
here indicate that the Nimbus-5 results may even be superior to
radiosonde results, suggesting that the thermal gradients obtained
from the closely spaced Nimbus data are more accurate than those
obtained from the more coarsely spaced radiosonde observations.

(3) Even in regions where the forecast is relatively accurate,
such as the case investigated here, the satellite retrieval data are
sufficiently independent to provide an analysis with an accuracy
superior to that of the forecast.

5.0 AN INTERCOMPARISON OF RESULTS OBTAINED WITH THE NIMBUS-5
-	 RETRIEVAL ALGORITHM VS REAL TIME REGRESSION

As mentioned in earlier chapters, a principal aim of the Nimbus 5
processing was to achieve accurate and useful vertical temperature
profiles which are independent of contemporary information obtained
from other sources (e.g., radiosonde data and/or analyses and forecasts
produced with other data). It was hypothesized that results obtained
with the Nimbus 5 method might show larger absolute discrepancies with
other data than results obtained with methods incorporating the other
data, but it was hoped that the independence of the Nimbus 5 tempera-
tures would compensate in terms of the utility of the data. To some
extent this hypothesis has been verified in the discussion of chapter 4
where the Nimbus 5 temperatures are compared with VTPR results which
use contemporary information. However, in those comparisons there are
problems in that different instruments are involved and that the measure-
ments are not colocated. In the following the hypothesis has been tested
by comparing results obtained with the Nimbus 5 method with results ob-
tained with a second method that differed only in replacing the climato-
logical statistical bias vector (cf. chapter 1) with one obtained with
real time statistics.

Data was taken from 1-5 April. 1973 when all instruments were func-
tioning normally. The dependent sample for the real time regression
statistics was obtained from temperature fields analyzed at NMC, inter-
polated in space and time to the locations of Nimbus soundings. Exactly

2This aim was never fully realized because radiosonde data had to be used
to tune -the transmission function. However, tuning was infrequently done
so the real data influence was not very contemporary.
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as in the climatological statistics a dependent sample of 400 was genera-
ted for 3 latitude zones. No attempt was made to insure that the data
were obtained from areas with good radiosonde coverage.

i
Verification of the temperatures obtained by the two retrieval

methods was done on a very carefully selected set of matched radiosonde
and Nimbus-5 soundings which occurred within 3 hours and 225 km of each
other. The Nimbus data were screened to exclude all cases with signi-
ficant cloud contamination or where the soundings indicated large spatial
temperature variation. The radiosonde data were screened to exclude all
obvious transmission errors and to include only cases where the radio-
sonde also reported 12 hours previously. The latter restriction assisted
in error checking and also permitted the radiosonde/satellite comparisons
to be segregated according to the observed variance of the atmosphere
(as was done in the Data Systems Test verification discussed in chapter 8).

Table 2 presents the bias difference and standard deviation between
the two Nimbus-derived and radiosonde temperature profiles. The encouaging
part of the table is that there is little difference (except in the 150-- to
100-mb layer) between the method using climatological statistics and that
using real time statistics. The real time statistics yield consistently
better, but only slightly better results. The disappointing featu,-e of
y,able 2 is that the bias errors associated with the climatological
statistics are so large. Part of the bias is likely associated with the
vertical resolution of the instruments since the variation of the bias
with altitude is very similar for both methods. The remainder of the bias,
however, would seem to represent the statisLicel resolution which is lost
in replacing real-time with climatological statistics. As pointed out
in earlier chapters the increased bias is probably of little consequence
in terms of the utility of the data if they are treated in a relative
rather than an absolute sense.

Table 2--Bias and standard deviation of Nimbus--derived mean
temperatures derived from climatological and real-

time statistics as compared to radiosonde observations

LAYER (mb)	 BIAS (K)	 STANDARD DEVIATION (K)
Climatological Peal time Climatological	 Real time

1000--850 -0.8 0.3 2.3 2.1
850-700 -0.1 0.3 2.3 2.2
700-500 1.3 0.2 1.8 1.6
500-400 2.2 0.6 1.8 1.6
400-300 2.1 0.7 1.6 1.5
300-250 1.1 1.0 2.8 2.4
250-200 -0.5 0.8 2.4 2.2
200-150 -2.0 -0.3 2.2 2.1
150-100 -1.4 -0.7 2.1 1.3

Figure 29 compares the results of the two retrieval methods as a
function of the observed variance of the atmosphere in layers approxi-
mating the resolution of the 8-layer forecast model soon to be operational
at NMC. (The uppermost layer is not shown because of the small sample

i
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). The observed variance has been determined by the 12 hours change
-teeed by the radiosonde reports, and the sample size is successively
_ed along the abscissas of the figure as cases with smaller 12 hour

temperature changes are excluded. The values plotted are the RMS 12
hour change as measured by the radiosondes (heavy dashed line), the RMS
difference between the same radiosondes and temperatures obtained with
climatological statistics (light-dashed line), and the RMS difference
between the radiosondes and temperatures obtained with real time statistics.
As an example of reading the figure consider the sample of cases for the
850-700 mb layer where the 12 hour change in temperatures is at least
2K. The figure shows that the sample size is 14, the RMS temperature
change is approximately 4.5, the RMS difference between radiosonde and
climatological statistics method is approximately 1.8K, and the RMS
difference between radiosonde and real--time statistics method is approxi-
mately 2.1K. In general the Nimbus 5 temperatures are a great improvement
over 12 hour persistence, and they become increasingly useful as the
atmospheric variance increases. Except for the 1000-850 mb and 300-200
mb layer^ the Nimbus error does not increase significantly with increasing
atmospheric variance. As seen earlier in Table 2 the real--time statistical
method gives better results in most cases, but the improvement is almost
totally attributable to the additional bias errors introduced with the
climatological statistics. Finally it is interesting to note that the
trend of the RMS error is similar for both retrieval methods as the
lines in the figure run nearly parallel. This effect would be caused by
one or a combination of: noise in the verification method (i.e., real
variance due to the inexact colocation of the radiosonde and Nimbus
soundings); error in the radiances common to both retrieval methods; a
lack of vertical resolution in the measurements; an error in the radiosonde
sounding.

-	 In summary there appears to be only one major difference between
temperatures obtained with real-time statistical method or climatological
statistical method. The difference is the size of the vertically dis-
tributed bias. Even with the bias both methods have been shown to pro-
duce temperatures much more accurate than 12-hour persistence values and
with the bias removed the accuracies are in the neighborhood of the
noise level of this type of verification. Since both methods demonstrate
a significant bias problem it is evident that care must be exercised in
using Nimbus temperature in conjunction with other data.

6.0 APPLICATION OF THE NIMBUS-5 SOUNDING DATA TO THE
STUDY OF TROPICAL CIRCULATION

This study was conducted to determine the value of satellite sounding
data, particularly that from the Nimbus-5, for diagnosing significant
meteorological characteristics of the tropical atmosphere to be studied
as part of the GARP Atlantic Tropical Experiment (GATE). Example results
were obtained for late July and August 1973 to demonstrate the capability
of the satellite infrared sounder for providing useful data for the
study of tropical circulation and energetics as well as to illustrate
some of their shortcomings.

In
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Figure 30 is a time cross-section of temperature (departure from
mean), water vapor, cloudiness, and outgoing flux as specified from ITPR
radiance data for the GATE B-scale area (5-15 0N, 21-31°1). The temperature,
water vapor, and flux values represent mean values for an entire ITPR
grid (a 200 x 300 n.mi. area) so that the variations shown can be attributed
to the passage of A-scale waves as well as large-scale convective processes
responsible for "cloud clusters". The temperature variations shown over
this brief period are well organized and therefore are probably associated
with A-scale wave phenomena. The greatest amplitude (about 1.5°C) of
the well organized temperature variations appears in the upper troposphere
near 350 mb. The lower stratospheric variations near 50 mb seem to have
a higher frequency (3-4 day period) although lower amplitude (about 1°C)
than the tropospheric variations. Also interesting is the tendency of a
local warming (by as much as 3°C) of the tropopause region (near 100 mb)
to occur after strong convection has taken place.

The total water vapor content of the atmosphere derived frr the
ITPR data varies by more than 100%, a range of 2.5 - 5.5 gm/cm . The
total outgoing longwave radiation flux varies by less than 25% and as
expected is inversely correlated with the total moisture and the degree
of cloudiness derived from ITPR radiances.

The large-scale temperature variations indicated by the ITPR data
are about five times as large as those estimated from the "statistical
compositing" of radiosonde data. (Statistical compositing techniques
are necessary because noise due to instrumental error and small scale
processes in a spot radiosonde observations is generally greater than
the maximum amplitude of the large-scale thermal wave). Consequently,
one might seriously question the satellite data. Unfortunately it is
difficult to verify the ITPR-derived level temperatures in the tropics
using radiosonde data. The RMS difference between the two sets of
observations is generally higher than the small standard deviation of
either estimate about the mean. The skill of the satellite data can be
demonstrated,however,by comparing layer average temperatures derived
from the ITPR data with layer averages of the radiosonde profiles. In
this case the radiosonde (mean) temperature is more representative of
the vertical resolution of the satellite--derived temperature and the
vertically random errors are minimized in the averaging process.

Figure 31 shows some comparison statistics for layers extending from
the surface (1000 mb). As may be seen, for the 1000-mb level the standard
deviation of the difference between the ITPR and radiosonde data is much
higher than the standard deviation of the radiosonde data about the
mean. However, for layers thicker than 200 mb the standard deviations
between the two observations are significantly less than the radiosonde
standard deviation about the mean, being less than 1°C for layers extending
to and beyond the 500-mb level. Also noteworthy is the large mean differ-
ence of more than 1°C at low levels which diminishes with altitude. This
apparent cold bias in the ITPR low level temperature derivations are be-
lieved to be caused by very small .tow level cumulus clouds which cannot be
resolved by the ITPR instrument.



t-agure oz snows similar results ror layers extenaing trom the bUU-mb
level.	 For example, at 500 mb the standard deviation between the ITPR
and radiosonde temperatures is 1.5°C whereas the variability about the
mean estimated from the radiosonde data is only 1.2°C.	 However for the
500-200-mb layer the standard deviation between the ITPR and radiosonde
data drops below 1 0C whereas the expected natural variability is
greater than 1.5°C.	 The mean difference between ITPR and radiosonde
data is near zero for the upper tropospheric layers.

Based upon the above statistics an attempt was made to verify the
time variations cif layer mean temperature indicated by the ITPR data
near Cape Verde (just north of the B-scale area) with the Cape Verde
radiosonde data.	 Figure 33 shows an encouraging result in that where
significant variations in the layer mean temperature occurred, the
IT?R and radiosonde variations correspond (e.g., the 3 0C drop between
the 23rd and 25th and the subsequent 4 0 C rise between the 25th and

- 29th of July).	 Thus, the verification of the ITPR data with respect
! to radiosonde data lends credibility to the amplitude of the tempera-
! tore variations diagnosed for the GATE B-scale area.

Analyses of various meteorological parameters derived from ITPR
radiance data have been constructed for the entire GATE A-scale area.
Figure 34 shows some example analyses of outgoing longwave flux for
3 days in late August.	 The longwave flux pattern is dominated by

. the cloud and moisture distribution and the surface temperature dis-
tributiontribution over North Africa near the Sahara Desert. 	 The lows follow #
the Inter Tropical Convergence Zone and moisture highs (as will be
shown later) except over Africa where the lour flux values and cloudiness
(as indicated from cloud pictures are shifted 5 degrees to the south
of the moisture maximum. 	 Highest values occur over the Sahara desert
and over the subtropical high pressure regions in the Northern and
Southern Hemispheres.

Figure 35 shows corresponding analyses of total precipitable
water derived from the ITPR radiance data.	 In general the moisture.
field is quite reasonable in that highest values correspond to regions
of strong convection along the ITCZ and the dry zones are confined to
the Sahara Desert and the subtropical anticyclones. 	 A major exception
occurs over Africa where the ITPR derived moisture maximum is displaced
5-7 degrees north of the region of the deepest convection cloudiness.

An analysis of the available surface and radiosonde data over
Africa reveals that the derived moisture maximum coincides with the
region of maximum surface wind convergence but that the total precipi-
table water estimates from the ITPR are erroneously high (by as much
as 100%).	 (It is well known that over Africa, the region of maximum
convection is shifted about 5 degrees south of the region of maxinu-n
surface wind convergence.	 This is due to the overrunning of the
Southwest Monsoon by hot dry Sahara air producing stable conditions
which do not allow deep convection to take place.) 	 On the other hand
the moisture estimates to the north and south of this region compare
well (generally within 20%) of available radiosonde data. 	 One possible
explanation for the erroneously high water vapor estimates along the
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relatively cloud-free ITCZ over Africa is the attenuation of the radi-
ance measurements by dust blown southward from the Sahara which might
tend to concentrate in the low level convergence zone. Although more
studies must be done to support this explanation, the erroneous result
certainly indicates that satellite profiles may be seriously compro-
mised by Sahara dust, which is known to reach altitudes as high as
10,000 feet.

Figure 36 shows a comparison of the sea-surface temperature for
July and August derived from the ITPR window channel radiance data
with climatology based on 60 years of ship data. In general there
is a close correspondance between the overall patterns; e.g., both
show relatively cold water along the African coast north of 15 0N, due
to the cold Canaries Current, and south of 50 N, due to the Benquela
Current. Relatively warm water stretches across the Atlantic in the
vicinity of the ITCZ (10 0N).

The most dramatic departure of the ITPR-derived surface tempera-
ture patterns from the climatological mean charts occurs off the north-
east coast of Brazil where the satellite data shows a pool of relatively
warm water. One can see an apparent southward shift of the warm pool
between the July and August analysis periods.

A close inspection of the sea surface temperature charts reveals
that the ITPR-derived values are generally lower than the climatology.
Figure 37 shows that the largest differences, which are as much as '4.5 °C,
are confined to the zone of maximum water temperature along the ITCZ.
Some differences are expected due to actual deviations from the clima-
tological mean and to physical differences between surface skin tempera-
ture and the water temperature sampled several meters below the surface
by commercial ships. However, these bias differences are excessive and
clearly indicate that the ITPR sea temperatures are erroneous in the
vicinity of the ITCZ. An analysis of high-resolution cloud picture
data indicates that this cold bias is caused by small radiometric
attenuations by low level "popcorn" trade cumulus which are not detected
as being within the ITPR field of view. This low-level cumulus tends
to be uniformly distributed across the Atlantic Ocean in the ITCZ.

Figure 38 shows a scatter diagram of available ship observations
in the North Atlantic and the analyzed ITPR-derived sea surface tempera-
tures for the GATE area. As can be seen, the mean difference is almost
3°C and the bias is a function of surface temperature_ This result
indicates that more work is needed to reduce the error of the satellite-
derived sea-surface temperatures to an acceptable level, particularly
in the Intertropical Convergence Zone. However the correlation coeffi-
cient of 0.7 and standard error of regression of 1.25°C are encouraging,
especially since the ship temperatures cannot be expected to be repre-
sentative of surface skin temperatures to within 1°C.
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Figure 39 shows the temperature distribution at the 850-mb level
as determined from the ITPR radiance data. As shown the space and time
variations of temperature in the lower troposphere are small (<2°C)
over the oceans. Over Africa, however, large horizontal gradients caused
by the different radiational characteristics of the land masses and
oceans are clearly depicted by the ITPR derivations. High surface temp-
eratures over the Sahara and low ocean surface temperatures to the west
cause sharp meridional gradients north east of the Cape Verde Islands.
The relatively cool air south of 10 1N along the west coast of Africa
is associated with the advection of cooler maritime air by the prevailing
southwesterly winds.

Figure 40 shows the derived temperature distribution for the
250-mb level. As :iiay be inferred, the gradients over Africa seen at
the 850-mb level diminish with altitude and then re-appear in the opposite
sense at the 250-mb level. For example, over the western Sahara it is
relatively cold at the 250-mb level.

Although the horizontal gradients are much smaller than at the
850-mb level, due to the lack of surface influences, the local tempera-
ture changes appear to be much greater reaching 4 0 C over the four day
period in many areas. At 850 mb the local changes rarely exceed 20C
over the four day period. This result probably reflects the influence
of large scale traveling waves which are known to be associated with
larger temperature variations in the upper troposphere than in the lower
troposphere. The strong and persistent meridional temperature gradient
across the Sahara desert at the 250-mb level is also noteworthy.

Finally figure 41 shows the deduced temperature distribution for
-	 GATE region at the 100-mb level. At 100 mb, the development and inten-

sification of warm and cold cells can be seen, as in the closing
off and intensification of neighboring warm and cold cells over South
America. On the 25th, *warm air is located just off the northwest coast
of South America and cold air is dominating the middle of South America
near 100S. By August 27th the warm and cold air have been cut-off and
displaced slightly eastward. The gradient between the two systems is
less than 4°C. By August 29th however the two systems have greatly
intensified with the gradient being larger than 6 0 C and the warm air
displaced about 5 degrees of latitude northward.

In summary, the results of this fairly limited analysis of the
Nimbus-5 ITPR data indicate that the small but organized temperature
fluctuations associated with the passage of A--scale waves and convec-
tion processes in the tropics can be detected with the Nimbus-5 ITPR
sounder. As a result, this data should prove to be a valuable tool
for interpolating the information to be derived from the more spatially
limited conventional surface radiosonde data to be collected during the
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GATE experiment. The moisture, cloud, and temperature .information
appears to be of sufficient quality for obtaining reasonable energy
flux divergence estimates.

There are two major shortcomings of the infrared derivations
revealed in this limited study:

(1) Erroneously high values of moisture result along the surface
wind convergence zone over Africa, due to radiance attenuations in the
20-pm water vapor channel possibly caused by dust adverted southward
from the Sahara Desert.

(2) Erroneously low sea-surface temperature estimates are obtained
along the Intertropical convergence zone due to attenuations caused
possibly by the uniformly distributed f0popcorn" trade cumulus clouds
which are well below the resolution of the ITPR in:atrument. More research
is needed to alleviate these difficulties.

7.0 APPLICATION OF THE NIMBUS-5 SOUNDING SYSTEM TO
SOUTHERN HEMISPHERE DATA

In this chapter results are presented for the Southern Hemisphere's
winter of 1973 which demonstrate the quality of the Nimbus--5 derived
quantities in conventional data-sparse areas and their usefulness for
specifying the state of the oceans and atmosphere of the Southern
Hemisphere.

The meteorological parameters derived on the synoptic scale from
Nimbus-5 satellite data are illustrated for the Southern Hemisphere in
the Equator to South Pole cross-section for August 11, 1973, shown in
figure 42. The derived parameters are temperature, water vapor, cloud
heights and amounts, and total outgoing longwave flux. The temperature
and water vapor distribution diagnosed from the Nimbus radiance measure-
ments is typical for this time of the year. The coldest air exists over
the Antarctic continent near the 30-mb level where the temperature is
below -90°C, The lower stratosphere is relatively warm at mid-latitudes.
The Southern Hemisphere polar front near 30 0S is clearly depicted in
both the temperature and water vapor distribution. As can be seen
there are sharp temperature gradients near the earth's surface and the
axis of the sloping isotherms shifts poleward with altitude. The total
precipitable water drops from 4 gm/cm in the warm air ahead of the
front to below 1 gm/cm2 in the cold air behind the polar front. There
are also sharp gradients of atmospheric temperature in the troposphere
anO an increase in convective cloudiness associated with an Antarctic
front near 570S.
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In order to assess the ability of the Nimbus-5 sounding system to
provide synoptic scale data useful for Southern Hemisphere weather fore-
casting, example analyses of the Nimbus data are presented for a large
geographical region surrounding Australia and New Zealand during an
active mid-winter period, August 1-11, 1973. The satellite derived
meteorological analyses depict weather developments in the conventional
data sparse Indian Ocean upwind from Australia and New Zealand. The
analyses of the satellite data in the conventional data- rich Australia
and New Zealand areas allow for verification of the satellite results.
It is important to reiterate the fact that the analyses were obtained
solely from the Nimbus data (i.e., no conventional data was used in
either the parameter deviations or in the analysis of them). Also,
since the satellite data is not synoptic, 24 hours of satellite data
centered about OOGMT of each day had to be used to construct the daily
analyses.

Figure 43 shows an example analyses on a distorted latitude-
longitude grid of sea-surface temperature for four days in August (2, 5,
8, and 11), spaced three days apart. As may be seen, the overall
features are stable in the manner one expects the sea surface temperature
to behave. Two exceptions to this stability occur on August 2 near 450S
and 80 0E and on August 11 just off the southwest coast of Australia. In
both cases the temperatures are believed to be erroneously low due to
radiance contamination by low clouds. (The temperatures of low clouds
do not differ from the surface temperature enough to be detected in the
cloud filtering scheme used to process the Nimbus data.) Some of the
more subtle variations revealed may be related to the passage of an
intense cold front during this period. The known persistent character-
istics of the sea-surface temperature distribution such as the relatively
cool water off the northwest coast of Australia due to the West Australian
current and the relatively warm water off the southeast coast of Australia
due to the East Australian currents are visible in the Nimbus derivations.

Figure 44 shows the 850-mb temperature distribution for thiL time
period. As may be seen, the low-level Nimbus temperature data reveal a
cold front developing in the South Indian Ocean, intensifying greatly
as it moves across the southwest coast of Australia and then dissipates
as it moves off the East Coast of the Continent. Local temperature
variations of 15 0C occurred at the 850-mb level along the southern coast
of Australia with t^,e passage of this cold front.

Figure 45 shows the Nimbus satellite-derived temperature field for
the 500-mb level. Also shown are available 300-mb rawinsonde wind
observations to demonstrate geostrophic correspondence between the de-
rived temperature field and the circulation changes with this frontal
passage. (It is reemphasized that the Nimbus analyses were obtained
completely independent of conventional kind or temperature da"a.' As

f
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3	 shown the agreement between the satellite derived temperature field

and the rawindsonde wind observations is amazingly good as far north
as 100S. (This is despite the fact that the satellite analyses were
derived from data obtained over the 24--hour time interval centered
about OOZ of each day.) Note the apparent development of another
front off the southwest coast of Australia on the last day, August 11.
There is no evidence of this development in the available wind observa-
tions on the west coast.

Figure 46 shows the thermal patterns at the 100-mb level. At this
lower stratospheric level the variations in temperature are inversely
correlated with those shown to be taking place in the troposphere.

The formation, intensification, movement, and decay of this frontal
system is even more dramatically displayed in the total precipitable
water vapor patterns derived from the Nimbus radiance data. As shown
in figure 47 a moisture tongue is just beginning to penetrate southeast-
ward from the northwest coast on August 2. By August 5 the moisture
tongue has penetrated along the front down to the southeast coast of
the Continent. Sharp moisture gradients exist due to dry air over the
northwest desert, very moist warm air just ahead of the front,
and extremely dry cold air behind the .front. Note that the moisture
tongue tends to be wiped out in the northern part of Australia as the
front crosses the desert. On August 11, we see the southeast penetra-
tion of another moisture tongue associated with the development of
another frontal system off the west coast of the Continent.

The satellite-derived temperatures have been compared with isotherm
analyses of radiosonde observations in the conventional data rich areas.
Figure 48 shows the results of a statistical comparison of the mean temp-
eratures for layers defined by the standard atmospheric pressure levels.

As may be seen, the standard deviation of the satellite-derived
temperatures and the radiosonde observed temperatures are nearly iden-
tical except at the earth's surface and in the tropopause region. In
both regions the variability of the satellite temperatures is less than
the radiosonde-observed temperature variability. This feature is pro-
bably a result of the lower vertical resolution of the satellite temp-
erature profiles. The P14S difference between the satellite and the
analyzed radiosonde observations is less than 2 0 C except in the tropo-
pause region where the difference approaches -3°C. The mean difference
is near zero, except in the lower stratosphere where the mean difference
is close to 1°C.

Finally, figure 49 shows a comparison of the geopotential height
profiles derived from the satellite and radiosonde temperature data. As
may be seen, there is excellent agreement between the relative geopoten-
tial height profiles, their RMS differences being less than 50 meters

r..
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throughout the trrr.osphere and their maximum P34S difference being about
65 meters at the 100-mb level. This result suggests that good initiali-
zations of the mass field for dynamical weather prediction models for
the southern hemisphere can be made from the Nimbus satellite temperature
profile data.

8.0 AN INTERCOMPARISON OF RADIOSONDE AND NIMBUS-5
DERIVED CROSS-SECTIONS DURING THE AMTEX

An Air Mass Transformation Ex periment (AMTEX) was conducted over
the Fast China sea near Okinawa, Japan from February 14 to 26, 1974
(CARP, 1973). The experiment was conducted to increase our understanding
of the air-sea interaction which occurs during the modification of the
cold polar continental air mass when it flows over the warm ocean.

During the AMTEX observational period, four orbits of the Nimbus-5
satellite were over the AMTEX area. Orbital number and the synoptic
situation during the orbital transverses are given in Table 3. Figure 50
shows the Nimbus-5 orbital tracks and the locations of nearby radiosonde
stations. Note that the orbits of February 16, 18, and 23 were dscending
at night whereas the orbit of February 27 was ascending over the AMTEX
area during the daytime.

The purpose of this study is to compare meteorological parameters
derived from the Nimbus satellite radiance measurements with those de-
rived from the conventional radiosondes in order to assess the usefulness
of satellite observations for diagnosing the intense weather situation
under study during AMTEX.

`	 Table 3--Orbit number and synoptic situation

Date	 Orbit no.	 Time (U.T.)	 Synoptic situation

	2-16-74	 5804	 1509-1517	 Weak monsoon and warm weather. Cold
front passed through the AMTEX area at
1200Z.

	

2-18-74	 5830	 1525-1534	 Weak monsoon, migratory anticyclone
centered over Japan Sea.

	

2-23-74	 5897	 1512-1521	 Weak monsoon, intense cold front passed
through AMTEX area between 0600Z and
1200Z. However, a strong anticyclone
built up over Siberia ready to sweep
over China.

2-27-74 5944 0242-0251 After polar air outbreak, open and
closed cell cumulus convection was
observed in the AMTEX area.

Y`[`[j
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The total water vapor contents derived over the Kuroshio area are
given in Table 4. The total water vapor contents derived from the micro-
wave sounder and from the infrared temperature profile radiometer are
in good agreement with those obtained from the radiosondes. The NEMS
total water vapor contents are larger generally than those of the ITPR
because the microwave energy penetrates clouds and the water vapor con-
tent of clouds is usually larger than the surrounding clear air sampled
by the infrared observations. Note that the total water vapor contents
in the first 3 days (February 16, 18, and 23) are 1 to 2 times higher
than the day after the cold polar air outbreak (February 27).

Table 4--Total water vapor content (g/cm 2 ) over the Kuroshio region

Date	 Synoptic condition	 NEMS	 ITPR	 RAOB

2-16-74 Quiet period 2.9 2.6 2.8

2-18-74 Quiet period 2.6 1.9 2.3

2-23-74 Prior to polar air outbreak 3.5 2.2 2.9

2-27-74 After polar air outbreak 	 1.3	 1.4	 1.0

Figures 51 through 54 show the distribution of atmospheric water vapor
content, radiative flux of outgoing longwave radiation, and the cloud cover
as derived from the Nimbus-5 radiance measurements. Also shown is a
pictorial ,image of the cloud distribution obtained from the four-mile
resolution scanning THIR instrument aboard .imbus-5.

As shown in figures 51 through 54, the flux of outgoing longwave
radiation derived from the ITPR radiance data has a large variation because of
non-uniform temperature of the underlying surface and the varying
height and amount of clouds. The low radiation fluxes are associated
with high dense clouds or low surface temperature in the north. On
February 16, 1974 there were three areas of low outgoing radiation flux located
near 25N, 35N, and 50N. The positions of these radiation minimums agree
with the frontal cloud systems indicated on the NMC operational surface
synoptic map (not shown) and also on THIR cloud image.

The lowest flux -- 360 langley/day -- was observed in the RATEX area
on February 23, just before the outbreak of the cold polar air mass.
This low flux was due to the cloudiness associated with the intense
cold front extending from an active cyclone Located to the southeast
of Japan. The maximum outgoing radiation flux of 600 langley/day
observed in the AMTEX area occurred under clear sky conditions on February 16
and 18.

i
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Figures 16 through !)P show the meridional temperature cross sections,
plotted from 20N to 50N latitude and from 1000 mb to 10 mb. There are
three parts in each figure. 	 Part (A) shows the radiosonde temperature
observations; part (B) the original temperatures derived from

Nimbus-5 (ITPR+NEMS+SCR) radiation measurements; and part (C) the
Nimbus-5 temperatures after correcting for systematic differences between
the Nimbus and radiosonde level temperatures (i.e., the level mean error
is removed).

The pattern of the Nimbus-5 temperatures follows closely those of
the radiosondes. These is generally better correspondence between the
two fields of temperature gradients than their absolute values. In fact,
by removing the level mean difference between the satellite and radio-
sonde temperatures enables good agreement to be obtained between the
satellite and the radiosonde cross-sections.

Perhaps the best way of determining how well the thermal field
derived from the Nimbus data describes the state of the atmosphere is
by comparing the geostrophic wind distribuiton obtained from it with
the geostrophic wind obtained from the radiosonde temperature profiles
and with the true wind distribuiton also observed by the rawiosonde.
(The geostrophic wind computations were performed assuming zero wind
velocity at the 1000-mb level.)

Figures `, Q through F, ? show a comparison of geostrophic winds
derived from the Nimbus-5 temperatures, the radiosonde temperatures,
and the radiosonde winds. (For locations of Nimbus-5 and radiosonde
temperatures see figures 5') through 5R .) The relatively good depiction
of the wind field associated with the jet stream from •che satellite data

"

	

	 again confirms the study based on theoretical computations presented by Togstad
and Horn (1974). The latitude and altitude locations of the jet core
(wind maximum) from the satellite-derived temperature profiles appear
to be more accurate than the location indicated by the radiosonde tempera-
ture profiles on three of the four days studied, despite a three hour
time difference between the satellite and radiosonde observations. The
best agreement is on February 18 for which the Nimbus orbital track is
closest to the radiosonde stations (figure 50 ). Table 5 below summarizes
the major jet stream features given in figures 5'-t,2.

Table 5--Major features of the observed (true), radiosonde-derived
(geostrophic) and satellite-dezAved (geostrophic) zonal

wind distributions

Altitude of max. wind (mb) Latitude of max. wind, ( O N) Intensity (m/s)
obs sat. RAOB obs sat. RAOB obs sat. RAOB

?	 1F-'14 275 250 175 33 34 31 70 90 90
2-18-74 225 225 175 30 32 35 70 80 70
2-23-74 250 250 250 38 34 41 60 80 80
2-27--74 250 250 250 31 31 33 80 90 80

.: N
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The reason for the higher accuracy of the satellite data for geo-
graphically locating the jet core is probably a result of the relatively high
density of Nimbus-5 soundings as compared to the coarsely spaced radiosondes
along the suborbital track. The reason for somewhat better altitude
positioning of the jet core is not entirely clear. The satellite-
derived vertical profiles generally smooth the sharp discontinuities
of atmospheric temperature observed by the radiosonde near the tropo-
pause where the jet core is found. Possibly the smoothing helps
alleviate error amplification due to the finite difference approximation
used in the numerical computation of the geostrophic wind. In any case,
the results shown in figures 59 through 62 certainly indicate that the
tropopause smoothing inherent in the satellite profiles has no adverse
effect for defining the location of the jet core.

ft is interesting to note that for February 16 and 23 (figures 59
and 61) both the satellite and radiosonde derived geostrophic winds
show a double maximum indicating the existence of two jet cores. This
result is not verified by the actual zonal wind distribution. However
the existence of two cirrus cloud streaks on February 23 is evident in
the THIR photograph and the ITPR deduced cloudiness (figure 53 ) at the
locations indicated in figure 61B• The cores of maximum wind are to
the north of the extensive cirrus bands near 30 1 and 35°N along the
satellite track. Thus the cirrus cloud streaks and the thermal winds
indicate two cores of maximum wind instead of a single one as deduced
from the rawindsonde data. The inability to diagnose the two jet cores
from the rawindsonde data may be due to the horizontal spacing
of the observations (see figures 50 and 57A).

In summary the comparison of meteorological parameters derived from
the Nimbus-5 radiance measurements with those of the radiosondes for 4
days during AMTEX indicate the following:

(1) The total water vapor contents derived from the Nimbus-5
infrared temperature profile radiometer and the microwave spectrometer
are in fair agreement with each other and with measurements by radio-
sondes. All observations show that during the cold polar air outbreak,
the total water vapor content over the Kuroshio region was close to
1 g/cm2 . Prior to the cold air outbreak, the total water vapor content
was about 3 g/cm2 in the same region.

(2) The regions of low outgoing longwave radiative flux correspond
well with the areas of deepest convection indicated on cloud photographs.

(3) There is good agreement between the vertical cross-sections
of temperatures derived from the satellite and from the radiosonde
observations.

.:A
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(4) The geostrophic zonal wind distribution associated with the
jet stream can be accurately diagnosed from the satellite temperature
retrieval data. (The Nimbus-5 geostrophic zonal wind appears to have
somewhat better correspondence with the actual zonal wind distribution
than that derived from radiosonde temperature data possibly because of
the observation density.) The inherent smoothing of the vertical tempera-
ture which occurs in the tropopause region does not seem to degrade the
satellite-inferred geostrophic winds near the jet core.

9.0 EVALUATION OF THE NIMBUS-5 SOUNDING SYSTEM DURING THE
MAY (1974) CARP DATA SYSTEMS TEST (DST)

Soundings from the Nimbus-5 satellite were processed i7. real time
at the Goddard Institute for Space Studies (GISS) and tr,__ ­!tted to
the National Meteorological Center to be included in the global numerical
analysis-forecast operation conducted during the May test.

For the global experiment, both the yield and information content
.'; of the satellite soundings are important. Table 6 shows an example of

the yield of soundings obtained completely down to the earth's surface
from Nimbus-5 for a typical day during the 15--day test.

Table 6--Example yield statistics (May 9, 1974)

Latitude Total number Percentage of soundings Percentage of clear
Zone of soundings for which clear column columil radiances yielding

possible radiances could be acceptable temperature
derived 1 profiles 2

60O N--90O N 134 77 98

30ON-60ON 191 83 96

30O N-300 S 370 90 98

30OS--600 S 186 90 99

60OS-900 S 	 184	 63	 73

TOTAL	 1065	 82	 93

1"assed quality control tests in the clear radiance algorithm.

2Passed quality control tests in the temperature inversion algorithm.
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Since soundings obtained in overcast cloud situations were not
believed to be reliable, only soundings derived for situations where
ITPR clear column radiances could be obtained were transmitted to
NMC for archival. Since the ITPR was not spatially scanning during
May due to a malfunction of its scan system, the total yield of
soundings was severely limited during this test. As shown in Table
1 the percentage of cases in which clear-column radiances were ob-
tained decreased from 90 %4 in tropical regions to 77% and 63% in the
north and south polar regions, respectively. It is, however, encourag-
ing to note, from the last column of the table, that most of the
temperature profiles derived from the clear-column radiance soundings
were judged to be good on the basis of internal checks in the retrieval
program. An exception occurs in the Antarctic region where the percen-
tage of good soundings is low, presumably due to problems associated
with the height of the continent and with the difficulty of detecting
cloud contamination in the inverted or isothermal lower polar atmos-
phere. These yield statistics indicate that special attention should
be given to improving our retrieval techniques for the polar regions.

It is important to note that because the HIRS-infrared and SCAMS-
microwave sounders on Nimbus-F(scheduled for launch June 12, 1975) both spatially
scan, the retrieval yields are expected to improve markedly for the 1975 DST.

The quality and information content of the temperature profile
determinations from Nimbus during the DST is investiga"-ed here in two
ways. First statistics comparing satellite-derived temperature and
thickness values to radiosonde measurements are presented for a sample
taken during the second week of the DST. Second, a cross-section of
Nimbus-derived temperature profiles through a weather system is com-
pared to a cross-section of contemporary radiosonde profiles near the
satellite orbit. For this case thermal wind distribution_ is computed to
determine how well the Nimbus temperature profiles defined the atmospheric
circulation associated with the frontal condition.

Table 7 presents the bias difference and standard deviation between
the Nimbus-derived and radiosonde temperature profiles. The sample
consists of 90 sets of profiles in which the satellite and radiosonde
observations were made within 3 hours and 225 km of each other. The
bias difference shown in Table 7 is significant, especially at low
levels. The generally negative bias indicates a calibration uncer-
tainty of Nimbus sensors. The increase in the bias with decreasing
pressure is most likely caused by cloud contamination which is a
serious problem with the ITPR instrument restricted to the non-scanning
nadir mode due to a prior malfunction of its scanning mechanism.
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Table 7--Bias and standard deviation of Nimbus-derived mean
temperatures bounded by constant- pressure levels
with respect to radiosonde observations

LAYER (mb)	 BIAS ( 00 	 STANDARD DEVIATION (00

1000-850	 -2.3	 8.0

850-700 -1.3 2.5

700--500 -0.9 2.5

500-400 -0.1 2.6

400-300 --0.5 2.8

300-250 -0.9 3.0

250-200 -1.0 2.6

200--150 --o.4 2.2

150--100	 -0.1	 1.9

The standard deviations are also larger than should be achievable
with a satellite sounding system. It must be remembered, however, that
the Nimbus -5 retrievals are obtained without the aid of contemporary
radiosonde or forecast information so that the deviations are larger
than would be achieved if contemporary data were used in the profile
estimations (e.g., the way conventional data is used by NESS and GISS
in the VTFR data reduction).

Figure 63 is presented in order to more clearly assess the infor-
mation content of the Nimbus retrievals. Shown is the RMS
deviation of the Nimbus-derived thickness of various pressure layers with
respect to radiosonde measurements and the RMS deviation of the persis-
tence forecast with respect to the radiosonde measurement. (The bias
temperature error given in Table 7 was removed before computing the
thickness values from the Nimbus retrievals.) The RMS errors are plotted
as a function of the magnitude of the 12 -hour persistence forecast error.
(The previous 12-hour old radiosonde is used as the forecast.) The
ordinate represents the RMS error whereas the abcissa represents a crop-
ping of the sample into categories such that the forecast error is greater
than the abcissa value. The number of cases within each sample is shown
above the abcissa value. As may be seen from this figure, when the sample
includes all cases (Forecast Error > 0), the RMS error of the persistence
forecast thickness values is less than the RMS error of the Nimbus derived
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values. This is not surprising considering the fact that RMS error
of the persistence forecast (or the 12-hour variability) of the mean
temperature of these layers is close to 1 110. From this statistic
alone one might be tempted to draw the false conclusion that the
Nimbus data is inferior to the 12-hour persistence forecast and there-
fore provides no information to the analysis forecast operation.
However we see that for all samples in which the forecast error of layer
mean temperature exceeds a value of 1°C (5, 15, 15, and 32 meters for
the four pressure layers, respectively) the RMS error of the Nimbus
thickness values are significantly less than RMS error of the forecast.
It is encouraging to note that the Nimbus error does not increase as
the atmospheric variability (persistence forecast error) increases.
Consequently, the Nimbus retrievals should be quite effective in con-
trolling errors in forecasts conducted with the May DST data sets.

Statistics, however defined, cannot tell the whole story of the
value of the Nimbus data. It is frequently more informative to con-
sider the synoptic situation and the capacity of the satellite deriva-
tions to define the salient meteorological features. To this end we
have selected an orbit of 24 May which passed over a significant weather
feature in the vicinity of the dense radiosonde coverage of western
Europe. Figure t, L; presents an analysis (based on the radiosonde data)
of the thermal field at 500 mb together with some of the reported
radiosonde data at that level. The satellite track with the locations
of the temperature retrievals is also shown. The synoptic situation
has a warm ridge pushing north over Iceland with a closed cold low
centered over France. A strong thermal gradient extends over Spain
and the northern Mediterranean Sea. The satellite overpass (north--
bound and within l hour of synoptic time) passes only slightly to the
west of the low center and directly through the ridge over Iceland.
From the radiosonde and satellite data vertical cross section analysis
have bsen constructed and compared. The radiosonde stations numbered
in figure r,Li are those used to construct the radiosonde cross sections.
TTheve more than one station has the same number the data was averaged
for the cross section analysis. The averaging allows the satellite and
radiosonde data to more nearly coincide, although it also somewhat
smooths the radiosonde data. The cloud conditions along the orbital
track are revealed in the NOAA satellite cloud picture shown in figure
65.

Figure 66 shows the temperature cross sections prepared from the
radiosonde and Nimbus data. Figure 0 shows the cross sections in terms
of isentropic rather than isothermal contours. The major synoptic
features are very similar in both analysis. Scanning across the isen-
tropic cross-sections from North-South we see that the isobaric gradient
of potential temperature below the 400-mb Level in the vicinity of a ridge
at 640N is much stronger in the Nimbus cross section than in the radiosonde
cross section. However, looking at figure 64 it appears that the satellite



result is probably more correct since the radiosonde estimates results
from an interpolation of data which is more than a hundred miles off
the orbital track. Both cross sections reveal weak isobaric gradients
of potential temperature near the center of the low-pressure system
near 480N. The double minimum at 500 mb near 45 ON and 500N, however,
is more pronounced in the radiosonde case. However, the very pro-
nounced isobaric isentropic gradients across the frontal region between
400 and 43ON south of the low pressure system is much more pronounced
in the Nimbus result, but this again may be due to the fact that the
radiosonde reports are some distance away from the orbital track (see
figure 6 10. The packing of isentropes near 350 mb near the storm
center revealed in the radiosonde cross section is washed out in the
Nimbus case. This probably results from the inability of the satellite
soundings to capture the vertical temperature structure properly in the
tropopause region.

Figure 68 shows the normal component geostrophic winds (m/see)
computed from the radiosonde and Nimbus temperature cross section data
via the thermal wind relationship. It can be seen that the circula-
tion implied by the Nimbus temperature soundings is in generally good
agreement with that implied by the radiosonde data, although in this
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	 situ?tion the westerly wind component implied by the Nimbus thermal
structure is greater than that obtained from the radiosonde analysis
while the easterly component is slightly weaker. Examples like this
reinforce our conviction that thermal profile data From satellites is
of sufficient resolution and quality for resolving the important fea-
tures of the atmosphere's circulation.

During the May test, the absolute errors of the Nimbus retrievals
were larger than is normally achievable if radiosonde data is used to
alleviate systematic calibration errors and uncertainties in the weight-
ing functions. For the processing of Nimbus-5 data at GISS there is no
provision for such a use of radiosonde d6ta. Since relatively large
bias errors of the Nimbus retrievals occurred during the May test, it
is recommended that provisions be made before the next DST to have
current radiosonde data available at GISS and software prepared to use
these data for minimizing errors due to uncertainties in instrument
calibration and atmospheric transmission :Function calculations.

It has become increasingly obvious that the impact of satellite
retrievals on numerical forecasts depends not only on the absolute
values of the retrieval errors but also on the correlation of the
retrieval errors with the errors of the forecast. When forming the
level III analyses from sa^ellite data, the satellite values are
combined with forecast values using weights which are based on the
expected errors of the retrieval and forecast, respectively. However,
the weighting procedure used during the May DST were not optimum since
they were not allowed to vary in space and time as a f1mction of varying
forecast uncertainty.
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If the satellite retrieval errors e^-e independent of the forecast
errors more ' ooptimum" weights can be defined from the regional correla-
tion between the two sources of data. Regions where the correlation is
high reflect higher forecast accuracy than in regions where the correla-
tion is low. (Methods of defining more opt=mum weights vr hich aye
regionally dependent are now under developmen- at both NESS and NMC.)

The use of an optimum weighting scheme for obtaining a level III
data value which would then contain the information available in both
the satellite retrievals and the forecast should minimize the effects
of the errors of the satellite retrievals on the analysis forecast
operation. At the same time the data values derived from an optim»lm
combination of satellite and forecast data should be more compatible
with other conventional data inputs than would be the raw satellite
derivations. It is therefore recommended that such an "optimum" weight-
ing scheme for combining the Nimbus satellite retrievals with the
forecast be implemented for forming the level III Global Data Sets
during the next DST.

10.E FUTURE DEVELOPMENTS

The Nimbus-6 satellite scheduled to be launched during June, 1975
will carry much improved infrared and microwave sounding radiometers.
A seventeen-channel High-resoluti o n Infra-Red Sounder (HIRS) and five
channel SCanning M icrowave Spectrometers (SCAMS) will measure radiation
in numerous spectral channels of the 4.3-um CO, 15-um CG and 60-',Hz
02 rands to enable improved vertical temperature resolution. Also
your spectral channels, two infrared and two microwave will permit the
specification of the vertical profile of water vapor mixing ratio as
well as the total precipitable water content. Uhlike the Nimbus-5
sensors, the Nimbus-6 sounders will scan contiguously from horizon
to horizon enabling complete global coverage to be achieved every
twelve hours.

For the processing of the Nimbus-6 data, improved algorithms
have been developed to make more accurate specifications from the amal-
gamated infrared and microwave sounding data. As a result of the
improved instrumentation and data reduction procedures,one can expect
results from Nimbus-6 which are much superior to those obtained from
Nimbus-5 and described in this report.
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Figure 1--Photograph of the Nimbus 5 spacecraft showing the ITPR, NEMS and SCR instrument..

i



36

0.1

e

0.3

0.5

0.7

	

1.0
	

e	 ^.

SCR-1

3

5
E	 7

SCR-2
10

D_

	 1	 ^ ^

ITPR-1
30

	

50
	

^V

	

70	 _	 ITPR-2	 ^.
100 ^I ►

1 1	 ' `^^

	

300
	 ^ NEMS-2 T

	

500
	

>+	 ITPR-3

700

1000 L
0.0

1 NEMS-3
•r• ^-•^'	 ITPR-4

0.1	 0.2	 0.3	 0.4
	

0.5	 0.6	 0.7

dr /dInp
Figure 2--Atmospheric weighting functions for ITPR, NEMS and SCR spectral

channels. Derivative of transm—i ttance with respect to the logarithm of pressv-



SCAN LINE

SCAN ELEMENT

40 Km X35 Km

—852 Km —
ttt

357 Km

25 Km

NIMBUS 3 Sounder Scan Pattern
^----602 Km  

OR31T TRACK

^	 r	 1+

t	 ^	 rl

rl

i	 250

f	 r	 Km r1
40 Km I	 'r

r
t
t
r	 357 Km

ITPR	 e
r
t	

T	 r	

_

t	 i	 99 Kmt
t
tt
r
t

SCR (B)	 sI

.T
NEMS

192 Km

	

T
	

12.5 Km

i

W

Figure 3--The earth fields Df view for the ITPR, 14EMS and SCR instruments.



December 12, 1972

1 247:28GMT	 (a)

Ch.2-1	 Diff. Ch.	 1 Ch.	 2 Ch. 7 vria	 LoCCITIon:

1 59.7E	 165.1 E

11.0-3.7µm 3.7pm 11.Opm 19.7,um
7.8S ;---•--......•.	 19.25

Ch.	 3 Ch.	 4 Ch. 5 Ch. 6 ae

21.OS	 L ...............
	

22.4S

61 %L

L,%1% M M
158.9E	 164.4E

13.4µm 14.Oµm 14.5µm 15.Oum

1248:48GMT (b) 
Ch.2-1	 Diff. Ch.	 1 Ch.	 2 Ch.7

t 148.8E	 154.2E

11.0 — :3.7µ m 3.7N m 1 1.Oµ m 19.7µ m
19. 7 S ;.............	 21. 5 S

Ch.	 3 Ch. 4 Ch. 5 Ch. 6
22.85	 ............	 24-6S

147.9E	 153.3E

13. 4ym 14. Opm 14. 5µ m 15. Oµm

Figure 4--Images derived from ITPR window, water vapor, and CO channel brightness temperature
data for a geographical grid over the South Pacific Ocean (a) and over the Northeast Coast of

Australia (b) on December 12, 1972.

W
co



140

120

i 100

N 80

60

40

39

T e (11.0µm)	
t

213.0 240.4 259.8 275.6 289.3 301.4 312.4	 -

Ts
r

hC _ - _ - - - - - - - - --- - -
 t

t
Data Line	 2	 t

^^	 t
i

1	 ^
r

298.9

286.9

273.8
4

259.4

242.7

222.6

0.8

0.6
E
4' 0.4C6
H

0.2

0.0

304.8
301.5
297.9
293.6
288.6 ci
282.4
274.1
260.9

0	 20	 40	 60	 80	 100 120 140

I (11.0µm)

Figure 5--Plat of ITPR 3.7-pm, 11-um and 13.4-pm radiance observations in a
partly cloudy atmosphere. Also shown is the Planck Function Which relates
the 3.7-pm to the 11-pm rlidiances for an opaque and uniform surface,



0
Q
•v

U
Q
0-
O

Q
d

x-
0

t

40

ITPR March 21, 1973

8^-

7

r
0
-n

a-

X
5

U_

lA
L
Q

0 $
7
O
a
0
f-

4

03

^40^ i	 1	 t	 1

Cld. Hgts. and Amts.(%)

20 -50
Isotherm (°C)

30
-bo

50
-7 0

W70 C
w C

-50

^^ 4 r13
- 0

'261e 29,'iS
'3,ar.•

C
y1te= 2`^`s-	 tx , rid ::!

9	 -20 ,4. 27 7:T6.	 7

!0 1.r;:3<•7 .	 9>:i10'••il'
•::^22291005

19	 49•'   17.29113 2'
31 15+2"3%+MS •,30	 7S it h^^iei i3e,'^^6 ,T:=6)^̂2fl26i:162R:^15:

)a

_at. 70N 60N SON 40N 30N 2014 ]ON	 0	 IOS	 20S 30S 40S 50S 605 70S

Ci
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Comparison of Infrared (ITPR) and Microwave (NEMS) Derived Temperature Profiles
with Radiosonde Observations for Extensive Cloud Condilions.
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Figure 44--Same as Figure 43 except this is for the 850-mb level.
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Comparison of NIMBUS-5 Derived Standard Layer Mean Temperatures (TO

with Analyzed Radiosonde Observations (Tit ) in the Southern Hemisphere

(10'0 -60 0 S, 52 ° -208 ° E) during a Midwinter Period (Aug. 1-Aug. 11, 1973)
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_ Figure 48--Comparison of Nimbus-5 derived standard layer mean temperatures
(Tn) with analyzed radiosonde observations (Tr) in the Southern Hemisphere
(10-605, 52-208E) during a mid-winter period (August 1-11, 1973).
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Comparison of NIMBUS-5 Derived Geopotential Heights Above 1000 mb (ZM)

with Analyzed Radiosonde Observations (Z R) in theSouthern Hemisphere
(10 0 -60 05, 52 0 -208 0 E) during a Midwinter Period ( Aug. 1-Aug. 11, 1973)
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$ Figure 49--Same as Figure 48 except this is fors	 g	 g	 p	 geopatential heights.
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Nimbus-5 temperatures and the zonal component of the true wind for
February 15, 1974.
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Figure 60--Same as Figure 59 for February 18, 1974.
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Figure 64---500-mb analysis of radiosonde temperatures data for 1200 UT 24 May
1974 in vicinity of Nimbus-5 overpass. Nimbus--5 temperature retrieval loca-
tions are indicated by stars with large numerals 1-10. Radiosondes used for
ci,oss section analysis are indicated with small numerals 1--10. The wind bar
denote knots.
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Figure 65--NOAP-3 SR visible image showing clouds in vicinity of Nimbu3-5
overpass of 24 May 1974, 1017Z-1025Z. Nimbus-5 orbital track (dashed line).
Location of Nimbus-5 temperatures shown by stars.
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