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ABSTRACT

The Inertial Reference Unit (IRU) used in NASA's Orbiting
Astronomical Observatory (OAO-C or Copernicus) uses three single
degree of freedom, floated, rate-integrating gyros operated in
binary, pulse-restrained torque loops to provide an inertial at-
titude reference for the spacecraft's attitude control system.
Since 21 August 1972 when the spacecraft was launched, more than
15,000 hours of continuous and troublefree operation have been
accumulated on the IRU. When prelaunch operation is included,
the running times for the gyro wheels range between 17,000 and
22,000 hours.

The drift rates observed on these inertial grade gyros dur-
ing the 1-1/2 year of in-orbit operation have remained within a
band of 16 arcsec per hour peak-to-peak. When the effects of
known disturbances are considered, the standard deviation of drift
-7
rate appears to approach one arcsec per hour (< 10 degrees per
second) .

Included in this paper are a brief description of the OAO
and IRU, a summary of the data reduction programs used to cali-
brate the IRU in orbit, and some thoughts on how gyros with good
long-term drift stability could be applied to future spacecraft

such as the Large Space Telescope and Earth Observatory Satellite.
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2 I INTRODUCTION

NASA's Orbiting Astronomical Observatory OAO-C (Copernicus)
was launched on 21 August 1972. As of this writing the satellite
has successfully completed over 9000 orbits and 15000 hours of
continuous operation. The satellite contains two astronomy ex-
periments. The first is a Princeton Jniversity experiment (PEP)
that uses a 32-inch telescope to examine interstellar media by
measuring its absorptive characteristics in the ultraviolet spec-
trum using stars as light sources. Some of the Princeton data
pertaining to deuterium and hydrogen were cited recently in a

*
Scientific American article.(l)

The second is the University
College, London experiment that uses three small telescopes to
make measurements in the X-ray regions of the electromagnetic

spectrum.

When the PEP is making precision observations, some of the
light from the main telescope is used to sense motion of the opti-
cal axis (i.e., rotation about the pitch and yaw axes). This

(2) M. Proise(3) has

sensor is called the Fine Error Sensor (FES).
estimated that pointing stabilities of 25 milli-arcsec (long term)
and 3 milli-arcsec (short term) have been achieved using magnitude

+ 2.6 star.

A three axis gyro system called the Inertial Reference Unit
(IRU) controls the roll axis during fine pointing and all of the
axes during all other normal modes of operation except during
brief periods when Gimballed Star Trackers (GST) are used to re-
reference the IRU. This paper is confined to describing the func-
tion and performance of the IRU on OAO-C and to presenting some
thoughts on how this experience with precision gyroscopes could

be applied to subsequent programs.

= -
Superscript numerals refer to similarly numbered references in
the List of References.



2% IRU DESCRIPTION

The IRU consists of two packages, an Inertial Package (IP)
and an Electronics Package (EP) with the physical characteristics
listed in Table 1. The heart of the system is three single-
degree-of-freedom gyros that are operated in binary torque-to-
balance loops. By combining two wheel speeds and two torque levels,
a 7.4 decade of rate measurements is achieved. The various combi-
nations of wheel speeds and torque levels are identified as modes
(HOLD, SLEW, and ISTAB) and are defined in Table 1. Because the
gyros were originally designed to operate in the launch environ-
ment of a missile, some modifications were made to take advantage
of the zero-g environment of the OAO spacecraft. For example,
the exterior of the float was "cleaned up" by the elimination of
the protruding mechanisms used to adjust the fine balance. Also,
the preloading of the wheel bearing was decreased to reduce the
power required to drive the wheel. The decrease in preloading
may also improve the reliability of the wheel through secondary
effects. However this may not be a primary consideration for
reliability because five 2FBG-6F gyros with high-g wheels have
each operated more than 26,000 hours without a failure.

The Charles Stark Draper Laboratory (CSDL), then a division
of The Massachusetts Institute of Technology, was responsible for
the design and build of the IRUs. The gyros were built by CSDL in
a very successful program; 18 gyros started into the manufacturing
cycle, all 18 were ccmpleted and each of them met flight per form-
ance requirements. The General Electric Company's Spacecraft De-
partment located at Valley Forge, Pennsylvania built most of the
flight electronics and performed the initial integration of the
flight ©Ps. Manufacture of the rest of the electronics, system
integration, and testing were performed by CSDL. The IRUs were
delivered to NASA (Goddard Spaceflight Center) and given to Grumman

Aerospace Corporation as GFE for incorporation in the spacecraft.

Both the OAO and the IRU have far exceeded their design
goal of one year in-orbit operation. Since launch the gyros and

IRU have been running continuously and without trouble. This



Table 1. Summary of IRU characteristics

Inertial Package

e contains 3 gyros and torque loovs

- temperature control electronics

- crystal
size =19 ix. 9% x - 9" plus -¥adiator
weight - 40 pounds
power - 25 watts plus 3 to 17 watts for temperature

control

Electronics Package

e contains - power supplies
- frequency and pulse generators
- rate integrators
- coumand logic
- digital to analog converter for error signal
outputs
- telemetry signal conditioning

e size =g R L5" x 6"
e weight - 38 pounds
e power - 50 watts

Electronic Construction

e welded cordwood modules using discrete electronic
components

e soldered connections for intratray wiring

Gyros (2FBG-6F-0AO0)

e type - floated, rate integrating, ball bearing wheel,
soft iron torquer

e operating modes

Wheel Speed (rpm)

Torque Level 750 12,000
Low 125 dyne cm X HOLD
High 4000 dyne cm ISTAB SLEW

e rate capability

- 1STAB 128 deg/min
- SLEW 8 deg/min
- HOLD 0.25 deg/min

For additional details see "Inertial Reference Unit Systems Hand-
book for the Orbiting Astronomical Observatory," CSDL Report
E-2585, May 1970.



speaks very well for instruments whose basic design was completed
in 1962 and for the spacecraft whose design was starced in the
early 60's. The running times of the gyro and IRU electronics

are shown in Table 2. We believe that even though these numbers
may be impressive, they are consistent with CSDL's experience that
reliability and performance are directly related, i.e., the same
care in both design and manufacture that is required to achieve
good performance is also necessary for reliability.

3. IN-ORBIT CALIBRATION

The design of the IRU and the tests performed on earth were
set up to minimize the effects of gravity so that changes in the
system's performance would be within the range of in-orbit compen-
sation. This philosophy was reflected in the thermal design of
the IRU which emphasized thermal symmetry, tight (0.1°F) tempera-
ture control of each gyro end mount, and minimization of convec-
tive heat losses. Nevertheless, changes were expected due to nor-
mal variation of the electronic components and differences between

one-g and zero-g environments.

The calibrations described in this paper are those performed
by CSDL for evaluating the performance of the IRU. The Grumman and
NASA operations personnel who fly the spacecraft perform the cali-

bration necessary to satisfy spacecraft operational requirements.

Jad Preprocessing

The first step is to decommutate, interpret, and arrange
the date in the proper time sequence. The last step is required
because the data used by CSDL was stored on the spacecraft's tape
recorder and played back during selected contacts with ground sta-
tions. Because the tape recorder is not played back completely
at each contact, the various data segments must be put into chrono-

logical order. At times this presents quite a puzzle.

A sample of data is shown in Fiqgure 1. There are some

points worth noting:



Table 2.

IRU (OAO) operating hours (0AO-C

satellite)
(5/20/74)
Gyros System
: |
Roll Pitch Yaw {E_"___ EP
At CSDL 2423 6738 2160 1187 1585
In Orbit” 15290 - - 15290
Total 1 b iy By B2 22028 17450 16477 16875
*
Launch Date: 8/21/72
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(1) The IRU data is guite clean. The noise levels seem
to be consistent with the 0.15 arcsec telemetry
quantirzation.

(2) When the IRU contrcls the spacecraft, the dominant
error is due to gravity gradient torque that is cyclic
at twice the orbital rate. (The gain of the FES loop
is at least 100 times higher than the IRU loop ard,
hence, the effect of these disturbance torques are
reduced significantly during fine pointing.)

(3) The one or two arcsec step changes seen during IRU
control are believed due to two sources. The first
coincides with transitions between the dark and light
portions of the orbit and, hence, are attributed to
the switching on and off of the solar paddle charging
circuits. The second coincides with reversal of the
reaction wheel speed and magnetic unloading system
current and, hence, are attributed to a zero-crossing

nonlinearity in the latter system.

(4) During FES ccntrol, the telescope must lead the target
star by an angle proportional to the ratio between the
component of spacecraft velocity that is perpendicular
to the line of sight to the star and the speed of light.
This velocity aberration effect has a period of once-
per-orbit nad for the OAO's crbit can have an amplitude
of up to 5 arcsec.

The data obtained during IRU control are used to estimate
spacecraft parameters involved in torque producing mechanisms
(inertia differences and cross-products, spacecraft magnetic
moments and magnetic unloading system gains). The reader is re-
ferred to Reference 4 for information on this modelling effort.
Data obtained during FES control are used to estimate the IRU

drift rates.



352 IRU Drift Calibration

When the FES is controlling the spacecraft, the change in
angle indicated by the IRU from orbit-to-orbit is used to measure
the uncompensated drift rates of the pitch and yaw gyros. The
roll gyro's drift rate can be measured using a similar procedure
and GSTs. However, because the null derived from the GSTs is
noisy compared to the FES null, the data are of little use in
evaluating gyro performance and, hence, are not included in this
paper.

3.2.1 Error Analysis

Three main sources of error are present when the FES is
used for calibration:

(1) The quantization of the gyro data causes an uncertainty
in measuring the angle sensed by the gyro both at the
beginning and end of a sample. In the HOLD mode, the
quantization is due to the telemetry system and has a
value of 0.15 arcsec. In the SLEW mode, it is due to
the torque loop and has a value of 2.6 arcsec. In
order to reduce the SIEW value, 20 points are aver-
aged to reduce this quantization error to a theocreti-
cal "V/N" value of 0.6 arcsec.

(2) Any change in the inertial attitude of the optical
axis of the FES between measurements is interpreted
as gyro drift. When the measurements are taken one
orbit apart, the error due to imprecise timing and
velocity aberration is approximately 0.005 arcsec/sec.
A conservative assumption is that the data across an
orbit have a timing error of one minute. This would

result in an angle error of only 0.3 arcsec.

The velocity aberration due to the velocity of the
earth in orbit around the sun has an amplitude of 20
arcsec and a period of one year. Even in the worst

case, this is a negligible effect about two orders of



magnitude less than that due to the orbital rate of
the satellite about the earth.

(3) Relative motion between the IRU and the optical axis
of the FES would also be interpreted as gyro drift.
However, inasmuch as there is no independent measure

of this effect, there is no choice but to ignore it.

The rss uncertainties due to these error sources are 0.24
arcsec/hour in the HOLD mode and 0.53 arcsec/hour in the SLEW
mode.

3.2.2 Drift Performance

The drift rate performance of the pitch and yaw gyros for
the first 500 days of in-orbit operation are shown in Figure 2.
During the pericd up to day 73 135 (i.e., the 135th day of 1973)
the gyros were normally operated in the HOLD mode except during
attitude changes when they were operated in the SLEW mode. After
day 73 135, the gyros were operated in the SLEW mode continuously
to reduce the errors that develop during attitude changes without
having to compensate for the difference in drift rates between
the HOLD and SLEW modes. (That difference is approximately 100
arcsec/hour for two of the gyros and approximately 15 arcsec/hour
for tke third gyro.) The data are shown as if the drift rates
were compensated only once in the HOLD mcde (72 292) and once in
the SLEW mode (73 148). The effects of the other updates (two in
pitch and three in yaw) were removed from the data numericall, .o

show actual gyro performance.

The first observation is that, as expected, the "noise"
level in the SLEW mode is larger than that in the HOLD mode. The
ratio of the noise levels is approximately three or four to one,
which is consistent with the above analysis. However, averaging
the data is not as effective as expected. For example, the peak-
to-peak values predicted for the SLEW mode are 6.2 arcsec per hour
without averaging and 1.4 arcsec per hour with averaging. The ob-

served values seem to be between three and four arcsec per hour.
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This suggests that the torque loops may be operating in a 2~2 mode
rather than a 1-1 mode.

The second observation is that there is no long-term trend
in the data. This differs from long-term, on-earth tests of OAO
type gyros that showed trends resulting in drift rate changes of
10 arcsec per hour over a 30-day period. One explanation of this
difference is that the trend producing mechanism is excited by
gravity. A second possibility is that the trends observed during
tests performed on earth are actually segments of exponential be-
havior which would reach a steady-state value if operated continu-
ously as the IRU has been. This supposition is supported somewhat
by the exponential behavior of the pitch gyro after turn-on and
after changing to continuous operation in the SLEW mode. On the
other hand, the yaw gyro does not reveal similar exponential

behavior.

The third observation is that the peak-tn-peak value of the
drift rate has remained bounded within a band with a peak-to-peak
value of 16 arcsec per hour during the entire 500-day period.

Even though this performance is very good, it appears that a sig-
nificant part of the changes may not be intrinsic gyro noise. A
close examination of the data shows that the drift rate changes
coincide with changes in the spacecraft's attitude. When the
spacecraft's attitude changes, the excitations to the magnetic un-
loading system's torquer bars are changed to account for the dif-
ferent orientation of the magnetic system with respect to the
earth's magnetic field. Because the gyros are sensitive to mag-
netic fields, the drift can change. A typical sample of drift
rate data taken during a period of constant spacecraft attitude
is shown in Figure 3. Data such as this (which probably includes
some systematic errors due to the daily rotation of the magnetic
field) leads to the conclusion that the variations of drift rates
of the OAO gyros probably are less than two or three arcsec per

hour peak-to-peak.

In summary, our model for the in-orbit drift rate of the

OAO gyros based on 500 days of data is a constant mean process

11
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with bounded variations shown to be less than 16 arcsec per hour
peak-to-peak in the present OAO attitude control system. It is
believed that the OAO gyros are capable of operating within a band
of two or three arcsec per hour peak-to-peak when shielded to re-
duce their sensitivity to external magnetic fields.

3:3 Scale Factor and Misalignment Calibration

The program used to estimate the plus and minus scale fac-
tors and the two misalignment angles of each gyro uses data ob-

tained during normal spacecraft attitude changes.

The approach used is to model the problem as a constant
parameter system and propagate both the initial errors and those
generated during the slew sequence into final errors. The initial
and final errors are measured with the FES (pitch and yaw) and a
GST (roll). A square root formulation of a weighted, recursive

least squares filter is used to do the estimation.

3.3.1 Error Analysis

All the error sources are errors in angle and, hence, their
effects can be reduced by using data from large slews. The infor-
mation from the FES is "truth" by definition and thus has no error
associated with it. The GST information, on the other hand, can
have errors of 30 arcsec or more. Two precautions are taken to
minimize these. First, roll data are obtained fro-m the same star
tracker on both enas of the slew where possible. Second, the GST
data are assumed to have tern times the uncertainty of the FES and

weighted accordingly.

The various sources of error and their contribution to the
estimates for a l0-degree slew are shown in Table 3. The actual
errors depend on the slew profiles and the weighting of the GST
data. However, we would expect that tne calibrations are limited
to accuracies of near 200 ppm with the principal error contributcr
being the GST. The real test of this calibration procedure is the
manner in which the estimates converge and whether or not they re-

mein constant for many different slew sequences.

13



Table 3. Errors affecting IRU calibration

Worst Case

PPM Error for a

10 Deg Slew

Error Source Error (arcsec) Worst Case Est lo
Command (1) 10 280 80 o
FES 0 0 0
GST 30 830 240
Velocity Aberration (2) 10 280 80
IRU

Quantization 255 70 20
Drift (6 hrs) 2 60 20

(1) The slews are quantized in increments of approximately

20 arcsec. These could be compensated.

(2) The velocity aberration error can be calculated and

could be compensated.

14



The program concepts (i.e., the ability to make correct es-
timates for the problem as modelled) and software were checked out
by generating some slew data using a program that had been used
(5) The results of this
simulation effort showed that for (1) angle errors with standard

for an earlier IRU performance analysis.

deviations of 10 arcsec in pitch and yaw and 30 arcsec in roll

and (2) attitude changes that were representative of OAO maneuvers,
a deterministic set of data would give estimation errors up to

100 ppm and 15 arcsec, and that these errors would be reduced to

10 ppm and 2 arcsec when the redundant data from 20 attitude
changes were included.

3.3.2 Real Data

A special calibration exercise was performed in preparation
for observation of the comet Kohoutek. This provided a chance to
exercise the calibratrion program with data that was close to ideal
because the attitude errors were accurately measured before and
after each single axis slew. Table 4 shows the results of this
exercise. The deterministic set was formed from six single axis
slews, i.e., a positive and negative slew about each axis. The
redundant slews and the multilecged* slew serve as checks on the
estimates. From this limited set of data it appears that where
redundant checks are available, the yaw estimates should be good
to 200 ppm and 60 arcsec while the other parameters seem to be
closer to 100 ppm and 10 arcsec. These results are encouraging
because they are consistent with the simulations. However, more
data will have to be processed to confirm the procedure and to

evaluate the IRU's performance in these areas.

*

A multilegged slew is an attitude change consisting of a sequence
of single-axis slews. Optical sensor information is generally
available before and after the attitude change only.

15



Table 4. Results of IRU calibration

These results are based on data obtained from single-axis slews
performed during the calibration exercise on days 74 020 and 021,
one attitude change on day 74 021 that consisted of a sequence of
four single-axis slews.

Estimated Errors

- Redundant Slews 74 021
+Y +P -P +R -R,+R,+P,-R

GSF+R ppm -843 -888 -846
6SF+p ppm 627 -526 -554
6SF+Y ppm +276 + 50
GSF-R ppm - 96 -124
GSF-P ppm + 75 - 33
GSF-Y ppm +153
Egp arcsec + 68 + 72 + 72
€gy arcsec - 24 - 22 ~ 19
Epy arcsec + 73 + 52 + 45 + 45
Epp arcsec -214 -210 -202 -203
Eyr arcsec -235 -186
Eyp arcsec - 63 - 54

*

Deterministic Set

16




4. OAO OPERATION

Perhaps the most significant aspect of the IRU effort has
been the demonstration that when proper care is taken, gyros are
reliable. Further, it also has been shown that it is not neces-
sary to sacrifice reliability to achieve performance. As stated
previously, CSDL's experience over the years has shown that in-
strument reliabilities and performance have improved together.
In fact, the efforts of all contractors associated with both the
OAO-2 and OAO-3 spacecrait have demonstrated that reliable sys-
tems can be built even though these systems are complex and some
of the hardware is -- shall we say -- vintage.

The successful operation of the IRU has shown that space-
craft operations can both be simplified and made more efficient
by the use of gyros. One of the original purposes of the IRU was
to decrease dependence on the gimballed star trackers. This has
been achieved. During normal operation, the GSTs are used for
two purposes: (1) a GST is used once per day to correct the error
due to the uncompensated drift rate of the roll gyro, and (2) GSTs
are used to correct for errors accumulated during the slewing.
The system operations have been simplified because control of the
spacecraft's attitude is transferred directly from the IRU to
the FES. This has two implications. First, because fewer com-
mands are needed for attitude control purposes, more on-board
memory locations are available to store commands needed by the ex-
perimenter. Second, the attitude errors that exist when control
is transferred from the IRU to the FES are usually small and
rapidly nulled out. It has been estimated that the performance
of the IRU has permitted the experimenters to make the equivalent

of one extra observation per day.

Perhaps all of this is summed up in the statement: "The

IRU has made flying the OAO a boring operation."

17



D's FUTURE APPLICATIONS

The good high frequency noise characteristics of gyros have
been used for some time. The most common application has been in
the stabilization loops of gimballed systems. Newer gyros may have
low enough noise levels to make them useful parts of precision

pointing systems such as the Large Space Telescope.(6'7)

Applica-
tion of gyros in the "inner loop" of an attitude control system
provides error signals that are much quieter than horizon sensors
and most star sensors. The low noise error signals drive the ac-
tuators efficiently and, hence, should require less power for at-
titude control. It should also be possible to relax the bandwidth
requirements of optical sensors because thasy would have to respond
only to orbital rates and not attitude control system noise. Gyros
also provide continuous data whereas optical sensors must contend

with intermittent light sources.

The long-term drift stability of gyros extends the length
of time of autonomous operation. This could permit the use of
strapped down optical sensors instead of gimballed sensors. It
could also reduce the computation rates required for either real

time or post flight estimation of the spacecraft attitude.

One final point is to relate the long-term drift to the
short-term noise. The emphasis has, in general, been to look at
only the random variations in drift when evaluating a gyro's per-
formance during periods of say less than an hour. However, in
order to achieve pointing stability that is consistent with the
noise, systematic components must also be compensated to the same
degree. For periods of up to 100 seconds, the random variation in
drift rate may result in random angular motion of 10 milli-arcsec
or less. Except for the LST satellites, angle measurements of
this level are impractical. Therefore, the usual procedure for
calibrating drift rate is to use longer time bases and angle sen-
sors with larger uncertainties. The drift rate must be stable not
only during the time of measurement but also bctween the calibra-

tions. This is illustrated by the following example.

18
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Consider two gyro models with the noise described by the
power spectral densities in Figure 4; model 1 has better long-term
drift rate stability whereas model 2 has lower random angle noise
for periods of 100 seconds and less. Note that these models were
selected to illustrate a point and it does not necessarily follow
that an instrument with better long-term drift characteristics
need have more high frequency noise. Good design should permit
minimization of one noise source without increasing another noise
source.

In order to use a gyro in orbit, the drift rate must be
measured so that it can be compensated. Assume that the optical
sensor used for in-orbit calibration is capable of making angle
measurements with an uncertainty of one arcsec. Then the uncer-
tainty of drift rate calibration will be

(U)W = ———'/5(,1‘,””‘

where (U)W
(U)A
T

uncertainty in rate measurement (arcsec/hour)

1]

uncertainty in angle measurement (arcsec)

time between angle measurements (hour)

This relationship is plotted in Figure 5 along with the standard
deviation of the drift rates for the two gyro models. It is seen
that the best drift rate calibration would be 0.05 arcsec/hour
for model 1 and 1 arcsec/hour for model 2. Figure 6 shows how
this impacts the high frequency noise. The curves labeled B show
the standard deviation of angle noise that can be expected from
only the random variations in drift rate. As should be expected
from the selected models, model 2 has less random noise than
model 1 for periods up to 100 seconds. However, when the uncer-
tainty of compensating the systematic error is included as repre-
sented by curves B, model 2 has less noise for periods of only

5 seconds or less. It is also noted that the random drift rate

also dominates model 2's output for periods longer than a month.

The conclusion here is that it is not sufficient to simply
look at the random noise of a gyro in the passband dictated by the

19
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high frequency requirements of the attitude control loop. Lower
frequency noise appears as a "change in bias" in higher frequency
passbands and these changes must also be consistent with the re-

quired performance levels.

6. CONCLUSION

Based on nearly 22 months of successful in-orbit operation
of the IRU on OAO-C and 500 days of drift data that have been re-
duced to date, it has been demonstrated that inertial grade gyros
can provide reliable, low noise attitude information with long-
term drift stability that can significantly reduce requirements
placed on optical sensors. It was also shown by example that
stable, long-term drift is required to achieve performance that
is consistent with random noise measured in higher frequency pass-

bands.
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