COREST: A FORTRAN COMPUTER PROGRAM
TO ANALYZE PARALINEAR OXIDATION BEHAVIOR
AND ITS APPLICATION TO CHROMIC
OXIDE FORMING ALLOYS

Charles A. Barrett and Alden F. Presler
Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1976
A FORTRAN computer program (COREST) was developed to analyze the high-temperature paralinear oxidation behavior of metals. It is based on a mass-balance approach and uses typical gravimetric input data. COREST was applied to predominantly Cr$_2$O$_3$-forming alloys tested isothermally for long times. These alloys behaved paralinearly above 1100°C as a result of simultaneous scale formation and scale vaporization. Output includes the pertinent formation and vaporization constants and kinetic values of interest. COREST also estimates specific sample weight and specific scale weight as a function of time. Most importantly, from a corrosion standpoint, it estimates specific metal loss.
COREST: A FORTRAN COMPUTER PROGRAM TO ANALYZE
PARALINEAR OXIDATION BEHAVIOR AND ITS APPLICATION
TO CHROMIC OXIDE FORMING ALLOYS
by Charles A. Barrett and Alden F. Presler
Lewis Research Center

SUMMARY

A FORTRAN program termed "COREST" has been developed for analyzing paralinear oxidation. It is based on the mass-balance expression ΔW (net sample weight change) = $W_r - W_m$. The W_r (specific weight of the retained oxide) and W_m (specific weight of the metal consumed) values can be generated independently as a function of time from a minimal amount of input weight change data, assuming that the type of oxide which forms is known. The W_m value is critical in corrosion. It is always increasingly greater with time in paralinear oxidation than in parabolic oxidation with the same parabolic scaling constant.

This technique of paralinear analysis was evaluated and demonstrated for predominantly Cr$_2$O$_3$-forming alloys tested for long times above 1100°C. In general, experimental ΔW-against-time data agree quite closely with values estimated by the COREST paralinear program, usually within ±0.5 mg/cm2. The derived paralinear scaling and vaporization rate constants k_p and k_v values were then used to predict long-time metal consumption for Cr$_2$O$_3$/chromite-forming alloys in the 1000°C to 1200°C range. Comparisons with parabolic oxidation data analysis show that the assumption of paralinear kinetics is more realistic for the alloys examined, particularly for long-time predictions. The paralinear model includes the parabolic, where the vaporization constant k_v approaches zero, as the limiting case. It is suggested that paralinear analysis be performed first on shorter time data to indicate how long a test should be run to meaningfully describe the oxidation behavior.

INTRODUCTION

The high-temperature, isothermal oxidation of metals and alloys is generally ana-
lyzed on the basis of oxygen weight gain as a function of time. This process follows parabollic kinetics if the oxide scale grows under conditions which are controlled by bulk diffusion. In this case, metal consumption with time can be calculated directly. In many cases, however, parabolic kinetics are not followed. For many high-chromium (Cr)-content, heat-resistant iron (Fe), nickel (Ni), or cobalt (Co) alloys, the scale formed is predominantly Cr$_2$O$_3$. This oxide can further react with oxygen and volatilize according to the reaction Cr$_2$O$_3$(s) + $\frac{3}{2}$O$_2$(g) \rightarrow 2CrO$_3$(g) (ref. 1). This volatilization process is of special concern in the high-velocity environments that are encountered by orbital reentry vehicles and gas turbine engines. Thus, weight gains due to oxygen pickup and weight losses due to CrO$_3$ volatilization occur simultaneously. In this situation, the sum of the weight gain and weight loss processes does not produce a weight change curve that is parabolic with time. Therefore, metal loss (i.e., corrosion) cannot be directly estimated. Here, typical weight-change-against-time curves first increase to a maximum, then show a gradual weight loss, and finally exhibit an almost linear weight loss. Such behavior belongs to a general class of reactions that are termed "paralinear."

The paralinear reaction was defined by Haycock (ref. 2) for a barrier scale layer being formed by diffusion and simultaneously being depleted at a constant rate by a secondary process. Haycock derived a general solution for the rate equation, and Wajszel (ref. 3) solved it specifically for a diffusion-controlled, volatile-scale-formation case. More recently, beginning with Tedmon (ref. 4), Giggins and Pettit (ref. 5), Lewis (ref. 6), Stringer (ref. 7), and Ecer and Meiser (ref. 8), the problem of analyzing paralinear data and deriving the proper constants has been investigated. Because of the nature of the equations, the experimental data are difficult to interpret and analyze unless a convenient computer program is available.

This report presents a computer program that can be used to analyze and extrapolate paralinear oxidation data in a convenient, readily usable form. This program, called COREST, is flexible enough so that it can be used under various conditions of oxidation testing and analysis and still estimate corrosion attack. In this report, paralinear oxidation analysis and the COREST computer program are described in detail. The COREST program is then applied to the analysis of the long-time oxidation test results for various Cr$_2$O$_3$/chromite-forming alloys that were available in the literature or that were obtained at this laboratory.

Included is a comparison of how well the calculated specific weight change values match the experimental data points depending on whether short-, middle-, or long-time input data are used. The comparison is intended to answer the critical questions - how long should an oxidation test be run to properly interpret oxidation behavior and how can one make the distinction between parabolic and paralinear kinetics?

Finally, the derived rate constants are used in the COREST program to estimate the long-time (100 000 hr) oxidation behavior of Cr$_2$O$_3$/chromite-forming alloys in the 1000°
to 1200° C range, with emphasis on metal consumption. These estimates assume that paralinear kinetics still control oxidation at times beyond 10,000 hours. These estimates were made for the most and the least oxidation resistant of the predominantly Cr₂O₃-forming alloys considered for several airflow (i.e., vaporization) conditions. Long-time oxidation behavior estimates were also made by assuming parabolic kinetics, and the results were compared with those obtained from the COREST program.

SYMBOLS

A \(\text{parabolic scaling constant for oxidation in terms of weight of metal consumed (not the usual weight of oxygen picked up), } (\text{mg/cm}^2)^2/\text{hr}\) (So in terms of the rate constant \(k_p\) in the oxidation literature, \(A = a^2k_p/2.\))

a \(\text{stoichiometric constant; ratio of atomic weights of metal to oxygen in the oxide (For Cr}_2\text{O}_3, \ a = (52.00 \times 2)/(16.0 \times 3) = 2.1667.}\)

B \(\text{specific linear weight loss rate for the metal in the volatile oxide on the sample per unit of time, } \text{mg/cm}^2/\text{hr}\)

b \(\text{stoichiometric constant; ratio of molecular weight of oxide to oxygen in the oxide (For Cr}_2\text{O}_3, \ b = (52.00 \times 2 + 16.0 \times 3)/(16 \times 3) = 3.1667. \text{ It can be shown } b = a + 1.}\)

\(k_p\) \(\text{conventional parabolic scaling constant in terms of weight of oxygen picked up, } k_p = \frac{2A}{a^2}, (\text{mg/cm}^2)^2/\text{hr}\)

\(k_v\) \(\text{linear weight loss rate due to vaporization of the oxide formed on the sample, } k_v = \frac{b}{a} \times B, \text{ mg/cm}^2/\text{hr}\)

t \(\text{time, hr}\)

\(\bar{t}\) \(\text{time to reach } \Delta W \text{ in paralinear oxidation, hr}\)

\(t_0\) \(\text{time for } \Delta W \text{ to return to zero in paralinear oxidation (i.e., the zero crossover time)}\)

\(W_m\) \(\text{specific weight of metal consumed per unit area due to oxide buildup and scale vaporization at any time } t, \text{ mg/cm}^2\)

\(W_r\) \(\text{specific weight of metal oxide formed and retained on the metal sample to any time } t \text{ (termed } W_p \text{ in ref. 3), mg/cm}^2\)

\(W_{r, \text{lim}}\) \(\text{limiting (maximum) value of } W_r \text{ in paralinear oxidation, mg/cm}^2\)
ΔW specific sample weight change at any time t, mg/cm2

ΔW_{max} maximum ΔW reached in paralinear oxidation (termed W in ref. 3)

$\Delta W_{1, t_1}$ data sets of observed ΔW's and their corresponding times

$\Delta W_{2, t_2}$

ρ_m aggregate average density of the metal(s) consumed in the total oxidation process, g/cm3

ρ_r density of the oxide formed and retained in oxidation, g/cm3

PARALINEAR ANALYSIS

For conventional diffusion-controlled parabolic oxidation, the basic equations are

\[
\Delta W = k_p t^{1/2}
\]

(1)

\[
W_m = a k_p t^{1/2}
\]

(2)

and

\[
W_r = b k_p t^{1/2}
\]

(3)

Thus W_m, the critical attack parameter in oxidation corrosion, is implicit in equation (1) assuming, as is almost always the case, that the type of alloy and the composition of its scale are known. All pertinent corrosion estimates can therefore be derived by simple weight change measurements.

In paralinear oxidation, two simultaneous processes are occurring: diffusion-controlled oxide buildup and loss by such linear processes as scale vaporization and/or isothermal scale spalling. An equation analogous to equation (1) can be written for specific sample weight change in the approximate form based on the two simultaneous processes,

\[
\Delta W = k_p t^{1/2} - k_1 t
\]

(4)

(where k_1 is a general linear constant), but no analogous expressions can be written
directly for \(W_m \) or \(W_r \) for this paralinear model.

Wajszel, however, in a little noted paper (ref. 3) has started from the basic mass-balance equation for any oxidation process,

\[\Delta W = W_r - W_m \]

and solved the basic differential equations for \(W_r \) and \(W_m \) separately. These two values can then be combined in equation (5) to give the \(\Delta W \) for any set of paired solutions for \(W_r \) and \(W_m \) at any time. Therefore, for the basic paralinear model, this method gives the exact solution as a function of time for \(\Delta W \), \(W_m' \), and \(W_r \).

The basic equations for \(W_m \), \(W_r \), and \(\Delta W \) derived by Wajszel can be generalized by dimensional analyses (ref. 9), as described in appendix A. This approach makes computer analysis of the paralinear process reasonably straightforward.

The fundamental differences between the two basic oxidation reactions - parabolic and paralinear - are shown in figure 1 in terms of \(\Delta W \), \(W_m' \), and \(W_r \) for hypothetical alloys with identical \(k_P \)'s but with different \(k_V \)'s. For example, \(a = 2.0 \) and \(k_P = 0.1 \) (mg/cm\(^2\)/hr) for both; but in one case, \(k_V = 0.05 \), while in the other case, \(k_V = 0.00001 \) mg/cm\(^2\)/hr. The latter \(k_V \) is approximately 0, or the parabolic case in the limit. The basic differences are shown on the plot. Not only are the curve shapes drastically different, but more importantly in terms of the specific weight of metal consumed \(W_m' \) in the paralinear case the value at 1000 hours is almost twice that of the parabolic case. This difference is even more extreme at longer times.

FOUR TYPES OF INPUT DATA FOR PARALINEAR OXIDATION SOLUTIONS

Based on the solution to the equations outlined in appendix A, four cases can be presented that cover the major types of analyses for paralinear oxidation data. It is assumed that the major type of oxide formed has been identified and that therefore the stoichiometric constants \(a \) and \(b \) are known. For the four types of input data described here, all paralinear constants of interest can be calculated - including \(k_P \), \(k_V \), and crossover times. Values for \(\Delta W \), \(W_m' \), and \(W_r \) can be computed for any desired time. The weight change values can be converted to estimated thickness changes when the densities of the metal and scale are known.

The four types of input data are

Type 1 - The input values are the maximum positive specific weight change \(\Delta \overline{W} \) and the time to reach that value \(\overline{t} \).

Type 2 - The input values are the parabolic scaling constant \(k_P \) and linear vaporization constant \(k_V \).
Type 3 - The input values are either k_p or k_v and any one set of weight change and time point (e.g., $\Delta W_1, t_1$).

Type 4 - This is the most general case. Two sets of weight change and time points ($\Delta W_1, t_1$ and $\Delta W_2, t_2$) are the necessary input. This case is commonly used when a specific weight-change-against-time plot is available that extends well into the negative weight change region. Here the input can include the last data point along with an estimate of the exact time when the ΔW equaled zero (i.e., the zero crossover point).

FORTRAN PROGRAM (COREST)

The program, shown schematically in figure 2, consists of the following 14 subroutines:

(1) MAIN is the executive routine for processing multiple cases and has primary control of logical flow throughout the complete program.

(2) BLOCK DATA reads initial conditions, parameters, and other data required for internal use by the program (looping indices, etc.).

(3) BEGIN has charge of initial computations for use by the rest of the program, reads program descriptors from cards, and does initial printouts.

(4) STOICH calculates the α and β coefficients for the program.

(5) ZERO calculates the dimensionless crossover time and the time ratio value of the crossover point to the point of maximum net weight.

The following four QUERY routines determine the numerical values of the paralinear parameters from among several possible types of input data:

(6) QUERY1 - ITYPE = 1; input arguments, ΔW and t

(7) QUERY2 - ITYPE = 2; input arguments, k_p and k_v

(8) QUERY3 - ITYPE = 3; input arguments, k_p or k_v and any weight-change-against-time pair ($\Delta W_1, t_1$)

(9) QUERY4 - ITYPE = 4; input arguments, two weight-time pairs ($\Delta W_1, t_1$, $\Delta W_2, t_2$)

(10) OUTPUT calls subroutines for computing the net specific weight curve and controls printout of results.

(11) SPEVAL calculates certain weights at special times of interest: \overline{W}, W, 0, W_r, W_lim

(12) PROVAL calculates the times at which the sample reaches required fractions of the limiting specific scale weight.

(13) CORODE calculates the times at which the sample suffers certain levels of metal loss by corrosion.
(14) CURVE, a principal subprogram, computes the corrosion history of the sample.

The FORTRAN program is listed in appendix B, FORTRAN symbols are defined in appendix C, and an example for an experimental case based on type 4 input is presented in appendix D. For this example, the total computer time was 23.6 seconds on a UNIVAC 1110.

USING THE PROGRAM

Data input to the program is primarily through the BLOCK DATA subprogram (fig. 3). After the card "Input follows," come the actual block data input cards for a given series of runs. The contents of each of these cards are as follows:

Card 1 - DATA ASMALL, BSMALL: The stoichiometric constants a and b for a given oxide are listed here. The a value is available in table I for most oxides of interest; b = a + 1.

Card 2 - DATA ITYPE, LL, LLX: The ITYPE values of 1, 2, 3, or 4 specify one of the four types of paralinear solutions desired. LL denotes the number of time values (up to 100) for which \(W_m, \Delta W, W_r, \) etc., are to be calculated. LLX specifies the number of time values (to 10) to be calculated to reach certain preselected values of \(W_m. \)

Card 3 - DATA NUMSET: The number of runs to be computed (to 100) is designated.

Card 4 - DATA QP: A series (to 10) of decimal fractions of \(W_{r, lim} \) are given for which the corresponding times are to be computed.

Card 5 - DATA XXX: A series of values in mg/cm\(^2\) are given for which the corresponding times in hours to reach these values are to be computed. The number of these values listed is equal to the LLX value on card 2.

Card 6 - DATA HOURS: The individual time values in hours are listed for which the corresponding \(\Delta W, W_m, W_r, \) and thickness changes are to be calculated. The number of values listed is equal to the LL value on card 2.

Cards 7 and 8 will depend on the DATA ITYPE of card 1.

Card 7 (type 1) - DATA WBAR: A sequential series of \(\Delta W \) values in mg/cm\(^2\) are given, with the number of values equal to the NUMSET value on card 3.

Card 8 (type 1) - DATA TBAR: A sequential series, to match card 7, of \(\bar{t} \) values in hours are given, with the number of values equal to the NUMSET value on card 3.

Card 7 (type 2) - DATA XKp: A sequential series of \(k_p \) values in \((\text{mg/cm}^2)^2/\text{hr}\) is given, with the number of values equal to the NUMSET value on card 3.
Card 8 (type 2) - DATA XKV: A sequential series, to match card 7, of as many as 100 k_v values in mg/cm2/hr are given, with the number of values equal to the NUMSET value on card 3.

Card 7 (type 3) - DATA NUMKP or DATA NUMKV: Contents are similar to those of card 7 (type 2) and card 8 (type 2).

Card 8-1 (type 3) - DATA WW: A sequential series of single ΔW values in mg/cm2 at any time are given, to be used with either k_p or k_v in the same sequence.

Card 8-2 (type 3) - DATA TT: A sequential series of single-time values t in hours are given which match the corresponding ΔW values on card 8-1. These sets of $\Delta W, t$ values are used with the corresponding k_p or k_v. The number of corresponding data sets is equal to the NUMSET value on card 3 multiplied by the NUMKP or NUMKV value on card 7.

Card 7 (type 4) - DATA WW: A series of paired ΔW values (as many as 100) in mg/cm2 at any two times are given, with the number of paired values equal to the NUMSET value on card 3.

Card 8 (type 4) - DATA TT: A series of paired time values t (as many as 100) in hours are given for the corresponding ΔW values on card 7. The number of paired values is equal to the NUMSET value on card 3. At program execution, five additional input cards are read.

Card 1A - TRUE or FALSE is punched starting in column 1. FALSE means that the term "vaporization" will be used in the headings. TRUE means that the term "spalling" will be used in the headings.

Card 2A - (Format 6A6, F6.3): A description of the alloy type(s) for the series of run(s) printed at the heading of each run is followed by the aggregated average density of the alloy being consumed, in g/cm3. This density is used to calculate the effective thickness change of the alloy based on attack from one side.

Card 3A - (Format 6A6, F6.3): A description of the scale type(s) for the series of run(s) printed at the heading of each run is followed by the estimated density of the oxide remaining on the alloy, in g/cm3. This density is used to calculate the scale thickness of the oxide.

Card 4A - (Format 8A6, 2A6): A description of the data source(s) and the series of runs is printed at the heading of each run.

Card 5A1 - (Format 2A6, 2A6): A description of the test temperature(s) and test pressure(s) is printed at the heading of each run.

1Card 6A - Plotting routine called (T) or not called (F) with subroutine supplied by user at particular installation.
An example of this input is shown in figure 3 for a type 4 input of two runs. This means there are two sets of paired $\Delta W_1, t_1$ and $\Delta W_2, t_2$ input values. There are 17 time values ranging from 0.31 to 236.11 hours for which the $\Delta W, W_m, W_r$, and thickness change calculations are to be made. The times to reach three different fractional specific weights (0.5, 0.90, and 0.95) of the limiting-scale specific weight are requested, as well as the times to reach three values of W_m. The output listing is presented in appendix D.

APPLICATION OF COREST TO THE OXIDATION BEHAVIOR OF Cr$_2$O$_3$/CHROMITE-FORMING ALLOYS

The basic COREST program has been used previously by NASA authors with type 3 input (with a set of $\Delta W_1, t_1$ values and an estimated k_v) to analyze Cr$_2$O$_3$/chromite-forming alloys tested isothermally at 1150° C for 100 hours (ref. 10). It is inferred in this reference that under these test conditions the alloys were oxidizing according to the paralinear model but that ΔW occurred well beyond the 100-hour limit of the tests conducted. Even though the degree of fit appeared excellent, it was desired to examine test data where ΔW had actually been reached and preferably where t_0, the zero crossover point, had actually been observed. The literature for classic Cr$_2$O$_3$/chromite-forming alloys (i.e., class II formers in ref. 10) showed two such examples (refs. 4 and 6).

For this reason, four supplemental tests were performed on two additional alloys at this laboratory for times long enough so that at least the zero crossover point was approached. This testing was conducted basically to determine how well the early ($< \bar{t}$), middle ($\sim \bar{t}$), and later ($> \bar{t}$) time parts of the curve establish the rest of the ΔW-against-time plot and how their use changes the long-time predictions (>10 000 hr). The paralinear model, assuming it still holds, is thought to be more realistic than the parabolic model.

The data from the two literature and four NASA Lewis runs used for input into COREST are shown in table II. Data on Cr-0.2Y were taken from reference 4, and data on Ni-20Cr-3Fe-0.4Si (termed "Alloy A") were taken from reference 6. Both alloys were tested in static air at 1200° C. The tests performed at this laboratory were on Ni-40Cr and Tophet 30 (Ni-29.6Cr-1.4Si) at 1200° C in static air. In addition, duplicate tests were run on Tophet 30 at 1150° C in static air.

The six experimental ΔW-against-time plots are shown in figures 4 to 9 with the observed data points plotted as circular symbols. Also shown on each plot (square symbols) are the COREST-generated ΔW-against-time plots derived from the type of input.
data that gives the lowest error of estimate.\(^2\)

Table III shows the degree of fit based on the minimum error of estimate calculated between the observed values and each comparable COREST-calculated data point. Also listed are the various paralinear parameters of interest: \(k_p\), \(k_v\), \(\Delta \bar{W}\), and \(t_0\) and the predicted \(t\) for \(W_m\) to reach 71.9 mg/cm\(^2\) (i.e., 100 \(\mu\)m of metal consumption). Finally, the critical \(W_m\) values are plotted in figure 10 for times longer than 1000 hours for each of the six alloys. The \(W_m\) values plotted for each alloy are those representing the best degree of fit.

RESULTS AND DISCUSSION

The specific weight change curves for the six experimental runs are plotted in figures 4 to 9 as a function of time, along with the COREST-calculated \(\Delta W\) values. These runs are summarized in table III, which lists the three time stages of input data from table II, as well as the various derived paralinear constants and other values of interest such as selected estimates of certain \(t\) and \(W_r\) values. The degree of fit between the derived and actual curves is given as an average error of estimate in mg/cm\(^2\). These cases were derived either from a type 1 calculation, where the curve maximum was estimated, or from the more general type 4 calculation used both for the pre- and post-\(\Delta \bar{W}\) cases. The degree of fit is good - usually less than \(\pm 0.5\) mg/cm\(^2\) even for the longer runs.

The degree-of-fit criterion is given in terms of an average error of estimate of the calculated \(\Delta W\) curve compared with the experimental \(\Delta W\) curve. It was used to determine how long, in general, a paralinear test must be run to give meaningful long-time estimates of \(W_m\). Obviously, from a practical point of view, a shorter (before \(\Delta \bar{W}\)) 100- to 200-hour test is to be preferred. However, as the degree-of-fit criterion indicates, the tests should at least be run to \(\Delta \bar{W}\) - and preferably into the negative slope region. Using input values before \(\Delta \bar{W}\) does, however, at least result in more pessimistic long-time \(W_m\) estimates than the \(\Delta \bar{W}\) or post-\(\Delta \bar{W}\) cases. On the other hand, if parabolic oxidation is assumed, which has usually been the case, the long-time \(W_m\) values are drastically underestimated, as shown in figure 10.

An example of how the assumption of parabolic kinetics can influence the interpretation of paralinear oxidation data is shown in figure 11. If the Alloy A oxidation test dis-
cussed previously had been only 300 hours long rather than the actual 1000 hours, the resulting data plotted on a \((ΔW)^2\)-against-time plot\(^3\) would appear to represent two-stage parabolic oxidation. The derived parabolic constants, if then used to estimate metal loss, would give a \(W_m\) at 1000 hours of about 16.5 mg/cm\(^2\). If only the higher first-stage constant were used, metal loss would be about 20.7 mg/cm\(^2\). However, based on the full 1000-hour curve with the vaporization of \(\text{Cr}_2\text{O}_3\) leading to paralinear behavior, the \(W_m\) estimate is 32.61 mg/cm\(^2\), almost twice the original estimate. Extrapolated to 10 000 hours, this ratio of underestimated loss would be almost 5:1. On the other hand, if short-time data were used in a type 4 paralinear analysis, a greater \(W_m\) value would actually be estimated at 1000 hours than when the negative slope values were used. This is the most conservative estimate and probably the safest from a design standpoint if the \(W_m\) values are converted to an effective thickness change. It has the obvious advantage that a test would not have to be run out to a weight loss situation.

The long-time comparisons for Alloy A using all three of the basic attack variables - \(ΔW\), \(W_r\), and \(W_m\) - are shown in figure 12 for both the parabolic and paralinear (calculated) cases, assuming the same \(k_p\). This log-log plot graphically shows that as the scale specific weight approaches about 90 percent of its limiting scale specific weight of 64.5 mg/cm\(^2\), the \(W_m\) value rises sharply and the \(ΔW\) drops sharply (toward negative values).

The calculated \(k_p\) values (based on input values with the best fit) are replotted as a function of the reciprocal of the absolute temperature in figure 13. The \(k_p\) values fall in the range for conventional \(\text{Cr}_2\text{O}_3\)-forming alloys, which is discussed in reference 10. These were also calculated by COREST but based mostly on shorter time (100 hr) exposure data. The \(k_p\) results for Tophet 30 fall slightly below the lower limit for the \(\text{Cr}_2\text{O}_3\)/chromite range. It is believed that the relatively high Si content in Tophet 30 causes the erratic early paralinear oxidation behavior as well as the lower consumption rate after \(ΔW\). Silicon dioxide (\(\text{SiO}_2\)) in the scale apparently behaves like thorium dioxide (\(\text{ThO}_2\)) blockage in TD-NiCr alloys, lowering the effective \(k_p\) (ref. 10).

The derived paralinear \(k_v\) values (again based on input values with the best fit) are plotted in figure 14 against \(1/T_K\), along with other pertinent \(k_v\) values derived for the vaporization of bulk \(\text{Cr}_2\text{O}_3\). This figure shows \(k_v\) values derived gravimetrically by Hagel (ref. 11) for sintered \(\text{Cr}_2\text{O}_3\) tested in still air, along with the limits for 1 standard deviation. The \(k_v\) value of a sintered \(\text{Cr}_2\text{O}_3\) sample run at this laboratory as a check falls almost exactly on Hagel’s value. This implies that test conditions were comparable and that condensation of \(\text{Cr}_2\text{O}_3\) on the balance hanger wire did not significantly bias the derived results. Also plotted in figure 14 are literature values for vaporization of \(\text{Cr}_2\text{O}_3\) prepared by sintering or hot pressing both in static and moving air (ref. 12).

\(^3\)The slope of the \((ΔW)^2\)-against-time plot is the usual graphical method used to derive parabolic scaling constants.
and for vaporization of stripped Cr$_2$O$_3$ scales from an oxidized Ni-50Cr alloy (ref. 8). Ecer and Meiser (ref. 8) also calculated a minimum vaporization rate in static oxygen at 1 atmosphere based on gaseous diffusivity. Of interest from a practical point of view is the maximum possible loss rate of Cr$_2$O$_3$. Such loss can be determined from the vapor pressure of CrO$_3$ at the partial pressure of oxygen in 1-atmosphere air by using the Langmuir equation and vapor pressure data for CrO$_3$ cited by Kohl and Stearns (ref. 13). Obviously, this is a limiting case with a Cr loss rate some 4 orders of magnitude higher than that observed in static air. The k_v loss rate in a high-velocity burner rig test on a Cr$_2$O$_3$-forming alloy should be intermediate between these limiting values but as yet is undetermined. As the upper limit is approached, the Cr consumption rates would be so high, particularly in the higher temperature regions, that the Cr would probably be depleted, which would favor NiO and increased chromite spinel formation. In cyclic oxidation these scales would spall catastrophically (ref. 14), which would result in accelerated attack.

It can be seen that these calculated k_v values can vary widely at a given temperature between the upper and lower estimated limits - over 5 orders of magnitude. Most laboratory tests, whether in still or moving air, appear to be within a factor of 10 in the lower third of the range. It was thought that, in the static-air tests, the parilinear k_v values were lower than Hagel's bulk values because NiO and/or spinel overlay the Cr$_2$O$_3$ (ref. 10). However, the scatter may be due to experimental variation. It does appear that the derived k_v values for the three Tophet 30 runs are somewhat lower than those for the other alloys cited. If these are real differences, the implication in terms of overall attack (i.e., W_m) is that Tophet 30 is even more oxidation resistant in static air than the general class of Cr$_2$O$_3$/chromite-forming alloys.

It is critical, particularly for a practical test situation, to determine how long a test exposure should be run before deciding that the oxidation behavior is parilinear rather than parabolic. For Cr$_2$O$_3$/chromite-forming alloys, figure 13 shows that k_p values can range from just over 10^{-3} to just over 10^0 (mg/cm2)/hr, in the temperature range 10000 to 12000 C. From figure 14 the lower range of k_v values in static air is from about 10^{-3} mg/cm2/hr at 10000 C to as high as 1.0 mg/cm2/hr at 12000 C. These ranges of k_p and k_v values were combined in a series of COREST calculations to predict \bar{t}, the time to reach ΔW. This is the minimum test time to determine parilinear behavior. Because the inflection tends to be gradual and ΔW returns to the origin (0.0 mg/cm2) at just over four times the predicted \bar{t}, running the test to twice the predicted \bar{t} seems reasonable to accurately determine the behavior.

This approach is summarized in figure 15, which shows the critical nature of k_v values between 10^{-3} and 10^{-2} mg/cm2/hr. The series of curves imply that for virtually all k_v values of 10^{-3} or less the behavior is effectively parabolic for most practical exposure situations. Above k_v values of about 5×10^{-2} mg/cm2 the kinetics are
obviously paralinear for test times of just a few hundred hours. For \(k_v \) values between \(10^{-3} \) and \(5 \times 10^{-2} \text{ mg/cm}^2/\text{hr} \), figure 15 can be used in conjunction with the end application to determine a meaningful test time. Obviously, for tests in a moving-air environment the \(k_v \) values shift to the higher values in figure 14, where paralinear behavior is apparent at much shorter test times.

Figure 16 shows how this paralinear approach might be used to estimate long-time oxidation damage over a wide range of temperatures. From figure 13, upper and lower limit values of \(k_p \) for predominantly Cr\(_2\)O\(_3\)-forming alloys were estimated at 50-degree intervals from 1000\(^\circ\) to 1200\(^\circ\) C. From figure 14, for each of these temperatures three values of \(k_v \) were estimated, representing the likeliest static-air value, 10 times this value (representing moving air), and the maximum possible \(k_v \) derived from the Langmuir equation for free vaporization (ref. 13). These values of \(k_p \) and \(k_v \) were combined in the six possible combinations as the input values in the COREST program to generate \(\Delta W \), \(W_m \), and \(W_r \) as a function of time. A plotting subroutine was then used to plot \(W_m \) as a function of time on a log-log plot at times longer than 10000 hours. The pertinent data (except for the free-vaporization case) are summarized in table IV. These curves are based on the assumption that paralinear behavior continues beyond 10000 hours, which implies continued Cr\(_2\)O\(_3\)/chromite control. However, if the base metal oxide becomes rate controlling because of previous Cr depletion, earlier catastrophic failure is apt to occur from spalling — particularly if thermal cycling is involved. The paralinear estimate is still more realistic than that derived from the parabolic model. However, comparable parabolic plots on a log-log scale would be straight lines with a slope of 0.5.

At all temperatures, when the Langmuir vaporization rate is the controlling factor, the overall loss rate is effectively a linear process. In this case the ratio of \(k_v \) to \(k_p \) is so great that the scale has a limiting thickness of well under a micrometer. This ratio is close to 0.01 with the low-range \(k_p \)'s and equal to 0.25 with the high-range \(k_p \)'s. When the \(k_v \) value is increased by a factor of 10, the limiting scale thickness drops by a factor of 10, and the time to consume a given amount of Cr decreases by a factor of 100. Thus, the metal consumption rate seems to increase with the square of the ratio of the vaporization rates. Parabolic scaling constant ratios, on the other hand, affect metal consumption rates in strictly a linear manner. The times to reach a given \(W_m \) show the striking differences at all temperatures between the paralinear and parabolic cases. Ratios are as high as 39:1 for \(W_m = 719 \text{ mg/cm}^2 \) (~1000 \(\mu \text{m} \)) for even the static-air case.

CONCLUDING REMARKS

The oxidation behavior of four predominantly Cr\(_2\)O\(_3\)-forming alloys oxidized for
long times above 1100° C was analyzed by comparing the observed net-weight-change-against-time values with their corresponding calculated values, assuming paralinear behavior. The calculated values were generated by the COREST computer program based on short-time input before the obvious $\Delta \overline{W}$, at the estimated $\Delta \overline{W}$, and after the $\Delta \overline{W}$ on the downslope of the curve, where paralinear behavior is clearly established. The agreement between the calculated and observed ΔW values on the average was ± 0.5 mg/cm2. Based on the degree of fit as might be expected, long-time input data are preferable. However, even the use of short-time input data, assuming paralinear behavior, is more meaningful than assuming parabolic scaling kinetics. The latter method greatly underestimates the critical W_m values particularly at longer times. Based on these results, it is suggested that the paralinear assumption be used to analyze any short-time data since it includes the parabolic case as a limit with $k_v - 0$. The k_v is effectively zero if it is < 0.001 mg/cm2/hr, provided k_p is greater than about 0.01 (mg/cm2)2/hr. In this case the behavior is essentially parabolic and the test can be terminated.

Based on the range of derived k_p and k_v values for Cr$_2$O$_3$/chromite-forming alloys, a series of curves have been derived for the critical corrosion parameter W_m at 1000°, 1050°, 1100°, 1150°, and 1200° C for times to 10,000 hours and beyond. The six curves generated at each temperature represent the highest and lowest k_p values, along with three k_v values - the likeliest static-air value, 10 times this value (which represents moving air), and a maximum k_v derived from the Langmuir equation for free vaporization. The curves reflect the strong effect of vaporization, particularly in moving air.

The COREST paralinear mass-balance approach is currently being used in analyzing cyclic oxidation where scale spalling, as well as oxide vaporization, can occur. The COREST approach appears quite promising for those alloys where the spalling rate appears fairly uniform over a number of test cycles.

SUMMARY OF RESULTS

A FORTRAN computer program termed COREST has been developed for analyzing paralinear oxidation based on the mass-balance expression ΔW (net sample weight change) = $W_r - W_m$. The W_r (specific weight of the retained oxide) and W_m (specific weight of the metal consumed) values can be generated independently as a function of time from a minimal amount of input data with a known scale. The W_m value is critical in corrosion, and the W_m values in paralinear oxidation are always increasingly greater with time than the corresponding values for parabolic oxidation. The COREST program also converts W_r and W_m to thickness values with suitable input of
oxide and metal density values. With a stoichiometric constant calculated from the composition of the oxide, the following four types of input data can be completely analyzed by COREST:

1. The maximum estimate value of ΔW and its corresponding time
2. Any paired values of the parabolic scaling constant k_p and linear vaporization rate constant k_v (where $k_v \neq 0$)
3. Any value of k_p or k_v, along with any one set of ΔW with its corresponding time
4. Any two sets of ΔW values with their corresponding times

From these four types of input the program calculates and lists

1. k_p and k_v
2. The maximum positive ΔW and its corresponding time and W_m and W_r
3. The time for ΔW to return to zero and its corresponding W_m and W_r
4. The limiting value of W_r and its corresponding thickness
5. The time(s) to reach any requested fraction(s) of the limiting value of W_r
6. The time(s) to reach any requested value(s) of W_m
7. The ΔW, W_m, W_r, effective metal thickness loss, and oxide thickness for any requested time(s)

The derived paralinear scaling constants for straightforward chromic oxide (Cr_2O_3)/chromite-forming alloys generally fall within the range of the previously published values of k_p. The derived k_v values increase as expected with increasing temperature but are less than the k_v values for bulk Cr_2O_3 in static air. This difference is greater in NiCr alloys than in pure Cr presumably because of a thin NiO and/or chromite spinel layer on the outer surface which probably spalls on cooling.

The presence of 1.5 percent silicon in Tophet 30 appears to lead to silicon dioxide blockage in the Cr_2O_3 scale. This apparent blockage causes the initial k_p to drop until the time to reach ΔW, the maximum ΔW reached in paralinear oxidation, is exceeded and thus leads to lower than expected metal consumption rates.
APPENDIX A

ANALYTICAL EQUATIONS AND COMPUTER PROGRAM

Derivation and Solution of the Paralinear Equations

The analysis anticipates a type of metal oxidation experiment from which the basic data consist of a history of sample weights taken at a progression of discrete times and a knowledge of the stoichiometric conversion factor from metal to oxide scale. For those systems that suffer scale loss by vaporization, the mass balance for the sample states that

\[
\text{Total sample} = \text{Weight of scale produced} - \text{Weight of metal oxidized} - \text{Weight of scale vaporized} \quad (A1)
\]

Now, for the metal-oxidation reaction,

\[
mM + \left(\frac{n}{2}\right)O_2 \rightarrow M_m O_n
\]

(A2)

the stoichiometric conversion factor \(a\) is defined as

\[
a = \frac{m \left[\text{Atomic weight of metal, } M\right]}{\left[\text{Molecular weight of scale, } M_m O_n\right] - m \left[\text{Atomic weight of metal, } M\right]} \quad (A3)
\]

As an example, \(a = 2.1667\) for chromic oxide \((Cr_2O_3)\). The ratio of the weight of scale formed to the weight of metal oxidized is

\[
\frac{\left[\text{Molecular weight of scale, } M_m O_n\right]}{m \left[\text{Atomic weight of metal, } M\right]} \quad (A4)
\]

Replacing the scale weight term in the mass-balance equation (A1) by the oxidized metal weight times the ratio (A4) yields
\[
\text{Weight change sample} = \left[M_m \frac{O_n}{mM} - 1 \right] \text{Weight of metal oxidized} - \text{Weight of scale vaporized} \\
= \frac{1}{a} \text{Weight of metal oxidized} - \text{Weight of scale vaporized}
\] (A5)

The time derivative of equation (A5)

\[
\frac{dW}{dt} = \frac{1}{a} \frac{dW_m}{dt} - \frac{dW_s}{dt}
\] (A6)

is the mass-balance rate equation that is the starting point for subsequent analyses of the metal oxidation history.

By using the parabolic rate term of Haycock (ref. 4) for \(dW_m/dt \) and a linear vaporization rate for \(dW_s/dt \), Wajszel (ref. 3) was able to integrate equation (A6). This solution for sample weight as a function of time was termed paralinear by Wajszel because of its dependency on the parabolic oxidation model and the linear scale vaporization model.

Paralinear oxidation model. - This is an Ohm's law analogy. The flux of oxygen ions through a unit cross-sectional area to the scale-metal interface is inversely proportional to the length of the flux path (i.e., scale thickness). The proportionality constant is the paralinear conductance of Haycock.

Since the rate of metal oxidation equals the flux of oxygen ions, Wajszel expresses this fact within the Ohm's law model as

\[
\frac{dW_m}{dt} = \left(\frac{b}{a} \right) \frac{A}{W_r}
\] (A7)

where the weight of scale per unit area \(W_r \) is equivalent to the scale thickness, the proportionality constant \(A \) contains the paralinear conductance, and the factor \(b/a \) is the molecular weight ratio of scale weight to metal weight.

Linear scale vaporization model. - The simplest model one can devise for loss of scale by vaporization postulates a rate that is independent of time for a given set of experimental conditions. In other words, the total metal loss through scale vaporization is simply linear in time, or

\[^{4}\text{In Wajszel's paper (ref. 3) this is termed } W_p.\]
\[(W_m)_{\text{vaporization loss}} = Bt \quad (A8)\]

where \(B \) is the vaporization rate constant and \(t \) is elapsed time. Now the scale weight loss is simply the weight ratio factor \(b/a \) times the left side of equation (A8), or

\[W_s = \left(\frac{b}{a}\right) Bt \quad (A9)\]

Integration of product scale equation. - One form of the mass-balance equation is

\[
\begin{bmatrix}
\text{Weight of scale} \\
\text{metal oxidized} \\
\text{scale vaporized}
\end{bmatrix} = \frac{b}{a} \begin{bmatrix}
\text{Weight of scale} \\
\text{metal oxidized} \\
\text{scale vaporized}
\end{bmatrix} - \begin{bmatrix}
\text{Weight of scale} \\
\text{metal oxidized} \\
\text{scale vaporized}
\end{bmatrix} \quad (A10)
\]

or

\[W_r = \left(\frac{b}{a}\right) W_m - W_s \quad (A11)\]

The time derivative of equation (A11) is

\[
\frac{dW_r}{dt} = \frac{b}{a} \frac{dW_m}{dt} - \frac{dW_s}{dt} \quad (A12)
\]

Substituting equations (A7) and (A9) into the right side of equation (A12) reproduces Wajszel's equation (5),

\[
\frac{dW_r}{dt} = \frac{b}{a} \left(\frac{bA}{aW_r} - B\right) \quad (A13)
\]

It is seen from equation (A13) that when the derivative vanishes, we have the maximum (steady state) scale formation, that is,

\[\left(W_r\right)_{\text{max}} = \frac{bA}{aB} \quad (A14)\]

which will be shown to occur from the integrated form of equation (A13) as time approaches infinity as a limit.
Equation (A13) takes the form

\[
\frac{z \, dz}{B^2(A - z)} = dt \quad (A15)
\]

where \(z = \frac{B}{a}W_r / b \). Making a second change in the variable yields

\[
\begin{align*}
 u &= A - z \\
 z &= A - u \\
 dz &= -du
\end{align*}
\]

Then

\[
\frac{1}{B^2} \int_A^{A-z} \frac{(A - u)(-du)}{u} = -A \int_A^{A-z} \frac{du}{u} + \frac{1}{B^2} \int_A^{A-z} du
\]

\[
= \frac{1}{B^2} \left(u - A \ln u \right)_{A-z}^A
\]

\[
= \frac{1}{B^2} \left(-z - A \ln \left(\frac{A - z}{A} \right) \right)
\]

\[
= t
\]

This finally is rearranged to Wajszel's equation (8)

\[
\frac{A}{B^2} \ln \left(\frac{A}{B \frac{a W_r}{b}} \right) = \frac{a W_r}{B b} = t \quad (A16)
\]

We find the exponential form of equation (A16) to be more useful in the subsequent analysis:

\[
R = 1 - e^{-R-T} \quad (A17)
\]
where

\[R = \frac{aBW_r}{bA} \]

and

\[T = \frac{B^2t}{A} \]

Integration of the metal-oxidation equation. - When the scale product equation \((A11)\) is written with equation \((A9)\) substituted for the vaporization term, the resulting equation

\[W_r = \frac{b}{a} (W_m - Bt) \]

(A19)

can at once be substituted into the right side of equation \((A7)\) to obtain the important metal-oxidation equation

\[\frac{dW_m}{dt} = \frac{A}{W_m - Bt} \]

(A20)

The last expression is Wajszel's equation (3a), which, along with equation \((A13)\) (or Wajszel's (5)), constitutes the analytical basis for the computation program of this report.

The integration of equation \((A20)\) will now be demonstrated. First, make the transformation of the variables

\[M = \frac{W_mB}{A} \]

\[T = \frac{tB^2}{A} \]

(A21)

whereupon the new form of the differential equation becomes

\[\frac{dM}{dT} = \frac{1}{M - T} \]

(A22)
Further, let $M - T = 1/v$. The limits on these variables are

$$\begin{align*}
\text{for } T &= 0 \begin{cases} (M - T) = 0 \\ v &\to \infty \end{cases} \\
\text{for } T &\to \infty \begin{cases} (M - T) = 1 \\ v = 1 \end{cases}
\end{align*}$$

(A23)

The integral of equation (A22) takes the form

$$\int_{\infty}^{V} \frac{-1}{v^2(v^2 - 1)} \, dv = \int_{0}^{T} dT$$

(A24)

Let the integrand on the left be expanded into the partial fraction

$$\frac{-1}{v^2(v - 1)} = \frac{1}{v} + \frac{1}{v^2} - \frac{1}{v - 1}$$

(A25)

This allows equation (A24) to be immediately integrated

$$\left[\ln v - v^{-1} - \ln (v - 1) \right]_{-\infty}^{V} = T$$

(A26)

or

$$\left[\ln \frac{v}{v - 1} - \frac{1}{v} \right]_{-\infty}^{V} = T$$

(A27)

And since the bracket on the left vanishes at the lower limit, we then arrive at

$$\ln \frac{v}{v - 1} - \frac{1}{v} = T$$

(A28)

or

$$\ln \frac{1}{1 - M + T} - (M - T) = T$$

(A29)
and finally

$$\ln (1 - M + T) = -M$$ \hspace{1cm} (A30)$$

Equation (A30) is one form of the definite integral of equation (A20) in terms of the non-dimensional variables \(M\) and \(T\).

The exponential form of equation (A30) is more useful in the computer program. So

$$M = 1 + T - \exp (-M)$$ \hspace{1cm} (A31)$$

which is exactly Wajszel's integral solution (eq. (7)) in terms of \(M\) and \(T\). Replacing the \(M\) and \(T\) variables in equation (A31) by their definitions (A21) yields

$$\frac{A}{B^2} \left[-1 + \exp \left(-\frac{BW_m}{A} \right) \right] + \frac{W_m}{B} = t$$ \hspace{1cm} (A32)$$

which is Wajszel's equation (7).

Estimation of sample weight change. - It is now possible to derive an expression for calculating the predicted specific sample weight change due to oxidation of the metal. In the mass-balance equation (A1) the term for the total scale formed minus the term for scale vaporization is just the product scale weight. Thus, the mass equation may be written as

$$\begin{bmatrix} \text{Specific sample} \\ \text{weight change} \end{bmatrix} = \begin{bmatrix} \text{Product scale} \\ \text{weight} \end{bmatrix} - \begin{bmatrix} \text{Weight of} \\ \text{metal oxidized} \end{bmatrix}$$ \hspace{1cm} (A33)$$

or

$$\Delta W = W_r - W_m$$ \hspace{1cm} (A34)$$

The terms on the right are obtained from equations (A16) and (A32), respectively.

When numerical values are given for the system parameters \(a\), \(A\), and \(B\), the transcendental equations (A16) and (A32) can be solved for \(W_m\) and \(W_r\) at any time \(t\). It is necessary to solve equations (A16) and (A32) iteratively. The calculations to achieve this are described in the next section.
Numerical Procedures for the Paralinear Equations

Dimensionless forms of the equations. - The integral solutions of the \(W_m \) and \(W_r \) variables have already been obtained in equations (A16) and (A32). The transformed, nondimensionalized variables introduced in definitions (A18) and (A21) then restated the solution equations for \(W_m \) and \(W_r \) in the nondimensional forms (A17) and (A31).

The fundamental mass-balance equation (A34) will be transformed in like manner. Multiply by the ratio of coefficients \(B/A \)

\[
\frac{B}{A} \frac{\Delta W}{A} = \frac{B}{A} \frac{W_r}{A} - \frac{B}{A} \frac{W_m}{A} \quad (A35a)
\]

\[
\frac{B}{A} \frac{\Delta W}{A} = \frac{b}{a} \left(\frac{b}{A} \frac{W_r}{A} \right) - \frac{B}{A} \frac{W_m}{A} \quad (A35b)
\]

which is reduced to

\[
N = \frac{b}{a} R - M \quad (A36)
\]

In this equation the transformed, nondimensionalized specific sample weight change \(N \) is the dependent variable as a function of the scaled independent variable time \(T \).

The phrasing of physical laws in terms of nondimensional variables, as far as possible, is a rather common practice within disciplines which use modeling techniques to cope with very complicated problems. Among these other fields are aerodynamics and hydraulics, hydrology, chemical reactor design, river and harbor studies, and analysis of smoke dispersion from stacks. The technique is known by a variety of labels: similarity, modeling and scaling, similarity analysis. In its crudest form, it is represented by the dimensional analysis used by Lord Rayleigh and Osborne Reynolds (ref. 9).

The present study has already demonstrated that a practical advantage of scaling (nondimensionalizing) arises from the simplification of the form of the model equations. It will be apparent later in the discussion of the iterative solution of equations (A17) and (A31) that the computer subprogram requires no transfer of system coefficients or parameters other than the independent variable \(T \). Also, further insight into the implications of the basic system models results from working with the simpler forms and solutions of the scaling analysis. This will now lead to some additional and useful properties.

Properties and trends of the model. - The mathematical limits of the relations (A17), (A31), and (A36) are
for $T=0$ $M=0$ $N=0$

for $T \gg 1$ $M - 1 + T$ $N - a^{-1} - T$

Equation (A36) will be examined for an optimum point. But first note that equations (A17) and (A31) have equivalent forms if

$$M = R + T$$ \hspace{1cm} (A38)

which is actually a restatement of the mass-balance equation (A10). To search for a maximum point on the (N, T) curve, the derivative of equation (A36) is set to zero,

$$\frac{dN}{dT} = b \frac{dR}{dT} - \frac{dM}{dT} = 0$$ \hspace{1cm} (A39a)

Then

$$b \frac{1 - \bar{R}}{\bar{R}} - \frac{1}{\bar{M} - \bar{T}} = 0$$ \hspace{1cm} (A39b)

and

$$b \frac{1 - \bar{R}}{\bar{R}} - \frac{1}{\bar{R}} = 0$$ \hspace{1cm} (A39c)

The terms for dR/dT and dM/dT on the right in equation (A39b) are from equations (A17) and (A31) and use has been made of equation (A38) to obtain (A39c). The special notation for \bar{R}, \bar{M}, and \bar{T} refers to those values at optimum \bar{N}.

Equation (A39c) results in

$$\bar{R} = \frac{1}{b}$$ \hspace{1cm} (A40)

The logarithmic form of equation (A17) shows time at maximum \bar{N} to be

$$\bar{T} = -\bar{R} - \ln (1 - \bar{R}) = \ln \left(\frac{b}{a} \right) - \frac{1}{b}$$ \hspace{1cm} (A41)
From equation (A38),

$$\overline{M} = \frac{1}{b} + \ln \left(\frac{b}{a} \right) - \frac{1}{b}$$

$$= \ln \left(\frac{b}{a} \right)$$ \hspace{1cm} (A42)

and for the maximum \overline{N}, from equation (A36),

$$\overline{N} = \frac{b}{a} \left(\frac{1}{b} \right) - \ln \left(\frac{b}{a} \right)$$

$$= \frac{1}{a} - \ln \left(\frac{b}{a} \right)$$ \hspace{1cm} (A43)

It is of interest to note that the values of \overline{N}, \overline{M}, \overline{R}, and \overline{T} depend only on the value of the stoichiometric coefficient a. These special values for \overline{N} and \overline{T} have been given the notation

$$\alpha = \frac{1}{a} - \ln \left(\frac{b}{a} \right)$$

$$\beta = \ln \left(\frac{b}{a} \right) - \frac{1}{b}$$ \hspace{1cm} (A44)

From the definitions of T and N in equations (A18) and (A36), respectively, it can be shown that

$$N = \overline{N} \left(\frac{\Delta W}{\Delta \overline{W}} \right)$$

$$= \alpha \left(\frac{\Delta W}{\Delta \overline{W}} \right)$$ \hspace{1cm} (A45a)

and

$$T = \overline{T} \left(\frac{t}{\overline{t}} \right)$$

$$= \beta \left(\frac{t}{\overline{t}} \right)$$ \hspace{1cm} (A45b)
from which it should be noted that the scaling of \(N \) and \(T \) is based on \(\Delta \bar{W} \) and \(\bar{t} \), respectively, the maximum specific net sample weight change and the time at which it occurs.

The rate coefficients \(A \) and \(B \) reflect the values of \(\Delta \bar{W} \) and \(\bar{t} \). From the definitions of \(N \) and \(T \) (eqs. (A36) and (A18)) and the optimum values \(\bar{N} = \alpha \), \(\bar{T} = \beta \), there results

\[
\begin{align*}
A &= \frac{\beta}{\bar{t}} \left(\frac{\Delta \bar{W}}{\alpha} \right)^2 \\
B &= \frac{\beta}{\alpha} \frac{\Delta \bar{W}}{\bar{t}}
\end{align*}
\]

(A46)

This last relation provides a most convenient method for calculating the rate coefficients from limited experimental data.

Another obvious examination point occurs at the time \(T_0 \) when \(N = 0 \), which is designated the "crossover point." From equation (A36) we have

\[
\frac{bR_0}{a} = M_0 \tag{A47}
\]

Using equation (A38), this becomes

\[
R_0 = aT_0 \tag{A48a}
\]

or

\[
M_0 = bT_0 \tag{A48b}
\]

Either of the forms of equation (A48) substituted into equation (A17) for \(R_0 \), or into equation (A31) for \(M_0 \) leads to the equation

\[
aT_0 = 1 - e^{-bT_0} \tag{A49}
\]

which must be solved by an approximate technique. This also shows that \(T_0 \) is only a function of the stoichiometric coefficient. Table V illustrates the general values of these dimensionless variables over a range of values of the coefficient \(a \).
One of the consequences of the paralinear model is obtained from the last column in table \(V \), which shows that the ratio of crossover time to time at optimum sample weight change \(T_0/\overline{T} \) is about 4.

Table VI summarizes the results of this analytical section on the properties and trends of the model. Four time values are exhibited: initial time \(t = 0 \), time at maximum specimen weight gain \(\overline{\tau} \), time at zero specimen weight gain \(t_0 \), and finally very long times where the variables \(N, M, R \), and \(dN/dT \) approach limiting values.

Table VII summarizes the definitions of the much-used paralinear parameters and their development from basic physical variables (i.e., their correspondence with the transport coefficients \(k_p \) and \(k_v \)).

Numerical solutions of the equations. - We have seen that the nature of the paralinear model is such that the history (or curve) of \(\Delta W \) as a function of \(t \) is uniquely predicted from a knowledge of three constants: \(a, A, \) and \(B \).

Conversely, two data points \((\Delta W_1, t_1) \) and \((\Delta W_2, t_2) \) can, in principle, be used to calculate the values of \(A \) and \(B \) that are needed to give the unique curve passing through those data points. This is, of course, about the only way to obtain estimates of \(A \) and \(B \) from the laboratory experiments.

This section outlines those numerical techniques for solving the paralinear equations that are the algorithms for the FORTRAN program. The complete program procedure is in the following sequence:

1. Establish values of the system parameters \(\alpha, \beta, A, B, T_0 \)
2. Solve the transcendental paralinear equations in dimensionless form by approximation methods
3. Use these solutions to obtain a group of results:
 a. The array of \(\Delta W \)'s for a given array of \(t \) values
 b. The special results \(W_m, W_0', \overline{W}_r, W_r, \lim \)
 c. The times \(t_\delta \) at which \(W_r = \delta \cdot W_r, \lim \)
 d. The times \(t \) corresponding to chosen values of \(W_m \)

System parameters. - The crossover point \(T_0 \) is obtained from equation (A49) by using successive substitutions of improved approximations to \(T_0 \), starting with an initial value of \(T_0 = 4\beta \). The convergence was rapid in satisfying the test

\[
\left| \frac{T_{j+1} - T_j}{T_j} \right| < 0.0001 \quad (A50)
\]

The values of \(A \) and \(B \) are obtained by using one of four data input types: (1) defined values of \(k_p \) and \(k_v \) (table VI); (2) given values of \((\Delta W, \overline{\tau}) \) (eq. (A46); (3) a given value of \(k_p \) or \(k_v \) and one general data pair \((\Delta W, t) \); (4) experimental data pairs \((\Delta W_1, t_1) \) and \((\Delta W_2, t_2) \). The computation using the third type differs depending on
whether k_p or k_v is defined.

Example 1 - Define k_p:

$$A = \frac{k_p a^2}{2}$$

From equations (A36) and (A38),

$$R = a(N + T)$$

$$= \frac{aB}{A} (\Delta W + Bt) \tag{A51}$$

The terms in (A51) are known except for B, which makes the equation quadratic in B. Both equations (A51) and (A17) are to be satisfied. Write equation (A17) in its alternate form:

$$T = \ln (1 - R) - R \tag{A17a}$$

or

$$f(B) = T + R + \ln (1 - R) \tag{A17b}$$

where $f(B) = 0$ when the correct value of B is obtained to satisfy both equations. The B-root of equation (A17b) is obtained by using the Newton-Raphson technique:

$$B_{j+1} = B_j - \frac{f(B_j)}{f'(B_j)} \tag{A52}$$

where

$$f'(B_j) = \frac{df}{dB_j} = - \frac{R(B_j) (dR) - (dT)}{1 - R(B_j)} \tag{A53}$$

28
where

\[
\left(\frac{dT}{dB_j} \right) = \frac{2B_j t}{A}
\]

\[
\frac{dR}{dB_j} = \frac{1}{B_j} (R_j + aT_j)
\]

\[
R_j = \frac{aB_j}{A} (\Delta W + B_j t)
\]

\[
T_j = \frac{B_j^2 t}{A}
\]

\[
f(B_j) = T_j + R_j + \ln (1 - R_j)
\]

The initial value of \(B_1 \) is obtained from the definition of \(T \), that is,

\[
B_1 = \sqrt{\frac{AT_1}{t}}
\]

(A54)

where \(T_1 \) is arbitrarily taken at \(R_1 = 0.5 \), that is, half of its maximum value. Convergence of the Newton-Raphson method to the limit test is rapid:

\[
\left| \frac{B_{j+1} - B_j}{B_j} \right| < 0.00001
\]

(A55)

Example 2 - Define \(k_v \):

\[
B = \frac{ak_v}{b}
\]

(A46)

Equations (A51) and (A17b) are again used, but with \(A \) as the unknown coefficient. By analogy to example 1,

\[
f(A_j) = T_j + R_j + \ln (1 - R_j)
\]

(A56)
where \(f(A) = 0 \) at convergence. Again Newton-Raphson uses

\[
A_{j+1} = A_j - \frac{f(A_j)}{f'(A_j)} \tag{A57}
\]

where

\[
f'(A_j) = \frac{df}{dA_j} = \frac{dT}{dA_j} - \frac{R_j}{1 - R_j} \frac{dR}{dA_j} \tag{A58}
\]

and

\[
\frac{dT}{dA_j} = -\frac{T_j}{A_j} \quad \text{and} \quad \frac{dR}{dA_j} = -\frac{R_j}{A_j}
\]

\[
-T_j + \frac{R_j^2}{1 - R_j} = f'(A_j) \tag{A58}
\]

Numerical iteration is handled as in example 1.

Example 3 - Define two experimental points, \((\Delta W_1, t_1)\) and \((\Delta W_2, t_2)\): We start with the mass-balance equation (A36) and replace \(R \) by equation (A38)

\[
aN = M - bT \tag{A59a}
\]

\[
\frac{aB}{A} \Delta W = M - bT \tag{A59b}
\]
For both pairs, when the weights are nonzero, we have for the two times \((t_2 > t_1)\), from equation (A59b),

\[
\frac{M_1 - bT_1}{\Delta W_1} = \frac{M_2 - bT_2}{\Delta W_2}
\]

\[
M_1 - \left(\frac{\Delta W_1}{\Delta W_2}\right) M_2 + bT_1 \left(\frac{\Delta W_1}{\Delta W_2} - 1\right) = f(T_1)
\]

(A60)

where \(\tau = T_2/T_1 = t_2/t_1\) and \(f(T_1) = 0\) when the parameters \(A\) and \(B\) are evaluated such that \(T_1\) and \(T_2 = \tau T_1\) give \(M_1\) and \(M_2\) values which satisfy equation (A60).

The \(T_1\) root of equation (A60) is found by using the Wegstein secant modification of the iteration technique for successive estimates on \(T_1\):

\[
T_{j+1} = f(T_j)
\]

\[
\frac{\Delta W_1 M_2}{\Delta W_2} - M_1 = \frac{b \left(\frac{\Delta W_1 t_2}{\Delta W_2 t_1} - 1\right)}{F(M_1)}
\]

(A61)

where \(M_2\) and \(M_1\) are calculated for given \(\tau T_j\) and \(T_j\), respectively, by using the Newton-Raphson iterative method to solve equation (A31):

\[
M_{1+1} = M_1 - \frac{F(M_1)}{F'(M_1)}
\]

(A62)

where

\[
F(M_1) = -M_1 + 1 + T_j - \exp(-M_1)
\]

(A63)

\[
F'(M_1) = \frac{dF}{dM_1} = T_j - M_1
\]

(A64)

The Newton-Raphson method rapidly converges for given values of \(T_j\).
A safe starting value for \(T_j \) in equation (A61) is \(T_0 \), from (A50), and the initial \(M_0 = bT_0 \) in equations (A62) and (A64).

Wegstein's iteration scheme is used to get accelerated convergence in the case of a function, such as equation (A61), that has at least a continuous first derivative in the range in which the iteration moves. It refines an initial guess \(T_0 \) of the root of our nonlinear equation \(T = f(T) \).

The calculation sequence starts as follows

\[
x_1 = y_0 = f(x_0)
\]

\[
y_1 = f(x_1)
\]

with the succeeding steps resulting in the computational scheme

\[
x_{i+1} = x_i + \frac{x_i - x_{i-1}}{x_{i-1} - y_{i-1} - 1} \quad \text{(i = 1, 2, \ldots)} \tag{A65}
\]

\[
y_{i+1} = f(x_{i+1})
\]

Each step requires one evaluation of \(f(x) \).

The iterative procedure is terminated when the following two conditions are satisfied:

\[
\text{DEL1} \leq \epsilon \quad \text{and} \quad \text{DEL2} \leq 10 \cdot \epsilon
\]

with

\[
\text{DEL1} = \begin{cases}
|\frac{x_{i+1} - x_i}{x_i+1}| & \text{when } |x_{i+1}| > 1 \\
|\frac{x_{i+1} - x_i}{x_i+1}| & \text{when } |x_{i+1}| \leq 1
\end{cases}
\]
and the tolerance factor ϵ is specified in the input.

The calculation of the parameters A and B follows after convergence of equations (A61) and (A64) to a suitable test, such as was used for equation (A54). The computed values of M_1 and T_1 are used in equation (A59) to determine

$$\frac{B}{A} = \frac{M_1 - bT_1}{a \Delta W_1}$$

(A66)

and from equation (A18)

$$\frac{B^2}{A} = \frac{T_1}{t_1}$$

(A67)

Dividing equation (A67) by (A66) gives the sublimation parameter

$$B = \frac{T_1}{t_1} \left(\frac{M_1 - bT_1}{a \Delta W_1} \right)$$

(A68)

and finally the parabolic parameter A is obtained from either equation (A66) or (A67), for instance,

$$A = \frac{B^2 t_1}{T_1}$$

(A69)

For the special case in which one given weight is zero (crossover point), the associated time is t_0, which establishes the important \bar{t} and thus the $B^2/A = \beta/\bar{t}$. The non-zero weight-against-time pair $(\Delta W, t)$ is used to establish the time $T = (\beta/t)\bar{t}$ and the associated M-value from equation (A64). Finally, from equations (A68) and (A69) the individual parameters A and B are computed.

Table VIII summarizes the four possible input types used to establish the necessary system parameters.
Main program calculation. - With numerical values of the paralinear parameters a, A, and B, the main results can be calculated by using the relations already established.

Net specimen weight curve: Given an array of LL times at which values of net specimen weight are wanted, specify \(t_1, t_2, \ldots, t_{LL} \) in hours and calculate

\[
T_1, T_2, \ldots, T_{LL} \quad \text{from equation (A21)}
\]

\[
M_1, M_2, \ldots, M_{LL} \quad \text{from equation (A31)}
\]

\[
N_1, N_2, \ldots, N_{LL} \quad \text{from equation (A59a)}
\]

\[
\Delta W_1, \Delta W_2, \ldots, \Delta W_{LL} \quad \text{from equation (A59b)}
\]

\[
W_{m,1}, W_{m,2}, \ldots, W_{m,LL} \quad \text{from equation (A21)}
\]

\[
W_{r,1}, W_{r,2}, \ldots, W_{r,LL} \quad \text{from equation (A18)}
\]

\[
\delta_{m,1}, \delta_{m,2}, \ldots, \delta_{m,LL} \quad \text{from equation (A70)}
\]

\[
\delta_{r,1}, \delta_{r,2}, \ldots, \delta_{r,LL}
\]

The last two rows of thicknesses are calculated as

\[
\text{(Metal thickness lost)} = \frac{W_m}{\rho_m} = \delta_m
\]

(A70)

where metal density is \(\rho_m \), and for the thickness of the scale layer at any time

\[
\text{(Scale thickness)} = \frac{W_r}{\rho_r} = \delta_r
\]

(A71)

where \(\rho_r \) is the scale density. These calculations are found in FORTRAN subroutine CURVE.

Special weight values: Table IX completes the trends and limiting values of table VI. These calculations are found in the FORTRAN subroutine SPEVAL.

Product scale thickness-against-time values: It is required to determine the experimental times for the model sample to reach certain specified fractions of the equilib-
rium (limiting) scale thickness. Given the fractions \(R_1, R_2, R_3 < 1 \), calculate \(T_1, T_2, \) and \(T_3 \) from equation (A16) and \(t_1, t_2, \) and \(t_3 \) from equation (A21). These are calculated from the FORTRAN subroutine PROVAL.

Metal corrosion-time values: Analogous to the preceding paragraph, estimate the times required for the sample to suffer corrosion losses of specified values. Thus, given LLX values \((W_{m,1}, W_{m,2}, \ldots, W_{m,LLX}) \), calculate \(M_1, M_2, \ldots, M_{LLX} \) from equation (A21), and \(t_1, t_2, \ldots, t_{LLX} \) from equation (A32). This is programmed in FORTRAN subroutine CORODE.
APPENDIX B

BASIC COREST FORTRAN PROGRAM

**** PROGRAM ANALYSIS OF METAL OXIDATION/SCALE VAPORIZATION BY
MEANS OF PARALINEAR KINETIC MODEL. REFERENCE -- D.WAJZEL,

THE PROGRAM PROVIDES THE HISTORY OF THE NET SAMPLE WEIGHT,
ALLOY METAL CORRODED, AND SCALE THICKNESS.

**** ADDITIONAL RESULTS PROVIDED FROM THE BASIC SOLUTION ARE --
(1) CROSSOVER TIME FOR NET SPECIMAN WEIGHT CHANGE OF ZERO
(2) MAXIMUM NET SAMPLE WEIGHT AND ITS CORRESPONDING TIME;
(3) WEIGHT OF METAL CORRODED UP TO CROSSOVER TIME;
(4) EQUILIBRIUM WEIGHT OF SCALE RETAINED ON THE SAMPLE
AT VERY LARGE TIMES;
(5) ELAPSED TIME FOR AN EXPECTED WEIGHT LOSS OF ALLOY;
(6) TIME TO REACH SPECIFIED FRACTIONS OF EQUILIBRIUM
SCALE THICKNESS;
(7) PARALINEAR PARAMETERS ARE DETERMINED FROM THE
EXPERIMENTAL DATA IN THOSE CASES WHERE THEY ARE
NOT GIVEN AS INITIAL INPUT.

**** PROBLEM DEFINITION AND DATA DESCRIPTION CARDS ARE LISTED AS -
CARD 1 - FLAG FOR TYPE OF SCALE LOSS. TRUE = SPALLING,
FALSE = VAPORIZATION.
CARD 2 - ALLOY TYPE, ALLOY DENSITY
CARD 3 - SCALE TYPE, SCALE DENSITY.
CARD 4 - DATA SOURCE AND RUN DESCRIPTION.
CARD 5 - EXPERIMENTAL TEMPERATURE AND PRESSURE.
CARD 6 - FLAG FOR MICROFILM PLOT REQUEST. TRUE = PLots
WANTED, FALSE = UNWANTED.

DIMENSION HOURS(100), OP(100), XXX(100), TP(100), TTT(100)
DIMENSION WW(100), TT(100), WX(100), XXV(100)
DIMENSION WM(100), WW(100), WP(100), THKLOS(100), OXITHK(100)
DIMENSION ALLOY(6), SCALE(6), SOURCE(8), RUN(2), TEMP(2), PRESS(2)

REAL KP, KV
LOGICAL SPAll, SEMILG

COMMON/BLK1/HOURS, OP, XXX, WW, TT
COMMON/BLK2/ASMAH, BSMALL, DENOH, DENMET
COMMON/BLK3/TYPE, LTYPE, LL, ELX, NUMSET, NUMKP, NUMKV
COMMON/PARM/A/LPHA, BETA, PARAM2/TAUZERO, RAT10
COMMON/CASE1/KP, KV/CASE2/ACAP, BCAP/CASE3/WBAR, TBAR, TZERO
COMMON/CASE4/XKP, XKV
COMMON/VALL/WBAR, WMZERO, VRUS
COMMON/SCALE/TP, RUST/TT
COMMON/YOUP/WM, WR, WT, THKLOS, OXITHK
COMMON/INFO/ALLOY, SCALE, SOURCE, RUN, TEMP, PRESS

C... ARRAYS FOR MICROFILM PLOTTING ROUTINE
DIMENSION XTITLE(1), YMLEG(1), YPLEG(1), YTLEG(1)
COMMON/TITLES/XTITLE, YMLEG, YPLEG, YTLEG
COMMON/LEGEND/XLEG(20),YLEG(20),NX,MY
COMMON/BLKPLT/KKK(110)
COMMON/FILM/SEMI6

C
CS***
C *** INITIALIZE DATA AND STOICHIOMETRIC COEFFICIENTS ---
C
CALL BEGIN
CS***
C *** DESCRIPTION OF DATA TYPE ---
C
IIYPE=1 ---- THE DATA SET CONSISTS OF THE CURVE PARAMETER WBAR,TBAR.
C
IIYPE=2 ---- THE DATA SET CONTAINS NUMSET PAIRED VALUES OF THE PARALINEAR OXIDATION-REACTION PARAMETER KP, AND THE VAPORIZATION PARAMETER KV.
C
IIYPE=3 ---- GIVEN NUMSET PAIRS OF EXPERIMENTAL DATA POINTS WW(I),TT(I),NUMKP VALUES OF THE PARALINEAR PARAMETER KP -- (IIYPE=1) OR NUMKV VALUES OF THE VAPORIZATION ON PARAMETER KV -- (IIYPE=2).
C
IIYPE=4 ---- GIVEN NUMSET PAIRS OF EXPERIMENTAL WEIGHTS W1(I),W2(I) AND THEIR CORRESPONDING TIMES T1(I),T2(I).
C
CS***
C *** CYCLE THROUGH DATA VECTOR ---
DO 500 I=1,NUMSET
C
CS***
C *** TEST FOR DATA TYPE ---
GO TO (60,70,60,70),IIYPE

60 CONTINUE
CS***
C *** IIYPE=1
C **** IIYPE=1
WBAR=WW(I)
TBAR=TT(I)
WRITE(6,40)WBAR,TBAR
CALL QUERY1(WBAR,TBAR)
CALL OUTPUT
GO TO 500
C
C
70 CONTINUE
CS***
C *** IIYPE=2
C **** IIYPE=2
KP=XXP(I)
KV=XXV(I)
WRITE(6,42)KP,KV
CALL QUERY2(KP,KV)
CALL OUTPUT
GO TO 500
C
C
80 CONTINUE
CS***
C *** IIYPE=3
C
C
*** TEST FOR INPUT TYPE OF PARALINEAR PARAMETER ****

GO TO (810, 820), LTYPE

810 CONTINUE
DO 811 JKP=1, NUMKP
 KP=JKP(JKP)
 WRITE(6, 45) KP, WZZ, TZZ
 CALL QUERY3(LTYPE, WZZ, TZZ, KP)
 CALL OUTPUT
811 CONTINUE
GO TO 500

820 CONTINUE
DO 821 JKV=1, NUMKV
 KV=JKV(JKV)
 WRITE(6, 46) KV, WZZ, TZZ
 CALL QUERY3(LTYPE, WZZ, TZZ, KV)
 CALL OUTPUT
821 CONTINUE
GO TO 500

90 CONTINUE

CS**
C ITYPE=4
C
 N4=2*I
 N4MIN1=N4-1
 W1=WW(IN4MIN1)
 W2=WW(N4)
 T1=TT(N4MIN1)
 T2=TT(N4)
 WRITE(6, 47) W1, T1
 WRITE(6, 48) W2, T2
 CALL QUERY4(W1, W2, T1, T2)
 CALL OUTPUT
GO TO 500

CS**
C
CS**
C
CS**
C
40 FORMAT(///10X,26H INPUT DATA---- WMAX = , F12.6, 12X, 7HTMAX = ,
 1F12.6,///)
42 FORMAT(///10X,24H INPUT DATA---- KP = , F12.6, 12X, 5HKV = ,
 1F12.6,///)
45 FORMAT(///10X,23H INPUT DATA---- KP = , F12.6, 10X, 7HW(1) = ,
 1F12.6,10X M6/S0.CM., 10X, 7HTT(1) = , F12.6, 6H HOURS///)
46 FORMAT(///10X,23H INPUT DATA---- KV = , F12.6, 10X, 7HW(1) = ,
 1F12.6,10X M6/S0.CM., 10X, 7HTT(1) = , F12.6, 6H HOURS///)
47 FORMAT(///10X,26H INPUT DATA---- WW(1) = , F12.6, 15X, 7HTT(1) = ,
 1F12.6, 6H HOURS///)
48 FORMAT(29X, 7HWW(2) = , F12.6, 15X, 7HTT(2) = , F12.6, 6H HOURS///)

STOP
END
SUBROUTINE BEGIN
**** SUBPROGRAM READS PROGRAM DESCRIPTORS FROM DATA CARDS AND
WRITES INITIAL HEADINGS ON OUTPUT. ****

LOGICAL SPALL, SEMILG

DIMENSION ALLOY(6), SCALE(6), SOURCE(8), RUN(21), TEMP(21), PRESS(21)
COMMON/BLK2/ASMLL, BSMALL, DENOX, DENMET
COMMON/BLK3/ITYPE, LTYPE, LLM, LLX, NUMSET, NUMKV, NUMKP
COMMON/PARAM1/ALPHA, BETA/PARAM2/TAU2, RATIO
COMMON/INFO/ALLOY, SCALE, SOURCE, RUN, TEMP, PRESS
COMMON/FILM/SEMILG

READ(5,1)SPALL
READ(5,2)ALLOY, DENMET
READ(5,3)SCALE, DENOX
READ(5,4)SOURCE, RUN
READ(5,5)TEMP, PRESS
READ(5,6)SEMILG

IF (SPALL .GT. 20)
 WRITE(6,100)
 GO TO 30
20 WRITE(6,200)
30 WRITE(6,300)ALLOY, SCALE
 WRITE(6,400)TEMP, PRESS
 WRITE(6,500)SOURCE, RUN
 WRITE(6,600)DENMET, DENOX
 WRITE(6,700)ASMLL, BSMALL
 WRITE(6,800)ITYPE
 WRITE(6,900)CALL STOICH
 CALL ZERO
 WRITE(6,950)ALPHA, BETA, RATIO

1 FORMAT(5I5)
2 FORMAT(16A6, F6.3)
3 FORMAT(16A6, F6.3)
4 FORMAT(18A6, 2A6)
5 FORMAT(2A6, 2A6)
6 FORMAT(5I5)

100 FORMAT(1H1, 35X, 62HPARALINEAR KINETICS STUDY OF CORROSION WITH SCAL
1E VAPORIZATION//)
200 FORMAT(1H1, 35X, 52HPARALINEAR KINETICS STUDY OF CORROSION WITH SPAL
1LING//)
300 FORMAT(1H0, 35X, 11HALLOY TYPE=-5X, 6A6//35X, 11HS SCALE TYPE=-5X, 6A6)
400 FORMAT(1H0, 35X, 14HTEMP CRATURE =-2A6, 10X, 11HPRESSURE =-2A6)
500 FORMAT(1H0, 35X, 12HDATA SOURCE=-8A6, 10HRUN NO. =-2A6)
600 FORMAT(1H0, 20X, 18HDENITS- ALLOY =-F6.3, 21H GM/CU.CM., SCALE
1=-F6.3, 1OH GM/CU.CM.*)
700 FORMAT(1H0, 20X, 39HSTOICHIOMETRIC COEFFICIENTS- ASMLL =-F7.4, 12H
1, BSMALL =-F7.4)
800 FORMAT(1H0, 20X, 12HDATA TYPE =-11)
900 FORMAT(1H0, 5X, 19HDATA SPECIFICATION/=15X, 53HTYPE=1 --- THE DATA
1 SET CONSISTS OF THE CURVE PARA/=28X, 22HEMET PAIR WBAR, TBAR */
215X, 54HTYPE=2 --- THE DATA SET CONTAINS NUMKP VALUES OF THE/
328X, 43HPARALINEAR DIFFUSION-REACTION PARAMETER KP, /28X, 42HARD NUMK
4V VALUES OF THE VAPORIZATION PARA/=28X, 10HEMET KV */15X, 52HTYPE
ERIMENTAL WEIGHTS/28X,41HW(11),k2(11) AND THEIR CORRESPONDING TIMES
1/28X,13HT(I1),T2(I1) ///11
950 FORMAT(10X,8HALPHA = ,F10.9,12X,7HBETA = ,F10.9,13X,38HCROSSOVER T
1IME/TIME(AT MAX. WEIGHT) = ,F8.6,///)

C

RETURN

END

SUBROUTINE OUTPUT

C

DIMENSION HOURS(100),OP(10),XXX(10),TP(10),TTT(100)
DIMENSION WM(100),TT(100),XKP(100),XXV(100)
DIMENSION WI(100),WR(100),WT(100),TKLOS(100),OXITHK(100)
DIMENSION ALLOY(6),SCALE(6),SOURCE(8),RUN(2),TEMP(2),PRESS(2)

C

REAL KP,KV
LOGICAL SPALL,SEMILG

C

COMMON/BLK1/HOURS,OP,XXX,WW,TT
COMMON/BLK2/ASMALL,BSMALL,DENOX,DENMET
COMMON/BLK3/ITYPE,LLTYPE,LL,LLX,NUMSET,NUMKP,NUMKV
COMMON/PARAM/ALPHA,BETA/PARAM2/TAUZRO,RATIO
COMMON/CASE1/KP,KV/CASE2/ACAP,BCAP/CASE3/WM/R/WBAR,TBAR,TZERO
COMMON/CASE4/XKP,XXV
COMMON/VOL/WBAR,WRBAR,WMZERO,WRILIM
COMMON/SCALE/TP/RUST/TTT
COMMON/VOLUP/W,W,WT,TKLOS,OXITHK
COMMON/INFO/ALLOY,SCALE,SOURCE,RUN,TEMP,PRESS

C

C..NAMED COMMON FOR MICROFILM PLOTTING ROUTINE

DIMENSION XITLE(14),YMLEG(19),YPLEG(10),YTLEG(9)
COMMON/TITLES/XITLE,YMLEG,YPLEG,YTLEG
COMMON/BLKPLT/XKK(10)
COMMON/FILM/SEMILG

C

C***

C

C *** PRINTOUT FOR BULK OF COMPUTED RESULTS ***

C

C***

C

100 CALL SPEVAL
WRITE(6,121)ACAP,BCAP,KP,KV,TZERO
WRITE(6,131)WM,WBAR,WRILIM
WRITE(6,141)WBAR,WMZERO
WRITE(6,151)WMBAR,WRBAR
WRITE(6,161)
CALL PROVAL
WRITE(6,171)OP(K),TP(K),K=1,31
WRITE(6,181)
CALL CORODE
WRITE(6,191)XXX(III),TTT(JJ),II=1,LLX)
WRITE(6,211)
CALL CURVE
WRITE(6,231)HOURS(IJJ),UM(IJJ),WR(IJJ),WT(IJJ),THKLOS(IJJ),
OXITHK(IJJ),IJ=1,LL)
C
C REQUEST FOR MICROFILM SEMILOG PLOTS
IF(SEMILGICALL PLOTIO(IJJ))
C
12 FORMAT(10X,4HA = *F10.7,6X,4HB = *F10.7,6X,5HM = *F10.7,5X,
15HMV = *F10.7,5X,17H CROSSOVER TIME = *F10.2,6H HOURS///)
13 FORMAT(10X,21H MAXIMUM NET WEIGHT = *F10.5,10H MG/S0.CM.,23X,24HLI
IMITING SCALE WEIGHT = *F10.5,11H MG/S0.CM.,///)
14 FORMAT(10X,29H TIME AT MAXIMUM NET WEIGHT = *F10.2,7H HOURS,14X,38
HALLOY CORRODED UP TO CROSSOVER TIME = *F10.4,10H MG/S0.CM.,///)
15 FORMAT(10X,37HALLOY CONSUMED AT MAX. NET WEIGHT) = *F10.4,10H MG/S
10.CM.,3X,35HS SCALE WEIGHT AT MAX. NET WEIGHT = *F10.4,10H MG/S0.CM.
F
16 FORMAT(10X,20H FRACTION OF LIMITING,14X,12HELAPSED TIME/44X,12HSCAL
IE WEIGHT,21X,7TH HOURS///)
17 FORMAT(10X,21H CORROSION,16X,12HELAPSED TIME/43X,11H MG/S
10.CM.,2X,7TH HOURS///)
19 FORMAT(10X,45X,24X,F10.2,///)
21 FORMAT(///13X,12HELAPSED TIME/5X,14H CORROSION LOSS,6X,12HS SCALE WE
IGHT,5X,19HNET SPECIMEN WEIGHT/4X,14H CORROSION LOSS,4X,15H SCALE TH
ICKNESS/16X,7TH HOURS/19X,11H MG/S0. CM.,17X,11H MG/S0. CM.,19X,
311H MG/S0. CM.,16X,13H IMILLIMETERS/18X,13H IMILLIMETERS///)
23 FORMAT(15X,F10.2,7X,F12.4,7X,F12.4,9X,F12.4,14X,F8.6,10X,F8.6,///)
C
RETURN
END

SUBROUTINE PLOTIO(LINK)
C ... PLOT OXIDATION-CORROSION DATA* CURVES OF ALLOY WEIGHT LOSS,
C ... SCALE PRODUCT, AND NET WEIGHT LOSS VS. TIME...
C
DIMENSION CHARI(12),CHAR1(61),CHAR2(81)
DIMENSION XTITLE(14),YMLEG(191),YPLEG(140),TITLE(9)
DIMENSION ALLOY(16),SCALE(61),SOURCE(81),RUN(12),TEMP(21),PRESS(21)
C
COMMON/BLK1/HOURS(100),OP(101),XXX(101),WW(100),TT(100)
COMMON/OLUP/WM(101),WR(100),WT(100),THKLOS(100),OXITHK(100)
C
COMMON/INFO/ALLOY,SCALE,SOURCE,RUN,TEMP,PRESS
COMMON/TITLES/XTITLE,YMLEG,YPLEG,TITLE
COMMON/LEGEND/XLEG(20),YLEG(20),NX,NY
COMMON/BLKPLT/KKK(101)
C
C *** LOAD LEGEND ARRAYS FROM COMMON BLOCK INPUT
DO 10 I=1,8
 CHAR2(I) = SOURCE(I)
 J=I+6
 K=I+2
10
RETURN
END
L=I*4
IF(I.GT.2) GO TO 5
CHAR(I)=TEMP(I)
CHAR(1)=PRESS(I)
CHAR(1)=RUN(I)
5 IF(I.GT.6) GO TO 10
CHAR(I)=ALLOY(I)
CHAR(I)=SCALE(I)
10 CONTINUE
C
C..OVERWRITE KKK(61) BY SUBROUTINE CALLING ARGUMENT
KKK(61)=LINK
C
C..ABSCISSA TITLE ARRAY
DO 20 IX=1,4
XLEG(IX)=XTITLE(IX)
20 CONTINUE
NX=19
C
C..SEMILOG PLOT OF ALLOY CORROSION HISTORY
DO 30 IM=1,9
YLEG(IM)=YMLEG(IM)
30 CONTINUE
NY=52
CALL LRLEG(CHART,72)
CALL LRLEGN(CHART1,36,0,1,7,0,0)
CALL LRLEGN(CHART2,48,0,1,6,5,0,0)
CALL LOGXY(HOURS,WM,2,KKK)
C
C..SEMILOG PLOT OF PRODUCT SCALE HISTORY
DO 40 IP=1,10
YLEG(IP)=YMLEG(IP)
40 CONTINUE
NY=60
CALL LRLEG(CHART,72)
CALL LRLEGN(CHART1,36,0,1,7,0,0)
CALL LRLEGN(CHART2,48,0,1,6,5,0,0)
CALL LOGXY(HOURS,WR,2,KKK)
C
C..SEMILOG PLOT OF NET SAMPLE WEIGHT HISTORY
DO 50 IT=1,9
YLEG(IT)=YTLEG(IT)
50 CONTINUE
NY=50
CALL LRLEG(CHART,72)
CALL LRLEGN(CHART1,36,0,1,7,0,0)
CALL LRLEGN(CHART2,48,0,1,6,5,0,0)
CALL LOGXY(HOURS,WT,2,KKK)
RETURN
END

SUBROUTINE STOICH
COMMON/BLK2/ASMALL,BSMALL,DENOX,DENMET
COMMON/PARAM1/ALPHA,BETA

42
SUBROUTINE ZERO

COMMON/BK2/ASmall, BSmall, DenoX, Denmet
COMMON/Param1/Alpha, Beta/Param2/TauZro, Ratio

*** FUNCTIONS OF THE STOICHIOMETRIC COEFFICIENT ASMALL ***

TFUZRO - PREDICTED DIMENSIONLESS TIME (FROM PARALINEAR THEOREY) AT CROSSOVER POINT FOR SAMPLE WEIGHT

RATIO - CROSSOVER TIME TO TIME AT MAXIMUM SAMPLE WEIGHT

*** END ***

U=BSmall/ ASmall
XL=alog(U)
ALPHA=U-1.-XL
BETA=XL-(1./BSmall)
RETURN

SUBROUTINE ZERO

COMMON/BLK2/ASmall, BSmall, DenoX, Denmet
COMMON/Param1/Alpha, Beta/Param2/TauZro, Ratio

*** FUNCTIONS OF THE STOICHIOMETRIC COEFFICIENT ASMALL ***

TFUZRO - PREDICTED DIMENSIONLESS TIME (FROM PARALINEAR THEOREY) AT CROSSOVER POINT FOR SAMPLE WEIGHT

RATIO - CROSSOVER TIME TO TIME AT MAXIMUM SAMPLE WEIGHT

*** END ***

1 FORMAT(1H4,20X,41HERROR ALERT MESSAGE FROM SUBROUTINE ZERO /1H ,
125X,67H**THE NUMBER OF ITERATIONS EXCEED 100 AND EXITS WITH THESE 2VALUES**/1
2 FORMAT(1H4,20X,41HTHE TRIAL ITERATION VALUE **TEST** = ,F9.5/1H ,30X,37HTHE TRIAL ITERA
ITION VALUE **TEST** = ,F9.5/1

**INITIALIZE FOR FIRST ITERATION **
U=BSmall/ASmall
FIRST=1./BSmall
PJ=SQRT(FIRST)

** ITERATE ON NEXT ESTIMATE **
DO 55 I=1,100
DELTA=1.-PJ
PJJ=PJ*(alog(Delta)+U*PJ)1/(1./DELTA-U)
ZFF=(PJJ-PJ)/PJJ
TEST=ABS(ZFF)
IF(TEST.LT.0.00001) GO TO 105
PJ=PJJ
CONTINUE
WRITE(6,1)
WRITE(6,2)PJ, TEST
SUBROUTINE QUERY1(W,T)

REAL KP,KV
COMMON/BLK3/IYPE,LYPE,LL,LLX,NUMSET,NUMKP,NUMKV
COMMON/BLK2/ASMLL,BSMLL,DENOX,DENMET
COMMON/PARAM1/ALPHA,BETA/PARAM2/TAUZRO,RATIO
COMMON/CASE1/KP,KV/CASE2/ACAP,BCAP/CASE3/WBAR,TBAR,TZERO

C **
C *** SUBROUTINE DETERMINES NUMERICAL VALUES OF THE PARALLEL PARAMETERS
C FROM ONE OF SEVERAL POSSIBLE TYPES OF INPUT DATA **
C *** INPUT ARGUMENTS ---- WBAR,TBAR FOR IYPE = 1 ***
C **
C
40 WBAR=W
 TBAR=T

 BCAP=WBAR*BETA/(TBAR*ALPHA)
 ACAP=BCAP*WBAR/ALPHA
 AA=ACAP/BCAP
 KP=2.*ACAP/ASMLL**2
 KV=BCAP*BSMLL/ASMLL
 TZERO=RATIO*TBAR
RETURN

END

SUBROUTINE QUERY2(P,V)

REAL KP,KV
COMMON/CASE1/KP,KV/CASE2/ACAP,BCAP/CASE3/WBAR,TBAR,TZERO
COMMON/PARAM1/ALPHA,BETA/PARAM2/TAUZRO,RATIO
COMMON/BLK2/ASMLL,BSMLL,DENOX,DENMET
COMMON/BLK3/IYPE,LYPE,LL,LLX,NUMSET,NUMKP,NUMKV

C **
C *** SUBROUTINE DETERMINES NUMERICAL VALUES OF THE PARALLEL PARAMETERS
C FROM ONE OF SEVERAL POSSIBLE TYPES OF INPUT DATA **
C *** INPUT ARGUMENTS ---- KP AND KV FOR IYPE = 2 ***
C
44
SUBROUTINE QUERY3(W,T,X)
REAL KP, KV
COMMON/BLK2/ASMALL, BSMALL, DENOX, DENMET
COMMON/BLK3/ITYPE, LTYPE, LL, LLX, NUMSET, NUMKP, NUMKV
COMMON/PARAM1/ALPHA, BETA/PARAM2/TAUZRO, RATIO
COMMON/CASE1/KP, KV/CASE2/ACAP, BCAP/CASE3/WBAR, TBAR, TZERO

CS***

C *** SUBROUTINE DETERMINES NUMERICAL VALUES OF THE PARALEINAR PARAMETERS
C FROM ONE OF SEVERAL POSSIBLE TYPES OF INPUT DATA **
C
C *** INPUT ARGUMENTS ---- ONE WEIGHT-TIME DATA PAIR PLUS EITHER KP
C OR KV FOR ITYPE = 3 **
C
CS***

1 FORMAT(1HO,20X,*3ERROR ALERT MESSAGE FROM SUBROUTINE QUERY3 /1H ,
125X,67H**THE NUMBER OF ITERATIONS EXCEED 100 AND EXITS WITH THESE
2VALUES**/)
2 FORMAT(1H, 30X,25HTHE PARAMETER **BCAP** = ,E8.4/1H, 30X,37HTHE TR
1IAL ITERATION VALUE **TEST** = ,F9.5///)
3 FORMAT(1H, 30X,27HTHE ABSCISSA TERM **TX** = ,E8.4/1H, 30X,37HTHE
1TRIAL ITERATION VALUE **TEST** = ,F9.5///)

4 WW1=W
5 IT1=T
 IF ITYPE .NE. 2) GO TO 10

C ** COEFFICIENT KP GIVEN **
KP=X
ACAP=KP*ASMALL**2/2.

AA=ACAP/ASMALL
BMAX=(-WW1+SQRT(WW1**2+4.*IT1/ASMALL))/2.*IT1

C ** FIRST GUESS OF BCAP VALUE **

6 B1=BMAX

45
DO 8 J=1,100
 T1=TT1*B1**2/ACAP
 P=RETNO(T1)-T1
 PP=(1.-P)**2.*T1/(P*B1)
 F=TT1*B1**2+WW1*B1-AAA*P
 DF=2.*TT1*B1+WW1-AAA*PP
 B2=B1-F/DF
 TEST=ABS((B2-B11)/B2)
 IF(TEST.LT.0001) GO TO 9
 B1=B2
8 CONTINUE
 WRITE(6,1)
 WRITE(6,2)B2,TEST
9 BCAP=B2
C
 KV=BSMALL*BCAP/ASMALL
 WBAR=ACAP*ALPHA/BCAP
 TBAR=WBAR*BETA/(BCAP*ALPHA)
 TZERO=TAUZRO*TBAR/BETA
 RETURN
C
COEFFICIENT KV GIVEN
10 KV=X
 BCAP=KV*ASMALL/BSMALL
C ** ITERATION USING MODIFIED SECANT METHOD **
 CONST=BSMALL+ASMALL*WW1/(TT1*BCAP)
 TR=1./(CONST-1.)
 YR=EXP(-CONST*TR)
 TL=1./CONST
C
 DO 16 I=1,100
 EL=CONST*TL
 YL=EXP(-EL)
C ** CALCULATE CHORD SLOPE **
 CS=(YR-YL)/(TR-TL)
C ** ESTIMATE MEAN ABSCISSA VALUE **
 TM=(1.-YL*CS*TL)/(CONST+CS-1.)
 TEST=ABS(TM-TL)
 IF(TEST.LT.0001) GO TO 17
 TL=TM
16 CONTINUE
 WRITE(6,1)
 WRITE(6,3)TM,TEST
C
17 ACAP=TT1*BCAP**2/TM
 KP=2.*ACAP/ASMALL**2
 WBAR=ACAP*ALPHA/BCAP
 TBAR=WBAR*BETA/(BCAP*ALPHA)
 TZERO=TAUZRO*TBAR/BETA
 RETURN
C
END
SUBROUTINE QUERY(W1,W2,T1,T2)
REAL KP,KV
COMMON/BLK2/SMALL,BSMALL,DENOX,DENMET
COMMON/BLM3/LTYP,LTYP,LL,LX,NUNSET,NUMKP,NUMKV
COMMON/PARAM1/ALPHA,BETA/PARAM2/TAUZRO,RATIO
COMMON/CASE1/KP,KV/CASE2/ACAP,BCAP/CASE3/WBAR,TBAR,TZERO
C
C***
C *** SUBROUTINE DETERMINES NUMERICAL VALUES OF THE PARALINEAR PARAMETERS
C *** FROM ONE OF SEVERAL POSSIBLE TYPES OF INPUT DATA **
C *** INPUT ARGUMENTS ---- TWO PAIRS OF EXPERIMENTAL WEIGHT-TIME DATA
C FOR ITYPE = 4 **
C***
C
1 FORMAT(1H,20X,43HERROR ALERT MESSAGE FROM SUBROUTINE QUERY /1H ,
125X,67H**THE NUMBER OF ITERATIONS EXCEED 200 AND EXITS WITH THESE
2VALUES**/1
2 FORMAT(1H,30X,27HTHE ABSCISSA TERM **X2** = ,E8.9/1H ,30X,37HTHE
1TRIAL ITERATION VALUE **TEST** = ,F9.5//)
3 FORMAT(1H,20X,43HERROR ALERT MESSAGE FROM SUBROUTINE QUERY /1H,
125X,69H**DIVISOR IN ITERATION STEP IS ZERO. ERROR RETURN WITH THESE
2EVALUES**/1
4 FORMAT(1H,20X,43HERROR ALERT MESSAGE FROM SUBROUTINE QUERY /1H,
125X,6H**PARAMETER C3 IS TOO SMALL. CHOOSE DIFFERENT WEIGHT PAIRS**
2*/1
C
WW1=W1
WW2=W2
C
W1ABS=ABS(W1)
W2ABS=ABS(W2)
C
** TEST FIRST WEIGHT FOR CROSSOVER VALUE **
IF(W1ABS.LT.0001)GO TO 1001
C
** TEST SECOND WEIGHT FOR CROSSOVER VALUE **
IF(W2ABS.LT.0001)GO TO 1002
GO TO 80
C
** FIRST WEIGHT AS CROSSOVER VALUE **
1001 TZERO=T1
TBAR=BETA*TZERO/TAUZRO
TAU2=BETA*T2/TBAR
5 EM2=RETRO(TAU2)
6 EN2=EM2-BSMALL*TAU21/BSMALL
WBAR=ALPHA*W2/EN2
GO TO 112
C
** SECOND WEIGHT AS CROSSOVER VALUE **
1002 TZERO=T2
TBAR=BETA*TZERO/TAUZRO
TAU1=BETA*T1/TBAR
7 EM1=RETRO(TAU1)
8 EN1=EM1-BSMALL*TAU11/BSMALL
WBAR=ALPHA*W1/EN1
GO TO 112

47
** ROUTINE FOR BOTH WEIGHT DATA NONZERO **

80 IEND=200
EPS=1.E-7
IER=0

TT1=T1
TT2=T2
TRAT=TT2/TT1
C1=W1/W2
C2=TRAT*C1
C3=B SMALL *(C2-1.)

IF (ABS(C3)>0.001160 TO 90) @TEST ON CHOICE OF DATA
WRITE(6,4) @ERROR MESSAGE
RETURN

C

C..PREPARE ITERATION ON WEGSTEIN SECANT METHOD.
C

90 XSTART=TAU2ZRO
X2=XSTART
X0=X2/TRAT
EM1=RETRNO(X0)
EM2=RETRNO(X2)
X=(C1*EM2-EM1)/C3
A=X-X0
B=-A
X0=X
X2=X0*TRAT
EM1=RETRNO(X0)
EM2=RETRNO(X2)
TEST=X-(C1*EM2-EM1)/C3

C

C..START ITERATION LOOP
DO 106 I=1,IEND
IF (TEST) 101,111,101
C

C..EQUATION IS NOT SATISFIED BY X
101 B=B/TEST-1.
IF (B) 1102,114,102
C

C..ITERATION IS POSSIBLE
102 A=A/B
X=X+A
B=TEST
X0=X
X2=X0*TRAT
EM1=RETRNO(X0)
EM2=RETRNO(X2)
TEST=X-(C1*EM2-EM1)/C3

C

C..TEST ON SATISFACTORY ACCURACY
TOL=EPS
D=ABS(X)
IF(D<1.0) 104,104,103
103 TOL=TOL*D
104 IF (ABS(DI TEST) 105,105,106
105 IF (ABS(TEST)-1C*TOL) 111,111,106 @SECOND TOLERANCE TEST
106 CONTINUE
C..END OF ITERATION LOOP
C
WRITE(6,1)
WRITE(6,21)*TEST
IER=1
RETURN
C
C ** CALCULATE WBAR AND TBAR FIRST **
C
TBAR=BETA*T2/X2
EN2=EM2-BSMALL*X2/ASMALL
WBAR=ALPHA*W2/EN2
C
BCAP=WBAR*BETA/(TBAR*ALPHA)
ACAP=WBAR*BCAP/ALPHA
KP=2.*ACAP/ASMALL**2
KV=BSMALL*BCAP/ASMALL
TZERO=TAUZRO*TBAR/BETA
RETURN
C
114 IER=2
WRITE(6,3)
WRITE(6,21)*TEST
RETURN
C
END

SUBROUTINE SPEVAL
COMMON/BK2/ASMALL,BSMALL,DENOX,DEMET,PARAM2/TAUZRO,RATIO
COMMON/CASE2/ACAP,BCAP/VAL1/WMBAR,WRBAR,WMZERO,WRLIM
C
C***
C
C *** CALCULATES PHYSICAL WEIGHTS AT SPECIAL TIMES OF INTEREST --
C
C 1.ALLOY CORRODED AT MAXIMUM NET SPECIMEN WEIGHT, AND WHEN NET
C GAIN IS ZERO (THAT IS, THE ZERO CROSSOVER TIME)
C
C 2.LIMITING SCALE WEIGHT AT INFINITE TIME, AND AT MAXIMUM NET
C WEIGHT.
C
C***
C
C ** INITIALIZE RATIOS OF SYSTEM PARAMETERS **
C
U=BSMALL/ASMALL
AA=ACAP/BCAP
C
**RETURN DIMENSIONAL PHYSICAL) WEIGHTS AT SPECIAL CONDITIONS
WMZERO=BSMALL*AA*TAUZRO
WMBAR=AA*ALOG(IU)
WRBAR=AA/ASMALL
WRLIM=U*AA
RETURN
C
END
SUBROUTINE CORODE

DIMENSION HOURS(100), OP(10), TP(10), XXX(100), TTT(100)

COMMON BLK1/HOURS, OP, XXX, WM, T/S/SCALE/TP

COMMON BLK3/ITYPE, LTYPE, LL, LLX, NUMSET, NUMKP, NUMKV

COMMON PARAM1/ALPHA, BETA/CASE3/WBAR, TBAR, TZERO/RUST/TTT

C

C *** SUBROUTINE COMPUTES ELAPSED TIME TTT WHEN XXX MILLIGRAMS PER**

C ** SQUARE CENTIMETER OF ALLOY HAVE BEEN CONSUMED DUE TO**

C ** CORROSION *****

C

C ** BEGIN LOOP THROUGH INPUT SEQUENCE OF WEIGHT LOSSES **

DO 5 I=1,LLX

C

C ** TRANSFORM REAL WEIGHT TO DIMENSIONLESS VARIABLE**

WMXXX=ALPHA*XXX/I/WBAR

TAUXXX=RETN(T(WMXXX))

TTT(I)=TAUXXX*TBAR/BETA

CONTINUE

RETURN

C

C

C

SUBROUTINE CURVE

DIMENSION HOURS(100), OP(10), TP(10), XXX(100), TTT(100), WM(100)

DIMENSION WM(100), TTT(100), WM(100), WR(100), WR(100), TMKLOS(100), OXITHK(100)

COMMON BLK1/HOURS, OP, XXX, WM, T/S/SCALE/TP/RUST/TTT

COMMON BLK2/ASMLL, BSMALL, DENOX, DENMET

COMMON BLK3/ITYPE, LTYPE, LL, LLX, NUMSET, NUMKP, NUMKV

COMMON VOLUP/WM, WR, WT, THKLOS, OXITHK/CASE2/ACAP, BCAP

C

C *** THE PRINCIPAL SUBPROGRAM WHICH COMPUTES THE NET-WEIGHT, TIME**

C ** Pairs of DATA WHICH APPROXIMATES THE EXPERIMENTAL**

C ** CURVE ACCORDING TO THE PARALINEAR THEORY. AT EACH**

C ** SPECIFIED TIME THE PROGRAM CALCULATES**

C

C 1. NET SPECIMEN WEIGHT

C 2. METAL WEIGHT CONSUMED

C 3. WEIGHT OF SCALE FORMED

C 4. LOSS IN METAL THICKNESS

C 5. THICKNESS OF SCALE LAYER

C

C

50
** INITIALIZE THE PARALINEAR COEFFICIENTS **

\[AA = ACAP / BCAP \]

** SOLVE DIMENSIONLESS OM-EQUATION AT LL TIMES **

\[
\text{DO } 500 \text{ J}=1,LL \\
\text{TAU}=\text{HOURS(J) * BCAP / AA} \\
\text{OM}= \text{RETRNQ(TAU)}
\]

** THREE VECTORS STORE PHYSICAL WEIGHTS OF ALLOY CORRODED, **

** SCALE FORMED, AND NET SPECIMAN WEIGHT **

\[
\text{WM(J1)=OM*AA} \\
\text{WR(J1)=AA*BSMALL*(OM-TAU)/ASMALL} \\
\text{WT(J1)=WR(J1)-WM(J1)}
\]

** TWO VECTORS STORE PHYSICAL DEPTHS OF ALLOY CORROSION **

** AND SCALE FORMED **

\[
\text{THKLOS(J1)=.01*WM(J1)/DENMET} \\
\text{OXITK(J1)=.01*WR(J1)/DENOX}
\]

500 \text{ CONTINUE}

RETURN

END

FUNCTION RETRNO(TAU)

CS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CS *** SUBPROGRAM RETURNS VALUE OF DIMENSIONLESS ALLOY-CORROSION VARIABLE **

CS OM AT TIME TAU **

CS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 FORMAT(1H0,2X,43HERROR ALERT MESSAGE FROM SUBROUTINE RETRNO /1H ,
125X,6TH**THE NUMBER OF ITERATIONS EXCEED 100 AND EXITS WITH THESE
2VALUES**/)
2 FORMAT(1H9.5X9.5HTHE ALLOY CORROSION TERM **OM** =,F9.5/1H ,30X,
137HTHE TRIAL ITERATION VALUE **TEST** = ,F9.5/1)

C..TEST FOR SMALL VALUES OF DIMENSIONLESS TIME**

\[
X=TAU \\
\text{IF}X.GT.01160 \text{ TO 1G}
\]

C..THIS SECTION USES THE NEWTON-RAPHSON METHOD FOR ROOT SOLUTION OF A
CTRUNCATED POWER SERIES APPROXIMATION OF THE EXPONENTIAL AT VERY SMALL
C.TIMES**

C..FIRST GUESS AT ROOT POSITION

\[
\text{PHI}=2. \\
\text{DO 3 } \text{LLR}=1,100 \\
\text{PHIx}=\text{PHI*X} \\
\text{FUNC}=1.-4.5-SORT(PHIX)/6.+PHIX/24.1*PHI
\]

C..NEWTON-RAPHSON

\[
\text{DFUNC}=-.5+.25*SORT(PHIX)-PHIX/12. \\
\text{DELPHI}=-\text{FUNC/DFUNC} \\
\text{TEST}=ABS(DELPHI/PHI) \\
\text{IF}\text{TEST.LT.000000160 TO 5}
\]

51
FUNCTION RETRN1(X)

C
C***
C
C *** SUBPROGRAM EXPLICITLY COMPUTES DIMENSIONLESS TIME FROM THE
C OME EQUATION ***
C
C***
C
RETURN
END
APPENDIX C

KEY FORTRAN SYMBOLS FOR COREST

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAP</td>
<td>parabolic scaling constant, A, in terms of W_m</td>
</tr>
<tr>
<td>ALPHA</td>
<td>dimensionless maximum net specific sample weight</td>
</tr>
<tr>
<td>ASMALL</td>
<td>stoichiometric constant, a</td>
</tr>
<tr>
<td>BCAP</td>
<td>linear-vaporization constant, B, in terms of W_m</td>
</tr>
<tr>
<td>BETA</td>
<td>dimensionless time at net specific sample weight α</td>
</tr>
<tr>
<td>BSMALL</td>
<td>stoichiometric constant, b</td>
</tr>
<tr>
<td>DENMET</td>
<td>density of the metal consumed, ρ_m</td>
</tr>
<tr>
<td>DENOX</td>
<td>density of the retained oxide, ρ_r</td>
</tr>
<tr>
<td>KP</td>
<td>parabolic scaling constant, k_p</td>
</tr>
<tr>
<td>KV</td>
<td>linear vaporization constant, k_v</td>
</tr>
<tr>
<td>NUMKP</td>
<td>number of k_p-values in input array XKP</td>
</tr>
<tr>
<td>NUMKV</td>
<td>number of k_v-values in input array XKV</td>
</tr>
<tr>
<td>NUMSET</td>
<td>number of cases in a COREST run</td>
</tr>
<tr>
<td>OXITHK</td>
<td>computed oxide thickness, mm</td>
</tr>
<tr>
<td>RATIO</td>
<td>ratio of crossover time to \bar{t}, t_0/\bar{t}</td>
</tr>
<tr>
<td>TAU</td>
<td>dimensionless time, B^2t/A</td>
</tr>
<tr>
<td>TAUZRO</td>
<td>computed dimensionless crossover time</td>
</tr>
<tr>
<td>TBAR</td>
<td>time to reach maximum specific sample weight change, \bar{t}, hr</td>
</tr>
<tr>
<td>THKLOS</td>
<td>computed metal loss, mm</td>
</tr>
<tr>
<td>WBAR</td>
<td>maximum specific sample weight change, $\Delta \bar{W}$</td>
</tr>
<tr>
<td>WRLIM</td>
<td>limiting retained specific scale weight</td>
</tr>
<tr>
<td>WRMAX</td>
<td>corresponding retained specific scale weight at $\Delta \bar{W}$</td>
</tr>
<tr>
<td>XKP</td>
<td>input array of k_p-values for data types 1, 2, and 3</td>
</tr>
<tr>
<td>XKV</td>
<td>input array of k_v-values for data types 1, 2, and 3</td>
</tr>
</tbody>
</table>
APPENDIX D

TYPICAL OUTPUT LISTING FOR COREST

BLCK DATA

C DATA AND ARRAYS FOR PLOTTING SUBROUTINE PLOTIO(LLL)
 DIMENSION XTITLE(14), YMLEG(19), YPLEG(100), YTLEG(19)
 COMMON/TITLES/XTITLE,YMLEG,YPLEG,YTLEG
 COMMON/BLKPLT/KKK(10)
 DATA KKK/3,-1,1,0,0,1,4/0/
 DATA XTITLE/19HXPOSURE TIME,HOURS/
 DATA YMLEG/52HWEIGHT OF CORRODED ALLOY,MLGMS PER SQUARE CENTIMETER /
 DATA YPLEG/60HWEIGHT OF ADHERING PRODUCT SCALE,MLGMS PER SQUARE CENTIMETER /
 DATA YTLEG/50HNET SAMPLE WEIGHT GAIN,MLGMS PER SQUARE CENTIMETER /

C ARRAYS AND DATA FOR PROBLEM SOLUTION
 DIMENSION HOURS(1001), OP(100), XXX(100), TT(100), TTT(100)
 DIMENSION WW(1001), TT(1001), XKP(1001), XKV(1001)
 COMMON/BLK1/HOURS, OP, XXX, WW, TT/RUST/TTT
 COMMON/BLK2/ASMA L, BSMALL, DENOX, DENMET
 COMMON/BLK3/ITYPE, LTYPE, LL, LLX, NUMSET, NUMKV, NUMKPV
 COMMON/CASE4/XKP, XKV

C INPUT FOLLOWS

C DATA ASMALL, BSMALL/2.1667, 3.1667/
C DATA ITYPE, LL, LLL/4, 17, 3/
C DATA NUMSET/2/
C DATA OP/5.9, 95, 7*0.0/
C DATA XXX/71.9, 359, 5.7, 19.0, 7*0.0/
C DATA HOURS/31.69, 86, 1.1, 1.64, 3.06, 5.83, 20.83, 23.61, 30.56, 35.56, 86, 11, 116, 67, 166, 67, 194, 44, 222, 22, 236, 11, 83*100/
C DATA WW/2.50, 29, 24, 3.13, 96*0.0/
C DATA TT/10, 58, 86, 11, 221, 22, 236, 11, 96*100/

C ENC
PARALINEAR KINETICS STUDY OF CORROSION WITH SCALE VAPORIZATION

ALLOY TYPE- CHROMIUM OXIDE FORMERS 2 SETS
SCALE TYPE- CR2O3 TO CR03
TEMPERATURE = 1200 C PRESSURE = 1 ATM.
DATA SOURCE- CR-.2 Y TEOMON (REF.4) BEFORE & AFTER WBAR RUN NO. =
DENSITIES- ALLOY = 7.190 GM/CU.CM., SCALE = 5.210 GM/CU.CM.
STOICHIOMETRIC COEFFICIENTS- ASMALL = 2.1667, BSMALL = 3.1667
DATA TYPE = 4

DATA SPECIFICATION-
I TYPE=1 ---- THE DATA SET CONSISTS OF THE CURVE PARAMETER PAIR WBAR,TBAR .
I TYPE=3 ---- GIVEN NUMSET PAIRS OF EXPERIMENTAL DATA POINTS WW(I),T(I), NUMKP VALUES OF THE PARALINEAR PARAMETER KP -- (I TYPE=1) OR NUMKV VALUES OF THE VAPORIZATION PARAMETER KV -- (I TYPE=2) .
I TYPE=4 ---- GIVEN NUMSET PAIRS OF EXPERIMENTAL WEIGHTS WW(I),TW(I) AND THEIR CORRESPONDING TIMES TI(I),T2(I) .

\[
\begin{align*}
\alpha &= 0.082046594 \\
\beta &= 0.063698616 \\
\text{CROSSOVER TIME/TIME AT MAX. WEIGHT} &= 4.034745
\end{align*}
\]

INPUT DATA----
\[
\begin{align*}
ww111 &= 2.500000 \\
tt111 &= 0.560000 \text{ HOURS} \\
nw121 &= 3.290000 \\
tt121 &= 5.110000 \text{ HOURS}
\end{align*}
\]
\[
\begin{align*}
A &= 0.367918 \\
B &= 0.0201046 \\
KP &= 0.3564921 \\
KV &= 0.0293835 \\
\text{CROSSOVER TIME} &= 532.07 \text{ HOURS}
\end{align*}
\]
Maximum Net Weight: 3.41949 mg/sq.cm.

Limiting Scale Weight: 60.83168 mg/sq.cm.

Time at Maximum Net Weight: 131.07 hours

Alloy Corroded up to Crossover Time: 33.8746 mg/sq.cm.

Alloy Consumed (at Max. Net Weight): 15.7949 mg/sq.cm.

Scale Weight (at Max. Net Weight): 19.2098 mg/sq.cm.

Fraction of Limiting Scale Weight

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Elapsed Time (HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50000</td>
<td>399.07</td>
</tr>
<tr>
<td>.90000</td>
<td>2903.72</td>
</tr>
<tr>
<td>.95000</td>
<td>4235.21</td>
</tr>
</tbody>
</table>

Alloy Corrosion (mg/sq.cm.)

<table>
<thead>
<tr>
<th>Elapsed Time (HOURS)</th>
<th>Alloy Corrosion (mg/sq.cm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>31</td>
</tr>
<tr>
<td>359.50</td>
<td>15811.57</td>
</tr>
<tr>
<td>719.00</td>
<td>33692.67</td>
</tr>
</tbody>
</table>

Elapsed Time (HOURS) vs. Corrosion Loss (mg/sq.cm.)

<table>
<thead>
<tr>
<th>Elapsed Time (HOURS)</th>
<th>Corrosion Loss (mg/sq.cm.)</th>
<th>Scale Weight (mg/sq.cm.)</th>
<th>Net Specimen Weight (mg/sq.cm.)</th>
<th>Corrosion Loss (millimeters)</th>
<th>Scale Thickness (millimeters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.31</td>
<td>.7224</td>
<td>1.0467</td>
<td>.3243</td>
<td>.001005</td>
<td>.002009</td>
</tr>
<tr>
<td>.69</td>
<td>1.0792</td>
<td>1.5571</td>
<td>.4778</td>
<td>.001501</td>
<td>.002909</td>
</tr>
<tr>
<td>.86</td>
<td>1.2055</td>
<td>1.7366</td>
<td>.5311</td>
<td>.001677</td>
<td>.003333</td>
</tr>
<tr>
<td>1.11</td>
<td>1.3704</td>
<td>1.9703</td>
<td>.5999</td>
<td>.001906</td>
<td>.003782</td>
</tr>
<tr>
<td>1.64</td>
<td>1.6678</td>
<td>2.3893</td>
<td>.7215</td>
<td>.002320</td>
<td>.004586</td>
</tr>
<tr>
<td>3.06</td>
<td>2.2837</td>
<td>3.2478</td>
<td>.9641</td>
<td>.003176</td>
<td>.006234</td>
</tr>
<tr>
<td>5.83</td>
<td>3.1632</td>
<td>4.4518</td>
<td>1.2886</td>
<td>.004399</td>
<td>.008545</td>
</tr>
<tr>
<td>20.83</td>
<td>6.0473</td>
<td>8.2263</td>
<td>2.1790</td>
<td>.008411</td>
<td>.015789</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>23.61</td>
<td>6.4483</td>
<td>8.7306</td>
<td>2.2823</td>
<td>0.008968</td>
<td>0.016757</td>
</tr>
<tr>
<td>30.56</td>
<td>7.3624</td>
<td>9.8624</td>
<td>2.5000</td>
<td>0.010240</td>
<td>0.018930</td>
</tr>
<tr>
<td>55.56</td>
<td>10.0308</td>
<td>13.0278</td>
<td>2.9970</td>
<td>0.013951</td>
<td>0.025005</td>
</tr>
<tr>
<td>86.11</td>
<td>12.6107</td>
<td>15.9007</td>
<td>3.2900</td>
<td>0.017539</td>
<td>0.030519</td>
</tr>
<tr>
<td>116.67</td>
<td>14.8011</td>
<td>18.2040</td>
<td>3.4030</td>
<td>0.020586</td>
<td>0.034941</td>
</tr>
<tr>
<td>166.67</td>
<td>17.8971</td>
<td>21.2598</td>
<td>3.3627</td>
<td>0.024892</td>
<td>0.040806</td>
</tr>
<tr>
<td>194.44</td>
<td>19.419</td>
<td>22.7016</td>
<td>3.2597</td>
<td>0.027040</td>
<td>0.043573</td>
</tr>
<tr>
<td>222.22</td>
<td>20.8963</td>
<td>24.0110</td>
<td>3.1147</td>
<td>0.029063</td>
<td>0.046086</td>
</tr>
<tr>
<td>236.11</td>
<td>21.5949</td>
<td>24.6238</td>
<td>3.0290</td>
<td>0.030035</td>
<td>0.047263</td>
</tr>
</tbody>
</table>

INPUT DATA

<table>
<thead>
<tr>
<th>WW11</th>
<th>3.240000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT11</td>
<td>221.219999 HOURS</td>
</tr>
<tr>
<td>WW21</td>
<td>3.130000</td>
</tr>
<tr>
<td>TT21</td>
<td>236.110001 HOURS</td>
</tr>
</tbody>
</table>

A = .9907335 **B** = .0229244 **a** = .4229747 **KV** = .0327739 **CROSSOVER TIME** = 506.36 HOURS

MAXIMUM NET WEIGHT = 3.62491 HG/SQ.CH.

LIMITING SCALE WEIGHT = 64.57212 HG/SQ.CH.

TIME AT MAXIMUM NET WEIGHT = 125.50 HOURS

ALLOY CORRODED UP TO CROSSOVER TIME = 35.9525 HG/SQ.CH.

ALLOY CONSUMED AT MAX. NET WEIGHT = 16.7661 HG/SQ.CH.

SCALE WEIGHT AT MAX. NET WEIGHT = 20.3910 HG/SQ.CH.

FRACTION OF LIMITING SCALE WEIGHT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.50000</td>
<td>380.54</td>
</tr>
<tr>
<td>.90000</td>
<td>2763.42</td>
</tr>
<tr>
<td>.95000</td>
<td>4030.56</td>
</tr>
<tr>
<td>ELAPSED TIME (HOURS)</td>
<td>CORROSION LOSS (MG/SQ.CM.)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>.31</td>
<td>.7861</td>
</tr>
<tr>
<td>.69</td>
<td>1.1745</td>
</tr>
<tr>
<td>.86</td>
<td>1.3119</td>
</tr>
<tr>
<td>1.11</td>
<td>1.4914</td>
</tr>
<tr>
<td>1.64</td>
<td>1.8150</td>
</tr>
<tr>
<td>3.06</td>
<td>2.4855</td>
</tr>
<tr>
<td>5.83</td>
<td>3.4429</td>
</tr>
<tr>
<td>20.83</td>
<td>6.5843</td>
</tr>
<tr>
<td>23.61</td>
<td>7.0209</td>
</tr>
<tr>
<td>30.56</td>
<td>8.0169</td>
</tr>
<tr>
<td>55.56</td>
<td>10.9254</td>
</tr>
<tr>
<td>86.11</td>
<td>13.7390</td>
</tr>
<tr>
<td>116.67</td>
<td>16.1290</td>
</tr>
<tr>
<td>166.67</td>
<td>19.5088</td>
</tr>
<tr>
<td>222.22</td>
<td>22.7849</td>
</tr>
<tr>
<td>236.11</td>
<td>23.5842</td>
</tr>
</tbody>
</table>
REFERENCES

TABLE I. - STOICHIOMETRIC FACTOR^a^n

\[a = \frac{(M_1 + M_2)}{O_2}; \quad b = a + 1.\]

(a) One-metal oxides (b) Two-metal oxides
(i.e., spinels)

<table>
<thead>
<tr>
<th>Oxide</th>
<th>(a)</th>
<th>Oxide</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThO(_2)</td>
<td>7.2512</td>
<td>CoCr(_2)O(_4)</td>
<td>2.5458</td>
</tr>
<tr>
<td>CoO</td>
<td>3.6831</td>
<td>NiCr(_2)O(_4)</td>
<td>2.5423</td>
</tr>
<tr>
<td>NIO</td>
<td>3.6694</td>
<td>FeCr(_2)O(_4)</td>
<td>2.4977</td>
</tr>
<tr>
<td>FeO</td>
<td>3.4906</td>
<td>MnCr(_2)O(_4)</td>
<td>2.4354</td>
</tr>
<tr>
<td>MnO</td>
<td>3.4338</td>
<td>Al(_2)Cr(_3)O(_9)</td>
<td>2.0466</td>
</tr>
<tr>
<td>Fe(_2)O(_4)</td>
<td>2.6180</td>
<td>CoAl(_2)O(_4)</td>
<td>1.7639</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>2.3271</td>
<td>NiAl(_2)O(_4)</td>
<td>1.7605</td>
</tr>
<tr>
<td>Cr(_2)O(_3)</td>
<td>2.1667</td>
<td>FeAl(_2)O(_4)</td>
<td>1.7158</td>
</tr>
<tr>
<td>MoO(_3)</td>
<td>1.9988</td>
<td>MnAl(_2)O(_4)</td>
<td>1.7016</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>1.1242</td>
<td>CrAl(_2)O(_4)</td>
<td>1.6556</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>0.8778</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a^For example, for Cr\(_2\)O\(_3\), \(a = \frac{(52.00 \times 2) + 0}{16 \times 3} = 2.1667\)

and for NiCr\(_2\)O\(_4\), \(a = \frac{(58.71 \times 1) + (52.00 \times 2)}{16 \times 4} = 2.5423\)

TABLE II. - INPUT DATA FOR PREDOMINANTLY Cr\(_2\)O\(_3\)-FORMING ALLOYS FOR PARALINEAR OXIDATION ANALYSIS (COREST)

[Scale, Cr\(_2\)O\(_3\); stoichiometric constants: \(a = 2.1667, b = 3.1667\); density of Cr, \(\rho_m = 7.19\) g/cm\(^3\); density of Cr\(_2\)O\(_3\), \(\rho_t = 5.21\) g/cm\(^3\).]

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Test conditions</th>
<th>Before (\Delta W)</th>
<th>At (-\Delta W)</th>
<th>After (\Delta W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time, hr</td>
<td>Temperature, °C</td>
<td>Number of data points</td>
<td>Test points - input to COREST: time, (t), hr; specific sample weight change, (\Delta W), mg/cm(^2); time to reach (\Delta W), (T), hr; maximum (\Delta W) in paralinear oxidation, (\Delta W), mg/cm(^2).</td>
</tr>
<tr>
<td>Alloy A(^a^) (ref. 6)</td>
<td>1230</td>
<td>1200</td>
<td>31</td>
<td>(t_1 = 100, \Delta W_1 = 3.21) (\bar{t} = 294)</td>
</tr>
<tr>
<td>Cr-0.2Y (ref. 4)</td>
<td>240</td>
<td>1200</td>
<td>17</td>
<td>(t_1 = 30.56, \Delta W_1 = 2.50) (\bar{t} = 166.70)</td>
</tr>
<tr>
<td>Ni-40Cr</td>
<td>1020</td>
<td>1200</td>
<td>87</td>
<td>(t_1 = 100, \Delta W_1 = 2.859) (\bar{t} = 250)</td>
</tr>
<tr>
<td>Tophet 30(^b^) 2-37</td>
<td>2085</td>
<td>1200</td>
<td>55</td>
<td>(t_1 = 100, \Delta W_1 = 1.955) (\bar{t} = 225)</td>
</tr>
<tr>
<td>Tophet 30(^b^) 2-35</td>
<td>2688</td>
<td>1150</td>
<td>71</td>
<td>(t_1 = 40, \Delta W_1 = 1.670) (\bar{t} = 110)</td>
</tr>
<tr>
<td>Tophet 30(^b^) 2-42</td>
<td>1850</td>
<td>1150</td>
<td>41</td>
<td>(t_1 = 96, \Delta W_1 = 2.012) (\bar{t} = 420)</td>
</tr>
</tbody>
</table>

\(^a^\) Ni-20Cr-3Fe-0. 4Si.
\(^b^\) Ni-29. 6Cr-1. 43Si.
TABLE III. - DERIVED PARALINEAR ESTIMATES FROM COREST OUTPUT FOR SIX
Cr2O3-FORMING ALLOYS FOR THREE TIME STAGES OF INPUT

(a) Before ΔW

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fit, a mg/cm2</th>
<th>Parabolic scaling constant, k_p</th>
<th>Linear vaporization constant, k_v</th>
<th>Limiting value of specific weight of metal oxide formed and retained, in paralinear oxidation, W_{rlim}</th>
</tr>
</thead>
</table>
| Alloy A
(ref. 6) | 1.191 | 0.2344 | 0.01833 | 64.13 |
| Cr-0.2Y
(ref. 4) | 0.156 | 0.3565 | 0.02938 | 60.83 |
| Ni-40Cr | 0.345 | 0.1850 | 0.01620 | 57.26 |
| Tophet 30 2-37 | 1.841 | 0.08013 | 0.00984 | 40.85 |
| Tophet 30 2-35 | 15.635 | 0.1579 | 0.02368 | 33.44 |
| Tophet 30 2-42 | 3.682 | 0.1028 | 0.01322 | 38.99 |
| Tophet 30 2-42 | 1.191 | 0.2344 | 0.01833 | 64.13 |
| Tophet 30 2-37 | 1.841 | 0.08013 | 0.00984 | 40.85 |
| Tophet 30 2-35 | 15.635 | 0.1579 | 0.02368 | 33.44 |
| Tophet 30 2-42 | 3.682 | 0.1028 | 0.01322 | 38.99 |

(b) At ΔW

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fit, a mg/cm2</th>
<th>Parabolic scaling constant, k_p</th>
<th>Linear vaporization constant, k_v</th>
<th>Limiting value of specific weight of metal oxide formed and retained, in paralinear oxidation, W_{rlim}</th>
</tr>
</thead>
</table>
| Alloy A
(ref. 6) | 0.297 | 0.1797 | 0.01397 | 64.48 |
| Cr-0.2Y
(ref. 4) | 0.206 | 0.2929 | 0.02369 | 61.99 |
| Ni-40Cr | 0.243 | 0.1693 | 0.01471 | 57.72 |
| Tophet 30 2-37 | 2.639 | 0.09453 | 0.01158 | 40.92 |
| Tophet 30 2-35 | 12.426 | 0.1404 | 0.02019 | 34.86 |
| Tophet 30 2-42 | .621 | .05446 | .00644 | 42.43 |

(c) After ΔW

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fit, a mg/cm2</th>
<th>Parabolic scaling constant, k_p</th>
<th>Linear vaporization constant, k_v</th>
<th>Limiting value of specific weight of metal oxide formed and retained, in paralinear oxidation, W_{rlim}</th>
</tr>
</thead>
</table>
| Alloy A
(ref. 6) | 0.469 | 0.1339 | 0.01179 | 56.95 |
| Cr-0.2Y
(ref. 4) | 0.184 | 0.4434 | 0.03397 | 65.45 |
| Ni-40Cr | 0.270 | 0.1578 | 0.01418 | 55.83 |
| Tophet 30 2-37 | 0.352 | 0.03507 | 0.00529 | 33.21 |
| Tophet 30 2-35 | 0.460 | 0.01935 | 0.00313 | 31.03 |
| Tophet 30 2-42 | .360 | .02698 | .00359 | 37.68 |

aEstimated error is averaged over whole curve.
TABLE IV. DERIVED PARALINEAR VALUES FOR PREDOMINANTLY Cr₂O₃-FORMING ALLOYS WITH GIVEN PARABOLIC SCALING AND LINEAR VAPORIZATION CONSTANTS COMPARED WITH PARABOLIC OXIDATION ($k_p = 0$)

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>Parabolic scaling constant, $k_p \text{ (mg/cm}^2\text{)}^2/\text{hr}$</th>
<th>Linear vaporization constant, $k_v \text{ mg/cm}^2/\text{hr}$</th>
<th>Metal consumed, $W_m, \text{ mg/cm}^2$</th>
<th>Limiting specific weight of Cr_2O_3 on alloy surface, $W_r, \text{ mg/cm}^2$</th>
<th>Specific sample weight change (maximum positive value), $\Delta W, \text{ mg/cm}^2$</th>
<th>Time to reach maximum ΔW, t, hr</th>
<th>Time to cross zero axis (where $\Delta W = 0$), t_0, hr</th>
<th>Specific weight of Cr consumed at cross-over time, W_m, mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 Low, 0.002</td>
<td>0.00098</td>
<td>96.788</td>
<td>61.725</td>
<td>58.965</td>
<td>0.57</td>
<td>6.65</td>
<td>26.84</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>0.0098</td>
<td>10.618</td>
<td>53.510</td>
<td>107.124</td>
<td>1.02</td>
<td>.06</td>
<td>6.65</td>
<td>26.84</td>
</tr>
<tr>
<td></td>
<td>0.0098</td>
<td>55.052</td>
<td>13.764</td>
<td>81.542</td>
<td>14.36</td>
<td>16.628</td>
<td>67.088</td>
<td>142.45</td>
</tr>
<tr>
<td></td>
<td>0.0098</td>
<td>19.294</td>
<td>308.580</td>
<td>815.342</td>
<td>25.58</td>
<td>1.44</td>
<td>166.28</td>
<td>670.88</td>
</tr>
<tr>
<td></td>
<td>0.0098</td>
<td>8.155</td>
<td>51.004</td>
<td>104.618</td>
<td>1.14</td>
<td>1.14</td>
<td>18.628</td>
<td>670.88</td>
</tr>
<tr>
<td></td>
<td>0.0098</td>
<td>22.024</td>
<td>550.589</td>
<td>2202.370</td>
<td>5.70</td>
<td>5.70</td>
<td>142.45</td>
<td>142.45</td>
</tr>
<tr>
<td>1050 Low, 0.0053</td>
<td>0.0021</td>
<td>4.944</td>
<td>244.174</td>
<td>494.375</td>
<td>12.65</td>
<td>0.71</td>
<td>304.16</td>
<td>154.49</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>44.016</td>
<td>24.960</td>
<td>49.500</td>
<td>1.27</td>
<td>0.71</td>
<td>304.16</td>
<td>154.49</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>207.771</td>
<td>124.268</td>
<td>2077.072</td>
<td>310.39</td>
<td>17.42</td>
<td>941.95</td>
<td>172.84</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>7.590</td>
<td>129.593</td>
<td>357.600</td>
<td>31.04</td>
<td>1.74</td>
<td>941.95</td>
<td>172.84</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>3.576</td>
<td>22.642</td>
<td>48.962</td>
<td>31.04</td>
<td>1.74</td>
<td>941.95</td>
<td>172.84</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>8.471</td>
<td>211.766</td>
<td>847.065</td>
<td>31.04</td>
<td>1.74</td>
<td>941.95</td>
<td>172.84</td>
</tr>
<tr>
<td>1100 Low, 0.0122</td>
<td>0.0042</td>
<td>21.555</td>
<td>121.632</td>
<td>246.733</td>
<td>14.56</td>
<td>0.82</td>
<td>221.66</td>
<td>891.11</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>4.67</td>
<td>12.475</td>
<td>24.965</td>
<td>1.46</td>
<td>0.82</td>
<td>221.66</td>
<td>891.11</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>90.261</td>
<td>2.256.326</td>
<td>1262.105</td>
<td>358.14</td>
<td>20.11</td>
<td>543.22</td>
<td>219.16</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>3.336</td>
<td>59.492</td>
<td>169.463</td>
<td>315.41</td>
<td>2.01</td>
<td>543.22</td>
<td>219.16</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>1.695</td>
<td>11.657</td>
<td>24.167</td>
<td>315.41</td>
<td>2.01</td>
<td>543.22</td>
<td>219.16</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>3.671</td>
<td>91.765</td>
<td>307.061</td>
<td>315.41</td>
<td>2.01</td>
<td>543.22</td>
<td>219.16</td>
</tr>
<tr>
<td>1150 Low, 0.029</td>
<td>0.0082</td>
<td>12.658</td>
<td>61.913</td>
<td>125.980</td>
<td>17.73</td>
<td>1.00</td>
<td>138.60</td>
<td>559.90</td>
</tr>
<tr>
<td></td>
<td>0.082</td>
<td>1.260</td>
<td>6.386</td>
<td>12.794</td>
<td>1.77</td>
<td>1.00</td>
<td>138.60</td>
<td>559.90</td>
</tr>
<tr>
<td></td>
<td>0.082</td>
<td>37.972</td>
<td>294.627</td>
<td>797.189</td>
<td>428.02</td>
<td>24.03</td>
<td>332.25</td>
<td>134.15</td>
</tr>
<tr>
<td></td>
<td>0.082</td>
<td>1.452</td>
<td>27.172</td>
<td>80.335</td>
<td>428.02</td>
<td>24.03</td>
<td>332.25</td>
<td>134.15</td>
</tr>
<tr>
<td></td>
<td>0.082</td>
<td>804</td>
<td>5.886</td>
<td>12.363</td>
<td>428.02</td>
<td>24.03</td>
<td>332.25</td>
<td>134.15</td>
</tr>
<tr>
<td></td>
<td>0.082</td>
<td>1.573</td>
<td>39.338</td>
<td>157.312</td>
<td>428.02</td>
<td>24.03</td>
<td>332.25</td>
<td>134.15</td>
</tr>
<tr>
<td>1200 Low, 0.056</td>
<td>0.0145</td>
<td>5.618</td>
<td>34.900</td>
<td>71.136</td>
<td>19.36</td>
<td>1.09</td>
<td>8.75</td>
<td>34.75</td>
</tr>
<tr>
<td></td>
<td>0.0145</td>
<td>7.111</td>
<td>5.618</td>
<td>7.234</td>
<td>1.94</td>
<td>1.09</td>
<td>8.75</td>
<td>34.75</td>
</tr>
<tr>
<td></td>
<td>0.0145</td>
<td>19.664</td>
<td>48.060</td>
<td>1966.401</td>
<td>466.82</td>
<td>26.21</td>
<td>20.51</td>
<td>82.74</td>
</tr>
<tr>
<td></td>
<td>0.0145</td>
<td>375.8</td>
<td>14.488</td>
<td>43.667</td>
<td>466.82</td>
<td>26.21</td>
<td>20.51</td>
<td>82.74</td>
</tr>
<tr>
<td></td>
<td>0.0145</td>
<td>437</td>
<td>3.392</td>
<td>6.925</td>
<td>466.82</td>
<td>26.21</td>
<td>20.51</td>
<td>82.74</td>
</tr>
</tbody>
</table>

*aOxide is Cr_2O_3; k_v values represent static and moving air (10 times static air values).
TABLE V. - DIMENSIONLESS TIMES AT CROSSOVER AND AT MAXIMUM WEIGHT CHANGE

<table>
<thead>
<tr>
<th>Stoichiometric constant, (a)</th>
<th>Maximum specific sample weight change, (N = \alpha)</th>
<th>Time at maximum sample weight change, (T = \beta)</th>
<th>Crossover time, (T_0)</th>
<th>(T_0/\bar{T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.3069</td>
<td>0.1931</td>
<td>0.7969</td>
<td>4.126</td>
</tr>
<tr>
<td>1.5</td>
<td>0.1558</td>
<td>0.1108</td>
<td>0.4506</td>
<td>4.066</td>
</tr>
<tr>
<td>2.0</td>
<td>0.09453</td>
<td>0.07213</td>
<td>0.2915</td>
<td>4.041</td>
</tr>
<tr>
<td>2.5</td>
<td>0.06353</td>
<td>0.05076</td>
<td>0.2044</td>
<td>4.028</td>
</tr>
<tr>
<td>3.0</td>
<td>0.04565</td>
<td>0.03768</td>
<td>0.1515</td>
<td>4.021</td>
</tr>
<tr>
<td>3.5</td>
<td>0.03440</td>
<td>0.02909</td>
<td>0.1168</td>
<td>4.016</td>
</tr>
<tr>
<td>4.0</td>
<td>0.02686</td>
<td>0.02314</td>
<td>0.09288</td>
<td>4.013</td>
</tr>
</tbody>
</table>

TABLE VI. - SUMMARY OF LIMITING VALUES AND TRENDS OF THE PARALINEAR EQUATIONS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Limiting value at-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>zero</td>
</tr>
<tr>
<td>(t)</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta W)</td>
<td>(\Delta W)</td>
</tr>
<tr>
<td>(W_m)</td>
<td>(W_m)</td>
</tr>
<tr>
<td>(W_r)</td>
<td>(W_r)</td>
</tr>
<tr>
<td>(T)</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(N)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(M)</td>
<td>(\beta + (1/b))</td>
</tr>
<tr>
<td>(R)</td>
<td>(1/b)</td>
</tr>
<tr>
<td>(dN/dT)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
TABLE VII. - DEFINITION OF PARALINEAR PARAMETERS AND THEIR CORRESPONDENCE WITH TRANSPORT COEFFICIENTS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Correspondence with transport coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$a^{-1} - \ln (b/a)$</td>
<td>$\frac{a^2k_p}{2}$</td>
</tr>
<tr>
<td>β</td>
<td>$\ln (b/a) - b^{-1}$</td>
<td>$\frac{ak_v}{b}$</td>
</tr>
<tr>
<td>A</td>
<td>$(\beta/\bar{t})(\Delta W/\alpha)^2$</td>
<td>$2k_v/abk_p$</td>
</tr>
<tr>
<td>B</td>
<td>$(\beta/\bar{t})(\Delta W/\alpha)$</td>
<td>$2k_v^2/b^2k_p$</td>
</tr>
<tr>
<td>B/A</td>
<td>$\alpha/\Delta \bar{W}$</td>
<td>$b^2k_p/2k_v$</td>
</tr>
<tr>
<td>B^2/A</td>
<td>β/\bar{t}</td>
<td></td>
</tr>
<tr>
<td>$W_{r,\text{lim}}$</td>
<td>$(b/a)(A/B)$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VIII. - METHODS FOR CALCULATING SYSTEM PARAMETERS A AND B

<table>
<thead>
<tr>
<th>Input data type</th>
<th>Data given</th>
<th>Algorithm citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Delta \bar{W}; \bar{t}$</td>
<td>Table VII</td>
</tr>
<tr>
<td>2</td>
<td>$k_p; k_v$</td>
<td>Table VII</td>
</tr>
<tr>
<td>3</td>
<td>$k_p ; \Delta W/t$</td>
<td>Equation (A52)</td>
</tr>
<tr>
<td></td>
<td>$k_v; \Delta W/t$</td>
<td>Equation (A57)</td>
</tr>
<tr>
<td>4</td>
<td>$\Delta W_1, \bar{t}_1 ; \Delta W_2, \bar{t}_2$</td>
<td>Equations (A68) and (A69)</td>
</tr>
</tbody>
</table>

TABLE IX. - SUMMARY OF WEIGHT VALUES AT SPECIAL TIMES

<table>
<thead>
<tr>
<th>Weight</th>
<th>Maximum time, $t = \bar{t}$ and $T = \beta$</th>
<th>Crossover time, $t = t_0$ and $T = T_0$</th>
<th>Limiting time, $t >> 1$ and $T >> 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>$\ln (b/a)$</td>
<td>bT_0</td>
<td>$1 + T$</td>
</tr>
<tr>
<td>W_m</td>
<td>$\frac{a}{b} \ln (b/a)$</td>
<td>$bA t_0/B$</td>
<td>$A(1 + T)/B$</td>
</tr>
<tr>
<td>R</td>
<td>a^{-2}</td>
<td>aT_0</td>
<td>1</td>
</tr>
<tr>
<td>W_r</td>
<td>bA/Ba^2</td>
<td>bAT_0/B</td>
<td>bA/ab</td>
</tr>
</tbody>
</table>
Specific sample weight change
- Specific weight of metal consumed due to oxide buildup and scale vaporization
- Specific weight of metal oxide formed and retained on metal sample

Open symbols denote parabolic oxidation, \(k_v = 0.00001 \text{ mg/cm}^2/\text{hr} \)
Solid symbols denote paralinear oxidation, \(k_v = 0.05 \text{ mg/cm}^2/\text{hr} \)

Figure 1. Comparison of parabolic and paralinear kinetics for hypothetical alloys with the same parabolic scaling constant \(k_p = 0.10 \text{ (mg/cm}^2/\text{hr}) \) but different vaporization constants. Stoichiometric constants, \(a = 2.0 \) and \(b = 3.0 \).
Figure 2. - Flow diagram of COREST, a computer program to analyze paralinear oxidation.
Table 1:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr-0.2Y (ref. 4)</td>
<td></td>
</tr>
<tr>
<td>BLOCK DATA</td>
<td></td>
</tr>
<tr>
<td>DIMENSION HOURS(100),QP(10),XXX(10),TTT(10)</td>
<td></td>
</tr>
<tr>
<td>DIMENSION WW(100),TT(100),XXP(100),XXV(100)</td>
<td></td>
</tr>
<tr>
<td>COMMON/BLK1/HOURS, QP, XXX, WW, TT</td>
<td></td>
</tr>
<tr>
<td>COMMON/BLK2/BSMALL, BSMALL, DEQ, DEQSET</td>
<td></td>
</tr>
<tr>
<td>COMMON/BLK3/ITYPE, LTYPE, LL, LLX, NUMSET, NUMKX, NUMKX</td>
<td></td>
</tr>
<tr>
<td>COMMON/CASE 4/XXP, XXV</td>
<td></td>
</tr>
<tr>
<td>INPUT FOLLOWS</td>
<td></td>
</tr>
<tr>
<td>DATA ASMALL, BSMALL/2.1667, 2.1667</td>
<td></td>
</tr>
<tr>
<td>DATA ITYPE, LL, LLX/4, 17, 29</td>
<td></td>
</tr>
<tr>
<td>DATA NUMSET/2/</td>
<td></td>
</tr>
<tr>
<td>DATA QP/5.0, 0.95/</td>
<td></td>
</tr>
<tr>
<td>DATA XXX/71.99, 359.5, 719.0/</td>
<td></td>
</tr>
<tr>
<td>DATA HOURS/31.69, 86.11, 1.64, 3.06, 5.83, 20.83, 23.61, 30.56</td>
<td></td>
</tr>
<tr>
<td>DATA WW/2.50, 2.99, 3.24, 3.13/</td>
<td></td>
</tr>
<tr>
<td>DATA TT/39.56, 86.11, 231.22, 236.11/</td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. - Typical input data for COREST. Type 4 data; various sets of $\Delta W_1, t_1$ and $\Delta W_2, t_2$.
Figure 4. - Specific sample weight change ΔW, observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming Alloy A (Ni-20Cr-3Fe-0.4Si; ref. 6) at 1200°C. Maximum specific sample weight change in paralinear oxidation, ΔW, 3.62 mg/cm2, time to reach ΔW, T, 294 hr; error estimate, 0.297 mg/cm2.
Figure 5. - Specific sample weight change ΔW_{obs} observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming alloy Cr-0.2Y (ref. 4) at 1200°C. $\Delta W_1 = 2.50$ mg/cm2; $\Delta W_2 = 3.29$ mg/cm2; $t_1 = 30.56$ hr; $t_2 = 86.11$ hr; error estimate, 0.156 mg/cm2.
Figure 6. Specific sample weight change ΔW observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming alloy Ni-40Cr at 1200° C. Maximum specific sample weight change in paralinear oxidation, ΔW, 3.24 mg/cm2; time to reach ΔW, t, 250 hr; error estimate, 0.243 mg/cm2; type 1 input.
Figure 7. - Specific sample weight change ΔW observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming alloy Tophet 30 (2-37) at 1200$^\circ$ C. $\Delta W_1 = 0.875$ mg/cm2; $\Delta W_2 = -1.061$ mg/cm2; $t_1 = 1200$ hr; $t_2 = 2050$ hr; error estimate, 0.352 mg/cm2.

Figure 8. - Specific sample weight change ΔW observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming alloy Tophet 30 (2-35) at 1150$^\circ$ C. $\Delta W_1 = 1.737$ mg/cm2; $\Delta W_2 = 0.330$ mg/cm2; $t_1 = 700$ hr; $t_2 = 2300$ hr; error estimate, 0.460 mg/cm2.
Figure 9. - Specific sample weight change ΔW observed and calculated by paralinear analysis (COREST) for Cr$_2$O$_3$-forming alloy Tophet 30 (2-42) at 1150$^\circ$C. $\Delta W_1 = 2.017$ mg/cm2; $\Delta W_2 = 1.259$ mg/cm2; $t_1 = 990$ hr; $t_2 = 1850$ hr; error estimate, 0.360 mg/cm2.

Figure 10. - COREST-calculated specific weight of metal consumed W_m for predominantly Cr$_2$O$_3$-forming alloys above 1100$^\circ$C, assuming paralinear oxidation. Stoichiometric constant, a, 2.1667.
W_m estimates for 1000 hours:

1. Assume k_p,1 valid only;
 \[W_m,1000 = 2.1667 \times 0.302 \times (1000)^{1/2} = 20.7 \text{ mg/cm}^2 \]

2. Assume two-stage parabolic;
 \[W_m,1000 = 2.1667 \times 0.302 \times (120)^{1/2} + 0.129(1000 - 120)^{1/2} \]
 \[= 16.50 \text{ mg/cm}^2 \]

3. If paralinear, \(k_p = 0.1797 \text{ (mg/cm}^2)^2/\text{hr}; \)
 \[k_v = 0.0140 \text{ mg/cm}^2/\text{hr}; \]
 \[W_m,1000 = 32.61 \text{ mg/cm}^2 \]

Figure 11. - Comparison of corrosion estimates (specific weight of metal consumed \(W_m \) at 1000 hr) if Cr_2O_3-forming Alloy A (ref. 6) were analyzed from 300-hour data, assuming parabolic rates. \(W_m = ak_{1/2}t^{1/2}, a = 2.1667 \) for Cr_2O_3.

Figure 12. - Comparison of COREST-calculated paralinear and parabolic oxidation results for Cr_2O_3/chromite-forming Alloy A at 1200\(^\circ\) C, for same parabolic scaling constant \(k_p \). Based on input data from reference 6.
Figure 13. - Parabolic scaling constants calculated by COREST, using paralinear analysis of literature and this study data, as function of reciprocal of absolute temperature.
Curve Cr₂O₃-derived paralinear vaporization rate constants, kₚ, for -
A Cr₂O₃/chromite alloys (this study and ref. 10)
B Static air - bulk oxide (ref. 13) ± 1 Standard deviation, σ
C Free vaporization - bulk oxide (ref. 13)
D Static air - Cr₂O₃ stripped from oxidized Ni-50Cr (ref. 8)
● Static air - sintered Cr₂O₃ (this study)
☐ Alloy A (ref. 6)
☐ Cr-0.2Y (ref. 4)
☐ Ni-40Cr (this study)
☐ Tophet 30 (this study)
Sintered Cr₂O₃: 0.2-atm oxygen; airflow, 5.1 to 29.8 cm/sec (ref. 12)

Figure 14. - COREST-calculated vaporization rate constants for Cr₂O₃ as function of reciprocal of absolute temperature, assuming paralinear oxidation of Cr₂O₃-forming alloys.
Figure 15. - Time to reach maximum sample specific weight change in paralinear oxidation for various vaporization rate constants as function of typical parabolic scaling constants for Cr$_2$O$_3$-forming alloys. (In order to detect obvious paralinear behavior, run test to twice \bar{t} time for an apparent vaporization rate constant.)
Figure 16. - COREST-calculated specific weight of metal (Cr) consumed in percolinear oxidation for Cr–Cr2O3/chromite-forming alloys for high and low parabolic scaling constant limits (from Fig. 13) with three levels of linear vaporization scaling constant representing static air, moving air, and free vaporization, respectively.
Figure 16. - Continued.
Figure 16. Concluded.

Table:

<table>
<thead>
<tr>
<th>Curve</th>
<th>Parabolic scaling constant, k_0 (mg/cm²/hr)</th>
<th>Linear vaporization rate constant, k_v (mg/cm²/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.060</td>
<td>0.0045</td>
</tr>
<tr>
<td>B</td>
<td>0.056</td>
<td>0.0145</td>
</tr>
<tr>
<td>C</td>
<td>0.056</td>
<td>54.0</td>
</tr>
<tr>
<td>D</td>
<td>1.350</td>
<td>0.0450</td>
</tr>
<tr>
<td>E</td>
<td>1.350</td>
<td>1.400</td>
</tr>
<tr>
<td>F</td>
<td>1.350</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Note: Temperature, 1200°C.
"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546