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TECHNICAL MEMORANDUM X~ 64983

RADIATION ENVIRONMENT AND HAZARDS FOR A
GEOSYNCHRONOUS SPACE STATION

I. INTRODUCTION

The Payload Studies Office in the Program Development Directorate of
the Marshall Space Flight Center (MSFC) is currently evaluating program and
mission options for a manned geosynchronous space station for the 1985 to 2000
time period. One concern for such a space station is the potential radiation
hazard; manned operations have never been performed at geosynchronous altitudes
for extended periods. At the request of the Payload Studies Office, several
aspects of the radiation problem have been studied. This report provides: (1)

a cursory description of the radiation environment at geosynchronous altitude,
(2) estimates of absorbed doses behind shielding of various thicknesses and
other considerations of shielding design for a space station, and (3) a summary
of findings and conclusions. An extensive bibliography, included as an Appendix,
may be referred to for more specific data on topics covered in this report.

I1. RADIATION ENVIRONMENT

The possible sources of damaging radiation at the synchronous altitude
are geomagnetically trapped electrons and protons, galactic cosmic ray particles,
and solar flare proton events. Because the magnetic rigidity cutoff for the
equatorial synchronous altitude is approximately 30 MeV, solar wind particles
will not be important since their average energy is in the keV range. Galactic
cosmic ray particles provide a background radiation varying about a factor of
two over the solar cycle. The flux magnitude is approximately 4 particles/cm?-s
during solar minimum, The energy spectrum is very hard, causing a small
variation in dose rates behind very thick shields. Reference 1 gives a thorough
description of energy spectra and dose levels for galactic cosmic ray particles.

The trapped particle flux encountered during the synchronous missions
will have two types of temporal variations. A short-term variation is the diurnal
variation due to the solar wind, causing the electron flux to vary a factor of 2 for
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electrons with energies above 300 keV to a factor of 10 for electrons with
energies above 1.9 MeV. Moderate magnetic disturbances also cause the same
order-of-magnitude decrease in the electron flux (E > 1.9 MeV). A long-term
variation is associated with the 11-year solar cycle. There is an enhancement
of the proton belt by a factor of 2 and a factor of 5 for the electrons during the
quiet part of the cycle as a result of changes in the high atmosphere density [2].
Figures 1 through 8 show the average trapped electron and proton omnidirectional
differential and integra. fluxes for parking longitudes of 110 and 290 degrees

east and orbit inclinations of 0-, 30-, and 45-degree synchronous circular orbits.
The fluxes were obtained by using Vette's model environment, epoch 1975.5,
[3,4] in a program [5] that averages the flux along the orbital trajectory for
several orbits,

Figures 9 through 14 show the total physical dose rates (30 days)
received behind aluminum shields of various thicknesses for the trapped electron,
bremsstrahlung, and galactic cosmic rays at parking longitudes of 110 and 290
degrees east and orbit inclinations of 0, 30, and 45 degrees. The trapped
proton dose rate was nil. The geometry for the trapped proton and cosmic ray
dose rate calculations consisted of a point tissue receiver at the center of a
spherical aluminum shell of the given thickness. The techniques used for the
proton dose rate calculation are described in Reference 6. The cosmic ray
dose rates were obtained from tabular data in Reference 1. In general, for
electron and bremsstrahlung (except low energy), the quality factor is approxi-
mately 1, Thus, the rem (radiation equivalent man) and rad dose rates are the
same, For the total galactic cosmic radiation, the rem dose is about six times
the rad dose. The geometry for the electron and bremmstrahlung dose rates is
different. In these calculations, the electrons are assumed to be isotropically
incident on an infinite aluminum plane shield rather than a sphere. The
differences in dose rates for the two geometries are insignificant when compared
to the environmental uncertainties. The methods used are described in
Reference 7,

11, SOLAR PROTON EVENTS

Because of the importance of solar proton events in the manned space
flight program, it seems justifiable to discuss the methods and status of flare
predictions. The capability to predict solar proton events for time intervals
in excess of a few months to a number of years is needed for synchronous
altitude missions. At present, this capability is based on the relationship
between the rates of occurrence of solar particle events and sunspot number.

B
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In the time scale of a few months, it is possible to use earth-based observable
conditions on the sun to greatly improve the probability of making a specific
mission without encountering a hazardous solar proton event. Because of the
rotation of the sun an east-west asymmetry of solar proton events exists. For
events occurring on the eastern hemisphere of the sun, the probability of solar
protons reaching the earth is one-third that of events occurring on the western
hemisphere [8]. If an event does occur on the eastern hemisphere, the corres-
ponding onset, rise, and decay times are three times greater than for events
on the western half, giving astronauts more time to prepare for the oncoming
event, The presence and development of an active region with its associated
sunspots and complex magnetic field is the basic part of the process which leads
to a solar proton event. Thus, there are two aspects of primary importance
for flare prediction [8] and warning capahilities: (1) the persistence of single
active centers and (2) the magnetic configuration of these active centers.
Regarding the persistence of single active centers, Guss (9] has pointed out
that a single fixed location in solar longitude produced most of the major events
in cycle 19. If a "hot'' region exists and can be identified early in the solar
cycle, the prediction of large events will probably be concerned with the study
of this one region., Figure 15 gives the dose received on a 2- and 52-week
mission as a function of shield thickness for various cumulative probabilities
[10] based on cycle 19 data. According to Reference 11, the sunspot number
for cycles 20 and 21 should be approximately half the value in cycle 19, and the
corresponding number of large events should also be less, thus leading to a

higher probability of receiving smaller doses per mission behind various shields.

Thus, Figure 15 should give extreme values for missions during solar cycle 21.

IV. DOSE LIMITS

Table 1 gives the dose limits for 30~ to 60-day missions [10] and should
not be used for missions longer than 60 days. These dose limits [12] were
established for the Apollo program on the assumption that the crew would be
exposed to small increments of dose of approximately equal size. Additional
dose limits for specific applications may be found in References 13 and 14,

If one wishes to investigate missions of long duration (1 or 2 years), he
may assume that the body does indeed repair some of the damage; however, it
would be presumptuous to extend the acceptable dose levels without more know-
ledge. It is conceivable that a total allowable accumulated dose may, in fact,
be doubled for a mission of 1 or 2 years, Such an assumption, however, must
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TABLE 1. RADIATION DOSE LIMITS FOR 30- TO 60-DAY MISSIONS [12]

Planned Operational Maximum Operational
Tissue Depth Dose? Doseb
Skin 0.1 mm 2, 5 rad®/day 5 rad/day
Eye 0.3 mm 1. 25 rad/day 2.5 rad/day
Bone Marrow 5.0 cm 0,6 rad/day 1.0 rad/day

a. Planned Operational Dose: The dose which should not be exceeded
without requiring a mission modification of some degree. The degree
of modification would be a function of the magnitude of the excess
dose. This dose would be used for mission planning purposes to
determine if proposed trajectories and time lines are acceptable.

b. Maximum Operational Dose: The dose which should not be exceeded
without specific modification of the mission to prevent further radiation
exposure., Such an exposure would be considered to result in a poten-
tially harmful inflight response in terms of crew safety and post-flight
response in terms of delayed radiation injury.

c. Rad: A basic unit of dose equal to an absorbed energy of damaging
radiation of 0,01 J/kg in any material.

embody the concept of a fairly constant or uniform radiation exposure over the
total period. This is probably not a valid assumption for deep space flight,
since one could conceivably receive 90 percent of his allowable dose during one
large solar proton event lasting (at most) 3 days.

V. SHIELDING CONSIDERATIONS

From experience with Skylab and Apollo, it has been determined that the
effective shielding for a typical point inside a spacecraft is considerably higher
than the spacecraft wall thicknesses alone. For Skylab, the wall thickness was
approximately 1.0 g/cm?, whereas typical points in the workshop had effective
average shielding of approximately 10 to 15 g/cm? [15]. On smaller structures,

C A
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such as the Spacelab, the wall thickness will be rimilar. Many directions will ,

have effective shielding thicknesses of >20 g/cm?, in which case most of the f
absorbed dose will be received from the directions which have only the wall

thickness sldelding. Figure 16 shows percent distribution of shielding thicknesses

for the Apollo Command Module and Service Module. This distribution is

representative of, although probably greater than, that for a geosynchronous -
space station. b

If sensitive photographic films are present, extra precautions must be
taken. Some films are as much as 30 to 40 times as sensitive to gamma rays
as to protons. (Their sensitivity is also highly energy dependent.) Biological
effects are better measured in terms of rems, which includes a quality factor
depending on the type and energy radiation depositing the dose (rem = rad X
quality factor). For example, cosmic rays have an unusually high quality factor
due to the heavy particle compunent; thus, cosmic ray doses in rems are 6 or
7 times as high as doses in rads {1]. Special vaults may be needed for storage
of sensitive films.

S e s —— 5 St S Rt ik et s i s vt ot e e

VI. SOLAR CELL DEGRADATION

If golar cells are used for auxiliary power, consideration should be given
to possible power degradation due to the trapped radiation. ©One of the authors
(J. J. Wright) has made preliminary calculations on an 8 mil N on P silicon
solav cell with a 6 mil fused silica cover plate. The calcuvIntions show insignifi-
cant power loss at the synchronous altitude due %o the trapped radiation; however,
if a large solar flare is encountered, considerable power degradation could
result to unshielded solar ceclls.

%

VIl. EVA

From Figures 9 through 14, assuming a minimum of 2 g/cmz. the
effective shicld thickness of the spacecraft gives a 30-day dose rate of 32 to
14 rads, or 1.07 to 0,47 rads/day, depending on parking longitude and orbit
inclination. Thus, according to Table 1, the planned operational dose would
not be exceeded inside the spacecraft. However, during an EVA with a space-
suit thickness of 0. 2 g/cm?, the bonc marrow dose rate would not be exceeded

i |
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but the eye and skin dose rates would be. For the planned operational dose rate
to be less than the dose rate limit for the skin during an EVA mission, the
spacesuit would have to be approximately 1.3 g/cm? thick.

VIII. SUMMARY AND CONCLUSIONS

A. Radiation Environment

1. The geosynchronous orbit is usually in the outer regions of the
magnetosphere, Thus, the particle environment is governed more by earth-
trapped particles than solar-generated particles, Several times each year,
during solar activity, the geosynchronous altitude is outside of the magneto-
sphiere on the dayside of the orbit, Intense solar proton events will produce
large solar proton fluxes at synchronous altitudes.

2. At geosynchronous altitude, the trapped particle radiation consists
mainly of low energy electrons with a soft spectrum; irapped proton fluxes are
negligible.

3. The cosmic ray flux is significantly higher than that in low-earth
orbit due to the increased number of low-energy cosmic rays accessible to the
higher altitude.

4, 1t is expected that a significant dose will be received going from low-
earth orbit to geosynchronous altitude since regions of high fluxes of high energy
trapped protons will be crossed. 1nc dose will be highly dependent upon the
trajectory and may, in fact, be a major factor in the trajectory sele: tion,

B. Shielding

1. Approximately 2 g/cm? of shiclding is required to eliminate the
trapped electron fluxes. It is important that a minimum thickness of approxi-
mately 1.5 g/cmz be maintained around the entire space station since even a
small soiid angle of thinner shiclding would lead to large low-energy fluxes.
The space station walls may provide this minimum shielding, in which case the
crew will receive less than the planned operational dose.,
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2. For shielding thicknesses greater than approximately 1¢ 5/cm?,
little additional shielding benefits are realized since the major radiation dose
is due to high-energy cosmic rays which have an interaction length of approxi-
mately 100 g/cm? in light materials. Additional shielding beyond approximately
2 g/cm? may actually be detrimental due to the production of secondary radiation
produced by vosmic ray primaries.

3. Shielding for solar cells and other sensitive components of a geosyn-
chronous space station is within present technology.

C. Solar Flare Hazard

1. Solar flare particle radiation may reach geosynchronous altitude
since the earth's field is weak there. The mission risk due to solar flares is
similar to or less than that in the Apollo program, although allowances must be
made for the increased mission duration and differences in the solar cycle,

2, A storm shelter approach to solar flare protection may be advisable;
i.e., providing an area within the space station where shielding is much greater
than average and with a minimum of approximately 10 g/em? in «ll directions.
Due to weight limitations, mass available from existing hardware should be
used rather than '"dead weight'' mass. Since solar proton fluxes are highly
directional, a partial ''shadow shield'' may provide adequate shielding in the
expected direction of incidence,

.
S
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