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ABSTRACT

This report summarizes work done on '"Vehicle Sys-
tems and Pavload Requirements Evaluation' during
the five years of the study. Reference is made to
specific previous Interim Scientific Reports. Work
done since the last Interim Scientific Report is
reported on in more detail. This includes the
analysis of Redundant Systems. An investigation of
potential problems with the Gravitational Red Shift
mission, and development of the Interactive Graphic

Orbit Selection computer program,
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VEHICLE SYSTEMS AND PAYLOAD REQUIREMENTS EVALUATION
(October 1970 = December 1975)

by

F. G, Rea, J. L. Pittenger, R, J. Conlon, and J. D, Allen

INTRODUCTION

This report presents the results of the work on "Vehicle Systems
and Payload Requirements Evaluation' (VSPRE) for NASA Marshall Space Flight
Center (MSFC) under Contract Number NAS 8-26491 between October, 1970 and
December, 1975. Background information and a summary of the study results
are presented for the entire project along with detailed technical discussionm,
recommendations, and conclusions of the past 18 months., Details of the first
four years have Leen published earlier in Interim Reports (Reference 1, 2, and
3%).

Program Objectives

The objective of this program was to develop techniques for
identifying launch vehicle system requirements for NASA automated space
missiong, and to conduct analyses to assist NASA 0SS in the managemeat of its
related Supporting Research and Technology (SR&T) programs. Achievement of
this overall objective required development of various coputer programs,
These Include extensions of previously developed system analysis and evalua-
tion programs for the analysis of a nroader scope of vehicle systems. In
addition, these programs were appliad to the analysis of several NASA mission
astrionics requirements. For these missions, trade-off evaluation of com-

petitive systems and analysis of operational requirements were performed.

Project Tasks

The efforts of this study have been conducted under sgpecific
tasks, The contract modification of April, 1974 redefined the task numbers
from those in use since 1970, For convenience in referring to earlier re-
ports, Table 1 shows the old and new task number definitions. All tasks

discussed in this report are under the new numbers,

*References are listed at the end of this report.
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TABLE 1. VSPRE PROJECT TASKS

Cem

014 Task No. New Task No,
Task Description (Prior to April, 1974) (After April, 1974)
Update and Maintain 1 1
Computer Codes
Investigate HEAO 2 -~
Astrionics Requirements
Investigate Astrionics 3 2
for 0SS Missions
Investigate Scout 4 3
Agtrionics Requirements
Perfors: Mission *k 4

Requirements Assessments

*% This effort was begun in 1973 under 0Old Task 3.



SUMMARY

The following paragraphs summarize the effort on each of the

project tasks, Detailed discussions appear in the Technical Discussion

Section of thic report.

. Update and Maintain Computer Codes (Task 1)

Several computer programs have been developed under this task

o and delivered to MSFC, Most significant of these are:

-4

e EOMP-I (Earth Orbit Mission Program - I) which performs

linear error analysis of launch vehicle dispersions for

both vehicle and navigation system factors, and

IGOS (Interactive Graphic Orbit Selection) program which
allows the user to select ourbits which satisfy mission
requirements and to evaluate the necessary injection accuracy.
This program was written as part of the Task 4 investigation

of missiun requirements for astrionics improvements.

HEAQ

The High Energy Astronomical Obse.vatory (HFAO) mission was

investigated und.r the original VSPRE Task 2. At that time it was proposed
that HEAO be launched on a Titan I1ID with a Lockheed Orbit Adjust Stage (OAS)

for final orbit placement, VSPRE efforts were:

Calculation of the Titan {IID open loop guidance system
injection errors,

Analysis of the probability of obtaining sufficient
parking orbit life time to adequately track the
vehicle, and

Development of an optional OAS thrusting policy.

Results of these studies (References 1, 2 and 3) indicated the Titan IITD/OAS

vehicle was feasible.

Subsequently the HEAO payload weight was reduced, and the payload

was reassigned to an Atlas vehicle.



Investigate Astrionica for 0SS Missions (Task 2

A number of specific analysis studies have been directed by
the COR (Contracting Officer's Representative). Astrionics requirements
for HEAO and LAGEOS, have been discussed in previous reports (Reference 1,
2 and 3), The Red Shift mission requirements for Scout are discussed
under Task 3 ir this report.

Recent Task 2 activity has concentrated on an evaluation of the
requirements for a high reliability computer, specifically the ARMMS
(Automatically Reconfigurable Modular Multiprocessor Sy .em) crmputer
under development at MSFC, The evaluation of ARMMS resulted in the writing
of a preliminary version of a generalized computer program, ABBACUS for the

analysis of a reconfigurable agtrionics system,

Investigate Scout Astrionics Regu en Tagk 3

Several potential modifications to Scout astrionics have been
evaluated and the results previously published in References 2 and 3.
No conclusive recommendations regarding the need for the modifications could
be made due to a lack of firm mission requirements for increased injection

accuracy.

Most recently, Task 3 effort concentrated on the application of
Scout for the Gravitational Red Shift mission, This mission is a sub-orbital
launch with the paylcad attached to the spinning, depleted. fourth stage.
The results of the study indicate no problems are encountered due to the

operation of the payload while attached to the spinning fourth stage.

Perform Mission Requirements Agsignments (Task 4)

When establishing mission requirements, the planners frequently
stated, as a requirement, the known accuracy of the vehicle they assume
would be assigned to their mission. In other cases, arbitrarily small
errore are specified to minimize the chance of failure without regard to
the implied Iincreased astrionics costs.

This situation led to the developmeni of the Interactive Graphics
Orbit Selection (ICGOS) programs, IGOS displays both the mission requirements

(orbits which met the requirements) and the various launch vehicle capabilities
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(paylrad weight and injection accuracy). The program serves as the basis
for concise dialog between mission and vehicle oriented specialists. 1GOS
is a tc~l for either orbit selection (mission design), or for the evalua-
tion of launch vehicle accuracy requircments. In addition to the details
presented in the Technical Discussion, a users manual and a sample work

session are presented in Appendices A and B,

BACKGROUND

Related Prior Work

The astrionics/avionics evaluation techniques extended under
the contract were originally developed by Battelle for NASA/OSSA under
contract with the NASA Electronics Research Center (ERC), Contract Number
NAS12-550, and for the U, S, Air Force (USAF) Avionics Laboratory, Contract

JE

Number F33615-69-C-1402, The ERC contract was originally initiated to develop

an evaluation technique for inertial sensors to be included in strapdown

inertial navigation systems. To effectively evaluate sensors for strapdown

application, it was determined that a more comprehensive systems level study

including other astrionics subsystems was necessary.

The systems evaluation techniques developed under the ERC contract

were extended to cover avionics under the USAF Avionics Laboratory comtract.

In analyzing integrated avionics systems, the assumption that each item of

hardware is associated with a particular function (such as navigation or target

acquisition) is too restrictive. For this reason, a more general technique

was developed in which a total system is considered as an assembly of sub-

systems. The operational objectives of the combined system are then defined

in terms of functions such as navigation and flight control. Any hardware

subsystem might be involved in satisfying one or more functions. The ERC

and Avionics Laboratory studies are described in more detail in the following

paragraphs.

R T WW
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Techniques for Evaluating Astriomics
for Interplanetary Missions

[
e g

Techniques for evaluating astrionics systems for interplanetary
probe missions were developed under Contract NAS 12-550 over a 3 year period.
The objective of the study was to develop a technique for evaluating strapdown
guidance systems. The technique utilizes system parameters describing the e
reliability, power, weight, and performance of the strapdown guidance system 7 7
in determining a measure (or index) of guidance system performance. This
work is discussed in detail in References 4 through 10.

During the work performed for ERC it was assumed that the astrionics
being considered were an integral part of the spacecraft as shown in Figure 1,
In using this program, it would not be necessary for the astrionics to be an
integral part of the spacecraft if only launch vehicle navigation and guidance
were being considered. In this case, certain subsystems such as the space-
craft attitude control would not be considered in the analyses.

Techniques for evaluating astrionics for interplanetary missions
require definition of a baseline set of inertial sensors, computers, and
other onboard hardware items that are not designed internally by the program.
In addition, parameters that describe the mission must be provided to generate
the appropriate flight trajectory.

One limitation of these evaluation techmiques is that no provision
is made for consideration of backup modes for the various functions, e.=.,
navigation. The user must specify those subsystems he wishes to use to perform
each function. The evaluation yields measures of the penalty for including
those subsystems. Work initiated under USAF contract in 1969 allows considera- -
tion of backup modes for various functions. This work is described in the ‘

following section.,

Technigques for Evaluating
Integrated Avionics

The objective of this study (performed under Contract Number
F33615-C-1402) was to develop techniques and asscciated computer programs
for evaluating the effectiveness of integrated avionics for USAF aircra.t
on appropriate missions. Further discussions of this work are contained in

References 11 and 12,

a5 LW o Ea ey - -



Tu

omnnsient
>

R

e

e
oS-

s b ke o

i BN Ty 2o

v

e

7
Attitude lnmjol AV
C&h‘::ol e e o e o e D SJ:is'mg < SRR — Propulsion
> [ 4
E'“s".:;gz"“' ]  Computer & Communications

? ?
! |
| l
| Power Source: Supplies |
oll required electricol |
Aamooch : power |
adors '

b je==n
Flight |
e s e e e e Control  j— = e e—e— - = - -
System '
|
R S SR G HRD SeaEEe P TREER e ERES CEEAD GUEARE S GEER  SEAE) USSR SR SR S L —ul ——————

|

"

* Deep Space Instrumentation Facility

FIGURE 1.

BLOCK DIAGRAM OF INTEGRATED ASTRIONICS



Battelle's Navigation Error
Analysis Program (NEAP)

The technique of performing linear sensitivity analysis used
under the ERC contract to determine strapdown navization errors was genera-
lized to include all possible navigation mechanizations and extended to
cover open=-loop vehicle dispersions under a Battelle-funded study daescribed
in detail in Reference 13. Experience gained from this Battelle-funded
study was used in writing the Earth Orbital Mission Program-I (EOMP-I).

Concurrent Related Projects

Concurrently with performance of Contract Number NAS 8-26491,
Battelle personnel were involved in two related projects funded by NASA
0SS which provide valuable data and practical experience.

NASA Launch Vehicle Project (NLVP)

This project (Contract Number NASw-2018) provides extensive launch-
vehicle and trajectory data for present and future NASA expendable launch
vehicles, Model formulations and computer programs are structured to maintain
compatibility with NLVP data., In addition, consultations with NLVP personnel
on the subjects of propulsion and vehicle capability provided valuable support
for this study,

Delta Inertial Guidance
System (DIGS) Project

Battelle assisted the Delta Project Office (DPO, Goddard Space Flight
Center) in the technical evaluation of the Delta inertial guidance system.
Work under this contract (NAS 7-786) has included the development of a FORTRAYN
program to simulate the Delta launch vehicle, its control systems, and on-hoard
computer software., This provided VSPRE personnel with a very detailed des-
cription of the NASA 0SS launch vehicle, onboard systems, and software. As
discussed in Reference 3, the DIGS project has also provided an opportunity for

an independent check of results obtained by using EOMP-I.
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TECHNICAL DISCUSSION

The Technical Discussion section of this report is divided
into discussions of the four current project tasks., The recommendations
resulting ‘rom each of the tasks are presented separately in the

Recor.end..c:ions gsection later in this report.

Task . Development and Maintenance of Techniques and Computer Codes
for the Evaluation and Analysis of Astrionics Systems

Several computer codes are used in the analysis of astrionics
systems. "hese programs are summarized in Table 2. The table includes
reference: to prior reports for programs developed and/or used during
earlier reporting periods.

The Interactive Graphics Orbit Selection (IGOS) program has
been written during this reporting period and has recently been delivered
to MSFC for operation on the UNIVAC 1108, This program operates inter-
actively from a remote graphics terminal such as a Tektronix 4010/4012,

A complete users manual is included in Appendix A and a sample
work session is included in Appendix B, Technical details of the program

are desrribed under Task 4 of this report,
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TABLE 2. VSPRE COMPUTER CODES
o —
PROGRAM NAME DESCRIPTION STATUS™

ECOMP-1I Generates Launch Vehicle injection disper- Delivered to MSFC.

sions (References 1, and 2) Converted to 1108
EOMP-II Compares Launch Vehicle injection disper- Inactive due to

sions to mission requirements (Reference 2) lack of adequate

mission requirements,

MONTE CARLO Computes statisfied distribution of Delivered to MSFC.

Performance Code

ABBACUS

SPUN CTAGE

SIMULATION

1GCS

orbital elements from Guasgsian injection
covariance (References 2, and 3)

Generates optimal nominal trajectory from
vehicle weight statement (Reference 3)

Modular Redundant System Reliability
Analysis (Task 2 of this report)

Simulates a generalized spinning body with
mass flow and thrusting. (Reference 3
and Task 3 of this report)

Interactive Graphics Orbit Selection
(IGOS) program. Generates mission
accuracy requirements. (Task & of this
report)

Operational on
1108

Not developed on
VSPRE contract.

Preliminary version
only. Development
dropped.

Preliminary program
for specific applica-
tions.

Delivered to MSFC,
Operational on 1108

Not delivarced.

* All programs are operational on Battelle's CDC 6400/Cyber computer system.
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Task 2 Investigate Astrionics Requirements for 0SS Missions

High reliability modular computer development has receiwved considerable
funding under the NASA 0SS Launch Vehicle and Propulsion Programs SR&T program.
In particular, the Automatically Reconfigurable Modular Multiprocessor Systems
(ARMMS) project at MSFC was the prime reason for most of the effort. The VSPRE
project team was directed by the COR to review the ARMMS project and to evaluate
the concept particularly in terms of its impact on vehicle reliability. VSPRE
memocvanda (References 14 and 15) were published as the result of attendance at

an ARMMS design review and a study of ARMMS documents,

Modular Redundant System Reliability

The evaluation of modular redundant systems is a more general subject than

the ARMMS reliability study, The insight gained and the analytic tools developed for

the ARMMS~related investigations are applicable to many launch vehicle systems and
subsystems, including redundart astrionics hardware. Therefore, the analysis was
carried through to the development of a computer code, Its use and its integration

with other techniques are presented below.

Development of an Analytic Method

In order to evaluate the reliability of a modular redundant system, it {s
necessary to know the loading on the various pileces of hardware. A nominal mission
is deterministic, If no hardware failures occur, then the on-off history of every
component is known a prioxi. Thus, the on and off failure rates can be used as
appropriate in a system simulation. Analytical problems arise because, in any rcal
situation, the on-off histories are not deterministic., Generally, the evaluation
of reliabflity must be accomplished in a multi-dimensional space. The on=off
histories are correlated in a very complex ray, Every component state is
propagated as a function of the dynamic states of all the system modules, This
kind of problem can be handled by means of convolution integrals in which the final
probabilities of failure for the spare modules are dependent upon both the on and

off failure rates of the mocdules which are nominally planned for use. An active
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module which has a very high failure rate would tend to decrease the reliability f;

of a back=up module near the end of the mission, since there {s a higher probability

that it has been uged at that point. l%
The predicted reliability of any module in the system is dependent upon

the previous history and records of failures and use rates of every module in the

system. The analysis necessary to handle this problem is exceedingly conplex, and

one is finally forced to use a Monte Carlo type of approach. For many applica- N L

tions this would be too expensive and, therefore, some simplifying assumptions have

to be made. .
During the course of the ARMMS study, one of the parameters of interest

was the ratio between the active and dormant failure rates of modules. If, as has

been indicated by a recent study (Reference 16), failure rates for active and dormant

modules differ not by orders of magnitude but only by a factor of two or less, then =

in terms of numbers one normully deals with and accuracies which are required for

reliability computations - it is not necessary to include in the model separate

failure rates for the modules ir their active and passive states. The inclusion

of an extra module might {mprove reliability by two or three orders of magnitude;

whereas, accounting for different on-off failure rates would not affect the calcu-

lation nearly this much.
Another problem common to this area of reliability analysis is the large

number of individual component reliability states which must be propagated. For a

system with N modules, there are ZN different failure states the system may be in.

For a system of only 20 modules, this number is already in the neighborhood of a

million, and certainly far beyond anything that could reasonably be treated on an

independent state basis, It is necessary to view the problem {n such = way that

fewer ,tates are encountered, This is possible because, for purposes of the

re” .abil’'ty analysis, we only need to know how many of a given type of module !

have fai'-d - not specifically which onea. It is assumed that the executive system

will correctly keep track of which modules are operable. Let us define, for each

set of N modules of a given class, N + 1 states., We define a zero-state in which

all mod..les of this given class are operable, a one-gtate in which one module is

no longer working, and so on through the N-state which indicates all modules of

this class have failed. It is possible to calculate, from original occupation

numbers of each of the states, what the occupation numbers for each state at any

time in the future will be. If one starts with a zero-state completely occupied -
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that is, probability of being in zero state is equal to one and probability for each
of the other states up through the N-gtate is zero - and waits long erough, the prob-
ability approaches zero for all the states except the N-state, which approaches cne.
The probability that, at time t, one will be able to assemble from the N components
of a given class a set of M < N mcdules to perform a given task or set of tasks at
that time is simply the probability that no units have failed, plus the probability
that one unit has failed, plus ... and so on through the probability of a maximum
number of failures which still provides the required hardware. It is possible then,
by forming the sums, to determine the probability of having the necessary modules

of a given class. If we further assume that the failures of modules in different
classes are independent, it is possible to write down the probability that one can
assemble at any point in time, a complete set of hardware required by the task load
at that time, as a product of sums, It is necessary only to propagate individual
class probabilities, the number of which is linear with the total number of modules
in the system, rather than 2N. I1f there are Nk modules of type k aad Mk(t) are
required for the task load being considered at time t, tiien the work can be performed
only if Mk(t) < Nk for all k. The sets {Mk(t)} and {Nk} define the requirements and
total available hardware. The probability that the necessary hardware is available

is

Ny M
k
P(t) =m T P, () , (1)
k i=o,

where Pik(t) is the probability that exactly i of the type k modules have failed by

time t. The individual Pik(t)'s may be calculated as shown in the following derivation.
Assume Nk indistinguishable modules of type k with failure rate Xk during

the time interval t <t<L tz. Define Pik as the probability that i of the modules

have failed (and only i). Then

0< Pik(t) <1 for all 0 < i g Nk for given t

and
N
T Pik(t) = 1 for given t ,
i=0

D



Suppose that all N, + 1 of the P,, 's are known at time t.. Any P, is then calculable

k ik 1 ik
at time tz > t1 since the probability of being in the given state at t,

sum of products. The sum runs over all atates j which the occupants of state i at

is simply a

\ 1 t, could possibly have occupied at tl (i.e., all j < 1). The products are the prob-

! abilities that the ] state degenerates to the i state during the interval tystgt,
i times the probability that the set of Nk modules was in state j at time tl.
Given that the set was in state j < i at tl, the probability that

it is in state 1 at t, is

2
e
- - - ] - - - (i = j)
o-d et m D 8 1L ety t)] ’
vhere (3
N W - p! . -
Cn-t = 1-pF@-07 , the binomial coefficient.

The probability that the set was in state j at ti is PjP(ti)’ thus

= oA N = D) (e, - ty) N-j

P (t)) = e kK 2 1 A ij(tl) Cn-i
o< j<igN (4)
(i -3
[1 - etz - D ]

Finally then

Nk-Mk(t)
A (N = 1)(t -~ t) N, -j
P(t) =1 s MMk ) o T Py (e)Ck
k i=0 ogj<i k

(5)

[1 I AR “o)](i "

where P(t) is the probability of having the required hsrdware, defined by
{Mk(t)i, at time t. It is assumed that the complete sct of ij(to)'s is

known at some earlier time to'

s
st b

L

g

[
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The problem of computing the reliability of performing a mission (that is,
of successfully completing all tasks necessary for the successful completion of the
mission) reduces to two parts, One part consists of finding the definition, for all
points in time, of the minimal hardware set which will accomplish the task load
required at that time. The second part consists of calculating the probability of
having the necessary hardware available when it is required. To illustrate how one
might use some of these concepts and techniques, it is perhaps best to describe the
innut and the output of a computer prcaram which accomplishes the first step.

The input to the program whicn calculates the hardware requirements as a
function of time during the mission consists of three parts. The first part is a
listing of what hardware is available, how many copies of each type, its power and
weight, and initial reliability and the performance characteristics of that particular
kind of module. In order to be as general as necessary for the treatment of many
different kinds of systems, all modules are characterized by a set of four performance
parameters, [hese are: (1) recciving rate, (2) processing rate, (3) storage
capacity, and (4) transmitting rate. For some modules, one or more of these
parameters may be inapplicable and, therefore, ignored by the program. A memory,
for example, has a receiving rate, a storage capacity, and a transmittal rate, but
no processing rate. A data bus has a receiving and transmitting rate (the same, of
course) but no storage capacity and no processing rate. The processors have receiving,
processing, and transmitting rates but no storage capacity. There follows, in the
input, a list of tasks which may be required at some point in the mission., Tasks
normally have certain hardware requirements which include,not just a list of hardware,
but also performance characteristics required for the hardware. For example, a
given task might have a certain memory requirement, or a certain minimum transmittal
rate for data. These numbers are associated with the task together with the required
modules. The program, in associating requirements with equipment actually available, '
allocates resources to best fulfill the needs of the mission. The third section of
data names the tasks and when they are to be initiated and completed. The output
warns of any situation which may arise in which the tasks called for cannot be
performed due to insufficient hardware and will inform the user of excess hardware
(if any) which is carried and the consequences in terms of excess weight and
power requirements. The program reads che tasks sequentially and assigns hardware
based on the requirements of each task, The algorithm for the allocation of
hardware is somewhat arbitrary and must be designed for whatever executive system

is being used. The algorithm employec for the sample calculation adopts the

following guidelines:

P
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(1) If a task requires more than one of a given module
type, only currently unassigned units may be con~
sidered. If a sufficient number of such units
can be found to accommodate the task requirements,
the load is divided equally among such units.
Considering only unassigned modules minimizes the
number of units allocated to a particular task.

(2) 1If only one of a given module type is required
by a task, then no more than one of a given type
can be assigned to that task. A task may not be
allocated, for example, ten percent of each of
two memory modules,

(3) All tasks are allocated the necessary hardware
in the order in which the tasks are specified in
the data deck, subject always to the restrictions
given by (1) and (2) above.

Sample Calculation

Figure 2 shows the suite of wodules chosen for this exercise, Along

with the module names and unit designators (A, B, C, ... etec,) the active and

dormant failure rates, the four performance specifications previously discusased,

and weight ana power are given.

The hardware srecifications given do not correspond to any real, specific

hardware. Since the purpose of this example is merely to demonstrate a capability

rather than to analyze a given hardware suite, all numbers are reported in

arbitrary units rather than pounds, hours, watts, bits per second, etc,
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Figure 3 illustrates the demands on the hardware. For each task,
there {3 a list of the necessary modules and the performance require?. In the
first task, titled Receive Ground Update (Recv Gnd Updt), the telemetry is
required to accept 400 units of information per unit time, The On-line Memory
must store 64000 units of information,

Figure 4 shows the mission load (that is, the number of modules of
each type required at discrete times in the mission). At these times, it also
shows the failure state probabiliiies, the ij's of Equation 5. At 4999,90 time
units into the mission the Control System Monitor (Control Sys.-Mon) task is
iniciated.

The system requires a single Inertial Measurement Unit (IMU). Since two
such units are onboard, there are three possible states: (1) both are still working
(probability = 0,6065); (2) one has failed (probability = 0,3445); or (! both
have failed (probability = 0.0489). The probability that the need for ar ‘MU
can be satisfied at 4999.90 time units into the mission is 0.9510 (0.6065 +
0.3445).

Figure 5 provides a summary of the utilization of available modules
in the cas¢ of no failures. It provides no direct reliability information but

is useful {ii planning.
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Task 3 Investigate Scout Agtrionics Requirements

The current Scout launch vehicle utilizes an open loop autopilot
for guidance during lower stage actions and a spinning fourth stage, Without
a closed loop navigation system, Scout injection errors are considerably
larger than for other current launch vehicles,

Ovecr recent years, VSPRE has investigated a number of possible
modifications to the Scout guidance (References 2 and 3), These modifications
have ranged from an onboard closed loop inertial navigation system as part
of the proposed new vehicle (ASLV) to relatively simple modifications such
as a velocity meter and velocity vernier and/or active steering of the
spinning fourth stage.

The desirability of any of these modifications hinged on the
mission requirements for accuracy. To properly assess the situation,
accuracy requirements must be known for both currently planned launches,
and even more importantly, any missions which might be reassigned to
Scout from a higher peformance vehicle. As explained in more detail under
Task 4, adequate mission requirement data were not available for this last
purpose. This, coupled with constraints on funding for launch vehicle
modification, have left the decision regarding major improvements to

Scout accuracy open at this time.

Spun Stage Simulation and Error Model

In the course of investigating alternative guidance approaches
for the spun fourth stage, a spinning stage simulation, and a spun stage
linear error model were developed, The simulation involves a separate
FORTRAN program that considers only the fourth stage, The linear error
model is compatible with EOMP and can easily he added to EOMP when the

need arises (Reference 3),

investigation of the Dynamic Behavior of the Red Shift Probe

VSPRE was directed by the COR to aid MSFC in assessing certain
potentially significant error sairces of the spun Scout fourth stage when

applied to the Gravitational Red Shift Probe.
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The Gravitational Red shift payload is scheduled to be launched by a
Scout vehicle in 1975. The payloa® will remain attached to the burned~out fourth
stage of the Scout and is supposed to rotate at about 10 radians per second while
describing a ballistic trajectory with a coast time out of the atmosphere of
approximately 10,000 seconds [Reference 19]., Because of the long coast time,
effects that are usually ignored for short-life missions required investigation,
BCL was requested to investigate the effects of several potential disturbing forces
on dynamic stability and angular rate of the Red shift payload attached to the burned-
out Scout fourth stage. The error sources investigated included

(1) Eddy currents induced by Earth's magnetic field

(2) Veating of ammonia from the side of the payload

(3) Fourth-stage tipoff

(4) Fourth-stage thrust misalignment

(5) Fourth-stage burn-out mass unbalance

(6) Payload static and dynamic unbalance.
The eddy current problem was handled analytically; the remaining error sources were
investigated by using a computer simulation of the Scout fourth stage with the Red
shift payload attached.

Eddx Current Damping

Because of the long ballistic coast time, the effect of spin -ate damping
duz to eddy currents induced by the Earth's magnetic field was investigated.
Reference 18 gives the following formula for the damping torque induced in a cylinder
spinning about its axis of symmetry:
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T = 2J2 (1 £2f) nToyTr 4 dyvne=cm (6)
where;
J ® magnetic field component perpend.cular to the spin axis
in Oersteds
=  fineness ratio (length/diameter)
= gpin rate in radians per second
conductivity of vehicle skin in abmiica/cm

- skin thickness in cm

H A <2 € m
]

= radius of the cylinder in cm.

The following formula for magnetic field intensity is given in Reference 19 and
describes the Earth's magnetic field within about 10 percent accuracy:

C
"

Rg, |3
J /A sin® (7

where;
g - horizontal intensity at the Equator = 0,31 Oersted
RE = radius of the Earth
A = distance from the center of the Earth to the point

of interest

D
n

polar angle,

When Equation (7) is substituted int. Equatioa (6), the result is

6
T = 21 J°2 (RE/A) f2 Wy Tr 4 (8)

1+ f

when © is assumed to be 90 degrees.

The model of the Red shift payload used with Equation (8) was taker from

drawings of the payload and the Scout fourth-stage information from References 20 and

21, It was assumed that the combined packagc was an aluminum cylinder 17 inches
in diameter and 104 inches long, spinning at 100 revolutions per minute, Skin
thickness, T, was chosen conservatively at one-half centimeter. Using these

numbers, Equation (8) reduces to

R 6
T = 1180 E/A 1b-ft, €))

. . [ W T L S PRGN S

P

et - ~ ]

Ly
——

N

PR
'

S s

-
o3 F



31

According to Referunce 22, the coast starts at 196,50 seconds at a
geocentric radius of 22.75 X 106 feet (with Earth's radius being 20.9 X 106
feet), At this altitude, (R‘E/A)G = 0,61, and T = 6,4 X 10 -3 1b=£ft,

Decay of the body's angular rate is given by

.T.) t
= - 4
w w e (10)

{
i

where H is the angular momentum of the body about the gpin axis. At the start | X

of coast, H = 27.5 1b-ft-gsec for the modeled Rec¢ shift payload, Figure 6 shows

the geocentric radius (A) of the payload as a function of time. Tt also shows i

{

the stair-step approximation to A used incrementally in Equation (9) to obtain

8 an approximation to the roll rate damping torque during coast. Equation (10) may
be rewritten for piecewise solution as: ;
| i
- = t -t g
- (H ) ( n+]. n) g
l 1
vwhere g
| 3 [Re)® ;
T = 1.05X 10 A ]
n n y
l and H = 263w . :
n n :
l Results of applying Equation (11) to the stair-step approximation >£ A are given ‘
in Table 3. The decay of the roll rate is plotted in Figure 7. It is readily d
l seen that the decay due to eddy current damping is predicted to be less than one :
percent for the 10,000 seconds of the experiment. :
l Spinning Stsuge Simulation %
| ¥
Previous work for VSPRE included derivation of equations of motion and 32
l development of a 6 degree-of-freedom simulation for spinning stages (Reference 3). :
The pertinent portions of this effort are repeated here for convenience, 4
1 ;
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Equationg of Motion
The general equations of rotational motion, . presented in

Reference 23, are expressed for our notation in Equation 12:

TEIGHSW JutJu+)h Sz(rei)w (12)
i
where
T = the applied torque vector,
J = the moment of inertia about the center of

gravity, a 3 by 3 matrix,

the vector of angular rates,

| ]
e
"

S( ) = the skew symmetric operator, a 3 by 3
- %
£ mattix,’
-
ﬁli = the ith engine flow rate, and
=
f% rei = the location vector of the ith engine,
= relative to the c.g.
fé Equation 12 can be rewritten as a differential equation for the angular
- rates: .
; (f)=J-[T-S(w)Ju)-Du)] (13)
g The three-by-three matrix D is used to represent the last two terms
b of Equation 12:
. D=J+) s?(r ) (14)
- i ei
- i
-
i
-
b}
&
";‘A

* S(y)x = y cross x, the vector cross product,

§ad e
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Prram—
P

Equation 14 has terms for the time rate of change of the moment of inertia,

i*
I3

r.

3, and the angular momentum loss due to mass expulsion, jet damping. As

written, Equation 14 assumes nozzles of zero area, Figure 8a represents a

4

stage with four nozzles of zero area, each located away from the roll axis. L
If the nozzles are not on the roll axis, the jet damping effect is significant,

even for zero area nozzles. For & more practical development, especially for ii -
the case of one nozzle on the roll axis, represented by Figure 8b, an integral
over the exit area of the nozzle(s) is required. Consgider a nozrle of area A,

located with its centroid at £ relative to the vehicle c.g. as shown in Figure 9.

o
NP

FIGURE 8a. SEVERAL NOZZLES OF FIGURE 8b, ONE LARGE NOZZLE
INFINITESIMAL AREA

Vehicle c.g. 2ozt1eid
entro

FIGURE 9. INTEGRATION OVER NOZZLE AREA
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Let p be the mass flow per unit area, and s the vector from the nozzle

centroid to an element of area, dA:

iy Sz(rei) - I P Sz(t + s) dA
A

Expanding the skew squared gives
2
N sz(rei) =[p [ s2(4) + S(g)S(s) + S(s)S(4) + §°(s) ] dA
A

1f the mass flow density, p, is independent of the location, s, the
first term of Equation 11 can be expressed in terms of the total mass

flow rate th, Since s is relative to the centroid of the area,

[ S(s)da =0
A

and the two middle terms are zero. The last term is a function of
the planar moment of the area. Therefore,
. . ol 2
D=J+3 il(s (2,) +57°(s,))
i
where li is the location of the ith nozzle and Sz(si) is a function of

nozzle area and orientation.

Six Degree of Freedom Simulation

To perform analyses, and to provide a basis for
evaluating linear analysis assumptions, a general spun stage
six-degree-of- freedom (6 DOF) simulation was written. The simulation
performs a fourth-order Runge-Kutta-Gill integration of the

position, velocity and angular rate equations:

t=v,
¥ =B f/m, and
-5 r 5w s - du-Tay {sPap + 526} e ]

i
where r and v are inertial position and velocity vectors, B is the

three by three direction cosine transformation from body to
inertial space, f is the applied force in body coordinates, and m is

the vehicle mass, The attitude equation,

B = BS(w),

T S

(15)

(16)

(17)

(18)

(19)
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is not integrated. A closed form solution, developed for use in error analysts,
is used. This solution is valid over any time interval for periods of
simultaneous constant angular rates, While only an approximation for

this problem (due to time-varying rates), the error is extremely small,

Its use insures maintenance of the orthogonality of B, and its execution
efficiency is excellent.

The time-varying coefficient arrays are computed from data
describing the vehicle on a piece part basis. Each piece part is
considered a hollow cylinder with its axis parallel to the roll axis.
For each of these cylinders, the following data must be provided:

1. Length
2. 1Inside diameter
3. Outside diameter
4., Initial weight
5,6,7. Location of cylinder c.g. in body coordinates
8. Ignition time
9. Mass flow rate
10. Nozzle exit area, and

11,12,13. Thrust vector in body coordinates.

For inert masses, items 8 through 13 are not used. Fuel
masses are assumed to burn from the inside out. This approximates the
burning of many solid fuel engines.* The simulation computes the
system moment of inertia, c.g. location, damping terms, etc., by summing
-ne appropriate data for each piece part. Analysis of a Scout fourth stage
and its payload, using this cylindrical model, produces parameters that
agree well with published values (Reference 24),

Information used in simulating the Red shift payload was taken from
References 25 - 28, Mass property data were contained in Reference 25, but these
data were modified. The weight given in this reference was 144.1 1b; late
information** gave the weight as 165 1b. The moments of inertia given in

Reference 25 were increased by the ratio 1;251 y

Any assumed burning pattern can be simulated with minor coding changes.
**  Telephone conversation with Mr. Ernest Nathan of MSFC.

~ o <
e - . ) ‘ ) - "‘.k L LA .- LM .

to



B oy
R

o o

21 and 29,

2, Fuel

3. Nozzle

1. Engine case

4. Upper D section.

39

The model of the stage consisted of four pleces:

The Scout fourth stage was modeled after information taken from References 20,

The parameters used to describe these pieces and the payload are shown in Table 4,

TABLE 4. VALUES USED IN SIMULATION
Payload Engine Nozzle Fuel Upper D Section

Yength (in.) 35.0 48.0 34.0 36.7 35.2
Inside Dia. (in.) 4,0 8.4 8.4 3.0 9.6
Outside Dia. (in.) 8.0 8.6 8.6 9.04 10.8
Initial Wt. (1b.) 165.0 30.0 21,2 613.9 16,48
cg X (in.) 26.9 58.3 89.0 67.18 91.33
cg Y (in.) 0.0 0.0 0.0 0.0 0.0
cg Z (in.) 0.0 0.0 0.0 0.0 0.0
Ignition time (sec.) 0.0
Mass flow rate s—:—B) -21,2
Nozzle exit area (fcz) 2,25
Thrust X (1b.) 5925.0

Y (1b.) 0.0

Z (1b.) 0.0

Rl R A I— -

o ol sen B T dx Wi a7

w il -
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The simulation program is written to provide graphic output. An {]
example is shown in Figure 10, The Y-Z plane {s defined as being normal to
the vehicle roll axis at the start of the simulation. It then translates with

{.u.w.-u

the vehicle center-of-gravity. The trace on the Y-Z plane, then, is a function
of the angular motion of the vehicle's roll axis, as shown in Figure 11. The
dimensions on the Y and Z axes corraspond to the aines of the angles that the
roll axis makes with respect to the Y and Z directions on the Y-Z plane.

o
W,
-~

| et
[ Ero—

Discrete events are shown as triangles on the output. Each plot has

a triangle at the origin corresponding to ignition of the fourth-stage engine,
In order to avoid putting too much data on a single plot, a number of plots may
be used, each covering a distinct time period. The triangle at the origin is
shown for reference on all plots, including those that start at a time greater
than that of fourth-stage ignition. When a multiple~segment burn is used to
approximate the engine, a triangle is printed at the start of each segment's
burn,

Although results obtained by the simulation appear to be reasonable
during the powered flight portion of the mission, an unwelcome anomaly was found
to occur at burnout. The pattern in Figure 12 is typical for Scout fourth stage with
thrust misalignment during powered flight; however, the "tail" seen in the lower
left of the figure is definitely not to be expected. The pattern should be a
circle with Jdiameter about .068 (or about 4 degrees) after termination of powered -
flight. This discontinuity is apparently due to assuming a rectangular burn
with constant thrust and flow rate for the burn interval. When an eight-segment
staircase approximation to the burn was used, this effect was minimized. Further
discussion of this modification and its results is contained later in this
section.

In order to obtain appropriate tipoff response, it was necessary to
modify the fourth-stage exit area to 2.25 square feet rather than the 1.5 square o

feet given in Reference 20.

T 5 - — - .
- i st . ‘ﬂ s,
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Error_Sources Considered

Several error sources were simulated in order to determine their
effect on dynamic behavior of the Red shift payload. These sources were

(1) Ammonia ventiug from the payload

(2) Scout fourth-stage tipoff

(3) Fourth-stage thrust misalignment

(4) Fourth-stage burnout unbalance

(5) Payload static and dynamic unbalances.

Ammonia Venting., The payload includes a supply of liquid ammonia for use
in cooling the maser cavity. After the ammonia changes to gas during the cooling
process it is vented overboard, normal o the roll axis, at Scout Station No. 29.97.
Gaseous ammonia is vented at a rate of 0,28 pound-per-hour with a resultant force of
0.0034 pound (Reference 30)., Figure 13 shows the results of the ammonia venting
for the first 100 seconds of operation following fourth-stage ignition. It is
seen that the original disturbance which results in a half-cone angle of about
0.6 x 10-3 degree, decays by the end of fourth-stage thrusting to about 0,2 x 10-3
degre;. During the coast, this angle is maintained, although modulated by the normal

force due to the ammonia venting,

Fourth-Stage Tipoff., Figure 14 shows the elfect of fourth-stage tipoff.

The initial response is a half-cone angle of about 5 degrees, which is damped to
about 1.1 degrees by the time of burnout. This corresponds quite well with the values
of 5.22 degrees at ignition, given in Reference 31, and 1,11 degrees at burnout, given

in Reference 29.

Thrust Misalignment, The effective 3-0 thrust misalignment for the FW-4
engine is given as 0,3 degree in Reference 29, When this value is included in the
simulation, the plot of Figure 15 results, The initial half-cone angle of about 4.6
degrees decays to about 1,8 degrees at engine burnout, The "stem" going to the lower
left-hand corner of the plot is a result of simulating the engine burn as a single,
rectangular burn., A more detailed simulation would show the 1.8 degree hal{-cone

angle continuing during coast,
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Fourth-Stage Burnout Unbalance, This error source is attributed to
blistering of the case insulation (Reference 29), Although a small amount of flight

data has resulted in a 3~ dynamic unbalance value of 2400 oz-in? for this source,
the LTV desiga criterion calls for an upper limit of 8000 oz-in2, This latter value
was used in the simulation. <The effect of this error source was found to be insig- |

nificant and no plot {s included in this report. [-

| St

2

Payload Unbalances, Reference 20 gives 12 oz-in and 200 oz-in® for

maximum values of static and dynamic unbalances, respectively. When these terms were
added to the simulation, no significant error was found to result, Therefore, no plot

is included of the effect of these error sources, i

Thrust Misalignment and Tipoff. Since fourth-stage thrust misalignment I,

and tipoff were the major error contributions, runs were made with both of these error
sources combined in such a way as to produce maximum error. During these runs it was -i
found that the initial half-cone angle was about 8.5 degrees as can be seen from -
Figure 16. ‘ lg
During this series of rums, it was decided toinvestigate the cause of

the ''tail" following engine cutoff. Three-segment and eight-segment models of the ‘}
thrust and flow rate for the engine were incorporated into the simulation (See Figure 17),
Results for one-, three-, and eight-segment models during the last portion of powered lf
flight and the first few seconds afterward are shown in Figure 18-20, respectively. For.
the original, one~segment model (Figure 18), a half-cone angle of 20 degrees results. h%
Figure 19 shows a half-cone angle of about 9.5 degrees for the three-segment model.
When the 8-segment model is used (Figure 20), the half-cone angle is about 2 degrees.
This is the same value that would be predicted by examining the trace of Figure 16 just ..
before burnout., Thus, it is concluded that the anomalous behavior in many of the plotsi:

after burnout can be ignored.
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Concluding Remarks

From the results of the investigations, it appears that the error
sources considered are not likely to cause significant problems in conducting
the Redshift mission. It must be realized, however, that the simulation used
for most of these studies does not use detailed models of the vehicle and

payload and, thus, subtle effects could remain undiscovered.
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Task 4 Perform Mission Requirements Assessments

Studies conducted under this contract have been concerned with
the assessment of conventional launch vehicle astrionics capabilities and
their adequacy for projected mission requirements. Injection accuracy has
been a primary concern. Navigation accuracy analysis techniques for both open
loop (Scout, Titan IIID), and closed loop (Delta, Atlas/Centaur, Titan/
Centaur, etc.) were developed. (References 1-3)

These techniques permit evaluation of current (or proposed
improvements to) injection accuracy. To objectively apply these techniques,
a concise set of allowable injection conditions must be known. Investigations
of missions frequently indicate arbitrary or vague specification of allowable
deviation from the desired aim point. For example, one payload was placed in
an orbit well outside the specified "window' but was found to provide experi-
menters with more data than would have been obtained had the nominal orbit
been achieved. Considerations such as these led to the investigation of
the relationship of experiment oriented parameters such as orbit/earth and
orbit/sun precession rates to satellite injection conditioms,

Concurrently, Battelle personnel were involved to varying degrees in
the initial planning phases of future missions (HEAO, SEASAT and LAGEOS). In
each of these cases, potential experimenters needed answers to questions

requiring analyses outside their individual technical disciplines. Thus, NASA

launch vehicle offices and vehicle prime contractors were called upon to provide

analytical supnort well in advanced of the approval of experiments and missions.

Conducting effective tradeoff analyses of even a few alternative orbits can r

require significant manpower and computer time if traditional detailed analytical

techniques are used,
To meet both the needs of the astrionic evaluation function and the

misgion planning function, the Interactive Graphics Orbit Selectiom (IGOS)
program was written.

Experience has shown the value of presenting a synopsis of system
propulsion capabilities and limitations to potential space transportation
system users, This was accomplished by periodic publication of, Reference 34,
the Launch Vehicle Estimating Factor Book (EFB) by the 0SS Launch Vehicles
and Propulsion Programs Division, Code SV [now Expendable Vehicle Programs
{(Code MV) in the Office of Space Flight (0SF)]. This planning handbook (EFB)

contains data, usually in graphical form, for:




by a payload planner.

(1)

(2)
(3

(4)

56

Launch Vehicle payload capabilities versus
characteristic velocity, V,

Earth orbit and planetary mission Vo requirements
Determining Launch Vehicle payload capability versus
Earth orbit parameters (perigee, apogee, and inclina-
tion) for specific vehicles

Migsion restrictions (orbit life time, range safety,

ete. ).

These data are presented in a form sultable for interpretation

While this necesuitates reasonable engineering

approximations, the data are sufficiently accurate for trades between the

ugsers desires and the transportation system capabilities.

Developing mission

specifications using this handbook provided an opportunity for the payload

planner to consider a wider range of alternatives than would be possible using

detailed analysis techniques.

Detailed analysis could be performed later in

the planning cycle and be based on a feasible set of mission specifications.

The availability of interactive graphics terminals and central com-

puter software has permitted developing various planning tools including one

for preliminary mission planning which is far more effective than the tradi-

tional handbook format,

Several years of successful operation of the NASA

Interactive Planning System (NIPS) by both 0SS and OA had previously demon-

stratedthe feasibility and reliability of financial analyses performed using

interactive graphics terminals for decision making, report generation, and

data file maintenance.

The interactive graphics tools have now been extended

to permit preliminary mission planning by this program is far more versatile

and effective for Earth orbital mission planning than the traditional handbook

format.

Appendices A and B.

IGOS,

i . et

The following paragraphs summarize the operation of

A detailed users manual and sample work session are included in
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1GOS Program Description

The IGOS program facilitates quick-response assessment of Earth-

orbit mission requirements and their trade-offs with launch-vehicle capabilities.

By using an interactive graphics computer terminal, a quick-response low-cost
analysis can be initiated early in the mission planning cycle. Application
of this program in no way eliminates the need for the traditional detailec!
mission analyses during later phases of mission planning. It does, however,
reduce the necd for major iterations in the planning cycle due to unacceptable
orbit characteristics.

1GOS utilizes the capabilities of interactive graphics terminals, so
experimenters and mission planners can clearly visualize the many possible
orbit alternatives that can satisfy their mission requirements. The operating
environment for the IGOS system is illustrated in Figure 21. The user
enters a set of mission requirements at a remote graphics terminal and
receives appropriate graphical and textual displays. The information
displayed enables the user to select acceptable alternative Earth orbits.

Graphical output is in a two-dimensional design space -~ altitude and
inclination for the vertical and horizontal axes. Thus, a point in the plot
represents a circular orbit. Regions represeating unacceptable orbits are
shaded, as shown in Figure 22. The shaded areas result from the constraints
imposed by the following requirements and phenomena:

(1) Earth-observation coverage

(2) Radiation environment

(3) Sun-orbit precession

(4) Orbit decay

"
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(5) Launch-vehicle injection accuracy .
(6) Launch-vehicle payload capabilities.
Each of these is described in the following paragraphs., The

ugser-supplied data are listed and a sample plot is shown, This is followed .

by a hypothetical exercise using all of the features.

Earth-Observation Coverage

Input Data: !
e Llatitude range of interest,
e Days allowed for viewing all longitudes
within the latitude range, and
e Sensor data (maximum slant range, minimum
elevation above the horizon, field of view,
and resolution).
In the resulting display, the shaded areas indicate all orbits
which do not view every longitude in the latitude raage of interest in the

allowed time.

Radiation Environment

Input Data: '
o Aluminum shielding density,
e Allowable fluence (flux-time integral)
accumulated inside the shielding, and
® Mission duration for accumulating the fluence.
Orbits which experience excessive fiuence are indicated by

verti-al hatching in Figure 2<.
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Orbit to Sun Precession

i

Input Data:

Mo g orme

e Allowable precession rate.

The acceptable region is shown by dashed vertical lines, as shown

i

in Figure 23, The center line denotes the locus of zero precession (sun

synchronous orbits), and the other two lines indicate the allowable limits

Sandlohad

for an acceptable precession rate. %
3

Orbit Decay and Launch-Vehicle Injection Accuracy %
These separate phenomena are both related to a specific nominal f

injection condition, and their effects are displayed together. i
Input Data: ?

e Injection altitude, é

e Injection inclination, E

e Spacecraf- ballistic coefficient, E

e Launch date, and %

® Mission duration. g

A vertical line is then displayed at the specified inclination, as é

shown in Figure 24. "Tick" marks indicate the nominal, plus and minus, one-
sigma and three-sigma altitudes. Ticks on the left represent the dispersion
of initial orbits; ticks on the right represent the corresponding altitudes
after the specified decay time. Ticks occurring above the top of the plot
are indicated by displaying their altitude; those below the bottom are

annotated with the date they wovld pass the minimum altitude.
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Launch-Vehicle Payload Capabilities

Input Data:
e Launch vehicle and
o Payload weights of interest.
All launch-vehicle and launch-site data are stored with the program.

When a launch vehicle is selected, equipayload weight contours are plotted, as

r—
i

shown in Figure 25, The contours are the altitude at which the vehicle can inject;

the payload into a circular orbit, as a function of inclination., For each
inclination, all of the possible launch sites for the selected vehicle are
considered, and the site yielding the highest altitude is chosen. Launch azimuth

¢~ straints and plane change losses are included in the performance calculations.

Although Figures 22 through 25 show separately the important features
of IGOS, the full benefit of the program is apparent when these plots are
superimposed and modified interactively. Consider the following problem.

It is desired to view all the Earth's surface between 20° and 60°N
latitude at least once every 30 days for a 200-day mission. Assume a sensor
with the following characteristics:

® Maximum slant range 1200 n.mi.

® Minimum elevation 40o

® Field of view 400
® Resolution of 10 n.mi. on the Earth = 0.1o at the
sensor,

The orbit should precess relative to the sun less than 30° during

the 200-day mission.
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It is feasible to carry 0.15 g/cm2 of shielding to protect critical
subsystems, and it is desired to keep the fluence below 1.24 x 1012 1-Mev
equivalent electrons per cm2 over the 200-day period.

A first look at these requirements results in the plot shown
Figure 26. Study of the display indicates that orbits of interest are near
90° inclination. Figure 27 was created to "zoom in" on those inclinations,

A trial nominal orbit of 185 n.mi, altitude, 96° inclination, and a
tentative launch vehicle (hypothetical data are shown) are selected, which
result in the solid vertical line showing injection dispersions and orbit decay
being added to the display (Figure 27). That line shows that the expected
injection dispersions lie across two unacceptable regions (insufficient coverage).
Also, there is noticeable decay in 200-days, especially for a -30 injection.
Using the indicated decay as an estimate of decay rate, an injection near +20
would pass through the narrow unacceptable region. Likewise, injection near
-30 would pass through the larger unacceptable region. While this region is
wider, the decay rate at the lower altitude is faster. More detailed evaluation
of this problem would be possible by plotting the decay for shorter mission
times to establish the time spent in the unacceptable regions. Likewise,
other coverage requirements could be analyzed to establish what coverage is
achieved in the unacceptable regions.

This example demonstrates the capability of IGOS to serve as an
automated sketch pad for rapid assessment of alternative orbits. The avail-
ability of such a tool offers several benefits. First, the quick-response
analysis will ensure that a wider range of alternatives is considered early
in the planning cycle, thus the orbit finally selected will be more likely
to be a best match to the all of the objectives of the experimenters. Second,
the improved preliminary planning cycle will reduce costly iterations during

the later detailed analysis phases of mission planning.
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This program displays a concise set of mission requirements
in terms of allowable injection dispersions, This format provides the
mission specifications necessary to assess the suitability of booster
guidance accuracy for both current systems and proposed modifications. The
program is currently operational on the Battelle-Columbus computers with
terminals in Columbus and at NASA Headquarters and is on computers at the
Marshall Space Flight Center.

1GOS Mathematical Models

1GOS uses a set of separatc mathematical models, cach with its
own input paramcters and cach computing data for plotting on a common
sct of scales. The vrogram is organized intoe groups of subroutines, each
associated with a separate mission analysis phenomena. These groups of
routines can he taought of as scparate analysis programs. Each generates
data for plotting in the following two-dimensional design space:

Attitude h, h |, h < h , and

min a

-_— — <

Inclintion, [, T . [ I .
min = — Twax

The following discussion describes cach of the scparate models.

Earth Coverage Model

The object of the Earth coverage model is to shade those portions
of the design space (I and h) which do not satisfy the requirement to view
all points on the Earth's surface between latitudes Gi and 62 at least once
in any time period, TC.

The analysis considers a scnsor model which computes the radius
of the circular avea on the Earth's surface viewed at any instant in time,
This radius is expressed in terms of the angle, *, of a cone from the
Earth's conter and is a function »f the orbit altitude and the sensor
characteristics as discussed in the Sensor Model section later inm this
report,

When a sincle latitnde is considered, the swath vieued by a
s nsor intersects the latitude iv cee or tto bands of lragitude vith
width V', V is a function of the cnegle, *, the latitude 7, and the orbit

2ltitude and inclication,
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The ground track of the orbit shifts during each orbital pass
due to the Earth's rotational rate, wes and the orbit's precession rate,
wp. Each pass is shifted in longitude by an angle, S, After many orbital
passes, a distribution of ground track/latitude intersections results,

The spacing between these intersections are referred to as gaps, G, If
the largest gap is less than the longitude viewed, total coverage is

achieved, That is, when

G (T, h, I) <V [¥(n), 8, h, T} (20)
M ¢

is satisfied, adequate coverage is achieved.
The following sections discuss the sensor model with viewing

angle (), the longitude viewed (V), the orbit shift (8), and the maximum

gap (G ) in that order,
M

Earth-Observation Sensor Model, IGOS includes a sensor model

which is used to calculate the instantaneous area viewable as a funetion

of satellite altitude. Among the parameters included are the following:

(1) © = sensor field of view limit

o
(2) 8 = sensor angular resolution
(3) s, = maximum sensor-to-target slant range

(may be Jimited by uplink sensitivity or
downlink power supply)

(4) Y = minimum elevation angle (must be set to
meet minimum lighting constraints, to
avoid excess refraction of light signal,
and to clear ground obstructions),

Items 1 and 2 are sensor parameters, Items 3 and &4 may be either sensor

parameters or mission design factors.
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Other variables and parameters used in the mudel include the
following:

(5) 8 = sglant range

(6) h = altitude

(7) ¥ = viewed area half-angle
(8)
9

elevation

® <
u ]

T=-2{(+Y)

(10) = linear resolution at target center

(12)

(11) X, = linear resolution at target perimeter
RE = earth radius

L

s

(13) , Ly, Le = flags which indicate which parameter

limits the radius of the viewed area.

Figure 28 depicts some of the relationships among these variables,

The constraints to be satisfied are:

(14) 8 < 8
(15) & < 6
(16) v 2 v,

(17) XL < s Ao/sin Y

As defined here, a smaller value for resolution indicates '"better' resolution.
Generally, each restricted parameter defines | as a function of altitude. The
composite graph of § as a function of h is the piecewise-smooth curve repre-
senting, at each altitude, the most restrictive parametcrs. Figure 29 shows
the flow of the calculation and illustrates the equations used. The limiter
flags are initialized to zero. If the altitude is greater than the maximum
sensor-to-target slant range, the viewed-area half-angle is zero. Otherwise,
it is assumed that the limiting parameter is the elevation restriction and
theta is calculated. If the sensor field of view limit is exceeded, theta

is set equal to it and the elevation angle is recalculated. In either case,
if the resulting slant range is too great both theta and the elevation angle
are recalculated after setting the slant-range=-to-target-perimeter equal to

its limiting value.
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To illustrate the utility of the model, an example is presented.

The sensor is assumed to have a field of view . © 40 degrees and an angular
resolution of 0.01 degree. The desired lineal resolution is 1 nautical mile.
The minimum elevation angle is 40 degrees and the range limit is 1200 nautical
miles.

In Figure 30, the solid curves show ¥ as a function of h considering
each limit as {f it were the only constraint. The cross-hatched segmented line
is the pilecewise-smooth curve reprz2senting § as a function of h., 1In this case,
the resolution constraint is never a limiting factor for altitudes ranging
up to 1000 nautical miles. The sensor field=cf-view is limiting for the lower
altitudes. At 660 natical miles the elevation angle is the most restrictive.
At 870 nautical miles, the range restriction is dominant. The maximum value
of ¥ (approximately 12 degrees at 870 nautical miles altitude) corresponds to

a great circle distance of about 720 nautical miles on the viewed area.
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A
Ly= 1

RE cos Yy

——— — §= 2 arcsin [ﬁe T

|

Y =arccos

d=Rg(x-0-27)
I=1+]

S=Rg sin [12(7-8)-7] /sin('?? l

[( 1+ h/RE)sin(G/Z)] :

-

X_ = 8A, /siny

Xc = hA,
v = d/2Rg

La‘l-r'o
Ls"

$ =3,

Y = orccos{[Rf* s*- (REH\)Z] /ZREs} -w/2

FIGURE 29, FLOW DIAGRAM FOR SENSOR MCDEL
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£ 3
Longitude Viewed. A single orbit pass covers the surface 3
of the Earth with a swath as shown in Figure 31. The band of longitudes };
virwed, V, is shown for a particular latitude, g. Note that for a .
larger inclination the longitude viewed would be two smaller bands, while
for a smaller inclination no longitude would be viewed. ‘
To compute the portion of any latitude viewed in a siogle . .
satellite pass, it will be convenient to develop the orthogonal trans- ‘ T
formation from a set of orbit reclated coordinates, L) to Earth coordinates, .
L This transformation is . f
 — — e oy r- w——
-s, Ol 11 0 O < - s, S
€0 % b %¢°1 o1
s ¢ 010 c_-s_|=|s cc - c s (21)
o6 ¢ I I ¢ ¢ I ¢ 1
c
LR | I O
where
c¢ and s¢ = the cosine and sine of the precession of the
orbit relative to the earth, i.e.:
$ = (wp - we)rl
cr and 51 = the cosine and sine of the inclination, and
the coordinates are:
X, = in the equatorial plance
Ee = Yo = in the equatorial plane, normal to X, .
29 = the polar axis
and
= the linc of nodes,
L P = in the orbital plane normal to X,
= normal to the orbital planc
T a S - . B i 7w = xw"w x5 AN B
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Since all positions of interest ar: on the Earth's surface, which is

assumed to be spherical, all position vectors are treated as unit

vectors,

The upper and lower edges of the swath are expressed in

orbital coordinates as

- -
c,c

v o
cC.Ss

r = o
r,=| %
is‘i'

b, —

(22)

where ¥ is the sensor angle, and Sy and c0 are the sine and cosine of

the orbit anomaly angle, wot.

The edges, in Earth coordinates, are found by applying the

transformation of Equation 21 to Equation 22:

— [~
- *
Xe C®C\IICO SCCIC\D’SO S(bSISq‘y
= + t
ye = SQ‘C‘kCo C(bclc\lrso cﬁsls\b
4
Ze SICwSo CIS‘LY ‘]
b e b .

The crossing of the latitude of interest is found by setting ze

to the sine of the latitude, then solving for the orbit angle

-1 -
mot = gin [(s9 + Clsdf)/sICW] .
In the interval o < uot ~ 21, Equation 24 has four, two, or no
solutions depending on the specific angles:
lIl < @ - 1) No solution
® - %)< ill < (8 + {) Two solutions, and

® +49) < III Four solutions.

(23)

equivalent

(24)

These cases correspond to no, one, or twe bands of longitudes viewed

at a specific latitude.

Tegn e eng,
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With sets of solutions for w t at the crossing of the latitude,

the corresponding longitudes can be found from

Vs tan! (y:/x:) - tan-l( y;/x; +0”pﬂﬂe)(f+'t') 25)

with x and ye obtained from Equation 23. The band of longitudes viewed
can be found by taking the appropriate differences of Equation 25 for thc
special cases of the solution to Equation 24, The resulting function is
sketched for a single altitude in Figure 32. For a2 in IGOS, it is
interesting to consider the value of V as a function of both altitude

and inclination (the design space) as shown in Figure 33,

Orbit Shift Parameter. To compute the distribution of gaps, it is

necessary to know the amount of orbit shift per orbit period, shown as § in

Figures 31 and 34. The shift is

S = wpeco (26)

where wpP is the precession relative to the rotating Earth,

e = wp - W, (27)

and to is the orbit period,
to = Zn/mo . (28)

Combining ﬁquations 26, 27, and 28 gives

n ‘m - ,
= £ (29)
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' The Earth's rate is a constant, w, = 7,292 x 10-5 rad/sec, while wp ')
- l and w, are functions of the orbital altitude and inclination: ;
3/2
¢ l o = l-ll/z/r / (30) ] N
l and from Reference 32
; 7/2 1
: w =K (r/r cos 1 31 “
: where ; ‘
‘ l §
‘ r = orbital radius (h + re), i
1 ’ te = Earth's equatorial radius (20902313 ft), g
: 2 ' . 16 372 ¥ 5
pu = Earth's gravitational constant (1.407528 x 107 ft ‘s ), and - S
3 - q
l Kp = ~9,97 deg/day or -2.0149 x 10 6 rad/s. g
) i Substituting Equations 30 and 31 into Equation 29 gives ’ :
b S = 2nm 172 2 cos 1 = T2 T . (32) .
: l [ r 78 p ,
’ It should be noted that, for constant altitude, S is linear on the cosine ’% A
: l of inclination, b
S = ca(r) + cb(r) cos 1 (33) ‘*
]
X where I
I
E c_ = Zﬂwer3/2 , and i
a 172 %
| « : 02
cp = 2 e 3
1/2 2 § .
- I i r %
: 4
. E
¥
£
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Thus, for a known altitude, it is a simple matter to corvert between
inclination and or>it shift, The relationship between shift and
inclination is shown in Figure 35. fhe curvacture of the locii of

constant 8 result from the dependence on the cosine of inclination,

Distribution of Gaps. Figure 36 shows the subdivision of longitude

by many orbital pamses. Note that, for the first few passes, the gaps are:

(1) 1 gap of (2rm- NS), and

(2) N gaps of S.
However, after a specific number of passes, the original gaps are subdivided
into even smaller intervals., In general, after any number of passes, three
gap sizes exist such that:

G,N. +G,N, + G.N_ = 2, and

11 22 33

N1 + N2 + N3 =N+ 1,

Now consider a fixed number of passes, Np. For the IGOS coverage model
Tw
c o

Np = Ton

a constant for cach altitude of interest, The coverage fuuction requires
calculation of the maximum gap width as a function of S [{.e., GM(S)].

If many cases are evaluated, each with the same Npand differing
value of §, a plot such as Figure 37 will result. Note that, while there
are generally three gap sizes, at specific values of S the smaller gap
width goes to zero and the two larger sizes become equal., At any of

these discrote values, Si’ there is only one gap size, G Tl.ese cases
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are the values of § which are an exact proper fraction of 27, i
i
M, o
S = = 2n (34)
i Ni

where the denominator N1 must be less than or equal to the number of

passes,

The gap width is then

Gi = Sz;l » (35) -
i

that is, with all gaps equal, the product of width and number must
be 2n, These values of S are often called resonant orbits.
With the discrete values known, the maximum gap varies
linearly between successive points, 9{ and Gi’ as shown by the
upper line of Figure 37. The fact that the maxiin and all other gaps
vary linearly with S can be shown by considering any pair of longitudes.
After i passes, the longitude is -

¢i = 18- 2n Ki

where Ki is the largest integer < {§/2m, Ki is needed to adjusnw1 to be in

the interval 0,2, Thus, any longitude is piecewise linear on S and the

gaps, which are merely differences ¢i - ®j are also piecewise linear m

S.

i
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To compute the discrete values, we must find all values of §
vhich are exact proper .ractions ‘f 2m with denominators less than or
equal to Np. An example of a set of such points is shown in Figure 38,
The points which represent proper fractions are shown solid. The improper
fractions are shown as circles. The hyperbolae for constant M have been
added to aia .nterpret~-ion, .

Fo a case with 10 passes, the maximum gap function is plotted
in Figure 39. With 11 passes, the olot shown with a dashed line results,
Note thuet one additional pass greatly changes the shape of the function,

When typical coverage times are considered, Np, can be quite
large, For example, with near Earth orbits having periods on the order
of 120 min (12 passes per day) and coverage times, Tc, of up to 30 days,
Np of up to 360 can be obtained. Plots such as Figure 38 and Figure 39
would have on the order of Npl points, a very large number, However, the
function GM(S) is needed only to establish when the gap width exceeds
a known value Go' To compute the S for which Gm(S) > Go, only the point
pairs with at least one point greater than Go are needed, Thus, an
algorithm for finding Gm(S) can be developed which does not require

inspection of all possible points. The points will exceed G, when

N, <N =G /2m . (36)
i o o

Thus, it is necessary to find each point (integer fraction),
Si’ Si , with a denominator less than GO/Zn. Then, the nearest adjacent
fractiﬁns (S; and SI) with numerators less than Np must be found., Using
these points Gm(S) will result as shown in Figures 40 and 41. While the
function is unknown for regions between points with Gi less than Go’ it

is accurate for all segments above or crossing Go' Thus, it is adequate

for locating the values of S at any value G equal to or greater than GO.
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A further reduction in the number of points to be calculated

is possible because, for any one altitude, a limi:ad range of inclinations
and, thus, a limited range of S is of interest.

With the function Gm(S) known, and S determined from the altitude
and inclination, Gm as a function of altitude and inclination are known.
A sketch of this function is shown in Figure 42, The sketch has been
simplified to ease interpretation. In general, the function is a series
of ridges and valleys which are distributed along the locus of equal orbit

shift as shown earlier in Figure 35.

Combined Coverage Model. The IGOS coverage model operates by

combining the longitude viewed model (Figure 33) and the maximum gap distri-
bution model (Figure 42) as shown in Figure 43, Adequate coverage is assured

when V is greater than G giving a display such as that shown in Figure 44,

The plot is generated by solving for the gap distribution (Figure
37) for each of 51 discrete altitudes, The approximation of Figures 40 and
4] are used to reduce execution time and cove storage. The minimum gap con=
sidered, Gy, is {/cos 8 which is less than the smallest value of V versus
inclination. When two latitudes (91 and 92) are specified, the longitude
viewed function V uses the minimum of that for the two extremes of latitude.

When the inclination is such that two bands of longitude will be
viewed, the second largest gap distribution is used (shown by a dotted line
in Figure 37). This accounts for subdivision of the largest gap by the

second "view'" of the desired latitude,
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When a large range of altitudes is considered, there s a risk
that none of the 51 discrete altitudes considered will fall in a forbidden
(inadequate coverage) region, The forbidden coverage (values of §) may fall
between two discrete altitudes., This would result in a '"clear" area on
the screen with no warning to the user. If the space b :ween the discrete
altitudes is large enough for this to occur, evaluations are made for
additional discrete altitudes between those 51 usually used. Any "forbidden"
conditions encountered in the sub interval are plotted as if they occurred
at the nearest usual discrete altitude.

This coverage model has been exercised on a large number of cases
and has proven to be an excellent means of indicating which orbits have the

desired Earth coverage patterns.

Radietion Environment

The IGOS radiation model involves a straight-forward use of s
data published in Reference 33, These data are log-log plots of equive- l
alent 1 Mev electron fluence per day versus altitude for several shielding
densities at inclinations of 0, 30, 60, and 70 degrees. IGOS computes
the maximum altitude versus inclination display by linear interpolation

of the log-log data,

Orbit=to-Sun Precession

The orbit-to-Sun precession lines are plotted by solving Equation
31 for the inclination as a function of altitude and the allowatle precession

rate

p|rx G7)
K
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where the allowable precession rate is computed from the allowable orbit/Sun
precession angle, ¢so’ and time, Tso' (both user entered data), and the angular

rate of the Earth's motion about the sun, mes’

w =w *¢ /T . (38)
p es 80 80

Plotting Equations 37 and 38 results in two lines of altitude versus
inclination, between which the orbit will process relative to the sun

less than ¢ in time, T .
80 s0

Orbit Decay

The IGOS decay model operates by numerical (4th-order Runge-
Kutta) integration of

s (az,/ ) (39)
dh

where dL/dh is the derivative of orbit lifetime as computed in Reference
34, Using the technique of Reference 34, for circular orbits,

Q_L = dfeShz o f (I)
i = Bt f () = I (40)
where
Bc = the spacecraft ballistic coefficient,
fs(t,h) = the solar activity factor,

fl(h) the normalized lifetime, and

fI(I) the inclination factor,

§ ety
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IGOS contains the data for f, and f,, as shown in Figures 45

and 46, which were taken directly from Refevence 34,

The solar activity factors requires estimation of future solar
activity, Predicticns to 1988 were obtained from MSFC and supersede the
values given in Reference 34. The solar activity factor is computed from

X
fs(t,h) - £ (t) (41)
where the exponent X is

X = .89027 (3 + 3.5 a - .5 a?) , aud

a = (h - 360)/240

with h expressed in km, The time factor ft(t) is plotted in Figure 47,
IG0OS implements the functions shown in Figures 45, 46, and 47,

by performing linear interpolation and the appropriate unit conversions,.

The differential equations, Equations 39 and 40, require the
derivative of fl(h)' This is computed numerically from

dfl(h) fl(h + dh) - fl(h - dh)

- (43)
dh 2 dh
with dh set to 0.5 n, mi, Integration steps are computed by
dtmax’
dt = Min or . 44)
-dhmax/lx

With dtmax = 0,2 years and dhmax = 0.1 n, mi, Thus, no integration

step excceds either 0,2 years or 0.1 n, mi, Initial conditions are entered
by the user and integration is stopped when time equals the specified mission

duration, or altitude decays to the value represented by the bottor. of the
IGOS plot,
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Launch Vehicle Injection Error Model

I1GOS rcquires data for the dispersions in injectior altitude
(semi-major axis) as a function of orbit altitude and inclination. For all
current conventional launch vehicles, the inclination dispersions are
negligible for ordinary purposes and are not considered by IGOS.

In its current version, 1GOS contains only a Scout error model.
The other vehicles utilize closed loop guidance and the resulting errors
are small enough as to be, in general, negligible, If the injection errors
of these vehicles are of interest for specific sensitive applications, they
could be included by creating injection error tables similar to those in-
cluded for the Scout. The data can be obtained from the launch vehicle

project offices,

Scout Error Model

The Scout Project Office and LTV suggested Reference 35 as
the best source of Scout accuracy data, This report includes altitude,
velocity magnitude, and flight path angle dispersions, These data were
combined *o obtain the equivalent circular orbit semimajor axis dispersions
shown in Figure 48. 1IGOS performs linear interpolation on the data to
obtain the one sigma altitude dispersions as a function of nominal orbit

altitude,

Launch Vehicle Performance Model

The IGOS launch vehicle performance model accesses a mass
storage data file with a separate file record for each vehicle, To add
a vehicle to the IGOS data file, the following data are required:

(1) VRij’ the horizontal inertial velocity capability of the

booster vehlcle for an east-launch from ETR with a given
pay’oad (Pi) to a given altitude (Aj)' Up to 20 payloads
and 5 altitudes may be used,

2) VAi, the delta-velocity of the fourth stage

(Scout vehicles only) carrying payload, Pi’ and

(3) ILSK, the indices of the sites from which the vehicle may

te launched.

™
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These data may be obtained from published launch vehicle performance
documents, or created using the NLVP-Performance program described in

Reference 2 (or other similar programs).

When the IGOS user specifies a particular launch vehicle, a
set of vehicle performance tables are created from the performance data

file. At this time, the range of altitude and inclination of interest

have been defined. These tables consist of:

1) PLij' the payload capability for a circular orbit at
altitudes Hi and inclination, Ij’

2) Lsij’ the launch site used in computing PLij’ and

3) Azij’ the launch azimuth used in computing PLij'

The program computes 41 inclinations and 9 altitudes. The 9
altitudes are distributed evenly across the range of the IGOS plot, For
the inclinations, a set of 25 predetermined inclinations, shown in Table 5,
are examined and those that lie in the range of the I30S plot are selected.
The set of 41 inclinations is then filled by inter leaving additional incli-
nations chosen evenly across the range of the IGOS plot. This technique is
used to insure sufficient detail in the plots ncar the regions of plot
discontinuities. Thus, the inclinations have been chosen near the launch
site latitudes and near the inclinations for which the preferred launch site

changes with inclination,

A set of launch site data is also stored. These data consist
of launch site latitude and the launch azimuth constraints for each site.

The payload table, PLi is computed by computing the payload

s
capability from each launch sitejpermissible for the vehicle. If more
than one site is permissible, the site giving the greatest payload is
used. The direct ascent launch azimuth is computed., If this azimuth
exceeds the launch azimuth constraint for that site, the constraint value
is used and a plane change penalty is computed,

With the payload table PLij computed, the user then enters a
specific payload value (PD) of interest., An alctitude versus inclination
contour is then plotted by linear interpolation at each inclination to

compute the altitude corresponding to PD,

e et g . AR
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TABLE 5, PRESTORED INCLINATIONS FOR IGOS PERFORMANCE TABLES
1 0 14 49,00
2 2,99 15 50.00
3 3.01 16 51.00
4 28.39 17 64.00
5 28,41 18 65.00
6 36.99 19 66.00
7 37.01 20 79.00
8 40,00 21 80.00
9 41.00 22 81.00
10 42,00 23 142,99
11 44,00 24 143,01
12 45,00 25 180.0
13 48,00
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CONCLUSIONS AND RECOMMENDATIONS

The following summarizes Battelle's recommendations for further
research based on the current status of the work for each task and the

current t ends of NASA advanced studies activities,
Task 1

The computer codes, described in Table 2, have generally proven
to be useful in the conduct of VSPRE studies. Several, however, have been
wicdely ur2d beyond the scope of VSPRE, Others could also, with further
developue it, have similar continuing utility.

EOME -1

In addition to EOMP use on VSPRE at Battelle, and by NASA at
MSFC, it has frequently been used by Battelle on both the DIGS (Delta Inertial
Guidan:e System) project and NLVP (NASA Launch Vehicle Project). Some of
these users also made several useful modifications to it:

(1) Impact point dispersions (MSFU)

(2) Metric output (MSFC)

(3) Orbital launches for Shuttle upper stages (BCL/NLVP).
It is recormended tnat EOMP-I be maintained and modified as necessary to
maintain its applicability in satisfying NASA booster dispersion analysis

needs.

IG

This progran has been given wide visibility within NASA and
has generated considzrable interest.

The co:.ept of IGOS, allowing quick response assessment of
candidate orb.cs in defining mission requirements, is of interest to mission
planners a well as launch vehicle and astrionics specialists. The display
of domai s of acceptable orbits actually identifies candidate orbits which
mini- {ze the impact of Injection dispersions. For defining astrionics re-
quirements in a mi-:sion planning (orbit selection), the current IGOS is only
a preliminary sperational program, Several additional features have already
been ident fied for inclusion in ICOS, These are discussed in the following
pacagraphs,

. - -
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Specific Site Coverage¥, The IGUS Earth observation model presumes
that the experimenter seeks frequent coverage of all longitudes in a given
latitude band, For some missions, particular geographic locations are of

interest; or, even with full longitude coverage, specific communication sites

G R A SE TR Ry e W

must be contacted for data down-links. An alternative coverage model could

indicate orbits which view a specific set of sites.

PERY L

Side Looking and Multiple Sensors. Many sensors view a portion
of the Earth along a path displaced from the sub-satellite ground track.

Also, many missions carry multiple sensors, each with a different set of

e A AR R B 3 o

viewing requirements, SEASAT, for example, carries multiple sensors, some i

of which are side looking. Straight-forward coding modifications to IGOS

R Y

could enable it to handle such satellite missions,

Elliptical Orbits*, The prrsent version of IGOS considers only

circular orbits. While extensionof the philosophy of the IGOS design volume
to a three-dimensional space (apogere, perigee, and inclination) is straight
forward, graphic presentation of three-dimensional spaces is difficult. Most
likely, the best approach would be to continue to display a two-dimensional
plot with the third-dimensional spaces is difficult. Two examples would be:
apogee and perigee at a specified inclination, or eccentricity and inclination
at a specified semi-major axis. 1f extensive application of TGOS is contem-

plated, such modificationsg should be cinsidered.

Shuttle Performance Calculations*., With the exception of the

launch vehicle performance model, all IGOS features are applicable to the

Shuttle as well as conventional launch vehicles., If it were assumed that

the users mission would determine the orbital parameters for an entire

Shuttle flight, the Shuttle (and its upper stages, if any) could be added j’
to the vehicle data file, However, most missions will use only a portion of ‘
the Shuttle capability. Within this framework a number of types of contours

could be drawn by 1GOS to aid the user in selecting an orbit, For example:

*These efforts have been included in a new study, at Battelle funded by MSFC,
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o The Shuttle user charges to any orbit,
e The extra delta-V required to reach any orbit from
the lowest cost or "nearest' currently scheduled
Shuttle orbit placement,
® Regionsg of common acceptability for experiment
pallet sharing with other payloads.
All of these require access by IGOS to data files which contain current
Shuttle schedules and other Shuttle payload data. Many groups whithin NASA
are considering particular aspects of the Shuttle scheduling and planning
problem, Some of these are tending toward automated data management which
will result in data files similar to those that would be needed for IGOS,
It is recommended that the concept ot IGOS receive continued
funding. This will insure that the capability will exist to provide a
quick esponse user oriented tool for orbit selection. With this tool,
communications between the needs of the experimenter community and those
responsible for NASA's transportation system capability could be conducted
in a manner compatible with the needs associated with achieving the most

efficient mission designs.

Other Computer Codes

The following computer programs have been written to support various
VSPRE investigations., The source deck cards remain in the Battelle and/or
MSFC files. They require minor modifications due to recent computer center

operating systems changes if they are to be used in the future.

EOMP-1I, This program was developed in 1972 to the point that, if
adequate mission requirements are specified, it would be extremely useful
on an operational basis. Since that time, effort has centered on the speci-
fication of mission requirements, resulting in the development of IGOS, During
this time, NASA's attention has concentrated on astrionics requirements for
the Shuttle era, Application to Shuttle upper stage astrionics would require
a major revision of EOMP-II, For this reason, it isrecommended that no

further support be given EOMP-IT until interest justifies revisions to it,

Monte Carlo. This program has served as a useful statistical

analysis tool on a number of studies at BCL and MSFC. It is simple to use
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and requires no significant maintenance. It is recommended that the Monte
Carlo code be maintained in its present form. This would require minimal
effort.

ABBACUS, ABBACUS was developed to aid in the evaluation of com-
puter technology studies at MSFC., The funding for these technology studies
is being revised. Continuation of the development and maintenance of
ABBACUS should be commensurate with NASA's overall high reliability computer
technology efforts.

Spun Stage Simulation, This is a small program useful in the

study of a number of problems related to spinning stages. 1In addition to
Scout, for which it was developed, spun stages are used on Delta and Atlas/
Centaur and are now under consideration for a number of Shuttle era vehicle
configurations. It is recommended that the spun stage program be maintained,.

This would require minimal funding.

Tagk 2

A number of astrionics requirements studies has been performed
under Task 2., Most recently, these studies have been directed at the require-
ments for high reliability computers. As mentioned in the discussion on
ABBACUS recommendations, this particular study has been given low priority
during the restructuring of NASA's combined high reliability computer funding.,

More generally, the evolution of the Shuttle upper stage program
will create the nerd for astrionics-mission studies similar to those per-

1 ormed on VSPRE, It is recommended that the capability to perform these

studi :- be maintained.

Task 3

Task 3 was created when there was a high interest in the Advanced
Small Launch Vehicle (ASLV), a major, evolutionary, upgrading of Scout. Since
then interest in ASLV has diminished. Concurrently, a number of less expensive
modifications to Scout guidance have been proposed, analyzed by VSPR: and LTV,
and implemented. 1t is anticipated that future improvement to the Scout may
be considered. However, these will be of limited scope and could be analyzed
under an effort similar to the current VSPRE Task 2, It is recommended that
Task 3, be eliminated.
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Task 4

With the creation of IGOS, a tool now exists to establish the
accuracy requirements for expendable launches. It is recommended that
an exercise be conducted to use IGOS to evaluate a set of baseline missions
which will utilize NASA vehicles (conventional and Shuttle with upper
stages). The evaluation should begin by considering the fundamental mission
objectives such as coverage requirements or orbit lifetime. Using IGOS
the domains of acceptable orbits can be established. The size of the domain
may then be used for comparison to a set of launch system accuracies to
establish which systems would be likely candidates and which would benefit
from modification. These modifications could involve either accuracy
improvement or cost reductions through using less accurate systems., If
any system seems likely to benefit from modification, a cost study should be
conducted to establish the cost/benefit when the system modification costs

are included with per launch system hardware cost changes.
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As implemented on the Battelle-Columbus Laboratories
CDC 6400, February 3, 1975
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1GOS PROGRAM ACCESS

To use the Interactive Graphics Orbjt Selection program, it is first
necegsary to establish communications with the host computer. For the

Battelle Computer System, communications can be obtained by dialing the
Battelle data lines as follows: e
(1) (614) 421-7000
(2) (614) 421-7100
(3) (614) 421-7040

In the event difficulty is encountered, the status .f the Battelle Computers
may be checked by calling (~14) 291-9766 for a recorded message.

Successful connection will be indicated by output of che date and time and

a request tc "Login". 1In response to the login request type:
LOGIN, VSPRE ,ORBIZ, SUP, N

The terminal will indicate successful login by the request 'COMMAND-'", The
following underlined commands should then be entered:

COMMAND - ATTACH, PRG,COVER,ID=VSPRE
COMMAND - EFL,50000

COMMAND - ETL,100

COMMAND - PRG

These commands connect the program file, extend the central memory field length ;;

to 500008, extend the time limit to 100, ceconds, and begin execution of the

8
program,

Program execution begins with the display of a heading and an inquiry to

determine if a graphics terminal is being used,

The analyst is then able to exercise the program at his discretion using the

i e A

command repertoire described later in this Appendix.
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3
w When execution of IGOS is completed (either by the IGOS ;1
i command END, or by encountering a fatal execution error) the response 1
3 "COMMAND-" will be displayed on the screen. Reentering "PRG'" will restart i
; execution. If desired, a record of all user commands can be sent to the éé

printer at Battelie (Building 13) by entering

T

I f ’
‘ DISPOSE, TAPP99, PR=IAH. ¥
1f the session is complete enter LOGOUT to termirate the session. iR

i’ ENT RING-PROGRAM COMMANDS "

A summary of all IGOS program command options are listed
in Table A-1. The commands are grouped into the following functional
areas:

AXIS GENERATION

COVERAGE DISPLAYS

VEHICLE PERFORMANCE

RADIATION DISPLAY

DECAY AND ORBITAL ACCURACY DISPLAY

SUN-SYNCHRONOUS DISPIAY

GRAPHICAL PLOT LABELING

TABULAR DISPLAYS

EXITTING PRGGRAM

MISCELLANEOUS N

e

Whenever user input is required, the program issues a request by ringing the
terminal bell and displaying two dashes (i.e., " ~ - " ).

Associated with several commands are data variables that define
the operation initiated by the command. The variable mnemonics and initialized
values are given in columns 2 and 3 of Table A-1, respectively. Whenever a
comsind request is executed, the current values of defined parameters are
usad to perform the operation. The parameter values can be changed in either
of the following two ways

(1) 1lndividually =~ The parameter mnemonic is entered followed

by the desired vaiue. [For example, the maximum inclination

for operation code "A'" would be changed by entering -

ce o cmeen o aaai A 5

Bl
?
Tra
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MAXINC=125.0. This modification capability can be used
for the variables in Table A-1 marked with aa '*",

(2) Llist = The parameters are included with the command
entry as a list. Parameter values are separated by

commas and the relative position in the command string

determine which data values are modified. For example,
the maximum inclination variable for operation code "A"
is the fourth (4th) parameter in the list. Therefore,
the maximum inclination value would be changed by
entering - A 125.0.

Whenever a data parameter is specified, the parameter's value remains
equal to that value until again modified. All values can be reset to
their initialized value by entering the RESET command.

With a plot displayed on the screen, all commands are entered in
a small rectangular box on the lower left of the screen. After the first
command has been entered, it becomes difficult or impossible to read what
has been typed. Therefore, the user must be attentive to his typing ability.
1f aa error occurs and is detected in data entry, the user is informed by a
multiple ring of the terminal bell. The command should then be reentered.
No input entered by the user should cause abnormal program termination.
However, if the error is not detected (i.e., a wrong numerical value entered
for some parameter) which results in an incorrect plot, there is no capability
to erase the results, The terminal, that the IGOS program uses is a "non-
refresh" screen type. Whatever appears on the screen is permanent until the
entire screen is erased. (See Page A-7, Terminal Hardware.) If an error does
occur, the user should request a new axis and all other data (i.e., coverage,
radiation, launch vehicle payload curves, etc.) to make the plot complete.
The user only need enter the basis commands since all data parameters {except
where the crror occurred) are set from the previous plot.

The use of the above features are best illustrated in the example

analysis session provided later in Appendix B, Sample Graphics Terminal

Session,
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A-8

TEACH FEATURE

The Interactive Graphics Orbit Selection program has a feature
referred to as "TEACH" to help the participating analyst use the interactive
program, At any time in an exercise, all command options available at that
current point are displayed merely by entering the "?'" symbol, If questions
then arise concerning the use of any specific command, instructions for that
command can be called for by entering the command followed by the "?" symbol
(i.e., COVER?). 1f a graphical display is currently on the screen, a page
request to erase the screen will be issued, Permission is given by entering
any character and striking the return key.

The teach feature is illustrated in Figures A-1 through A-3 which

was taken directly from the terminal screen.

COMPUTER HARDWARE

The IGOS program was developed to use a Tektronix 4010/4012 series
interactive graphics terminal. The display screen is a '"non-refresh' type
storage tube. The display area is 8,50 inches by 6,25 inches and consists
of 1024 addressable points on the horizontal (X) axis and 781 points on the
vertical (Y) axis. The terminal may operate in an alphanumeric (printing)
mode or a graphic (plotting) mode.

The keyboard is a standard ASCII keyboard with several additions.,
There are extra keys for erasing the screen and for causing hard copy
generation. There are also twc thumbwheels for positioning the cross-hairs
on the screen. Once positioned, striking any key on the keyboard will
transmit the position of the intersection of the cross-hairs to the computer.
The cross-hairs are turned on and off by the user's program.(i.e., L COMMAND),

The hard copy unit is used to generate a permanent (paper) copy of
what is displayed on the display screen. Approximately 5 seconds are required

to generate a hard copy. The process does not affect what is displayed on

the screen. However, while the screen is sweeped during the copy process, no
information can be displayed. If any information comes from the computer during

the sweep, it is lost,
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Although the IGOS program utilizes the Tektronix terminal,

it is possible to modify the program to operate on other terminals with
similar features with a minimum of effort., This has been done to give
demonstrations on Computek 400/15 terminals located at NASA Headquarters,

The Battelle and NASA Hcadquarters terminals are currently
driven by a Control Data CDC6400 computer system, A program version to
use a Univac 1108 computer system has been developed and delivered to
MSFC, The program is written in standard FORTRAN and should be adaptable

to other computer systems with a minimum of conversion effort required.
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SAMPLE _1GOS WORK SESSION
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APPENDIX B

SAMPLE GRAPHICS TERMINAL SESSION

The use of the Interactive Graphics Orbit Selection program is
best illustrated by the following sample terminal session. All commands
available to the analyst are used in this sample scssion. The displays
shown were taken directly from the terminal screen. Table B-1 explains

what each page illustrates and serves as an index to the work session.
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TABLE B-1, ORBITAL DESICN WORK SESSION GUILZ
- e~ R T MR T
PAGE DESCRIPTION
B-4 Certain entries must Le made to enter the program. Command EFL extends
the field length, ETL extends the time limit, C(ERM defines the aumber
of characters per line, and ATTACH connects the computer program. The
PRG command initiates execution,
- B=5 The program is {nquiring about the terminal being used. A "Y' respouse
allows graphical output.
B-6 An axis request is made with altitudes ranging from 150 to 300 n mi
and inclinations ranging from 10.0 to 120.0 degrees.
B-7 The resulting axis from the command request on page B=6,
B-8 A coverage model using the standard defaults is requested.
B-9 The coverage model is haiched.
B-10 Vehicle number 1 (i.e., SCOUT) is requested.
B-11 Payload curves for 225.0, 300.0, and 350.0 pounds are requested and
Jabeled using the "L" command.
B-12 The coverage model from pazc B-8 is included with the payload curves
shown on page B-11,
B-13 A sun synchronous line is requested.
B-14 The sun synchronous line is superimposed on the display created
on page B-12,
B-15 The results of a radiation model request with .25 cm of aluminum
shielding and a 2000 day exnosure,
B-16 The results of the radiation model are cross-hatched.
B-17 The results of the radiation model, coverage model and payload curves
are superimposed on a single axis display.
B-18 A "ZOOM" is done for altitudes 165.0 to 200 nautical miles and 50.0

to 75.0 degrees inclination., Then payload curves for 225.0, 300.0
and 350.0 pounds are superimposed. This region appears to represent
a potential orbital area to view 35.0 degree latitudes at least once
every 30 days.
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' B-3
' TABLE B-1. ORBITAL DESIGN WORK SESSION GUIDE
‘ (Cont nned)
' PAGE DESCRIPTION
' B-19 The results of the decay model for a 240 n mi altitude, 50 degree
inclination, a ballistic coefficient of 220, a 1977 launch data, and
a mission duration of 3 years,
I B-20 The results of the decay model for a 240 n mi altitude, 65 degree
inclination, a ballistic coefficient of 220, a 1977 launch date, and
' a mission duration of 1 year,
B-21 The results of the coverage model from page B-8 and the decay model
! on page B-20 superimposed. Some interesting conclusions can be
drawn from this figure. First note that the initial altitude distri-
bution (ticks to the left) indicate the possibility of inadequate
l coverage near + and -20 . Noting the decay of +30 and +10 it can be
i seen that an injection into the forbidden band would not decay out
of the band for the entire mission. The lower forbidden band is
’ much narrower and the decay rate much faster. Therefore, an injection
in or above this band would result in a brief period of insufficient
coverage. Attention should be paid to the fact that a -3¢0 injection
i decays to 100 n.mi by May, 1977. These characteristics might warrent
consideration of a slightly higher nominal altitude and lower
i inclination, for example 260 n.mi at 33°,
B-22-23 Example of the payload vs. altitude and inclination data table.
i B-24-25 Example of the launch site vs. altitude and inclination data table.
§ B-26-27 Example of the launch azimuth vs. altitude and inclination data table.
B-28-29 Example of the altitude vs. payload and iaclination data table.
; B~30-31 Sensor table illustration.
i B-32 Vehicle libravy index.
N p—— T - : e z z T Y
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