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INTRODUCTION. 

This is the final report of a study for "Optimizing 

The Rendezvous Radar Function For The Space Shuttle"; 

Contract No. NAS 9-14615 for NASA, Lyndon B. Johnson Space 

Center. The program has been expanded and will continue to 

"Study To Investigate And Evaluate Means Of Integrating And 

Optimizing The Combined Radar/Communication Function". This 

final report, Volume I, summarizes the study efforts related 

to optimizing t:,e radar function. It is the sixth report 

submitted during the contractural period and includes data 

which otherwise would have been submitted as Progress Report 

#6. Continuing efforts will be primarily directed towards 

the integration and optimizing of the communication function. 

A second final report, Volume II, will be submitted at the 

end of the continuing study. 
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1.0 OBJECTIVE. 

The objectives of the study to "Optimize the Rendezvous Radar 

Function for the Space Shuttle" were to perform conceptual design, 

performance analysis and trade-off studies leading to recommendation 

of a radar system which best suits 'the space shuttle rendezvous 

requirements. 

Specific objectives of the study included: 

1.: 

Preparation of detail block diagrams of 
candidat~ radar systems and a discussion 
of each. 

An evaluation of antenna types, angle 
tracking methods I scan prog'ram and ' 
allm'lable antenna size. 

An evaluation and ranking of candidate 
radar and antenna systems. 

A complete description including size, 
weight and power of the recommepded system. 

Preparation of a recommended portion of 
the procurement specification pertaining to 
radar performance, including target model. 
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SUM-MARY. 

The study treated antenna characteristics and antenna 

size trade-offs r fundamental sources of measurement errors 

inherent to targets' of interest, the backscattering cross­

section model of the target and three basic candidate radar 

systems before recommending a total system. 

The antenna study determined the maximum antenna aperture 

compatible with system constraints such as the physical 

dimensions of the stow installation, servo power demand and 

data rate requirements. 

While reflectors of up to 1.5 meters in diameter can 

be stmved within the constraints of the shuttle installation, 

a 1.meter aperture was chosen from a standpoint of operational 

accilracy, reasonableness of servo power requirements and 

simplicity of installation. 

Various radiation systems were considered such as the 

Cassegrain, reflector and feed, flat plate array t etc. A 

parabolnid fed with a folding backfeed provides optimum 

patterns, best mechanical p~ckaging and design simplicity. 

The most demanding operational function of the radar 

antenna is acquisition scan in the non-cooperative mode. 

Various scanning techniques were considered. It was found 

a spiral scan mechanization is optimum. Its geometry matches 

the geometrical requirements of a vector search. Furthermore 

the probability of early detection is enhanced. 

The sources of error caused by scattering properties of 

the target itself and which are indistinguishable from the 

true target state, by the radar include: 
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Angular Scintillation (Glint) 

Range Scintillation 

Doppler (Velocity) Scintillation. 

It was found that both angular scin~illation and range 

scintillation can be an appreciable fraction of the target 

dimension. These effects can be significantly reduced, 

however, by the use of frequency agility. The doppler 

scintillation was found to be very small, less than 0.2 

meters/sec for the class of targets considered. 

The radar backscattering cross-section model of the 

target was taken at a mean of 1 square meter with Swerling 

Class 1 fluctuaf.ion characteristics. For purposes of computing 

the dynamic signal range the maximum target cross-section 

was 'taken at 100 square meters. Using the target/orbiter 

geometry of Mission 3-B the decorrelation time of the signal 

return from the target was estimated to be less than 10 

seconds for target elements spaced 2 meters apart. 

Three basic types of radars were analyzed: 

Non-coherent Pulse Radar 

.Coherent Pulse Radar 

Pulse Doppler Radar With Linear FM Ranging. 

A pulse doppler radar was recommended as a result of 

analysi~ and evaluation conducted. 

The functional requirements for the radar used in·.this 

study and as defined by JSC are given in Table 2-1 and 2-2. 

A comparison of system characteristics of the three 

radar types listed above are given in Table 2-3. A comparison 
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of measurement accuracy of the three radar types is given in 

Table 2-4 for the skin track mode and in Table 2-5 for the 

long range cooperative mode. 

A summary of performance, system and physical 

characteristics of the recommended system is .g:j.ven·,in Table 2-6. 

Since the range measurement accuracy involves several 

parameters a plot of random error was made as shown in 

Figure 2-1. Also shown on the figure is a specified accuracy 

1% or 30 meters , 30' at ranges behleen 30 meters and 19 km. 

The predicted area is well below that specified. 

The discontinuity in the ranging error at 2 km range is 

due to changing the ranging scale factor from 10 Hz/meter 

to l Hz/meter at that point. It appears more favorable to 

operate at the higher scale factor for ranges less than 

4 km as indicated on the figure. 
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TABLE 2-1 

FUNCTIONAL REQUnlEMENTS 

The rendezvous radar shaJ.l provide range, range rate, angle, and angle 
rate relative to passiv", or coopel'ative target for navigation during 
thetermine.l phase of rendezvous. This information shall be supplied 
to the G&N system and to the crew displays, 

Nominally, star sensor tracking of the target will ;provide navigation 
data for the last phasing, the coelliptic, and the "TPI maneuvers. The 
rendezvous radar shall have a beacon mode of operation capable of sup­
porting the above maneuvers. Performance requirements for the rendezvous 
radar are described in the following paragraphs. 

A. Parameter Measurements Limits 

:to Range* 
2. Range Rate 
3.. LOO Angle 
4. LOO Angle Rate 

(8.) 
(b) 

acquisition 
tracking 

19KM to 30M 
+ 91 M/sec 
+" 400 

+4ME/sec 
±Sdeg/sec 

*Data to be available at a range of 19 KN Wi~h a p:t:lJ:lbability of detection 
of .99 with a false alarm probability of 10- • 

B. Parameter Measurements Accuracies (3 sigma) 

C. 

Parameter 

Range 

Range Rate 
Angle 

Angle Rate 

Random Error 

9lM 
Greater of 0.01 R 

or 30 M 

0.3 M/sec. 
10 ME 

0.14 ME/sec 
, 

Data Acquisition and Convergence Time 

, Bias Error 

24M 
24M 

0.3 M/Sec 
<. 3 degrees 

0.14 MR/sec 

1. Th~ ma.-'dmum acquisition time after the radaF hus been designated 
to the expected target direction sball be one minute. 

2. 'Range rate shall achieve the required accurmcy witbin one :::inute 
01: radsr acqUisition snd shall maintain that aCCUl'a,:::; to a range cf 30 
meters. If range data is lost (af'ter initial acquiJEition), '.he ccnvergence 
time for the range rate data after range reacquisit:'l.on shall be n::> 
greatel' than 10 seconds. During ReS brskins, the :::,adar rJnge r6t.e 
shall n,)t lag the true, rsr.ge rate by o:>1'e ':han 2 seconds. 
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TABLE 2-1 (cpntinued) 
2 

D. Target Definition 

1. The target to be used configuration for item::'; A, B and C 
sbaJ.J. have an average radar crlilSS section of one square meter. (Swer­
~iDg Case I). Frequency agility )n8.y be used to :iJn.Pl:'Ove the detection 

ca~8.bility of the radar. 
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PARAMETER 

RANGE 
PASSIVE 
COOPERATIVE 

RANGE RATE 
PASSIVE 
COOPERATIVE 

LOS ANGLE 

BOTH 

LOS ANGLE RATE 
BOTH 
ACQUISITION 
TRACKING 
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TABLE 2-2 (Received 16 September 1975) 

RENDEZVOUS RADAR REQUIREIIJENTS 

LIMITS 

19 KM TO 30 M 
560 KM TO 30 M 

-3& MjSEC + 7.5 M/SEC 
:91 M/SEC 

~ 40 DEG 
FUNCTION OF RANGE 

:!: 4 MR/SEC 
± 5 DEG/SEC 

RANDOM 

ACCURACIES (3 SIGMA) 

BIAS 

1% OR 3 OM 24 M 

a.3M/SEC 0.3 14/SEC 

10 MR 60 MR 

o .14 ~1R/SEC 0.14 I4R/SEC 
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TABLE 2-3 SYSTEM CHARACTERISTICS OF CANDIDATE RADARS. 

System Method of Method of PRF Pulsewidth Freq. 

range meas. VeL Meas. Agility 

R<20km 

Noncoherent Time -delay Range 3.7kHz LO&O.lllsec None 

pulse 

Coherent 
pulse 

Pulse 
doppler 

.--

Notes: 

- Differencing R>201<m 
2l4dz 375mHz 

R<20km 

Time delay Doppler 4.8kHz 1. 0&0 .lllsec None 
R>20km 

214Hz 375mHz 

Linear FM Doppler 4.8kHz& 10411sec None 
25kHz and 2011sec 
dithered 

375mHz 

Acquisition complete by time range closes to 19km for skin track. 

Angular search region for skin track, 40° half angle cone. 

Acquisition time 1 minute for probability of detection of 0.99. 

Transmitted 
Aver~e,i watts 
1m ant 0.5mant 

25 166 

5.4 33 

30 190 

6 38 

19 72 

5 31 

L 
2. 
3. 
4. For non-frequency agile case 2 angle scan frames/minute; frequency agile case 1 

angle scan frame per minute. 
5. Transmitted powers listed include 2 dB margin. 

c 

ower 
Peak, watts 
1m ant O. Sm ar 

6.8kw 45kw 

1. 5kw 8.9kw 

8.lkw 40kw 

1.3kw 7.9kw 

38 144 

10 62 
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TABLE 2-4 MEASUREMENT ACCURACY OF CAND-IDATE RADARS FOR SKIN TRACK MODE, 30" 

, 

System RaI!9"~, meters , Velocity,m/sec Ang1e,mRad 

Bias2 Random B~as2 Random Bias Random 

'. 

Noncoherent - R:;;.9km - 0.3 (SNR>13dB) 0.24 0.6 

pulse -J (. 0003R) 2+(5 .1) 2-
R>9km 
-J (. 0003R) 2+ (25.2) 2-

-
Coherent - R~9km 

- ,~ ( 0 • 03) 2 + ( • 00 6'11) 2 0.24 0.6 

pulse '\l (. 0003R) 2+ (5 .1)?-
R>9km 
\I(.0003R) 2+(25. 2) 2-

~ ( 0 .03 ) 2+ ( • 006'11) 2 

Pulse dopp1e;r: - R~2km 
- 0.24 0.6 

-.J ( • 00 5R) 2 + ( . 57) 2+ ( • 08 5V) 2 

- R>?km 
if:'J05R} 2+ (5. 7) 2+ (. 85V) 2 

Notes: 

1. All values based on antenna size of 1 meter and use of frequency agility. 

('"", 
\-~I 

Angle rate, . 
mB-ad/sec 
Bias Random 

. 

0.09 8.1 

0.09 8.1 

0.09 8.1 

2. The large random angle rate error is principally due to glint assuming an 18 meter target. 

3. Bias errors will occur in the form of data lag but it is assumed these can be removed 

by computation if required. 

4. Angle accuracy does not include mechanical indexing error. 
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'l'ABLE·2-S MEASUREMENT ACCURACY OF CANDIDATE RADARS IN COOPERATIVE MODE (R>20km), 3cr 

Range, meters Velocitv,m/sec Anqle 
System B~as Random Bias Random Bias 
Noncoherent - 30 - 0.23 0.24 pulse 

Coherent .. 30 0'.2 0.1 0.24 
pulse 

Pulse - ~ (.00SR)2+(68)2. (S60km) 0.2 0.1 0.24 
doppler 

, 

~ (.005R)2+(21)2 
. 

(20km) I' . 
Notes! 

1. Bias errors will o.ccur in the fqrm of data lag but it is assumed these can be removed by computation if required. 2. Angle accuracy does not include mechanical indexing error. 

mRad 
Random 

. 

0.34·~· 

(S60km) 

0.01 
(20km) 

0.34 
(S60km) 

0.01 
(20km) 

0.17 
(S60km) 

0.01 
(20km) 

, 

, . 
'-' 

Angle rate 
mRad/sec 
Bias Random 

0.,09 7.2 (S60kl1) 

0.3 (20km) 

0.09 7.2 (S60km) 

0.3 (20krn) . 

0.Q9 2.0 (S60km) 

0.07(20km 

\ 
~ 
II 
ii 
lJ 

'I 

, 
; 

; 
I 

I-
i r-c-

,li.: 
-~--

~ !~ 
....-.... -" 

--~'---;~t;; ... ·'h '~ ,. -- "". 'bo" ,i' ~_ - .. ,J$!; 
•• ----1> • ,_ j . 4' .~. j'ft -'Wr-t « n 

.-,...--~~'---.. -:--~-' 

~_""'~, ..... ,_'" 1 lit 3' or W 

:l 

,~~.-~,--~.-'-'''''j -~,."",,"~.:, .. ~-~::~~~' 
d' "6 riW" -n- d' 

"._ ........... .......--



j 
.11 

II 

I G) 
I, 

'.1 
-j 

•• ,< 

. I! 
I 

• 1,,·0:- "fill/I"I!' ---,.------'- - .1' t. .~.~.::*l.J ,t .. 

, " 

'~ Table 2-6 PRINCIPAL CHARACTERISTICS OF PULSE DOPPLER RENDEZVOUS RADAR. (Page 1 of 5 pages.) 
i 
I 

~ PERFORMANCE CHARACTERISTICS 

Operating range 
Target model 

time 
, , 

Acquisition 
Probability of acquisition 
False alarm time 

During acquisition) 
Angular search sector 

Relative,velocity 
Accuracy,3cr 

, Bias 
Velocity, m/sec. 0.2 

Range, meters 
R~2km 0 
2km<R<20km 0 
20km<R<560km 0 

Angle, mi::~: .. ~ 0.24 
Angle r'ate, , 

mr/sec 0.09 

*Principally-due to glint. 

Cooperative 
mode 
560km to 30 m 
Transponder 
300 seconds 
0.99 
10 minutes 

5° cone 
(half angle) 
±9l m/sec 

Random , Bias \t-
O.lm/sec o 

(. 00 5R) 2+ ( .57) 2 0 
(.005R)2+(5:7)2 0 
(.OO5R)2+(68)2 

0.17 R=560km 
0.01 R=20km 
2.0 R=560km 
0.07 R=20km 

Skin track 
mode 
19krn to' 30m 
lm2swerling 1 

I
~~ 9:econds 

10 minutes 

, 40° cone 
(half angle) 
-38,+7.5m/sec 

Random 
(.03)2+(.006V)2 

0.24 0.6 

0.09 8.1* 
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TABLE 2-6 (Page 2 of 5 pages.) 

S, Y S T E M C H A R ACT E R'I S TIC S 

Carrier Frequency 

Antenna 

Size 
Beam width (2 way) 
Gain 
Scan program 
Scan frame time 
Max search rate 
Max tracking rate 

Transmitter 

Cooperative Moc;te 

15 GHz 

1 meter 
1.0 degrees 
40.6 dB 
Spiral, 100 cone 
1 minute 

5 degjsec 

Skin Track Mode 

15 GHz 

1 meter 
1. 0 degrees 
40.6 dB 
Spiral, 800 cone 
1 minute 
110 deg/sec 
5 deg/sec 

, , 
I' 

i 

~ 

4.8 for acquisi ti; 
PRF 20 to 30 (Dithered) 20 to 30 Dithered • 

Pulse width 
Duty cycle 
Peak power 
Average power 

Frequency Agility Program 

Acquisition 

Tracking 

25 to 17 n 
50% 
8.9 watts 
4.5 'h'atts 

none 

none 

Frequency Mogulation Program 

Deviation 

R< 2 km 20 mHz. 

R> 2 km 2 niHz. 

Time of Linear Sw~ep 

R< 20 km 13.3 m sec 

R> 20 km 67 m sec. 

Time of retrace 0.5 m sec 

2.10 

• , .. -: " .:_,. "'h 

sec 

for track 

50% 
8.9 watts 
4.5 watts 

6 frequencies 75 mRz. 
- apart. dwell 1. 5 m sec 

6 frequencies 75 mHz. 
apart. dwell 13 m sec 

20 lllRz. 

2 mHz. 

13.3 m sec 

0.5 m sec 
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TABLE 2-6 (Page 3 of 5 pages.) 

Doppler Scale Factor 

Range Scale Factor 

R< 2 km 
2 km< R< 20 kID 
20 km< R< 560 km 

Receiver Noise Temperature 

Doppler Filter Bank 

Coi.:>perati ve Mode 

100 Hz/m/sec' 

10 Hz/m 
1 Hz/m 
0.2Hz/m 

18580 k 

Filter bandYlidth 267 Hz 
Effective number of 

filters 69 
(FFT implementation) 

Frequency Tracking Filter 
bandwidth 267 Hz 

Data Smoothing Time 

. Velocity 
Range 
Angle 
Angle Rate 

2 seconds 
2 second 
2 second 
2 second 

2.1.1 

Skin Track Mode 

100 HZ/m/sec 

10 HZ/m 
1 Hz/m 

267 Hz 

2 seconds 
'2 second 

'2 second 
·2 second 
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TABLE 2-6 (Page 4 of 5 pages.) 

PHYSICAL 
: H A R ACT E R I S TIC S -

Weight 

Antenna Assembly 

Boom Assembly 

Electronics Assembly 

Total Weight 

Size 
Antenna Assembly 

Boom Assembly 

Electronics Assembly 

Power 
Antenna Assembly 

• Peak 

• 

Average during search 

Average during track 

Boom Assembly 

Electronics Assembly 

• 

• 

During search 

During track 

Total power 
Peak 
Average during 

• Average during 

search 

track 

2 ).2 

10.6" kg 

5.1 kg 
.4.8 kg 

;2.0,5 . kg 

.AO"dia: aperture 

4'4" long .' 
25 x 17 x 18 cm 

100 watts 

34 watts 

13 watts 

122' watts 

81 watts 

71 watts 

303 watts 

237 watts 

206 watts 
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TABL~ Z,6 (Pa~e 5 0.£ 5_pag~s.) 

ANTENNA CHARACTERISTICS 

Frequency of operation 

S.um Pattern Characteristics (at 15gHz):) 

Gain 

Beamwidth, one-way 

Minor lobe level below main l,,)be 

VSWR 

Diff<lrence Pattern Characteristics (at l5gHz);) 

Gain 

Beamwidth, one-way 

Minor lobe level below main lobe 

VSWR 

Transmitted Power Capability 

Antenna Scan Coverage 

Azimuth 

Elevation 

Scan Coverage During Acquisition 

Scan Frame Period 

Frequency Response 

2. ,13 

13.75 to l5.l2lgHZ 

41.6dB 

1.4 degrees 

17 dB 

2:1 max 

37.5 dB 

1.1 degrees 

115 dB 
,2:1 max 

100 watts peak or CW 

360 0 

320 0 

40 0 half angle cone 

60 seconds. 

1 Hz • ..) 
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3.0 CONCLUSIONS AND RECOMMENDATIONS. 

,'\," YI;}!, (i+'; I 
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LI 

diameter pa,rabolic _ ' 1 
3.1 Antenna Type. 

A mechanically scanned, 1 meter 
reflector, illuminated with a four port monopulse, folding 
backfeed is, ·recommended. A spiral scan mechanization is 
used for radar acquisition. Design features are: 

, 

1. The paraboloid and folding backfeed is a simple 
lightweight structure providing optimum pattern 
characteristics and maximum mechanical clearances. 

2. The four slot backfeed with integral monopulse 
circuitry is simple, efficient and lightweight. 

3. A.spiral acquisition scan is well adapted to the 
geometry of a vectored search in terms of scan 
effidiency and probability of early detection. 

4. If used with a single axis deploy/stow mechanization 
capable of deploying to t,~o positions, one of which 
is parallel to the z axis of the spacecraft, a spiral 
scan utilizing a spin axis can be implemented that 
minimizes scan power requirements. 

5. Stm~ clearance is well in excess of the 
3" all around. 
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3 • 2 Radar Type. 

A pulse doppler, frequency agile radar with linear FM 

• 
ranging is recommended for the space shuttle rendezvous 

function. 

The rationale fo~ selection of the recommended radar 

is summarized below: 

The average power is about the same as the other 

r.adar types. considered but the peak ,power (twice 

the average power) is 2 orders of magnitude lower 

than the other radars considered. 

The relatively low peak transmitted power required 

minimizes breakdown problems 'and it can be provided 

by the communications TWT transmitter or by a solid 

state source. 

High velocity'accuracy rather than high range accuracy 

is the driving requirement of the radar. The pulse 

doppler radar with FM ranging fits well with these 

'requirements. (The pulse doppler radar inherently 

prmTides the most accurate velocity measurement of 

the systems considered.) 

The signal form of both the velocity intelligence 

and range intelligence is the same (frequency 

'difference) which allows a common, time shared 

signal processor to be used for both velociry ~nd 

range measurements. 
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3.3 PROBLEM AREAS. 

Angle Rate Error .• 
The most difficult of the functional requirements of the 

radar to meet is the random error allm;rance for angle rate. The 

specified maximum error is 0.14 milliradians per second, 3u; 
Considering antenna angle jitter due to thermal noise and glint 

from an 18 meter target, predicted values of the noise on the 
angle rate data output is about 8 milliradians per second. 

.J 
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3.4 Recommendations For Further Studies. 

A. The angle rate accuracy requirement appears difficult 
to achieve considering angular scintillation of the target. 
Additional analysis is recommended of the entire target-antenna­
receiver-servo tracking function. 

B. A resonant analysis of the antenna structure and boom, 
including compliance of the spacecraft mount, should be 
performed. 

C. Additional trade-off studies are recommended on the 
best type of servo motors to use for the antenna drive in the 
space environment. 

D. Construction of a full scale, functional mock up of 
the recommended antenna is recommended. 
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4.0 RECOMMENDED PERFORMANCE SPECIFICATION FOR RENDEZVOUS RADAR. 

4.1 PERFORMANCE REQUIREMENTS. 

The radar shall automatically acquire the target, track and, provide data outputs of relative velocity, range, line of sight (LOS) angle and LOS angle rate over the operating conditions listed belm" and the environmental conditions inv61 ved;" 

4.1.1. Range to Target. 
The radar shall acquire the target and operate to the specified accuracy o~er a range of 30 meters to 19km in the skin track mode and 30 meters to 560km in the cooperative mode. 

4.1.2. Relative Velocity. 
The radar shall acquire the target and operate to specified accuracy over the following relative velocity limit~. 

Range Interval 

30m to 10km 
10km to 19km 
19km to 560km 
(cooperative model 

4.1.3~ Acceleration. 

Velocity Limits 

-20 m/sec to +7.5 m/sec 
-38 m/sec to ~7.5 m/sec 
-91 m/sec to +91 m/sec 

The radar shall remain locked to the target during a series of RCS braking operations resulting in a maximum deceleration of 0.2 ll]/sec2 for 20 seconds. The braking operations are separated 
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in time by 50 seconds. 

the target of 9km to 30 

The braking operations occur at ranges to 

meters. DuringRCS braking the measured 

relative velocity shall not lag the true relative velocity by more 

than 2 seconds. 

4.1.4. LOS Angle, 

The radar shall acquire, track and provide data over an 

angular region bounded by a cone centered along the Z axis of the 

orbiter with a half angle of '10° maximum. The LOS angle to the target 

will be made available from the orbiter,to the radar to assist in 

initial acquisition. The uncertainty in the design~ted LOS angle 

(Required angular search region) is as follows as a function of range 

to the ,target. 

Range Required Search Region 

(Cone, half angle) 

R < 13km 

13 < R< 19km 

19 < R< TBD 

TBD < R< 560km 

4.1.5. LOS Angle Rate. 

40° 

,25° 

TBD 

5° 

The maximum LOS angle rate shall be ±4 mRad/sec during 

acquisition and ±5°/sec during tracking. 

4.1.6. Target Model. 

A mean radar backscattering cross-section of '1 square meter 

shall be used for purposes of acquisition of the target in the skin 

track mode. A Swerling Class 1 amplitude fluctuation model shall 
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be used. For purposes of acquisition the target echo decorrelation 

time can be assumed to be 10 seconds. For purposes of computing 

maximum signal return at close ranges the target shall be assumed 

to have a mean cross-section of 10.0 square meters. The physical 

size of the various targets vary from a cylindrical obj ect 18 meters 

long and 4 meters diaIlleterto an irregularly shaped object 2 meters 

in extent. computations of angular .scintillation effects (glint) 

shall be based on the 18 meter cylindrical target. 

4.1.7. cl\.Qquisition Time. 

The radar shall search in angle for the target over the angles 

specified in Paragraph 4.1. 4., lock up the range and velocity 

tracking loops arid provide data to the required accuracy within 

90 seconds of the start of the acquisition process for ranges less 

than 19km and within 300 seconds for ranges greater than 19km. 

4.1.8. False Alarm Rate. 

During acquisition the false alarm rate may be selected as 

required to achieve acquisition in the specified time, 

for disruption of the search pattern by false alarms. 

accounting 

After 

acquisition the data must be within the accuracy specified. 

4.1.9. Data Smoothing Time. 

The data smoothing time (equivalent of single section RC 

~ow pass filter time constant) for all measured output data shall 

not exceed 2 seconds. 
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4.1.10 Measurement Accuracy. 

The accuracy of .the radar measurements shall be within the 

values 'listed below over the operating conditions specified and 

data sl!loothing time given in Paragraph 4.l. 9 • All values listed 

are three sigma limits; 

• Measurement . . 

Range 

R<2Ju"ll 

2km<R<19km 

19km<R<560km 

velocity 

LOS Angle 

. 

(Relative to deployed 
assembly mounting plate) 

LOS Angle Rate 

4.1.ll. 

'Skin track 

• Cooperative 

R>20km 

R<20km 

OPERATING FREQUENCY. 

I 

Random.Error 
. 

5m+O.5% of Range 

10m+0.5% of Range 

30m+O.5% of Range 

0.3m/sec 

10mR 

10mR/sec 

2mR/sec 

0.14mR/sec 

Bias Error 

5m 

10m 

30m 

O.3m/sec 

20mR 

o .14mR/sec 

0.14mR/sec 

0.14mR/sec 

The nominal operating.frequency of the radar shall be l5gHz. 
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5.0 ANTENNA. 

The common element controlling the performance of the 

combined radar/communication functions for the space shuttle 

is the antenna. Its characteristics, directly or indirectly, 

affect all evaluating oriteria. 

The antenna, as an electro-mechanical device, is unique 

by its encompassment of many enginerring specialties. Its 

design involves: microwave radiators and components, 

lightweight-low compliant structures, servo control and system 

analysis. All functions are interrelated. Operational 

requirements such as detection range as a function of the 

"power-aperture product", angle and angle rate are predicated 

upo'n the pattern "bearnwidth and monopulse tracking sensitivity. 

Data rate requirements are established by scanning rates and 

efficiency. The antenna is a major factor in determining 

system reliability, weight and cost . 

• 

, 5.1 ANTENNA GAIN. 

The gain of a circular aperture antenna is: 

G = t~D~ f where: 

G = antenna gain 

or D = antenna apl3rture 

A = operational 

G 0: D2 wavelength 

f = efficiency 

The maximum aperture possible, consistant with installation 

constraints and drive requirements is a design prerequisite. 

Related objectives are: good illumination efficiency, minimum 

beamwidth, reasonable side lobes, optimum monopulse patterns, 

Minimum tl:ansmission line losses and maximum scanning efficiency. 

Each design objective will be individually studied in the 

follmqing sections of this report. First effort shall be 

directed to the further quantization of gain requirements. 
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5.L1- RADAR RANGE EQUATION, 

Radar range equation 

R~=P G2 A 2,(1 L 
e: 

(4n)3K. T B (SIN) J'i'\ -'.0 s n, w where, 
R = 
P = 
G = 
A = 

= 
= 

= 

• • 

. ' .. 

Range - m 
Avg. power -. watts 
Antenna gain 
Wavelength - m 
Target's radar cross-section - m2 

Summation of losses 

Boltzmann's constant -

1.38xlO-23 - Watts/Hz./K B 

System noise temp. 

Noise bandwidth 

Signal to noise ratio 

under a given set condition (R,A,Ci,Le:& SIN requirements) the transmitter 
power proportionality is: 

P '" S/~ @ 
G 

SIN r~lates to statistical assumptions of detection 
given set of conditions, example, a Swerling target 
vs the number of pulses integrated has a slope such 

SIN a: n-· 7 @ where: 

criteria and 
type, a plot 
that: 

e e xPRFxt xllR e = n = x, y', s _@ x 
" . . Pattern 1/2 pwr X beamwldth 

'J!x'J!y Rs 6r = " . Pattern 1/2 pwr Y beamwidth 

for a 
of SIN 

'J!x'J!y 
t = Time to search one frame - sec V = R® s s 
PRF Pulse repetition frequency 

1[2D2 
= 

G = f 2 llR = Range gate width - m 

7 Ga:D ® 
Rs = Total range searched - m 

e 1';A 'J! = Ant. scan, x direction deg = e a:n-1G) x x n An,t. direction deg x 'J!y = scan,y 
2 

Vs = Scan volurnn - deg - m 

f = Efficiency factor 
n = Radiator diameter - m 
K - Constant 

SUb.sti tuting @ in @ , fixing PRF, ts and llR, 

letting ex = eyand substituting (2), ®, @ and G) into @ we 

following pro~o7tionality: 

have the 

V .7 I 

s @ 
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5.1.2. COMMUNICATION LINK, GAIN EXPECTED. 

In the baseline study a 12.5' diameter parabolic reflector 

is used on the TDRS, a 20" diameter Cassegrain radiation system 

on the shuttle orbiter •. The calculated gains,are 52.5 dBi and 

35.5 dBi respectively. Recent measurements indicate that the 

gain of the 12.5' diameter parabolic antenna is up to 7 dB less 

than expected. 

The characteristics of any optical device deteriorates as 

a function of physical errors due to manufacturing, mechanical 

loading and temperature changes, etc. If a given reflector is 

operated in increasing frequency, or similarly, if a reflector 

for a given frequency is increased in size, the gain at first 

increases as the square of the frequency or diameter, respectively, 

until the tolerance effect takes over and then a repid deterioration 

takes place. For example, the realized gain, Go' relative to the 

optimum gain, G, for an effective surface deviation, ~, is related 

as follows: 

G 
Go = 

.-r~2 
e LJ 

Reference: Mehdi Sarghamee,"Antenna Tolerance Theory";IEEE, 
November 1967, Page 777. 

Practical structures can be built and reasonably maintained 

to a tolerance of 1 part in 1,000. For a reflector 12.5' in 

diameter, cumulative errors up to .074" 

resulting loss from maximum of 6.06 dB. 

can be expected with a 

The gain of a 12.5' 

reflector operated at Ku-band (:\=.787") is: 
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G '" 10 loge ~n ~ -6.06 = 49.48dB (less aperture efficiency) 

Tolerance control achievable with standard shop practices are no longer <;Idequate for antenna gains above 48dB. Furthermore minimum weight and environmental requirements tend to negate the effectiveness of high precision manufacturing techniques. Based upon previous experience and study this writer believes that the more vavorable values measured on existing hardware are representative of those that can be reasonable expected within the practicalities of the final system. (47.5 to 49.5 dB). 

Furthermore, the illumination efficiency of a 20· diameter Cassegrain antenna can :Je expected to be approximately 45%, resulting in a net gain of 34.6 dB at 15 gHz. The realized loop gain of the communication link is 4 to 6 dB less than shown in existing budgets that are marginal in fulfilling operational requirements! 

A.n offsetting factor, relative to the aforementioned ante!1na gain problem, is that the n2c studies have indicated that the gain of the shuttle orbiter antenna can be substantially increased. TWo factors are involved. The use of a point source feed and parabolic reflector is more efficient than the envisioned Cassegrain system. Furthermore the aperture diameter can be doubled 1 1 meter diameter) while retaining compatibility with shuttle installation constraints. The gain of the 1 meter diamete~ aperture increases to 41 dBi at 15 gHz. comparative val.:es of related characteristics such as orbiter transmitter power, link margins, etc. have been included in this study, for the smaller and larger aperture antennas. 
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5.2 APPLICABLE ANTENNA TYPES. 
A mechanically scanned antenna, as opposed to an electronically 

scanned antenna, is most applicable to the space shuttle task. It is basically less complex, more compatible with the space environment, has greater radiation efficiency (particularly at wide scanning angles), provides positive inertial erference data (a faqtor of particular importance when determining angular rate) and weighs less. Three types of radiating systems can be considered: 
a Cassegrain system, a point source fed parabolic reflector and a flat plate array • Comparative data is tabulated in Table 5.2-1-Values shown are typical. 

The flat plate antenna is heavy because of its waveguide-array construction. The weight adds to its inertia which in turn requires 
excessively high servo power. 

The Cassegrain antenna, in comparison with a point source fed paraboloid, exhibits, due to aperture ,shadowing by thE' hyperbolic sub-reflector, somel'lhat poorer pattern characteristics. It is heavier and correspondingly it requires a greater drive power. It is capable of providing a greater effective focal length for the same geometric depth than can the paraboloid. This improves its 
a folding feed on 

tracking sensitivity. 
the parabola. These 

This can be offset with 
factors will be discussed later. 

The point source fed parabolic reflector offers the best overall performance, is cost effective and of minimum weight. Initial effort will be directed towards this design approach. 
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TABLE 5.2~1 COMPARISON OF CHARACTERISTICS OF THREE CANDIDATE 

ANTENNAS • 

Non-minimal 
aperture 

Gain 

BW 

, ML 

Weight 

J e 

Peak servo 
power 

CASSEGRAIN 

1 m 

39.8 dB 

1. 4" 

14 

33 

1. 8S 

7.2 

90 watts 

POINT FED 
PARABOLOID 

1 m 

41.3 dB 

1.4" 

20 

30 

1. S7 in-lb-sec2 

6.46 in-1b-sec2 

80 watts 

FLAT PLATE 

1 m 

41.S dB' 

1. 4" 

23 

80 

9.1S in-1b-sec
2 

88 in-1b-sec2 

1100 watts 
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5.3.1. MONOPULSE PATTERN; 1 METER PARABOLOID WITHBACKFEED. 

The monopulse patterns are primarily a function of the 

F ID ratio and the spacing between e.lements of the backfeed. In 

Figure 5.3-9. 'typical dimensions for the aperture spacing of the 

four slot feed are shol'm.. ,Element centers are equally spaced 

about the feed centerline axis. Using these values th,e squint 

angle as a function of the F/D ratio±s~ ~e: 

Focal length F/D ratio Squint angle 

33cm. 

50cm. 

72cm. 

.33 

.5 

.72 

1.15° 

.' 

.5 

Monopulse patterns for F/D of .33 and .72 are shown in 

Figure!'. 5 • 3.,.l. . Note the greater slope for the pattern shape 

near null with the smaller quint angle. 

Mo~opulse tracking sensitivity as a function of pattern 

crossover is shown in Figure 5.3-'2. 

a level of 1.1 dB corresponding to a 

The optimum crossover is 

squint angle of .423°. 

at 

Based on the 1/2 inch spacing between the slot elements making up 

the array the optimum focal length would be 86cm. long, 

resulting in an Fin ratio of .86. 

The error slope as a function of signal-to-noise ratio is shown 

in Figure 5.3~3·for squint angles of .5 and 1.15°. Note the greater 

the signal noise ratio, the greater the slope ratio. It is desirable 

to reduce the squint angle to the minimum value possible. 

For a given focal length the spacing between elements can only 

be . decre'asedi:by decreasing the:;physical size of the elements. In 
I 
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that the electrical size cannot be decreased, a decrease in physical 

size requires the use of dialectic loading in the feed aperture. 

This aggravated the impedance match problem. Because of large 

bandwidths involved, the feasibility. 'of this app~oach can only 

be determined through actual development. 

The alternate is to increase the focal length. This can be 

accomplished with the folded feed des'ign. For continuous rotation 

of the elevatio:n motor an F /D of .5 is a maximum value. Tj:lis 

reduces the error signal slope from a maximum value by 

approximately 1.1 dB. 
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5.3.2. COMPARISON OF PATTERN CHARACTERISTICS. 

A relatively rigorous analytical program has been provided 

to NASA Houston to compute the pattern characteristics of the 

Cassegrain Antenna System. The results of this analytical study 

will be reported in a future report. In the interim period 

pattern characteristics of a Cassegrain Antenna can be based upon 

the results obtained from existing designs such as the rendezvous 

radar for the Apollo Lunar Missile md others. The pattern 

characteristics of various applicable type antennas are 

approximated in !rable'··5.::;J-:'1" 

The tracking sensitivity is stated for a signal noise ratio 

of 1. Sand 7.5 dB. The 1. 5 dB signal noise is referenced as a 

minimal value for consideration. The 7.5 dB signal noise ratio is 

chosen at equal gain pisition to compare the 50cm. Cassegrain system 

with the lOOcm. short focal length point feed system. Because of 

the large offset angle required by the shorter, focal length the 

tracking sensitivity at a sigl}al noise ratio of 1.5 dB are 

approximately equal. However, at positions of equal gain, i.e., 

a 1.5 dB signal noise ratio for the 50cm. Cassegrain ve~sus the 

7.5~dB signal noise ratio for the lOOcm. diameter reflector 

is improved by some 11 dB per degree. 

It is appafent that the best results are obtained with a 

large reflector using the folded feed where a near uptimurn F/D 

ratio can be employed. 
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TABLE- 5.~-:\. 

ANTENNA 

Reflector -
diameter 

Fin ratio 

Gain 
(15gHz. ,100% 
efficient) 

Efficiency 

Gain 

2: beamwidth 

/). beamwidth 

Tracking 
sensitivity 
(1.15dB SiN) 

Tracking 
sensitivity 
(7.5dB SiN) 

Minor lobes 

PATTERN CHARACTERISTICS OF APPLICABLE ANTENNAS. 

CASSEGRAIN PARABOLOID WITH PRIMARY FEED 
Fixed feed Folded feed socm.. 100cm 100cm. 100cm. 

.9 .6 .33 .5 

37.91 43.9 43.9 43.9 

45% 40% 45% 55% 

34.4dB 39.8dB 41dB 41.3dB 

2.8° 1. 4° 1. 4° 1.4° 

2.2° 1.15° 1.39° 1.15° 

6 dB/" 16.5dB/" 6dB/o 16dB/o 

33dB/o 17dB/o 33dB/o 

13dB 14dB 17dB 20dB 
- , 
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.5.·3 03. MONOPULSE! BACRFEED. 

A drawing of an applicable monopulse backfeed is shown in 

Figure 5.3~4_ Basically it is a Cutler type, (back feed.) 

four port feed in combination with a hybrid waveguide circuit 

to provide an amplitude-amplitude monopulse capability. 

The physical arrangement o:E the waveguide is shown in the lower 

portion of Figure 5.3-4. The circuit is shown.?4-m~tpe~uppe.r .. ;portion 

of the diagram. consider the operation of the equipment' in the 

receive mode. The signals are received at ports A,B,C and D. 

The signal from port A is divided at TOp Wall Coupler (1) into 

2 equal parts and in-line and coupled-line circuit. The in-line 

circuit passes without phase shift. The coupled-line undergoes 

a -90· ·relative phase shift. In a similar manner the signal 

received in port B is transmitted through a -90· phase shifter 

and is equally divided at Top Wall Coupler #2 to a direct 

circuit without further phase shift and coupled to the 2nd line 

with a relative phase shift of -90·. simultaneous reception 

of the signal at portC is transmitted through a +90· phase 

shift ahd then equally divided by Top Wall Coupler #1 to a 

continuing circuit without phase shift and to a coupled circuit 

with a relative -90· phase shi.ft. Note: the original +90· and 

the -90· phase shifts are self cancelling; i.e., signal received 

at port C within the coupled line has no relative phase shift. 

Along this specific line signals received from port A and 

port C along transmission line Ii. a,renow in phase (ALo+ cLo). 
Signals received at port D are likewise equally divided through 

Top Wall Coupler #2 to the direct line with no phase shift and 

to a continuation of transmission line B with a phase shift 

of -90·. Recall that the signal from port B had imposed upon 

it a retardation in phase of -90·; therefore, signals arriving 

from D and B along·the continuation of transmission line Bare 

now in phase but carry. a relative 90· phase lag; i.e., 
l=-9JJ. L-99.: B + D • Continuing along this line these combined 
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signals are now equally divided to a con~inuing line and coupled 

to a continuation of transmission line A through Side Wall 

Coupler #3. The -90 0 phase shift carried by signals Band D 

is now compensated for by the +90 0 phase shift introduced through 

the Side Wall Coupler #3. These signals combine with signals A 

and C to provide a sum-channel signal, i.e., (A+B+C+D). Signals 

A+C along transmission line A couple through Side Wall Coupler #3 

with a +90 0 phase shift to combine with signals B+D to form 

(A+C) - (B+D) a fiX signal. Correspondingly signals A L::.;w 0+ c.&.!lo.° 

in a continuation of line C comgined with signals B+D from Side 

Wall Coupler #4 to provide (C+D) - (A+B) a fiY signal~, Remaining 

signals which couple into a continuation of line C form a cross­

coupled signal not related to the monopulsed tracking problem 

and is matched into a resistive load. Continuation of channels 

A, Band C provide a sum-signal, a fix difference signal and a 

fiY difference signal respectively. 

entering the ~ channel are equally 

By reciproci·ty, the signal 

divided and transmitted in 

phase from each of the four feed ports. 

The physical arrangement of the waveguide components is shown in 

the lower drawing of Figure 5.3-4. The drawing is self explanatory. 
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L=l1l11. 0 I " 0 B +D.wL. 
D 

"-

--y--
-r-t 

(2) /"'" l",tJoo 1_900 Wall Coupler 8.M 0 Cl..:2.J.L,o + B + D'''-'-''-''-
/.:-90 0 ~o A + 

('C" 
......... 

#>0 I-J80 0 

A!JJ... + B 0 l.JJ...o 
1+180 + D + C 

~ 
Cross terms '~ 
terminate in 
resistive load. 

t l J:l j'-}-9 G 0 

111 pi 
B - + D __ ~ or .. f::"X 

/. _ ,(A+C) - (B+D) 
Wall Coupler(4) :><: 

..:pI{. 
_lA~ 

4 PORT 
FEED 

(3)Side Wall Coupler d-90 0 Lo..0 iJJ..0 iJJ: !JJ: 
Ln..': & A + B + C + D' 

A 'C ET & R , x 

\' A+B+C+D 

01 . (C+D) - (MB) 
i-' 
U1 WAVEGUIDE CIRCUIT 

b.X 
- - - - -,-----;=;T-lf'i"17 

ETx & Rx 
~--~~----l' b.Y F --------------
r 

90
0 Phase load 

INTEGRATED HYBRID ARRANGEMENT 

FIGURE 5.3-4. MONOPULSE BACKFEED 
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5.3.4. DESIGN DETAILS; HYBRID COMPONENTS. 

The design of short-slot hybrid end,'couplers for microwave 

applications is well established. Characteristics of a typical 

Side Wall Coupler are; 

Manufacturer .. ,. .. . . . . . . . . ,. . . ,. ~ . . . ,. . . . 
Model # .. ,.,. ...... ,.,. ....... ,. .. ,.,.,.,.,. .. . 
Waveguide ... ,. . ,. .. ,. ,. ... ,. .... ,. ,. ,. ,. ..... 

Frequency ............... ,. ...... ,. .... . 

Coupling ... ,. . ,. .. ,. ...................... .. 

Maximum output power unbalance ••••• 

Minimum isolation .... ,. ............. ,. .. 

Width .... -;, .............. ,. ......... ,. ............ . 

Height ••••..•..•...•.•....•....•... 

Length ........................................ '" '" ... .. 

Microwave Developments 
~qboratories, Inc. 
62 HS122 
WR-62 (. 70,2"x. 39l"x. 040") 

13.5 to 15.6GHz. 

3db 

.25db 

30db 

1.48" 

.045" 

1.11" ± .003" 

A typical TOp Wall Coupler has similar characteristics. Example; 

MDK Model .. '" .... '" ................. ,. .... ,. .... '" .. '" '" .. . 
Operating frequency ..•..•..•.••.•.•. 

Output power unbalance •...•••.•..••. 

Isolation," ............... '" ... '" ............. co ....... . 

Wi d th .. '" ......... '" .... '" . ,. .... '" .. '" ....... '" .. '" . ,. '" '" 

Height ................................. . 

Length .•........••.•..........••..•. 

62HT82 

13.5 to 15.6GHz. 

.25db 

30db 

.78" 

.88'" 

1. 25" 

Assuming a 

the length 

waveguide 

reflector diameter of 1 meter a,nd an ~ ratio of 1/3, 

of the feed is .33 meters (13.1"). Using 1'/R-62 

and considering a design frequency of 15GHz. we have; 

1,.0 = .7874" 

Ac = 1. 244" 

Ag = 1.017" I 
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The 

can 

length of transmission line within the primary feed assembly 

be assigned as follows; 

Length of hybrids •.••••..• ~ ••••• 

Length of half-height guide ••.•• 

. Length of taper ................ . 

Total ....... -. ..................... . 

Length available for 
phase shift ..... c ............... . 

2.36" 

L017" 

2.034" 

5.411" 

7.689" 

Relative phase shift of ± 90 0
, as required to correct the phase 

shift characteristics of the slot couplers, can be introduced in 
a number of ways. A preferred way is to change the width dimensior, 
of the guide over as long of a section of waveguide as possible. 
The greater the length used the better the bandwidth characteristics. 
consider a 7" length. 

Phase shift Electrical 
length 

+90 0 6.633A
O 

o 6.883A o 
-90 0 7.133Ao 

.98" 

1.017" 

1.0539" 

.8034" 

.774" 

.747" 

AC 'V guide' width, 

1.322" .661" 

1.244" .622" 

1.184" .592" 

To achieve a +90 0 lead requires increasing the width of the waveguide 

by .039". To achieve a 90 0 ,lag in the waveguide requires decreasing 

the width of the waveguide by .030". 
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5.3.5. POLARIZATION TRANSFORMER. 

Circular polarization is required for the communication 
mode of operation. Previous tests have indicated reflection 
losses of up to 4 dB if circular polarization 'is used in the 
radar mode. companion studies have shown that 7 to 8 dB greater 
power is needed for the communication mode than for the radar 
mode; therefore, one could employ circular polarization for both 
the transmit and communication modes of operation. Not 
withstanding these factors, it is desirable to determine an 
optimum method of transforming the antenna's response to either 
linear or circular polarization. 

A circular;):y polarized wave can be produced from two 
linear polarized waves of equal amplitude, in space quadrature 
and 90° out of phase. The transmission of a linear polarized 
wave is inherent to waveguide structures. The transformation 
of this linear polarized wave to circularly polarized is 
accomplished ~y dividing the linear polarized wave into two 
equaJ parts, arranged.in space quadrature, i. e., the polarization 
vectors are normal, introduce a 90° relative phase lag re-combining 
to provide the desired circular polarization. There are two '.' 
conventional ways of accomplishing this. One is within the waveguide 
circuitry, usually in the immediate vicinity of the primary feed. 
The second is by means of a space filter within the near field 
of the radiating antenna. In this particular case where four feeds 
are involved, the latter.design is' the simplest. Three techniques 
have been instrumented: a polarization grid in the immediate 
vicinity of the primary feed, a similar grid at the surface of the 
reflector and within the radome. In the first two techniques the 
grid assembly is rotated 45° to introduce a linear to circular 
polarization change. The latter technique has been used where a 

·type mf antenna structure is employed, usually having a large 
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aspect beam ratio, that is not conveniently adapted to the 

transmission or reception of circularly polarized waves; but, 

circular polarization is specified. In this case the grid is 

placed in the radome to provide the desired polarization transfer. 

Polarization change introduced at the feed is the most 

convenient because of its relatively smaller size. This technique 

was used on the Marle II F-lll Radar Antenna. A modification of 

this design is suggested for this application. 

A drawcLng of a polarization switch is shown in Figure 5.3.5, 

The polarization transformer consists of 3 wire (AWG #24) grids 

spaced )./4 apart and oriented at .45° to the incident polarization 

vector. "It is formed on a mica or ceramic substrait and mounts 

in two parts on a lever mechanism off the cap of the primary feed. 

In the position shown, the polarization transformer is not in the :c 

radiation path of the primary feed and linear polarization is 

provided. By pushing the lever linkage forward the polariz'ation 

grids are rotated in front of the primary radiating apertures and 

circulaJ; polarization is produced. The mechanical motion can be 

initiated ,'lith a latching solenoid. For fail-safe operation it is 

spring loaded to the circular polarized position for stow and 

communication operation. 
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The characte:dstics of a gridded polarization transformer 
~ 

can b~ determined by considering a plane wave of amplitude El 

nOJ::mally incident on a polarizing structure as shown below. The 

polarizing structure has a width,L, and is constructed of a series 

of wire grids oriented at an angle of 45° with the incident 

polarization. 

-Ell" 
\ 

As i'idicated, the components of the incident field perpendicular .... 
to the grids, El ' sees the grids as almost negligible capacitance 

and is transmitted through the structure with essentially only a 

phase shift of k L. . ~o 

to the gride, Elil ' 

The componentsobf the incident field parallel 

on' the other hand, sees the grids as appreciable 
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inductances and is reflected and transmitted through the structure 

with reflection coefficient R and transmission coefficient T. 

For use as a polarizer, the structure is constructed such that at 

the design frequency the structure is matched: 

R = a (1) 

and the parallel and perpendicular field components transmitted 

through the grid are in time quadrature: 

t:T+k L = 90 0 
o . (2) 

It is the purpose of this analysis to examine the effects of 

frequency variation on the reflection and polarization purity 

for two possible polarizing structures. 

Two grid structure Three grid structure 

(All impedance~ normalized to Zo =377 ohms.) 

Shown above are the electrical equivalents of two grid and 

three grid structures which are satisfactory pola±izers inasmuch 

as conditions (1) and (2) are satisfied at the design frequency. 

The two grid structure is made up of identical grids having 

inductive reactances equal to Zo/2 spaced three ei,ghts of a wave­

length apart. The three grid structure has double the reactance 

values with grid spacings of a quarter wavelength. 
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Results of calculations of the reflective properties of 

the structures are exhib:i.·l;.ed in Figure 5.3.-7. .. 
of E~~ is .707 of ~he incident magnitude. The 

The magnitude 

reflected field 

from the grid is RE1\, and only .707 the magnitude of this 
-~ 

field appears as a component in the direction of the incident 

field. It then follows that the reflection coefficient for the 

incident polarization is R/2 and this quantity has been used to 

calculate the VSWR in Figure 5.3-7. 

The. results of the calculation. of the purity of the circular 

polarization produced by the structure are presented in Figure 2.4-6. 

When conditions (1) and (2) are not satisfied, the instantaneous 

total field transmitted through the structure 

.. 
Etotal 

.. -jk L = TEU,+e 0 E, 
_.t. ... 

(3) 

will generally vary with polarization angle as the radius of an 

ellipse. The ratio of the maximum to minimum value of the RMS 

field strength gives a measure of the ellipticity and this ratio 

is given in Figure 5.3-7 expressed in dB. 

As can be seen in Figures 5.3-6 and 5.3-7, the three grid 

structure has wider bandwidth than the two grid device. This 

is to be expected since large shunt admittances are needed to 

provide the required transmission phase shift in the two grid 

case. The three grid structure, although s.omewhat more elaborate 

to construct, requires only one half this grid admittance and is 

thus inh~rently a more borad banded polarizer. 
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5.3.6. FOUR HORN FEED AND POLARIZER. 

A four horn feed and polarizer is suggested as a design 

alternate to the previously described four port backfeed. A 

drawing, of the alterl1ate is shown in Figure 5.3-8. 

Basically the feed is to illuIilinate a circular aperture w'ith 

a monopulse pattern capable of providing ei·ther circular or linear 

polarization. Requirements for symmetry exist in the primary 

pattern, in both the individual and total dimensions of th~ 

primary feed and ,vithin a waveguide system capable of providing 

both linear and circular polarization. This can be accomplished 

,·lith either circular or square transmission line and radiating 

ap",rtures. 

Referring to the central left-hand drawing of Figure 5.3-8, 

·there is a cluster of four square horns making up the primary 

monbpulse array. These are fed from WR62 \-laveguide through two 

angularly displaced quarterwave sections of \-laveguide. The 

first section is rotated 22.5 ° relative to the input guide. This 

rotates the po.larization vector 22.5°. The next section is a 

similar section of \-laveguide except it rotates ±22.5° relative 

to the orientation of the first quarter wave section of waveguide. 

This rotates the polarization vector of the output \-lave to one 

of two position~, i.e., in alignment with or at 45° to the input 

polarization vector. In the first case the energy is transmitted 

through the square waveguide in the TE8!J, mode and linear 

polarization is radiated. In the second case the polarization 

vector is oriented at 45 ° to., the axes of t~e square waveguide and 

both the TE8t and TEt~ modes are excited. These two waves are of 

equal amplitude and in phase. If unperturbed a linear polarized 

wave would be radiated oriented at 45° relative to the elevation 
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axis of the antenna. Circularly polarized' energy is produced by 

introducing a 90° phase shift between. these two orthogonal waves. 

This can be accomplished in one of two ways. A dielectric vane 

can be introduced into one of the orthogonal axis of the square 

waveguide of a proper dielectric constant, width and length to 

provide a 90° phase differential in the orthogonal waves. 

Alternately the dimensions, of the squ~re waveguide can be made 

slightly rectangular, in the nammer previously discussed for 

introducing the differential phase shift requirements in the 

four port backfeed. 

The second quarterwave section can be rotated a number of ways, 

one of which is suggested in Figure 5.3-8. Bull gears are cut 

into outer diameter of each quarter wave section to be rotated and 

coupled together so as to rotate in accordance with the dra\ving. 

In this arrangement adjacent sections rotate in clUnter directions. 

To provide a single rotational sense to the circular polarization 

(right hand circular polarization) the relative phase shift 

between adjacent units are introduced in orthogonal axes. Non­

contacting wideband chokes have been used in adjacent sections 

of polarization transformer. Torque requirements to change 

polarization are minimal. While a solenoid drive can be used, a 

motor drive is suggested. 

The four output guides of WR62 from the four horn primary 

feed must be routed to hybrids, such as described for the four 

port back feed or alternately any convenient combination of 

appropriate microwave couplers. This feed and polarizer can be 

used with either the Cassegrain or paraboloid reflector systems. 

The four horns will generally be brought together so as to form 

a minimum primary aperture. One possible arrangement of the 

latter is shown in the right-hand drawing of Figure 5.3-8. 
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Considerable variability in package design exists. The polarizer 

and its transformer, and for that matter, the hybrid circuitry, 

can be mounted in a near focus position and three WR62 waveguides 

used as a support tripod. Alternately polarizers and hybrids 

can be mounted behind the reflector and the square waveguide used 

in front of the reflector. The square waveguide can form a I, 

2 or 4 waveguide structural as sembly for the primary feed. In 

a practical sense a cluster arrangement of four waveguides is 

preferred. From a servo standpoint the heavier parts of the system 

can be mounted near to the scanning axes thereby reducing their 

radius of gyration and the associate inertial loads. 

5.3.7. FOLDED FEED. 

The microwave 'ch'aracteristics of the four port "Cutler 

type" backfeed were described in Figure 3.3-4 of Section 5.3.3. 

If this feed ,were mechanically arranged to fold back on itself 

the F/V ratio can be increased. Pattern characteristics are 

improved, additional volumn for the elevation drive assembly is 

provided and the clearance between the antenna and other structures 

is increased. 

A folded feed is shown i~ Figure 5.3-9. Mechanically, it 

is a simple device consisting of a spring loaded hinge to 

mechanically align and hold the feed against a mechanical-stop. 

This is the position the feed assmnes when the antenna is operating 

in its deployed position. 'ihen stowed it f?lds back against the 

reflector. The folding motion can be actuated by one of several 

methods. For example, a roller at the end of the feed can be 

~ngaged by an appropriate pad off the payload or payload door to 

fold the feed for stow. Alternately a size 8 motor can supply 

power to stow and deploy the feed. 
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Th~ waveguides are coupled at their end section by means of 

broadband, non-contacting chokes. They are cut into the broadside 

walls o'fthe waveguide in a way that minimizes the radius of the 

fold c:j..rcle, i.e., the chokes are alternated and arranged to 

minimize the chord to diameter spacing involved in hinge motion. 

In this way the hinge can be placed very close to the waveguide. 

This factor along with its relatively small size minimizes 

reflector shadow and associate pattern distortion. 

Wall thickness, of the waveguide in the vicinity of the choke 

has been increased from, a nominal value of .1 centimeters (. 04()") 

to .150 centimeters (.060"). This has been accomplished by 

tapering the inner wall of the waveguide inward. This arrangement 

also makes it convenient to, as required, add mica windows on 

each side of the hinge section. These techniques are equally 

adaptable to the :Four horn "J" feed. 

5.29 

! 
i , 
I 
! , 
! 
I 
I 
I 

I 
I , 
I 
~ 
! 
\ 

" 
I 

I 

i 

r 

~ 
I 

" , 
j,; 

'. ,i 
,. ~ 

",~;,,~:,~ 

i , 
J 
j 
I 
I 
~ 
I 
I 



1/' , 
; 

, ,ill 
, ! 

, Jil' 
, 

>,,- " 

I 
~ , I 

i 

I 
, ' 

:; 

'I 

, 
" it 
.~ , 

c) 

1; 
i i { ~ 
;: 
I' 

~ 
I.J 

<\J 
"-
N\ 
N) 

_"",_--=-o.~~ 

Y' '" 
/ " / / > 

/ " / 
/ / 

/ / / 
" / /" / ',,, / 

\' / , 

~ 
\.J 
t\J 
11 

~ 
\J 

" , 
:::::) 
~ 

.~ 
I 
I 

,=,,"==._,",,.~ .. _~ t-

Vj 
...... 
~ 
~ .. 
~ 
'-!:J 
~ 
~ , 
I 
I -
I 
• 

'.-; c 

\ , 

1 

J, ' 

' '-
....•...... 'J. 

" ..... ~ 



(. 

, " 

.... i 

.-

,. 

I 
I 

" t; , 
, '11 .. . , 

,'1 

5.4 SCANNING EFFICIENCY. 

The effective dwell time (t
d

) on a target can be expressed: 

where: 

B e 
td=fs ,/./.tf 

xy 

f = scanning efficienty s 
e x= half power beamwidth 

e = 
Y 

half pow",;!:; beamwidth 

'I' = ·x tot~l scan angle in x 

'I' y = total scan angle in y 

t f = total frame time 

(1) 

in x plane 

in y plane 

plane 

plane 

Geometric parameters and frame times are established by operational 

requirements. The maximization of (td ) is accomplished by 

maximizing the scanning efficiency (fs ). (fs) is composed of bolO 

parts: 

where: ' 

and 

f = (fd ) (f ) s g 

fd= pulse density efficiency 

f = geometric efficiency g 

f _Minimum dwell time incurred 

d Average dwell time utilized 

Desired scan area to cover 
.fg Actual scan area covered 
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In th~ space shuttle application scanning effici~hcy is most 

critical during radar acquisition of non-cooperative targets. 1he 

detection capability of the re,ceiver is proportiol1al to the d,~ell 

time o~ target. Pertinent requirements are: 

Scan areas, '1' '1' 
x Y 

80x800 (circular) 

Frame period (tf ) ....... 60 seconds 

BW, EJ e x y . . . . . . . . . . . . . . . 

The average d\Vell time '(~d) available is: 

1° 

.12 
7f 

-2 ·-4-· 60 = 
80 . 

.00736 seconds 

The mechanics of the scan mechan~sm involves periods of accelleration 

that prevent achieving this value. It is the minimum dwell time 

incurred relative to the average value available that is a 

measu.7el.1ent of scan efficiency. 
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5.4.1. WIGWAG SCAN; RECTANGULAR CROSS-SECTION. 

A standard wig wag scan covers scan area (~ ,~ l by sweeping in the ~x 

" i 
X Y 

'c' direction with successive sweeps each displaced in the ~y direction by 

approximat.ely 71)% of a beamwidth. The total number of sweep lines can 

then be calcula,!:.;d as 

. '1' 
v 

= 1.3-e 
y 

where: 
Ny = Number of line scans 

1.3 = Beam overlap 

Scan reversals are accomplished in a sinusoidal manner, i.e.: 

e = A sin Ol!:: fi) 

e = A Ol cos Ol 1: ® 
" 2. ~ e = -A Ol S1n Ol t~ 

The frequency (fl relates to 
drive system and establishes 
now be computed. 

f 1 
-4t

l 

·t 
2 

t~~ t~2 ' It:~ 
0+~--------~r----------r-

t-

where: 
. tl = 1/4 ~he period 

t2 = Period with constant velocity 

e = Angle displacement 
e = Angle velocity 
e = Angle accelleration 
A = MaximUm angle displacement 
Ol = 2 TIf where f= frequency , 

the frequency response capability of the 

the time of, scan reversal. 0,0,and0can 

where: 

t =period 
. s 

@ 
f,or one line scan. 

e = ~ but A=0:. 0 = 2TIf09. 
m m \!3 

The total length 

L A 
= 0/1.3 

or: 

of linear scan can also be calculated as: 

where: 
A = Total area sCL,nned 

0y /l.3 ~= Beamwidth step in y direction 
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L = 

A N Qj) =-y 14 
'I' 

Y 

Ll' + Lt lon urn 

o T +2 N 0 = y m m2 
2 1ff 

• N L "" e (T2+--L l @ m 1ff 

where: 

= Total scan in linear sector 

= Scan length while turning 

= Et2 = Total time spent in linear 
mode. 

A relationship also exists between the times involved. 

, 

l 

t f "" T2+2Nytl "" T 2+ ~1 

or 

T2 = t -~ 
f 2f 

where: 

t f = period to scan one complete frame. 

Introducing equation ~ into equation ~ gives: 

• • ...... NIl 
L = 0 [t ---L(- - -l] m f·. f 2 1f 

or 

0 L f l @ =-- (f-O.18l7j m t f t f 

and 
• e L @ e = m 
211f = 

211tf (f-O.18l7 Ny 
t f 

The pulse density efficiency fd may also be related,to these general 

parameters by the equation; 

= 110m fd 
1.3 tf/L 

= L/tf 
1.3 ~ 

m N 
f-O.18l7r l 

f 
1.3 f 
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f-.412 
fd= 1.3 f 

The geometrical effici€nty for· this case is: 

thus the total scan efficiellcy may be calculated as: 

In practiae the overlap does not, on the basis of a total 

frame period, detract from scanning efficiency. All time on target 

enhances detection p~obability. More realistically the scan 

efficiency can be expressed: 

f-.412 
.fd= f and 

Calculated values are tabulated below: 

f .412 1 2 4 . 

o .462 .624 .704 

1f 
f =-f s 4 d 

(30 second frame time) 

6 8 12 

.73 .75 .753 

5.4,Q. WIGWAG SCAN; CIRCULAR CROSS-SECTION. 

A circular cross-section' for the scan frame can be obtained 

with the same wigwag mechanization as used for a rectangular cross­

section except that the angular amplitude '(A') is sinusoidally 

changed on successive line scans through a half cycle. See below: 
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In this case: 

f =f s d 

appropriate values are tabulated below: 

f .412 1 2 4 

ff 0 .588 795 .90 

5.36 

6 

.93 

8 12 

I I." 
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, .5.4.3. SPIRAL SCAN; CONST.ll.NT ROTATIONAL SPEED 

.'f. spiral scan is produced by driving quadrature axes 
t)scan mechanism with sinusoidal signals of increasing 

of a ractangle 
amplitude and 

" 

90.· out of phase; where: 

The number (nt ) of 2i rotations in a 45° spiraled area is: 

ax 

= 45xl.3 = 34 and 
1.72 

1.72 34 = ay 1.3 3,0. 

34 

t ® 

~ w = 27f ill , 
' . .,.~ j 3D 

The frequency responce is a constant ex •. , f= 1.133 Hz. 

Further, the radius R equals: 

The 

R = -Vx2 + y2 sub 1 & 2 

R = 211; 34 t ® 30 
length of the spiral (L) 

L = (6811 Rd 8 = 1. 72 
0'. 1 1':""3 

R = 211 34 t ~cos2 wt + sin2 w t 
30 

is now computed: 

34 + (68if d8 .Q. @. 
3.0 oJ. 

Where 89. = the angle of travel as measured from ·,.thee point of origin 
to the referenced point. 

Also 

tan 8 =~ = tan w t I 
X 

8=wt G) 
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Substitllting in 6 

L = - w tdt 1. 72 34 f30 
;:! .0 1.3 30 0 
'-..._,:./ 

1. 72 2n 

1.3 2 

L = 1.72 n 342 = 4805° 
1.3 

No·te: As would be expected the total length of the scan travel is 
nearly the same as for the wig wag circular area scan (see 4.2.2.2.3) 

The scanning efficiency of this system is calculated from: 

Y
• _ 0 t _1.72 .34.30. 21\34 = 320.33 a/sec. f8\ 
kax - aywc s W -~ 30 30 \:J 

= L = 4805 = 160.167°/sec ~ 
30 30 

f = f . 160.167 . 
s d = 320.33 xl.3 = 65% 

Note: value 1.3 added in per previous note. 
The scan geometry and operating constraints of the constant rotation 
speed conical scan mechanism establishes two important criteria. 

1. 

2. 

The frequency response (f) of the drive system 

f > 1.133 Hz. (For ~ =~ =SOO,tf =30 sec,0 =0 =1.7 0 ,1.3 overlap) x y xy 

The scanning efficiency is: 
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( !In the preceeding example the spiral scan mechanism was programmed 
~with a constant rotation speed and the tangential velocity, due to 

the increasing radius of the scanning path, increases in proportion 
to the sca~ radius. The tangential velocity determines the beam 
overlap along the travel of the spiral. For maximum scanning efficiency 
it should be held constant. Unfor-tunately this is not possible, Le., 
at ZE!rO radius the rotation speed' is infinite. It is therefore 
necessary to establish some maximum value of 0 that is consistant \vith 
the frequency response of the drive system and maintain that rotation 
velocity from the center of the scan out to that radius where the 
requirements for constant tangential velocity are accomplished with a 
decreasing value of rotational velocity. Basic relationships are: 

R = K0 9,. CD 09,. = Se9,. dt 0 
x = R cos 0 9,. = K 09,.cos 09,. CD K 1.72 

= 11.3l (2irl 

Y = R sin 09,.= K 09,. sin 0~ ~ 

Ret = constant = K09,.0 ~ 

where: . , 
0 t = tangent~al velocity. 

,\.s previously stated 0 must be some maximum value (0max " related to 
-frequency response of the system, from 09,.=0 to 09,.=09,.1' The frame (tfl 

must be divided between these two scan programs. 

solving and entering fixed values inG) 

1681f 
30 = 1/2K0 8 +0n " -"[/2 (6·8.) 2-,/2°;, +ei~ .[. n 

21ff 

K0n ,·21ff 21ff On 

r ) 

5.39 
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Use ~egative value 

Note: 

o = 1I(60f- 3600f2-68 2 
.Q.l 

f . = 1. 133Hz • 
mJ.n 

----~~-----.---

The maximum tangential velocity occurs when 0.Q.l is reached. 

o = 211Rf 
max 

Substituting (3) & value for K 

8max = 211:l{1.720.Q.l f = 1.320.Q.l f 

(1. 3) (21T) 

The average velocity, refer equation (9), Section 5.4.3. 

~ , 
o = 160.167°/sec 

f =f = 
5 d 

160.167 
1. 320.Q.l flo 3 

Note: Factor 1.3 used per previous note 

(7) 

(8) 

The following values can now be tabulated using equations (7) and 

(8) for appropriate values of f: 

f 1.133 2 4 6 8 10 

eff .65 .912 98 .99 99.5 99.7 
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5.4.5. SUMMARY OF SCAN MECHANICS. 

A plot of scanning efficiency as a function of drive 

system frequency response is shown in'Figure 5.4-1. It is 

apparent that the best scanning efficiency can be achieved with 

a constant tangential speed, spiral scan. 

A spiral scan is preferred during the radar rendezvous 

acquisition period. Its geometry matches the spacial gebmetry 

of the vectored search. The drive power associated with high 

scan rates invqlved is minimum. Scanning efficiency is improved 

by utilizing, to as great an extent as possible, a constant 

tangential speed program. 

A wigWag scan is preferred for all other modes of operation; 

primarily, radar track, acquisition of the communication signal 

and tracking of the communicat:ion signal. This preference is 

based upon improved adaptation to servo control and is compatible 

with the reduced scan dynamics required. The error signals 

derived,from the monopulse feed and associate hybrid circuitry 

are rectangularly oriented. The circular to rectangular 

coordinate transfer can be readily accomplished. 

For future reference the a~alytical relationship between 

design parameters for the wigWag and spiral scan mechanizations 

are summarized in Figures 5.4-2 and 5.4-3.' 
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A w~g-wag' or.raster scan is accomplished by a cyclicJmotion in 
,-, one direction (X) _ and a r,?petitive step function in the normal 
\.;..1 ,direction (Y). The X sweep is constant and equal to. '¥ x • for' , 

rectangular scan coverage. The X ~:hveep width can be programmed 
to vary in width as relative to (N·) to' cover a circular scan . y 
area. The step is the 2 way beamwidth (BW2,· ). divided by . " w~ 

the beam overlap" normally 1.3. A· number of such steps (N ) are , , , y 
required to cover the desired scan angle (.'¥y)' 

TT - - =-Q- -- - -It, 
I ~- -.-~---) 1" . 
I "> _ ..,:._ . ..-! BW 2,.,ay/1. 3 ' 

I I t ~-.. .• ". I.q." . , . . 
I ' "I I 

N == 
Y 

'¥ 1.3+ 
y 

L = '¥ xNy (for ,re-::tangl,e) , 

L = 'IT '¥ N (for circle) 
'4 y y 

. . 

, L 

{f~ £, ~ =,--
,8x max ,t£ O.18~7Ny 
.. 

"X" 8 x 
dynamics 

.' ,t 
a 

... 

max = 
• 
8 max 
w 

8. max 
w 

1f 8 - x max 

26x max 

(w=21ff) 

e BW 
Y max =2':6, 

"y" 
dynamics 

. 
8 Y max = 8 'IT ymax 2t . . a 

e 
y max: [2 ~J 2 

t f 
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Y 

= y scan·angl~deg 

x scan angle, deg 

BW2way= 2 way beamwidth . 

= number of y steps 
required to cover '¥y 

= total length of scan­
, deg 
='maximum frequency 

response of drive 
system, Hz. 

= fram time, sec. 

max= maximum velocity of 
x scan - deg/sec. 

= angular travel along 
x during 1/2, reversal 
cycle, deg. 
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The tangential velocity (0t ) determines the beam overlap along 

,,_\ the travel or ·the spiral. ,(81 ). For maximum scanning efficiency 
';,.j it must,be held constant. This is not possible; i.e., rotation 

speed (8) approaches~oo as the radis (R) approaches 0., It·is 
therefore necessary to establish some maximum value (8 ) of . _ m~ 

rotational veloqity·consistant with the frequency response of 
the drive system which is maintained out from the center to a 
radius where constant 'cangeniTial velocity is maintained with 
decreasing values of rotational velocity • 

BW .. -2,: .' 
L =-1 3 'fN . deg. • ':l , 

BW' . 2 
·1.3 .. 

. BWz = ,2 way beam width 
- ®verlap = J.. • .3 

~ = total nod angle 

L 

f 

1.3~ ~ number of 
BW~' 
turns required for 
1 frame 

= total length of 
travel along spiral-
deg . 

= maximum frequency 
. response of drive 

system, Hz. 
frame time - sec. 

, 

• 360 f deg/sec 8 = max 

i:l max = 360 
2 2 

f (y-y--) 

(from 0 

where y= 

to 

1-

8,H) 

8J>.l 

the rotational angle 
(expressed as number 
of turns) along the 
spiral incurred at 
constant rotational 
velocity to the 
transition to constant 
tangential velocity 

8 1max 
0-

8 1max 

2 8.n -1'1 

For x-y drive mechanism 
, ' 

BW = 8 11 .-r:3 w (w=2~f) 
• =.81max w 

I _ 

:dInin = minimum dl'1ell time 
8 max 

8' 
" 1max 
' .. 

= maximum rotational 
,acceleration 

= max;.x or"y·vefocity 
. r.equired -deg/sec 

8 1max = maximum x or y 
acceleration 2 

-required - deg/sec 

-, 

.. 
, 

FIGURE 5.4.-3 SPIRAL SCAN, CONSTANT TANGENTIAL VELOCITY 
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5.5 MECHANICAL DESIGN. 

The mounting arrangement, stow constraints, scan coverage, 

data ;.·ate requirements and design objectives relative to optimizing 

ant.enna gain, minizing power and weight, shape the mechanical 

design of the antenna. Requirements of immediate intEl,rest are: 

Frame time......................................... 60. seconds .. 

Acquisition scan............... conical,. 80 0 apex angle 

Beamwidth...................... 1" (1m dia, 2 waY;beamwidth 
a referEnce for analysis) 

Beam overlap..................................... 1.3 

Gimbal angle .••••••••••...••••• 2 perpendicular axes, 
continuous rotation 

Gimbal rate (track) •.••...••••• 

Gimbal acceleration (track) •••• 

Gimbal' angle position accuracy. 

Gimbal angle rate accuracy ••••• 

5°/sec 

.04°/sec2 

10 milliradians random 

60 milliradians bias 

.14 milliradians/sec 

A review of the above data indicates the dynamic requirements 

for the antenna are minimal during track. Servo power capabilities 

are determined by acquisition track dynamics which in turn relate 

to antenna size and weight. Plots of antenna characteristics 

versus reflector aperture are shown in Figures 5.5-1 and -2. This 

analysis has assumed a half. gimbal for the trunnion mount and the 

use of 400 Hz 2cj>;§ervo motor and gear box drives. A near constant 

tangential speed/conical scan.is implemented by sinusoidal wigw~g 

in phase quadrature of the azimuth and elevation a,'Ces. Pertinent 

characteristics are: 

The antenna weight tends to be constant for small 

diameters due to the relative fixed weights assigned 

to the base mount and electronic, microwave, servo , 
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and gyro components. As the diameter (d) is increased 

the weight increases t primarily due to increased ,~eight 

associated with the trunnion gimbal and drive power 

requirements. 

Inertial loads around the elevation and azimuth axes 

tend to increase slowly for small diameters and more 

~apidly for larger diameters. The aximuth inertia increases 

more repidly than the elevation inertia. The micrm~avet 

servo and electronic components have fixed weights and 

mount near the center of rotation. Inertia associated 

with these components remains relatively constant. 

Inertia associated with the reflector and elevation gimbal 

increase as·d4• For larger reflector diameters the latter 

factor has a larger influence on to~tal inertia. 

The aximuth inertia increases faster than the elevation 

inertia because of the inertia of the el~vation drive 

assembly and support gimbal. Both its weight and radius 

of gyration are functions of the reflector diameter and 

the resulting aximuth inertia to drive this load increases 

approximately as d3 • 

The elevation and azimuth drive motor torques increase 

exponentially. Torque is proportional to a number of 

factors that all increase as a function of the reflector 

diameter; primarily: 

T <J(. 9x9J 

As the diameter is increased the beamwidth increases and 

the number of scan rotations per frame period is increased 

proportionally. The rotational speed (f) must be increased 
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As the diameter is increased "the beamwidth increases 

and the number of scan rotations per frame period is 

increased to provide for the additional scan cycles. This 

in turn increases e. .I\.s previously discussed J increases • 

The resulting torque is shown graphically in Fi'gure 5.5-2 • 

Drive power requirements are directly related to torque 

and speed requirements. 

Antenna gain increases as the square of the diameter. 

This is included in Figure 5.5-2 and provides a 

reference, so to speak, for value received (antenna 

gain) as a function of cost (drive power). 

In the above Gurves the motor torque is 

a 400 Hz two phase servo motor and gearbox. 

based upon the use of 

Alternately, a DC 

brushless, torque motor can be used. Torque motor output requirements 

as a function of reflector aperture are shown in Figure 5.5-3. As 

a first estimate a DC torque motor is capable of driving a maximum 

size reflector of 40 to 45 inches in diameter. Under such conditions 

the drive motor is approximately 10" in diameter and dissapates 

150 watts • 

5.5.1. INSTALLATION CONSTRAINTS. 

,The antenna stows between the payload and payload doors from 

frames X~579 to 669. Refer Figure 5.5-4. A minimum clearance of 

3" is to be maintained between the antenna assembly and the payload 

doors. The minimum clearance from the payload doors is, at this 

writing, under study. It shall be either 2" or 3". The antenna 

is to be stowed in the Z and Y positions where the aforementioned 

clearance can be maintained while providing the maximum volume 

possible for the antenna assembly. Note how the inner and outer 

mold lines fair in as they come forward; i.e., approach X~579. It 

is evident that the stowed antenna should be moved aft as far as 

possible to make use of the greater installation depth available. 

The limit here is the manipulator assembly centered at frame X=679.5. 
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The antenna must be fOMvard of the manipulator by the radius of the 
reflector plus clearance. For example, a 40" diameter reflector 

is centered on frame X=649. 

A layout study was made to determine the'relation between 

diameter depth of a cylindrical volume capable of fitting within 

defined constraints. The results are graphically shmvn in Figure 5 :5-5. 

The center of volume is located at: 

X=649 (held fixed for this study) 

Y=82 ,to 90" 

Z=446.5" to 449" 

The maximum depth available for the antenna is 12.8" to 13.8", 

depending upon the use of a 2" or 3" clearance from the payload 

doors. This is the most restrictive dimension and is the basis 

of a design approach utilizing a folded feed. This is discussed 

in greater detail in other portions of the report. 

The cylindrical volume must contain the trunnion gimbal, 

elevation dri'"~ and the rotary joint-slip ring assemblies. A 

favored pOSition for the reflector is a mounting ~vherein the 

center of gravity of th~ reflector assembly is located in the 
center of volume of the clearance sphere and the rear side of 
the reflector extends out of the cylindrical volume so as to fit 

within the inner curve of the payload doors. This places the 

feed on the payload side of the reflector. In the fore and aft 

direction the reflector curves away from the cylindrical doors 

so as to provide room for those microwave and servo components 

that mount on the back of the reflector. 

Another variable in mounting relates to the stmv position 

of the elevation axis. If it is normal to the x axis then the 
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trunnion mount, elevation drive assembly and rotary joint-slip 
ring asserr~ly lies in a critical clearance area. This is avoided 
by rotating the slew position of the elevation axis towards 
parallelism with the x axis. 

It is apparent that a number of factors influence the size 
of the radiating system that can be stowed within the designated 
installation area; primarily: 

The 2" versus 3" clearance requirement relative to 
the p'ayload door. 

The stow position·of the elevation axis relative to 
parallelism with the x axis • 

The use of a fixed or folded feed. 

The orientation of the antenna in the stowed position. 

In using the fixed feed a minimal acceptable focal length is 
used resulting in an F/D ratio of .33. with a folded feed fu, 
F/D of .5 was used. Under these conditions the end of the feed 
clears the trunnion gimbal and the elevation axis can be ~ontinually 
rotated. A longer focal length can be used if the elevation motion 
is limited to approximately ±165°. The use of a longer focal length 
does not modify the dimensions of the maximum available aperture. 
The maximum antenna aperture as a,function of applicable design 
parameters are listed in Table 5.5-1. 
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TABLE 5.5-1 MAXIMUM ANTENNA APERTURE AS A FUNCTION OF APPLICABLE 

DESIGN PARAMETERS. 

Type of feed Focal Payload Elevation Stow Maximum 
Length door axis orientation aperture 

clearance 11 or l to of feed 
x axis 

Fixed 1:1,;' 5 3" ~ outboard 34" dia. 

" 1)::'5 3" U. " #34 

" US" 2" .t- " 40" 

" . 13. 2" H " #40 

Folded 25 3" -l- " 50 

" 30 3" U " 60 

" 21 2" ~ " 53 

" 32 2" I' 1 " 63 

" 20 3" --l- inboard 39 

" 22 3" LL " 42 

" 19 2" .L " 41 

" 21 2" l-l " 45 

~! 

1". 

#Note diameter limited by minimum acceptable focal length considerations.l . 
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5.5.2. ANTENNA ORIENTATION -SPACECRAFT COORDINATE INTERFACE. 
For presentation of data it is necessary to determine the 

angular position and inertial rates of the ~tennals line-of­
sight (boresight axis) referenced to the spacecraft coordinates 
(x,y and z). The angular position of the boresight axis relative 
to the x,yand z axes of the spacecraft is measured in terms of 
two angles: 

~ - angular disp~acement from the z axis in plane yz; 
equivalent to the aximuth axis as measured to the 
port and starboard of the z axis. 

v - angular displacement from the x axis to the line 
of sight; equivalent to the co-elevation angle 
referenced to the x axis. 

This system of coordinates is the same functionally 
as described in l;>aseline~dQOun'lents . .- ..... 

The system of coordinates chosen for the antenna reference 
system is as shown in FIgure 5.5-6 The boresight line-of-sight 
is described in terms of seven rotations, three angles which can 
be driven and four fixed angles. The three r9tiltional angles are: 

Deployment axis - ~; function - deployment & stow positioning . 
Shaft axis 

Trunion axis 

. - 0; function azimuth or spin scanning. 
- ~; function - elevation or nod scanning. 

The four fixed angles involved in the mechanization of the 
antenna system are: 

a - angular displacement of the deployment axis from 
the x axis in the xy plane. 
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S - angular displacement of the deployment axis above 

,and below the xy plane (positive angle above xy plane) 

o - angular displacement of the shaft axis relative to 

,i ts support arm axis. 

E - rotational position of the support arm E=O when 

omax lies in the plane formed by the support arm 

and the deployment axis. 

In the baseline system, ~ is fixed at one of two positions, 

i.e., either stow' or operate. Furthermore, during operation, the 

shaft axis is parallel to the x axis of the spacecraft. 

Translation from 0and $ to ~ and v is direct, i.e., 0=~, $=v 

In another system, when the antenna initiates a conical 

scan for acquisition,the shaft axis is made parallel to the z 

axis of the spacecraft and the transformation to ~ and v is simple. 

It will be shO\~n later if the spacecraft coordinate system is 

~ade complimentary to the antenna's circular coordinate system, 

the translation is direct. 

During track operation if the antenna is rotated in ~ 

around the deployment axis, the translation of boresight angle into 

~ and v then involves 0, $, and ~. The purpose of the latt~r 

motion is to avoid the requirement for tracking through a 

scanning pole. 

In addition, it is necessary to translate antenna gimbal 

inertial rates 0 and ~ into corresponding rates ~ and v relative 

to spacecraft coordinates. 
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5.5.2.1 LINE-OF-SIGHT ORIENTATION. 

A ma'CX'ix rotation is employed to determine the position of 

the antenna boresight axis with respect to the spacecraft 

coordinates. Define the unit vector IfI as the boresight axis 

lQJ ' 
position in the trunion coordinate system, and X 11S the 

boresight axis unit vector in the spacecraft coordinate system. 

In transforming the boresight axis position in the trunion, 

coordinates to the spacecraft coordinates, the following matrix 

rotation equation must be satisfied: 

In the matr:':x rotation equation, the <p matrix denotes a 

rotation of the parabolic reflector through an angle <p around 

the trunion axis y axis) in the trunion coordinate system; 

e matrix denotes a rotation of the yoke assembly through an 

angle e around the shaft axis (x axis) in the shaft coordinate 

system, ,\ matrix denotE,s a rotatiol1 of the shaft axis through an 

angle 0 in the plane formed by the support arm and deployment 

axis in the shaft coordinate syst~m; ,e: matrix denotes a rotation 

of the shaft and arm assembly through an angle e: around the 

support arm in the arm shaft coordinate system; ~ matrix denotes 

a rotation of the Shaft axis through an angle ~ around the 

deployment axis in the deployment axis coordinate system; B matrix 

denotes the rotation of the deployment axis through an angle B 

relative to the x-y plane of the spacecraft coordinate system; 

C( matrix denotes a rotation of the deployment axis through an 

angle C( around the z axis of the spacecraft coordinate system. 
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5.5.2.2 
In the baseline system, a,~,Q and £ are fixed, and a single 

deployment position is chosen such that the shaft axis is 

parallel with the x axis. Under this condition, with proper 

choic8 of zero reference and ignoring paralla~, the following 

BASELINE SYSTEM. 

relationships hold: 

]J = 0 = 0 when the antenna boresight axis is 
parallel to the x axis and pointing 

v = ~ = 0 in the negative direction. 

]J = 0 = 0 
"hen the antenna boresight 
axi;; is par'allel to the z axis 

v = ~ = 90" and pointing in the positive direction . 
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0> . . ~n' this system, a, s, a and e: are again fixed. The antenna 

is rotated about the deployment axis such that the shaft axis 

.;"1 is paralle.l to the z axis. The components of the boresight axis' 

as measured in the spacecraft coordinate sys.tem are again ; I 
. /I! 
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E]"uJ 1 0 0 CV 0 "'a] -CV 

0 Cll Sll 0 1 o 0 = SllSV 

0 Sll Cll -Sv 0 CV 0 CllSV 

To obtain the correct orientation of the shaft axis' (parallel 

to the z axis) and the proper reference for the shaft rotation 0 

requires the rotation matrix. 

o o 
() -/ 0 

o 0 
. 

Therefore, the boresight axis in antenna coordinates must 

be equal the spacecraft coordinates, or 

. 
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Expanding the matrix rotation equation through matrix 

mu~tip~ications, the beam axis position in the spacecraft coordinate 

system is obtained as fol~ows: 

X= CaCoC$C~ - CaSoSeS$C~ + CaSECoC$S~ - CaSES6SeS$S~ 

- CaCECeS$S~ - SaCBCeSoC$ - SaCaCECOSeS$ 

SacBSeCeC$ - SaSBCoC$S~ + SaSBSoSeS$S~ 

+ SaSBseco C¢C¥ - SaSBSESOSeS$C~ 

- SaSBCECeS$C~ 

¥= SaCEC$C~ - SaSoSeS$C~ + SaSECo C$S~ - SaSESQSeS$S~ 

- SaCE ceS$S~ + CaCBCESo C$ + CaCBCECOSeS$ 

CacBSeCeC$ + CaSBCoC$S~ - CaSaSoSeS$S~ 

- CaSBSeCo C$C'l' + CaSBSESoSeS</lc!f- + CaSBCECeS$C~ 

Z= SaCESOC$ + SBCECO ses¢ + SBSECeC$ - CBCoC$S~ 

+ CBSoSeS¢s~ + caSeCoC$C~ - CaSESOSeS$C~ 

CBCECeS$C~ 

where x, y, z.are the vectorial components of the beam axis in 

the spacecraft coordinate system. }( is a unitary vector, that 

. 2'22
1 ~s x +y +z == , 

and x = Cos v ' , 

y = Sin )l Sin v 

z = Cos )l Sin v .. 

rn=~= 
or t-Cv 

S)l SV 
Cll Sv 
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These equations can then be solved in either direction, 
that is, find e and ¢ in terms of ~ and v or find ~ andv 
in terms of e and $: 

e '= 

¢ '= 

or v '= 

~ = 

-l( . 
tan Tan -S~n 

~ -l 
Sin 

Cos ( Cos J.t -1 
Cos e Sin 

Cos ( 
-l 

e tan Tan (-Sin 
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5.5.3. DEPLOY/STOW MECHANIZATION. 

Studies to optimize the gimbal design are subject to a 

number of constraints; primarily: 

(1) The antenna system, including associate electronic 

assembly, must stow within the volume between the' 

payload and the payload door and betvleen frames 

X=579 to X=669, with a minimum clearance of,3" 

from the surface of the largest payload (90") 

radius and 2" to all other structures. It must be 

recognized that there is presently a revaluation of 

clearance requirements that may require a minimum 

clearance of 3" all around. 

(2) The antenna must deploy to a position forward from 

'the leading edge of the door and outboard of the 

fuselage. The mechanical clearance of 3" is to be 

maintained. 

The gimbal mechanics are .analytically_reviewed in the' 

previClus section'of this 'report~ The mathematical 

between angular motions of the gimbal assembly relative 

relationship 

to the 

spacecraft coordinance system were developed for the general case. 

The general equations areq~ite involved;. The vector position 

of the antenna relative to the specefraft involve trigonometrical 

functions of .three pairs of angles related to the antenna structure. 

If the antenna is oriented such that its a?imuth and elevation axes 

are aligned with the axes of the spacecraft, the trigonometrical 

.terms involving two angle pairs related to the antenna structure 

are eliminated. Furthermore, if the codrdinate system of the 

antenna and the spacecraft are made similar, the angular relationships 
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become direct. There are three arrangements where the shaft axis 

of the deployed antenna is parallel to the X, Y or Z axis of the 

spacecraft that provides a direct angular relationship. 

The shaft axis parallel to ·the Y axis of.the spacecraft is 

referenced in the baseline study. The deployed a.ntenna is shadowed 

by the spacecraft fuselage, wing structure or payload door structure. 

The use of two antennas on the port and starboard system eliminate 

thE" fuselage shadow. The need for dual antennas is inherent to the 

installation configuration. 

A gimbal system, as described in the baseline study, can be 

modified to accomodate a parabolic reflector 1 meter in diameter. 

Reference Figure 5,5-::7. The radiating system consists of 1 meter 

diameter paraboloid having a 33cm. focal'length ( ~ - .33) illuminated 

by a 4 port "Cutler Type" backfeed. 

As previously described, the hybrid waveguide circuitry 

required to process the 4 receiving signals to i:, 11 El and I1Az 

monopulse signals are integral to the feed structure. In addition, 

the polarizer is a wire grid assembly mounted in front of the slot 

radiating apertures. These two design factors reduce complexity, 

associate component loss and the size and weight associated with 

using catalog equivalents. Other factors pertinent in this design 

are: 

(1) The antenna attaches to the Gxisting mounting 

interface, X=589, Y=lOO, Z=425. Deploy axis is 

parallel to the liZ" axis. 

(2) The gimbal assembly is to be mounted as far aft 

as possible, but clear the remote manipulator by 

2". The purpose of going aft is to obtain the 
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maximum spacing possible between the payload and 

the closed payload doors. 

(3) The antenna is to be mounted at a height "z" 

that provides a maximum spacing between the 

payload and the payload doors. 

(4) There is adequate room for all electrical components 

associated with the antenna"s radiating structures; 

. such as pre-amps, mixers, rate integrating syros, 

etc. They mount across ~he reflector's rear surface, 

parallel to the "Y" axis and away from the reflector's 

center line. 

(5) The mounting structure for the antenna must have the 

maximum offset angle possible in the XY plane. It 

·is.this angle, in combination 'Nith the translation 

offset available, that determines the separation 

between the antenna structure and the spacecraft 

. fuselage when the antenna is in its deployed 

position. 

A gimbal study, refer Figure 5.5-7, indicates the following 

arrangement is optimum for the stow and deployment of a I meter 

diameter parabolic antenna. 

POSITION 

Stow 

Deploy 

COORDINATES - CENTER OF PARABOLA FACE 

x 
649 

537 

5.67 

Y 
94 

129 

Z. 
448 

448 
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An alternate installation geometry for the 

described in Figure 5.5..,.8.'.' In"this. desigrt.the· 

antennl> is' 

axis of rotation for the deploy/stow mechanism is rotat.ed to an 

optimum position such that the azimuth axis 'can be deployed to 

position where it is parallel to either the nZIl or "Y" axis. 

Design factors I through 4 previously mentioned apply •. Factor 

is applicable but modified by the requirement for 2 deployed 

positions. A gimbal study indicated the following arrangement 

optimum. 

A projection of the deploy/stow rotation axis into the "Y" 
plane lies 23.5 degrees off parallel from the "y" axis in a 

clockwise direction when viewed from above the spacecraft. 

Furthermore, it'is 58.5 degrees off parallel from the "Z" axis. 

POSITION x Y z 

Stow 649 91 454 

Deploy parallel to nzll axis 600.5 130 480 

Deploy parallel to nyu axis 531. 8 133 445 

a 

5 

is 

A'difficulty,'is encountered with either of the aforementioned 

gimbal arrangements. In the stowed position, where the elevation 

axis tends to lie parallel to the "z" axis, the elevation drive 

system, rotary joints, slip ring assemblies and gimbal structure 
-

lies in ,,," critical clearance area. 'rhere are 5 solutions to the 

problem. 

(1) The reflector can be made smaller in the azimuth 

plane; approximately 92cms. 

. (2) The elevation drive can be made remote from this 

critical area and the elevation motion coupled from 
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(3) 

, 

(4) 

(5) 

the elevation gearbox output shaft to the elevation 

axis through a steel tape drive. Angular alignment 

can be maintained by means of a non-slip perforated 

or lined steel tape. 
'. 

The elevation drive can be offset in the forward 

direction. This ,aggravates the unbalance problem. 

This factor is of secondary importance; but does 

aggrevate the "on earth" testing. 

Eliminate the fixed feed and use a folding type 

feed. 1). simple technique for accomplishing this 

is described in Section 5.3.6.This approach has 

several advantages in that ,the depth of the stowed 

gimbal and antenna assembly is 

of a focal length requirement. 

,d~sign can provide: 

no longer a function 

The folded feed 

''ta) A larger reflector assembly approximately 

1u:2Iil:',ili ; diameter. 

(~);: lmproved radiatiun characteristics. A longer 

focal le~gth provides improved monopulse 

pattern characteristics. 

(c) Additional clearance for the gimbal system. 

Example: to provide a 3" clearance from the 

doors rather than the present 2". 

(d) Any combination of the above. 

Change the gimbal arrangement such that the elevation 

axis is rotated off parallel from the "z" axis. This 

allows room for the elevation drive assembly.' 
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The first,:second·and.:j:)llrd'approaches ~are'uhaesirdbIe and. 

I 

A third arrangement< ,for the antenna' utilizing"design approach' 

five is. shown' in :Figure,·5:5 __ 9.'. Design factors I through. 5 

previously mentioned were observed. In the first and second design 

approaches deil/cr:i!bed, a parallel arrangement between antenna axes 

and the spacecraft's axes during deployment of the antenna were 

, maintained. IIi this design approach the stOl'l configuration is made 

as 'Oimple as possible and the antenna rotated to a best deploy 

position relative to minimizing shadow effects during both communication 

and radar operation. Minimt,l considerations er,e given to the relative 

alignment of axes between the antenna and the spacecraft. This 

design approach accepts the need for a. mini-computer to convert 

measured gimbal angles and rates into spacecraft coordinates. 

Conversion requirements are discuss.ed in Section 5.5.4. 

Referring to Figure 5.5-9, it is J;loted that in the stOl'l 

position the shaft angle extends upward 45° off the "X" axis and 

11° inboard from the "Y" axis. The gimbal system is rotated 

providing adequate room for the elevation drive and indicator 

assembly. Adequate area .for the rate gyros and micrOl'lave components 

is provided on the back of the reflector in the designated areas. 

The elevation rotary joint and slip ring assembly mounts opposite 

from the elevation drive system .. The reflector assembly mounts 

in a half gimbal, which in turn connects through the azimut;h drive 

assembly to the base mount. The aximuth drive contains the 

motor-tack, synchro, gearbos, rotary j oint and slip ring assel7'.blies. 

The base mount is a box structure suitable for containing 

electronic hardware' such as transmitter, etc. The deploy/stow 

axis is parallelto.the "z" axis of the spacecraft. Pertinent 
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positional data is tabulated belol,,: 

POSITION 

Stow 

Deploy 

x 

646 

540 

y Z 

86 447 

136.5 447 

Two gimbal antenna sys~ems, capable of 4TI steradian' 

scanning,encounter scan poles. As the antenna tracks to its pole 

position the dynfu~ics required by the outer gimbal become unaccept­

ably high, This pole exists wheneveL the target being tracked 

becomes coaxial with the outer gimbal's scanning axis. Where less 

than hemispherical coverage is required this condition can be 

avo.ided by aligning the shaft axis along the scan horizon. In 

this case, the scanning pole can be avoided. For the radar application 

this requires that the shaft axis be displaced off parallel froID 

the "Z" axis by an angle 'greater than 45°. 

In the communication mode of operation greater than 

hemispherical coverage is required. A scanning pole exists; 

for example, with the antenna scan mechanism of Figure 5.5-7. 

when the TDRS lies dead ahead of the space shuttle. This places 

the target's line-of-sight coaxial with the shaft (or azimuth axis) 

of the antenna. This condition can be avoided one of two ways. 

The space shuttle can be maneuvered prior ~6 reaching the scan 

pole. 'Or alternately, when the antenna is within, say 3° of its 

pole, the deploy/stow axis and therefore the shaft angle of the 

an'tenna can be rotated back from the primary deploy position by 7°. 

If later this 2nd pcnlit:ion is approached to an offset of less than 

3° the antenna will return to the primary stow positio~. This is 

a scheduled function introduced occasionally as may be required. 

The logic involved is simple. In practice this problem is only 

encountered during communication tracking and angul,3.J:' position and 

rate are not required. The correction need not be implemented. 
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When the antenna shaft is rotated out of the XY plane, as 

encountered with the deploy/stow mechanization of Figure 5.5-9 

ahd conical scan is accomplished by a phase quadrature sinusoidal 

wigwag motion of the shaft and trunnion motions, the dynamics 

of the shaft axis are increased. The vectored position of the 

target to be acquired during acquisition search tends to lie along 

the Z axis of the spacecraft. It is the projection of this shaft 

angle along a line nO~"IIlal to the Z axis that determines the scan's 

angular amplitude along that line. If the shaft axis is canted, 

a greater angular motion of the shaft axis is required to produce 

.a given change in,its projected angle. Requirements for greater 

amplitude demand a corr.espondingly greater velocity and acceleration 

capability with an associate increase in servo power. In conclusion, 

from a standpoint of power conservation, it is desirable to have 

the deployed shaft axis lie in the XY plane. 

A fourth arrangement for the deploy/stow mechanization is 

shown in Figure 5.5-10. In this case a folded feed is employed. 

In the deployed position the shaft axis lies in the XY plane 

but is not parallel to the Y axis. The angular orientation is 

convenient from a standpoint of optimiz:ing the stow clearances 

and provides optimum scan coverage in the deploy position. In 

this example the clearance between the payload door and the antenna 

has been increased to 3". In fact, there is more than adequate 

clearance around the total antenna assembly in the stowed position. 

Furthermore, with the folded feed, a long focal length parabola 

can be used. In the example shown the focal length is some 28" 

and provides an optimum m0119pulse pattern. The feed does not clear 

the trunnion gimbal if the antenna is allowed to rotate a full 

360°. It should be noted in the case where the feed approaches the 

gimbal interference the antenna is looking back into its own shadow, 

the shadow of the payload doors and the spacecraft Iving section. A 

reduction in focal length to an F/D=.5 eliminates the interference 
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and has minimal change in pattern characteristics. 

Because of the angular displacement of the shaft axis off the 

Y axis a mini-computer is required to compute' angular position and 

rate relative to spacecraft coordinates. 
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5.6 MICROPROCESSOR PROGRAM TO COMPUTE ANTENNA BORESIGHT 

POSITION IN SPACECRAFT COORDINATES. 

I 

The antenna configuration shown in Figure 5.2-9- is not 

aligned, in its deployed position, with the coordinates of the 

spacecraft. As a result the transfer of boresight':positionin,-terms 

of gimbal angles and fixed angular orientation of the shaft axis 

relative to the spacecraft requires the use of a microprocessor 

and fixed software program to correct gimbal angles to spacecraft­

coordinates. 

Givenq" e - antenna gimbal angles 

~, S,a ~ constants of the antenna support. 

Method: 

Each coordinate system is rotated to align with the coordinates 

of the successive coordinate system. Start with the vectors of the 

spacecraft coordinates ( X,y,Z). 

z" z' 

(1) Rotate antenna base structure 

about Z by an angle a to 

')ring- the X axis under the 

support arm. a = 30° 

(2 ) The antenna support arm (shaft 

axis) is canted by an angle S 

from the base structure 

(spacecraft z). This cant is 

in the plane ylZ. Rotate 

around xl by the angle S; S"'llo 

. ~; 

I 
, 

, 

I 
! 

I 

• 

( -

-, 

I 
I 
i 
! 
! 
1 

I 

I 
j 

-1 ·1 
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j 
- 1 



') L 
(3) The shaft axis is also at 

an angle 'I' to the base 

structure. 'I' is contained 
within the x." 'Zll plane. 
Rotate X" around the yll 

axis by the angle'!'. '1'=45°. 

Two more rotations are required. First the ne\</ coordinate 
system Xiii" y'/l , Zlll must be rotated about Xl" with the antenna 

shaft axis (0). And finally, a rotation about yllll to align Xa 

with the antenna boresight. This can be be!3t-expriessed in 

analytical terms with rotation matrices. 

z, . 
Rotate around an arbitrary X axis to map Y an'd Z into y' and 

The sketch below provides the following relations. 

~ ,'co,. f 2',0'. Y 

5.78 

X = X, 

Y = Y' cos0 - Z'sin 0 

Z = Y' sin0 + Z'cos 0 
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Matrix algebra provides a convenient way of i~riting these three 

equations. 

[x y Z 1 = [~ ~0 -:01 [~:] 
o s0 co~1 Zl 

I where: c = cos ine 

s = sine 
t = tangent 

A multiplication of matricies provides: 

~
" x, + 0 

,0 • x, + c0 

o • X I '+ sEl 

. yl + O. ZI] 
• Y I _ s0 • Z I 

'y'+c0'z' 

The rotational matricies take a farm 

for rotation around X 

~ 
0 

(as above) c0 -
sEl 

for rotation around Y ~C, 0 

-s~ 
1 

0 

for rotation around Z ["a -,' 
s0 cEl 

o 0 

,~ 
c0 

'~ c~ 

~ 
Referring to the original presentation relative to the rotation 

of spacecraft coordinates and successive ro'tating the vectors as 

discussed provides the follo\~ing matrix equations. 
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~ J "t; -:; ~J ~ 
o 

:ci3 
si3 

/ ~ (1) rotate around Z (2) 

-s~l 
c~ 

c;= 30° 

b:: ~:~ h: -:~ 
I ~ 

(3) rotate around Y (4) 

continued below 

rotate around X 

i3 = 11° 

continued below 

rotate around X 

shaft 'angle·· 8. 

rccj; 

l-s~ 
/ 

o scj;] 

~ c~ x [~:] 
t 

varible 

(5) rotate around Y (6) unit vector along antenna 
varible Trunion angle cj; boresight can only be 

1,0,0. 

A somewhat tedious multiplication of the above matricies yields 

I~J= t. :~: : 
~ G~n i3 sin 8 sin cj; 

- c sin :i3J-
+ c cos ~ 

+ B cos 

where: A = -s~ c8 scj; + c~ ccj; 

B = -s~ ccj; 

c = cf3 s8 scj; 

, 

c~ c8 scj; 

B si3 
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To simplify/substitute fixed values, i. e. t 

CJ. = 30° 

f3 = 11" 
'I' = 45° 

then 
A = .7071 (coscj>-D) 

B = -.7071 (cos'l'+D) 

c -- .98l6E-.1908B 
D = cos0 sincj> 

E = sin0 sincj> 

and 

x = • 866A- .5"C 

Y = • 5 A + .8GG C 

z = .1908 E + .9816 B 

The solution is quite easily implemented with a microprocessor 

of moderate speed. Special~zed digital hard\.,are can be implemented 

to convert cj> and 0 to spacecraft coordinates x,y,z or )l,V where: 

~ = cos V 

y = sin )l sinv 

z = cos )l sinv 

sines and cosines aan be done by a "table look-up". Multiplication 

can be accomplished in a few microseconds. 

To illustrate,a program has been written for D2C desk-top 

calculator, a Compucorp #326. The program solves for x,y,z. The 

coding is included h~re, Figure 2.3.4., only to indicate the relative 

number of stops required for this computation. A microprocessor 

program can be executed in a fe", milliseconds. 
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TABLE 5.6-1 PROGRAM TO COMPUTE ANTENNA BORESIGHT POSITION INTO 

SPACEC~~T COORDINATES. 

COMPUCORP #326 

1 
f9 input 
ss .p 
cos 
Sto 1 
f cos -1 
sin 
Sto !a 
Z 
f 9 input 
ss (0) 
cos 
Sto 3 
f cos-1 
sin 
Sto 4 
RCL 3 
x 
RCL l!. 
= 
Sto 8 (D) 
RCL ~ 
x 
RCL 4 
= 
Sto 9 (E) 
.7071 
Ch 5 
x 
[ 
RCL 1 
+ 
RCL 8 
] 

= 
Sto 6 (B) 
.7071 
x 
[ 
RCL 8 
Ch5 
+ 
RCL 1 
1 
= 
Sto 5 (A) 

5.82 

KEYSTROKES 

.9816 
x 
RCL 9 

[ 
.1908 
x 
RCL 6 
] 
= 
Sto 7 
.866 
x 
RCL 5 

[ 
.5 
x 
RCL 7 
1 
= 'output 
ss 
.5 
x 
RCL 5 
+ 
[ 
.866 
x 
RCL 7 
1 output 
= 
ss 
.1908 
x 
Rei. 9 
+ 
[ 
.9816 
x 
RCL' 6 
1 
= output 
ss 
Jmp 
ss 

(C) 

(X) 

(Y) 

(Z) 

"r," 
\.... 

! ! 

I 

I 
1 

~ 
c J 

.~' -1 
• l 

I 
l 
1 
; 



.......... 

I 
f 
I 
i 

'" t 
! 

Ii 
f , 

I 
5.7 DRIVE POWER REQUIREMENTS.'" 

Drive power r8quirements for the antenna's gimbal system 

,relate to loads in terms of inertia, friction unbalance and 

dynamic requirements in terms of angular motion, velocity and 

acceleration for the load. Weight and inertia estimates for the 

gimbal system are tabulated in Table 5.7-1. In summary: 

Total antenna.weight •••.••.••••••••••••••. 13.5 Kg (30lbs.l 

Elevation inertia NRg 1.57 in lbs.sec: ............ 
, J El 

g 

Azimuth inertia J#l 
Az ....................... 6.46 in Ibs. sec 

Boom inertia J#l 
B . .. .. .. . . .. .. .. .. .. .. 150 in lbs.sec 

#1. Exclusive of drive motor inertia. 

Peak dynamic requirements for the antenna gimbal mechanics are 

required during the acquisition scan. The following conditions 

apply: 

Search volume (1jI l .••.... , ••...••.• , 

Frame time (tf' ••••.•••.•.•..••..• ,,· 

40° conical scan 

60 seconds 

Beamwidth, ene way 

Beamwidth, two way 

.............................. IJ 1.40 

1 0 

Beam overlap .•......•.....•.•....• 1.3 

Number of scan ,rotations .••..••... 52 

consistent with both search and track modes of operation, 

good scan mechanism is accomplished with a recto-linear drive 

system. Spiral scan is accomplished by sinusoidal Wig-wag cif 
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WEIGHT AND INERTIA ESTIMATE. 

ITEM 

Reflector, 1 m. 

Central structure· 

Feed 

Feed drive 

Polarizer 

Polarizer drive 

Waveguide on 
reflector 

Mixers and IF preamps 

Circulator 

6 channel·· switch 

Frequency multiplier 

Rotary joint and 
slip rings 

Rate gyros 

Misc. wiring, 
connectors, etc. 

Elevation assembly 

Azimuth gimbal 

Azimuth waveguide 

Elevation drive 

Rotary joint and 
slip rings 

Misc. wiring, 
connectors, etc. 

Azimuth assembly 

Gimbal assembly 

Base 

Azimuth drive 

Electronic box 

Electronics 

Misc. 

Total weight 

WEIGHT IN (W) 
POUNDS Kg. 

3 1.36 

1 .45 

.4 .182 

.25 .114 

.25 .114 

.25 .114 

.2 .091 

.66 

.3 

, .54 

.33 

.5 

2 

2.27 

12 

1.65 

.28 

2.2 

.65 

.22 

5 

17 

2 

5 

2.3 

2.2 

2.5 

32 

.3· . 

.136 

.27 

,15 

.227 

.91 

1.03 

5.45 

.75 

.13 

1 

.29 

.1 

2.27 

7.73 

.91 

2.27 

1.04 

1.14 

14.54 

RADIUS OF 
GYRATION 

(Rg) " 
El. / Az. 
13 

2 

7 

4 

14 

4 

2 

2 

2 

2 

2 

.5 

2 

1 

13 

12 

7 

4 

14 

4 

8 

6 

6 

4 

8 

21 

4 

8 

14 

8 

22 

1 

13 

W R 2 
g in2-lbs. 

E1. Az. 
507 507 

4 144 

20 20 

4 4 

49 49 

4 4 

.8 12.8 

.8 7.2 

1.2 10 

L~ 16 

1.3 21 

.1 220 

8 32 

2.27 145 

606.5 1052 

323 

18 

1065 

.65 

37 

2496 

Note moment of inertia around the deploy/stow 

axis = 150 Ib-in sec
2 
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perpendicular gimbal axes in phase quadrature at linearly 

increasing amplitudes starting at the center (0=0) to the maximum 

value (0=40°). For maximum scan efficiency it is desired to scan 

the antenna at constant tangential velocity; however, this requires 

an infinite velocity at 0=0. As previously d±scussed, the practical 

solution is to scan the antenna at a maximum rate possible 

consistent with the gimbal structure and/or drive power limitations 

and then at a value 0=011 continue scanning at a constant tangential 

velocity through a scheduled decrease in rotational rate. .With a 

constant tangential velocity the dwell time on target is held 

constant. and maximum scanning efficiency is accomplished. In 

the central area, where the tangential rate is slO\~er than desired, 

excessive dwell time is used. Fortunately this is in an area 

where the probability of detection is greatest. Pertinent 

relationships were summarized in-Section 5.4 and sUmmarized in Figures 

5,4-2&5.4-3.The starting position for constant tangential velocity 

is: 

The drive motor torque rating relates to 0,q,i as follows: 

0 . ,q, 1 W e =--max 1.3 
w = 21Tf 

0 
~l w2 

0max ---
1.3 

1.3 = Beam overlap. 

The dynamic requirements must be matched through a gear 

transfer to the dynamic characteristics of an appropriate motor. 

consider a 4 pole, 400 Hz. 2 phase servo motor having a 

synchronous speed of 12,000 rpm and a nominal working speed of 

j 

! 
. , 

I 

I 

I 

.~ " 

:1 

1 
1 
l , 
1 
1 

1 
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I 
I , 
j 
! 
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5,000 rpm. The gear ratio (G) matche;s these working 

T == 0J 
G 

G = m 
"" f;i G = gear ratio 
o •• 

0 

T e0J m= working motor speed = 3xl0 4deg/sec 
m e s s 

e = transfer efficiency, i.e., 

friction loss = .85 

2 "2 for J= 6.46 iri-lb sec. or 103.36 in-oz sec 

~
. 

T= )1.1 
1.3 

#n. 
T== .01039 o 2 f3 

)1.1 
Oz-in. 

#1. Exclusive of drive motor inertia. 

For a chosen drive motor speed;torque is directly related 

to servo power requirements. Recall that the scanning efficiency 

and therefore the detection range of the radar is improved as a 

function of the antenna's frequency response. It is necessary to 

quantitize these effects. The scan~ing efficiency(fg)is defined as: 

= minimum dwell time during scan = 
average time on target 

where 

= 

60x1.3 
11522 = .00918 sec. 

60 = frame time 

52 = number of revolutions 
I 

1.3 
211 f8)1. 1 

5.86 

, , 

1 
l 
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The detection range of the rada~ system is a function of the 

scanning efficiency. This can mo~t easily be analyzed in terms of 

a pulse radar 

other types. 

system; :lOwever, 

In the range (R) 

s'.lch analysis is applicable to all 

equation 

R
4 1 

a SIN 

For a given set of conditions, a plot of signal-to-noise ratio 

(SIN) vs the number of pulses (n) intagrated for various target 

types (Swerling, etc.) has a slope such that 

SIN a n- .7 

and 

thus 

R N n' 7/4 . .175 
~ = n Pwr. 

Pertinent data relative to choosing frequency responses of 

space shuttle antenna is shown in Table 5.7-2. 

Graphical comparison of pertinent data to choose antenna 

frequency response is plotted in Figure 5.7-1. The maximum drive 

motor torque required is reasonablY flat bet,qeen f= 1.1 to 1.3 Hz. 

Choosing the upper value results in: 

Antenna maximum rotational rate .••.• 1.3 rps 

Maximum drive torque ..•••..•••••••.. 

Scanning efficiency ......... : ..... . 

Realized detection range •..•••.••.•• 

5.87 
,0'.., .. -. 

(azimuth<=::l9 oz-inl 

87.5% 

98.5% of maximum 
available. 

t .--::! 
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TABLE 5.7-2. DATA PERTINENT TO CHOOSING FREQUENCY RESPONSE. 

f .867 1 1.2 1.4 1.5 1.6 1.8 2 00 H 
z 

e 
£1 

52 30.07 22.2 18.03 16.54 15.3 13.34 11.85 0 revolutions 

t d min .0046 .00688 .00777 .0082 .00834 .00845 .00EG2 .00873 .00918 sec 

E s 50·.1 74.9 84.6 89.3 90.8 92.0 93.9 95.1 100 % 

T
AZ 

18.3 9.39 8.85 9.27 9.59 ~. 96 10.7B 11.67 I 
R 88.5 95 97.3 98.3 98.5 99 99.2 99.5 100% % 
Rmax 

• 

c_~_~ .:.=~ ~"'-~.~~--~- ., . · · : .' .:.. .. ~~ .. __ .. "'9I;+!_:W!_t·l_'~ __ ""I_ .. ~'.* ,J .. ±! M i!t!*ti"Arf .' 
<~', .... 



...... -" 

( 

( 
.; 
u • z • ,; 
~ ; " " • ! 
0 D 

• w 

" Z z • • 0 L , 
• 

() 
:; 
• 
Z 

• • < 
0 

Z 

" ~ 
" " • 
0 

I 

o 
• 
" .; 
Z 

< • 
" • • J 
" 1 

(J; 

5" 89 



u 

, ) 
\_-...-

At f = 1.3 Hz., ElJ!.1 = 19.86 revolutions and 

El = 15.27 degrees 
• 
El = Elw = 
" 2 El = Elw = 

124.8°/sec 

1019.4°/sec2 

These maximum values only occur at 19.86 scan revolutions, 

or a 15.27 degree 

increase from the 

scan angle, from the scan axis. Dynamic requirelnents 

start. of the scan to these maximum values and 

then decrease for scan angles gl:"eater than 22.2°. Pertinent data 

is summarized in the table 5.7-3 and graphically presented in Figure 

5.7~2. As a result: 

Drive motor 

Elevation 

Azimuth 

Peak torque 

2.19 oz-in 

9 oz-in 

Average torque 

1. 36 oz-in 

5.59 oz-in 

Servo component characteristics are summarized in Table 5.7-4. 

Size lB servo motors are used in both azimuth and elevation; however, 

the former is longer than the latter. Identical gear boxes and 

synchros are used on each axis. 

Value for torque during the radar acquis'ition scan are valid 

for the antenna configuration of 5.5-7I1here the axis of the 

vectored radar acquisition scan lies along the "z" axis and therefore 

perpendicular to the azimuth (shaft.l axis of the gimbal aV.tenna. 

This condition does not exist, for example, with the antenna 

configuration of 5.5-9 In this case the inner or elevation gimbal 

can be oriented to an optimum alignment and the maximum torque 

involved is the value previously calculated. The antenna's azimuth 

axis, in its deployed position, is displaced from the "z" axis by 

approximately 30°, 'The increased atlgular displacement around' to shaft 
" .... 

axis to-provide for the project angle acanincreases the azimuth 

motor torque to lB oz-in. Tl).is is acceptable·to·the·'antenna 

operation buE.does represent an increase in peak .servo·power 

required. 
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TABLE 5;7~3 •. SCAN DYNAMICS. 

Relationship 

e = 0w 

0 = 0012 

G 
3000 

= 
emax .. 

* 0J 16 
T =-- x 

85 57.3 

For 0~00 to 15.27 

01 =(j.168 rad/sec 

f =1. 3 Hz. 

e =0 to 124.7°/sec 

o =0 to 1019°/sec
2 

G =240 

T
e
=0-2.19 oz-in 

T =0-9 oz-in a 

* Exclusive of drive motor inertia. 

,:.Jr:~:E~r?~-~·--'· --
5.91 

For 0=15.27 to 40° 

01 =8.168 to 3.19 rad/sec 

f =1.3 to .508 Hz. 

e =124.7°/sec. constant 

o =1019 to 398/sec
2 

G = 240 

,T
e
=2.19 to .856 oz-in 

T =9 to 3.52 oz-in 
a 
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TABLE. 5~7~4;. AZIMUTH AND ELEVATION DRIVE COMPONENTS. 

Peak torque 

Avg. torque during 
acquisition. (60 sec) 

Motor tach size 

Weight 

Motor peak power 

Motor avg. power 
(acquisition 60 sec.) 

Tach power 

Synchro size 

weight 

power 

Gearbox ratio 

gears 
P-pinion,B-bull 

ratio 

no. teeth 

pitch 

diameter 

Sub assembly weight 

Elevation drive motor 

2.19 oz-in 

1. 36 oz-in 

. 1. 75"dia.x3 .. 38 

1 lb. 

30 watts 

19 watts 

1.5 watts 

.8" dia.xl.68" 

2 oz. 

1.5 watts 

Azimuth drive motor 

9 oz-in 

5.59 oz-in 

1. 75" dia.x 4.5 

2 Ibs • 

80 watts 

50 watts 

1. 5 watts 

• 8" dia. xl. 68 " 

2 oz. 

1. 5 watts 

315:1 

P B I IP B, IP B 

39 8 10 

22 89 18 144 18 180 

96 96 96 96 72 72 

.229" .927" .1875" 1.5" .25" 2.5" 

2.2 Ibs. 5 Ibs. 
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5.7.1 SPIRAL SCAN USING A SPIN AXIS. 

An Alternate scan technique can be considered wherein the 

spiral scan is accomplished with a rotary drive around the shaft 

axis in combination with an increasing tilt (trunnion angle).off 

the spin axis. Drive dynamics, in terms of accelleration and 

torque requirements during acquisition scan are drastically 

reduced. utilizingthe same dynamics as discussed in the previous 

paragraphsi primarily: 

Frame time .......................................... " 6 0 seconds 

Maximum rotational speed .....•.. e = 125°/sec 

Beamwid th.. .. .. • .. • .. .. . . . .. .. .. . .. • • .. .. • .. .. 1 0 
,{ t";;'lo-'oJ'ay) 

Beam over1:ap.................................. 1.3 

Number of revolutions .. (N) • • • • ••• 50 
/,j 

The first step is to determine appropriate values for 

accelleration and frequency response. During the trackinq phase 

of operation the maximum velocit~es and accellerations involved 

are: 

e = SO/sec 

e = .04°/sec2 

During the acquisition scan the velocity requirements can be 

established. The elevation axis must move a total of 40° during 

the frame time of 60 seconds, i.e., an average velocity of .67°/sec. -
The maximum azimuth spin rate is 125°/sec. A choice of accelleration 

requirements is somewhat arbitrary. The most stringent requirement 

exists during the transition to track lock-on. The objective is 

to reduce this transition ·time to a minimum within the practicalities 

of the servo system. The related factor is the frequency response 

of the servo system •. This is most critical in the azimuth axis 

I 
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where the higher rates and inertia are involved. 

A plot of the time to the first overshoot and the shaft axis 
torque as a function of frequency res pons e is shm'ln in Figure 5.7-3. 
All things considered it would appear that a 1 second period to ( 

the first overshoot is a reasonable compromise, i.e.,: 

w = 1 

f = .16 Hz 

A comparison of the torque requirements for the spin drive 
(R,S) and the rectilinear drives (x,y) are listed in Table 5.7-4. 

Torque requirements,~a.nd the associate drive power requirements 
are substantially reduced. This method of drive involves a 
companion decision; primarily, the deploy/stow mechanism must be 
of the type shown in Figure ~.5-8. with this mechanization the 
shaft axis of the deployed antenna can be made parallel to the 
z axis of the spacecraft. 
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, I tJj TABLE 5.7-' COMPARISON OF WRQOE REQUIREMENTS FOR R,O and X,Y ORn"ES. 

\/ 

RIB 

f 

e~l .. 
Bel 

Tel (inertia only) 

• 
B az 

e ' az 

• 
Taz(inertia only) 

spiral coordinates 

.16 Hz 

.67° /sec 

.6.7 ° /sec 2 

• 018 in-lb • 

12s o/sec 

12s o/sec' 

14.1 in-lbs 

X/Y rectilinear coordinates 

1.3 Hz 

12s o/sec 

1019.4°/sec2 

27.93 in-lbs. 

12s o/sec 

2 1019.4°/sec 

115 in-lbs 
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5.7.2. DYNAMICS AT THE SCAN POLES. 

It has been stated that the rotational rates demanded of 

tae shaft axis increase as the target being tracked approaches a 

scan pole. The geometry involved is shown below: 
q, 

- --+--;--1 L 5 AFT. - -~ __ - - _. t-f ~ /I AXIS@E>.... 
- ... =-TtS"OR-iS}G[.IT AXlS - --- -~rK/l~~6.;;T 

The target,at some velocity (t), is passing over the antenna 

near the projection of its shaft axis. At zenith it is off the 

projection of the shaft axis by an angle a. As it continues it 

travels from the left-hand side of the zenith position to the 

right-hand side 'the shaft axis (0) must rotate 180°. For small 

angles: 

1 e max --a 
• o ' 

mal!" 
= maximum shaft angle rate 

It is apparent that for a=O e- =~ More realistically , max 
however, there is a finit'e value involved relative to the 

practicalities involved. The maximum target velocities invo]ved 

are: 

. 
During acquisition t = ± 4 mv sec ( .23~/sec) . 
During track t = 5°/sec 

. 
A plot of 0max vs a for these two maximum values are shown 

~n Figure 5.7-4. The shaft axis of the antenna can rotate at l25°/sec, 

adequate for full tracking capability up to 4 mv (.23°) and 

40 mv (2.3°) for maximum target rates encountered in acquisition 

5.98 

i 
L 
I 

I 
I 

I 
f 

?: ' 

~ 
:i 

'" J' .. 1 '~,",'" 
" 

','o . .'-JiI 



I 

I~ 

I­
I, 

It 

r 

(J 

I----I- I=-l( / 
,/ -- I~ -- I ~~ -- ,----~ , 

____ .L - ,~ 

== 

I 
R 

_ .. J 

Of 

Of 

Of 

-

-

, 

-
.'11 

" 



:1 
II 
II 

II 
1\ ,I 
';p 
JI 
;1) 
Ii 
" n 

u 
and track reapectively. The .23 0 offset is acceptable in the 

lock-on budget, Le., \'lell under a half beamwidth. The track 

situation can be avoided by instrumenting the stow/deploy 
• 

mechanization as discussed elsewhere in this report. 
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5.8 GIMBAL DESIGN. 

A sketch showing the gimbal 

antenna is shown in Figure 5.8-1. 

on the shaft axis off the antenna 

assemblies consist of: shaft axis 

trunnion drive, the reflector and 

on the rear of the reflector. 

• 

arrangement for the space shuttle 

The gimbal and its antenna mount 

base assembly. The major sub­

drive, the trunnion gimbal, the 

feed and'the components mounted 

The shaft (azimuth) and trunnion (elevation) drives are of 

similar design. They consist of a size 18 motor with integral 

size 8 tach coupled to the respective axes through a240:1 J four 

stag~ spur gear reduction. Refer Table 5.7-4. In each case the 

output gear is 2.5" in diamel'er, 'l:he RF rotary j oint and slip ring 

assembly pass through this ge"7. In addition the position sensor, 

a snychro, mounts coaxiaL to the rot .1.ry axis. 

Transmitter power from the electronic assembly mounted within 

the base mount is routed through waveguide to the shaft axis rotary 

joint, along one side of tha trunnion gimbal, through the trunnion 

elevation joint to the circulator and/or diplexor, hybrid waveguide 

circuitry and finally radiated from the primary feed. The reflector, 

a composit carbon-epoxy construction, mounts within the trunnion 

gimbal. It is supported by a support bracket that spana the trunnion 

gimbal. This same support bracket supports the various components 

that are mounted on the back of the reflector. 

Components consist of such items as the circulator- -, diplexers, 

mixers, hybrids , frequency multiplier, trunnion o.;..is gyro, feed 

deploy and polarizor drive mecnanisms. 'Pwse components vary in 

. detail; however, for the purposes of this study we have assumed that 

individual assemblies will be used with waveguide inputs and outputs. 

This tends to present a "largest package requirement". It is noted 
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that there is more than adequate room available. All such 

components are mounted near the center of a rotation.;t.o minimize 

the effective Rg and therefore the load inertia presented to the 

drive system. 

Details of the feed deploy and polari.zer'drive mechanizations 

are shown at the right hand side of Figure 5.8-1. Two phase drive 

motors and gear boxes are suggested. 
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5.9 SERVO CONTROL SYSTEM. 

The servo electronics contains amplifiers which drive the 

antenna shaft and trunnion axis servo motors and the gyro torquer 

c:oils. The servo electronics, in conj unction' wi th the antenna 

components and radar recei ,rer, forms inner and outer closed servo 

loops for each axis. The inner, or stabilization loop, keeps the 

antenna boresight axis fixed in inertial space in the presence 

of spaceLlraft motions. The outer, or tracking loop, keeps the 

antenna boresight on the target using tracking error signals from 

the receiver. In lieu of this outer or tracking loop, it is also 

possible to drive the antennas from the spacecraft or from a 

slew/search/scan computer. A functional block diagram of the 

antenna servo control system is shown in Figure 5.9-L 

All antenna positioning and tracking is accomplished by 

repositioning 

function to follow the gyro repositioning to maintain the gyro-pick 

offs as close as possible to zero. 

~n addition, the Gyro Torquing signals are sampled by two 

Velocity. filters, one for Shaft and one for Trunnion, to obtain 

an indication of commanded LOS angular rate. This angular rate 

can be derived from the designation or slew inputs, or as during 

target tracking from the receiver angle error channels. 

5.9.1. SEARCH PROCEDURE. 

The initial search coordinates for the rendezvous target 

are generated in the spacecraft computer. The coordinates are 

transmitted to the guidance computer and this system then initiates 

a slew to this system followed by commands to the control system 
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to initiate the vectored search for the target. The resulting 

acquisition scan consists of a spiral search centered on the 

computed vector position of the target and extending as necessary 

to the 30 limits of ±400. See belo,.,. 
y o 

V= computed vector to target 

0= 1.3 overlap in radially 
displaced beams 

9 = A~ sin 21ff t 
<P = A~ cos 21fft 

The spiral scan'is formed by a sinusoidal wi~.,ag of e + <p , 

spaced 90 0 in phase and of increasing amplitude \'lith a 1 0 beamwidth 

and 1.3 overlap between radially displaced beams, 52 revolutions 

are required to scan aIm. dia. aperture antenna (1 0 two-lVay 

beamwidth) over an 80 0 apex angle conical section. The speed of 

rotation is modified, to as great an extent as possible, to ,provide 

a constant tangential velocity. In actual practice the central 

area is scanned at constant rotational speed, 468°/sec or 1.3 

revolutions per second, out to an angle of ±15.3° from the central 

axis and then the speed of rotation is linearly decreased to 

183°/sec or .508 revolutions persecond thereby maintaining constant 

tangential velocity out to the scan limit of ±400. The frame 

period is 60 seconds. The constant tangential rate provides constant 

d\'lell time on target intercepts, improving scanning efficiency and 

related detection capability. At', the amplitude of the wigwag motion, 

is varied with time to provide a constant spacing bebveen radial 

s\'leeps. ft' the frequency of the 'vigwag cycle, is held constant 

,at 1.3 Hz. from center to At = 15.3 0 , and then is decreased to 

provide the aforementioned constant tangential velocity. 
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Upon detection of the target, the position of the antenna at 

the time of detection (as measured by the position of the integrating 

rate gyros) is recorded in the memory of the guidance computer, 

and at the same time, the rate command to the gyro torquers from the 

guidance computer is removed. The integrating rate gyro is now 

essentially a one degree of freedom, free gyro which \~ill control 

the drive motors to keep the antenna continually pointing to the 

same location in space. If the target detection is not reconfirmed, 

another rotation is made at the fixed value of At and if not confirmed 

this second time the acquisition search is continued. Upon 

confirmation the target position data is updated and the acquisition 

scan is transferred to the lock-on mode. 

5.9.2. LOCK-ON AND TRACK. 

Once the target has been detected and the antenna brought 

to a stop (in inertial space) with the boresight capture angle of 

the antenna, the autotrack command loop is closed. When this outer 

loop is closed, the t\~O rate-integrating gyros provide line-of-sight 

space stabilization for the antenna. The residual tracking signals 

provide line-of-sight angle rate measurements. The outer servo 

loop has been designed to function equally well using boresight 

measurement errors determined from cooperative (transponder of 

communication systems), from non-cooperative (radar) systems, and 

from target enhanced systems. 

5.9.3. SERVO COMPONENTS. 

Two rate-integrating gyros provide line-of-sight space 

stabilization and. enable line-of,-sight:- angle rate measurements. 

The trunnion gyro is mounted on the reflector support structure 

behind the reflector and is oriented to monitor motion about the 
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trunnion axis. The spin axis gyro is not mounted on the reflector 

but on the trunnion gimbal. This mounting arrangement simplifies 

the coordinate transformations required to control the system. 

Again it is oriented to monitor azimuth motion. 

The antenna shaft and trunnion positioning is accomplished 

by two phase 400 Hz servo motors driving through 240:1 gear drive 

systems. To obtain more stable servo operation, tachometers are 

attached to the motor output shafts. These tachometers tend to 

linearize the drive motors and allow considp.rably higher outputs 

of the drive system without encountering stability problems. 

The line-of-sight error to the target is detected by the antenna 

using a four slot backfeed-parabola reflector antenna arranged in 

a monopulse configuration. If the antenna is aligned with the 

target line-of-sight, the return energy is equally received by 

each of the four slots. If the antenna is not directly in line, 

the amplitudes of energy received by the four slots are not equal. 

The received signals are processed through the mQnopul'5e comparator 

to develop the required sum and difference tracking signals. If 

the line-of-sight is directly above or below the transponder, a 

negative or positive 6 coordinate pointing error is generated. 

Similarly, with the line-of-sight on either side of the transponder, 

a ¢ coordinate pointing error is generated. The received signal, 

processed for monopulse operation, contains three information 

channels: The $ (trunnion) channel, the 0 (shaft) channel and the 

Sum (reference) channel. The 0 channel input is the difference in 

,received energy between the vertically adj~cent feedhorns (A+B) - (C+D) • 

The ¢ channel input is the difference in received energy between 

the horizontally adjacent feedhorns (A+D)-(B+C). The Sum channel 

, 

, 

input is the sum of the received energy of all four feedhorns (A+B+C+D). ) 
J 
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The functional design of the system is shown in Figure 5.9-1. 

The actual servo design loops are shown in Figure 5.9-2. 
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FIGURE 5.9-2 
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N 

SINGLE AXIS STABILIZATION DIAGRAM 

KG '" gyro torquer scale factor 

KGO'" gyro output scale factor 

K2 = motor amplifier gain 

x: = motor time constant 

~ '" motor scale factor 

N = gear ratio (=240 ) 

KCL
= closed 'loop scale factor. 
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Two separate stabilization conditions must be met \\Tith the antenna 

drive systems. These are: 

(1) During search, the loop gain must be such that 

a maximum of .5° error may exist wheHl the system is 

driving at its maximum rate of 125°/sec, thus: 

K = (125) (240) = 60,000 
v 0.5 

-1 
sec 

(2) During track, the maximum error allowed is 

10 mrad at the maximum rate (spacecraft) of SO/sec 

(=.0873 rad/sec). 

K 
_- (.0873) (240) __ -1 

2,095 sec 
v .01 

Therefore, the critical design point would be during the search 

mode if the total loop gain were to be derived from the gyro 

stabilization loop inputs. However,' in order to lower the loop 

gains and provide a more reasonable loop during scan, a feed 

forward loop is put around the gyro during search/scan. Thus the 

gyro will still represent, the desired location of the antenna, 

the motor drive will be commanded by the feed forward input and 

any errors in the system will be detected and corrected by the 

gyro. Thus the closed loop gyro stabilization loop will be 

designed to easily satisfy the tracking requirements instead of 

,the search requirements. 

, .".: 

5.9.3.1. TRUNNION DRIVE SERVO DESIGN. 

The design constants 

reflected to motor): 

associated with the trunnion system 

are (all 
" 
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Moment of inertia,J................ .000511 oz-in sec2 

N 1 d d 1257 sec-l=12000RPM 
a oa spee f wmax 

•••••••••••••• _ 

Motor stall torque, TM •••.•.•.•••• 2.6oz-in 

Motor time constant, 1: •••••••••••• ~ wM= .247 sec 

Tachometer FB scale, ~T •••••••••• ~T=.9 

The trunnion closed loop drive system is shown in Figure5.9-3. 

)- KGO $c@-

J 

. where: 

=Kv. 
m~n. 

and 1: is arbitrarily chosen to be 

thus 

where 

1:i = -~. 2=-4:..:7'--__ = . 05 
I-t.9K2Km 

K
2

Km = 4.4 

let Kv. = 5000 
m~n 

then KGO = 5636°/sec/deg 

W = 20.4 rad/sec 

1;; == .49 
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5.9.3.2. SHAFT DRIVE SERVO DESIGN. 

The design constants associated with 

system are (again all reflected to the motor): 

J 

Tm 

~ 

K.MT 

= .00208 oz-in 
-1 = 1257 sec = 

= 10.5 oz-in 

2 
sec 

12000 RPM 

= .00208 x 
10.5 

1257 = .249 

= .9 

sec 

• 

the shaft drive 

-1 
Again by making the choice of Kv minimum of 5000 sec ,the natural 

frequency and damping of the shaft drive system are: 

OJ = 20.4 rad/sec 

1; = .49 

5.9.3.3. NATURAL FREQUENCY OF THE SYSTEM. 

Although the natural frequency of the system is near 8 Hz 

the drive systems for both the trunnion and shaft systems contain 

practically no structural limitations. With the shaft system, the 

gyro is mounted on the trunnion gimbal only 6" from the shaft axis. 

The trunnion gyro is similarly well mounted structurallY, beiny placed 

on the channel section only 20 inches £rom the drive. It is felt 

that the minimum Kv chosen to remove the spacecraft rotations 

can easily be increased with little probability of encountering 

structural feedback problems or their attendant servo problems. 

5.9.3.4. ERROR ANALYSIS OF DRIVE SYSTEMS. 

The maximum error of the pointirig system may be obtained 
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by considering all error sources and then statistically combining 

them. The error sources are: 

Gyro drift rate lSo/hour ••••••• 

Spacecraft drift Sa/sec •••••••• 

Glint error rate .............. ·. 

.0042°/sec 

.Q73 mr/sec 

87.3 mr/sec 

8 mR/sec 

The total of these is (considering these as non-correlated): 

87.7 !lU"/sec 

which when divided by the Kv used gives: 

Error = 4.2 mR. 
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5.10 DESIGN OPTIMIZATION. 

In a study of this type the antenna designer directs his 

first efforts towards developing a maximum size aperture. The 

ligic path for determining aperture size in this application is 

outlined in Figure 5.10-1. Controlling constraints are first listed 

relative to installation clearances in stow, antenna implementation 

and desired ser;ro poser limits. A layout study based on the listed 

criteria indicated that the largest size reflector is 85 cm (34") 

in diameter. 

I j 

I 
The original const:raints are then reviewed and new logic paths 

chosen. If only 2" of clearance were provided between the antenna 

structure and the pay.load door the antenna aperture increases to 

1 m diameter. While this reflector provides increased gain it is 

not an optimum design from a standpoint of monopulse tracking 

sensitivity. A larger focal length is desired. 

An alternate logic path is available wherein the 3" clearance 

to the payload/door is retained but a folded feed is utilized. 

i 
I 
! 

I 
1 , , 
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~ 

1 , 
This can also provide a 1 m diameter aperture with the desired gain 

increase, optimum monopulse pattern characteristics and more than 

adequate clearance. Rectilinear scanning of a larger antenna during 

acquisition requires excessive servo power, particularly around the 

shaft axis. To provide a meaningful increase in aperture requires 

that the rectilinear (xy) acquisition scan be abandoned and an R-8 

\ ,. , 
I, 

f 
It 
I, 
I' 

I: 

I 
scan implemented. 

to be increased to 

This within itself allows the aperture diameter 

1.25 m. Again if the clearance to the payload 

door is reduced to 2" the aperture can be increased to 1.35 meters. 

In the above arrangement the elevation drive motor and gimbal 

assembly occupies a critical clearance area.c ·Rotatibn,of.:.the Elevation 

axis t.owards. the' y axis provides increased clearance. This can be 

partially accomplished. with a single axis deploy/stow mechanism but 

5.114 

I' .. 
!1> 

1 
f I 
I 1 

r I 

J 
I ' 
I 
i 
I 
I 

, , 
f, ' -- ; . , 

''', -'- " 

"",':,.> ,j 
I .', ! 

\....,- ;"-~.J 

I 



j 
" Ii 
" I' ,) 

I 
I 
I 

j 
) 

I 
I 
! 

.'; , 
l 

" -, 
) 

I _ 

c:,~,~~~:,,:S~.~-

Start constraints 

1. 3" clearance in stow, 
all around. 

2. Fixed feed. 

3. x-y reotilinear drives • 

..!. _Si~"-P~"O;l""_~n EO~O!ts. 

86 m (34" diameter aperture) 

I I 
Use folding 

.cJ1l.. 

feed Reduce clearance 
door to 2" 

to payload 

I 
Use R-0 coordinates 
deploy 11 to : axis • 1m (40") aperture 

(drive power limited) 

t 
1m (40") aperture 
(clearance limited) 

Features 

1. Best patterns 

2.Can use R,0 or 
xy drives 

1. 25m (~8 ")l_a_

p

_e_r_t_u_r_e-::::::r= _________ , _______ 3.,.More than adequate clearance --i-] I 
Two axis deploy/stow Reduce clearance to payload 

1.52(60") aperture 
(clearance limited) 

aoor ~o 2" ! 
1.35m(53",) aperture 
(clearance limited) 

t 
Reduce clearance to payload 
door to 2" 

i.6m(63") aperture 
(clea,'ance limited) 

FIGURE 5.10-1 LOGIC PATH FOR APERTURE SIZE. 
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for substantial improvement it is required that a two axis deploy/ 

stow mechanism be used. This increases the reflector diameter to 

1.52 meters. Again if one decreases the clearance to the payload 

doors to 2" the largest size possible reflector can be employed, 

i.e., 1.6 meters in diameter. 

It i,s evident that a sufficiently large aperture can be stowed 

within the constraints of the spacecraft and still maintain a 3" 

clearance all arcund. In summary: 

1. A spiral acquisition scan is best adapted to the 

geometry of the v.ectored search in terms of scan 

efficiency a,nd early detection probability. 

2. The folded feed design is simple, reliable in operation, 

provides optimum patterns and maximum mechanical 

clearance. 

3. A Il,-6 scan mechanization provides the required servo 

responde with minimum drive power. If used two 

deploy positions are required,one'near parallel to the 

z axis of the spacecraft. 

4. The maximum size aperture without implementing step 

3 is 1 m in diameter. The constraint Is drive power. 

Implementing 3 allows the reflector diameter to increase 

to 1.25 m. 
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6.1. TARGET GENERATED ERRORS IN ANGLE, RANGE AND VELOCITY. 

As part of the conceptual design of the Rendezvous 

Radar an investiga'tion was mado of fundamental sources of 

radar measurement error inherent to the target itself. A 

summary of the results of this investigation is included in 

this section. 

Of particular interest during this investigation were 

those factors which influlmce the accuracy of the velocity 

measurement. A comparison was made of the performance of 

coherent and noncoherent nmthods of determining target 

velocity from the standpoint of target induced errors. 

~ertain errors in radar measurements of target state 

are generated by the target itself. These errors, which are 

indistinguishable from the true target state by the radar, 

include: 

Angular scintillation (glint) 

Range scintillation 

Doppler (velocity) scintillation. 

This group of errors is caused by distortion of the 

expected spherical phase front of the echo signal by vector 

coIDbining of the reflected signals from several reflecting 

surfaces on the target. 

6.1.1. ANGULAR SCINTILLATION (Glint). 

The magnitUde of the angular scintillation, or glint, 

is relat,ed to the size of the target and relative amplitude , 
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phase of the r,' flected signal from major scattering elements. 

magnitude of the glint varies rapidly with aspect angle of 

target as a result of a strong phase dependence. 

An estimate of the magnitude and distribution function 

of the angular scintillation for typical targets for the 

Rendezvous Radar will be developed in this section. A 

simplified, two-reflector model which lends itself to hand 

calculation ,,<ill be considered first. Following this, measured 

data on aircraft targets will be examined and a mathematical 

model will be adopted which fits the measured data. The 

mathematical model will be examined for applicability to the 

type of targets of interest to the Rendezvous Radar. 

The simplified two-reflector model shown in Figure 6.1-1 

was suggested by Mr. J. Griffin of the Johnson Space Center 

during early discussions. It consists of two point reflectors 

separated by 60 feet (18.3 meters). 
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FIGURE 
6.1 -1 GEOMETRY OF TWO-REFLECTOR TARGET. 

Although this is a highly simplified model it is roughly representative 

of the Large Space Telescope and Large Space X-ray Telescope which 

are pot'ential targets for the Rendezvous Radar. Both of these space 

vehicles have flat solar panels on one end of a long cylinder and 

lstructure at the other end which would appear to also result in a 

large radar return. 

1 Following the work of Howard the apparent location of this dual 

source target can be expressed in terms of the error,E, from the 

" midpoint of the target as follows: 

where: 

L = the spacing between the tvlO reflecting points. 

~ = the viewing angle measured from a line perpendicular to the 
line connecting the two reflectors. 

a = the ratio of amplitudes of the signals from the two scatterers. 

cjl = the rela ti ve phas,e. of the two signals as seen by the radar. 

Howard, D.D.,"Radar Target Angular 
Guidance Systems ..•. "; Proceedings 
Conference, Vol. 15, 1959. 

- ; f·-· ,-." 

Scintillation in Tracking and 
of the National Ele~tronics 

'I , , 

._i 

i 



i 
I 
J 

I I 

__ A plot, of. the error in apparent locay.ion of a 18.3 meter dual source t 

C)target viewed broadside by the radar is given in Figure 6-:.1-2 as- a function 

of relative phase and amplitude of the blO reflected signals. The 

figure illustrates the well known fact that the magnitude of the 

angUlar scintillation can exceed the physical dimensions of the target. 

Another pertinent observation is that the peak displacement occurs 

at 180 0 of relative phase, which coincides with minimums of the amplitude 

function of the net return signal. 

Turning now to some measured characteristics of glint from aircraft 

targets, an excellent series of measurements on aircraft models by 

Mensal at the Naval Missile Center leads to an empirical model for glint. 

Mensa's measurements were made on two different aircraft targets, both 

scaled 5.7:1. The lengths of the models were about 2 meters. A 10 MHz. 

CW illumination source was used. 

His test results indicated the error in the phase front varied sharply 

. with aspect angle. The sharp excursions always coincided with a 

I 

minimum in the amplitude recarding. The angular position error 

corresponding to the wave front error often exceeded 2 to 3 times the 

extent of the target. 

Perhaps of most significance in his study was the finding that for both 

targets the amplitude of the glint as a function of aspect angle 

closely followed a normal distribution between the 10 and 90 percentiles. 

The standard deviation \vas approximately equal to one half of the 

target extent. 

The normal distribution function for amplitude of glint for aircraft 

type targets has also been reported by Dunn and Howard2~as a result of 

analysis of flight test data. Their analysis indicates the standard 

deviation of the angle error is equal to about 0.3 times the extent 

of the target for a side view of an aircJ:aft, and also for a nose-on 

f 

1. Mensa, D.L. "Scintillation Characteristics of Aircraft Targets", 

Naval Missile Center Publication TP-71-13, 26 March, 1971. 

2. Dunn, J.H. and Howard, D.O. "Radar Target Amplitude, Angle and Doppler 

Scintillation •.. ", IEEE Transactions MTT No.9,September 196B. 

3. Skolnik, M.l.,The Radar Handbook,Chapter 28 (Dunn and Howardl. 
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view if the aircraft has outboard engines or wing tanks. The 

standard deviation of angle error decreases to 0.1 times the extent 

of the target for a nose-on view of a single engine aircraft without 

wing tanks. 

For the purposes of the Rendezvous Radar study two models will 

be considered; the two-reflector (or dumbbell) model ,·lith gliilt 

shown in Figure 6.1-2, and a multiple reflector model with a normal 

distribution function for glint with a standard deviation equal to 

0.5 times the extent of the target. 

The previous discussion on angle noise, or glint, assumed that 

the distance between the target and radar was very large compared 

to the extent of the target. As the radar closes towards the target 

the antenna subtends a larger portion of phase front and the distort.ed 

region becomes averaged with regions of lesser distortion. The 

larger and closer the target the more averaging over the range of 

phase fronts takes place. 

1 It has been found that when the target subtends an angle 

greater than 0.25 times the radar antenna beamwidth that the RMS 

target angle noise is significantly reduced. Under these conditions 

the angular error is limited to a few tenths of the antenna 

beamwidth. In the case of the 18.3 meter long target discussed 

previously and an antenna beamwidth of about 2.7 degrees (50 em 

diameter antenna) ,the target subtends one fourth of the beamwidth 

at a range of 157 meters. Thus, at ranges greater than about 157 

meters the models for glint developed above apply. At ranges less 

I """'.' ,I I -,' "'r(f.'! . 
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th~n about 157 meters the glint decreases to a fraction of the 

At these short ranges, however, the antenna can ! 
track various points on the target, e,g. one end or the other so 1:1 
antenna beamwidth. 

that all that can really be ascertained is t:hat the antenna pointing I'" 

angle contains some portion of the target. :1 

Tha =gnituda of tho angular ,dntillation i, a diraet f=etion t "J 
of the relative phase and amplitude of the reflected signals from I 1 

various scattering surfaces on the target. Consequently, it can be altered by'l 

1-: 

1. Dunn, J.D. and Howard D D L 
I •• r oc Cit. 

1. .~.:".:, (!: ~ ,.-' .wt_:l"'-· 
" , 6 .. ,6 



-, changing , , either the relative amplitude or phase of the reflected signals. 

of independent samples of the angle of arrival can then be 

averaged within the passband of the antenna pointing servos to reduce 
'\..-'A number 

the angle scintillation. 

For a general complex target a change in polarization, e.g. vertical 

to horizontal, will change the relative amplitude of the reflected 

signals. Thus, by changing polarization pulse-to-pulse some averaging 

of glint can be achieved. However, in the case of targets which have 

symmetrical scattering surfaces to both polarizations changing 

polarization will not have a significant effect. 

The relative phase of th~ reflected signals from various· scattering 

surfaces can be altered by changing the carrier frequency of the radar 

from pulse-to-pulse. The effectiveness of frequency agility in 

modifying the glint function is dependent on the extent of the target 

in the range direction and the amount of frequency change from pulse­

to-pulse. It should be noted that if we look broadside at the two­

reflector model previously discussed, the dis·tances from the radar 

to the two targets are exactly the same and frequency agility will 

not mOdify the glint characteristics. It is interesting to note that 

polarization agility would still be effective in changing glint 

characteristics \vi th equal ranges. 

For the general case where the target exhibits a range depth, Lindl 

has shown that complete decorrelation of the glint between two pulses 

occurs if the frequency change between the pulses is greater than a 

critical difference frequency nfc where 

c =--
2D' 

where C is the velocity of light and D is the range depth of the 

target. In the case of the 18.3 meter, hvo-reflector target viewed 

slightly off of head-on (the glint is zero head-on), the range depth 

1. Lind, G. "Reduction of Radar Tracking Errors with Frequency Agility", 

IEEE Transactions AES-4 No.3, May 1968. 
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about IB.3 meters and the critical frequency is B.2MHz. If the target 
viewed slightly off of broadside the depth of the target in the 

range direction becomes small and the critical frequency becomes 
much higher due to the inverse relationship between critical frequency 
and depth. 

The lB. 3 meter separation bet'veen reflectors is equivalent to 915 
wavelengths at a carrier frequency of 15 GHz. The angular separation 
between nulls of the amplitude pattern of the composite signal, and hence 
between glint region~is less than a degree for this large spacing. 
A frequency change of 420MHz. (critical frequency) is required to 
decorrelate the glint from pulse-to-pulse when viewing the IB.3 meter 
target 1 degree from broadside. 

The decrease in spectral density of the glint at zero frequency is 
shown by Lind to be,in the l.imit, approximately equal to the frequency 
agility bandwidth divided by two times the critical frequency. The 
limit requirement is for the PRF to be much larger than the original 

)glint bandwidth, a condition which will likely apply for space vehicle 
targets. The tracking error reduces by the square root of the decrease 
in spectral density of the glint at zero frequency. 

In summary, frequency agility can effectively be used to reduce angular 
scintillation as long as the scintillation arises from scatterers 
distributed in the range dimension as well as in the angular dimension 
of the target. In the case of the IB.3 meter two-reflector target 
viewed near head-on a total agility bandwidth of 300MHz. results in a-, 
decrease in glint spectral density by .a factor of 

300 = IB.4 
2 (B.2) 

which corresponds to a reduction in rrns angular pointing error by about 

{lB.4 = 4.3. 
yiewing the same target near broadside with the same frequency agility 
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bandwidth, the reduction in glint spectral density is a factor of 

300 = 0.36 

2(420) 

or in effect/no significant imprOVement. 

It may be noted from Figure 6.1-2 that the displacement error is one 

sided. Consequently, the effect of averaging the error over, 360 0 

of relative phase by frequency agility is to create a displacement 
I 

bias error. For the case of the 18.3 meter two-reflector target and a 

ratio of the amplitude of the two reflected signals equal to 0.5, 

the average displacement is equal to about 9 meters. 

The subject of frequency agility will be treated in detail later in 

this study. 

6.1.,2", Target Ge~~::or,;:,C!c:t-,e",:d:";,:,R-,-a:cn:,:,g~e-"Ec::r-"r;,,;o:,,;r,,,s~. 

Range scintillation errors arise from a mechanism similar to that 

described above for angle scintillation. As in angle scintillation, 

the target generated range errors can exceed the extent of the target. 

Range scintillation has been treated by Cross and Evans l who show that 

the target induced range errors are related to the slope of the phase 

(with respect to frequency) added to the transmitted spectrum by the 

target. since the error slope is essentially constant over the 

transmitted spectrum an actual time shift of the return occurs. This 

shift and accompanying range measurement error can not be distinguished 

from actual target motion by standard range pl:ocessors used in either 

pulse or FM/CW radars. 

Cross and Evans derive expressions for the phase of the target modulating 

function and for the slope of this function which yields the range 

1. Cross, D.G. and Evans, J.E., Target Generated Range Errors, IEEE 

International Radar Conference, April 1975, 
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error. The form of these equations is identical to those derived by 

oward l for angle scintillation. In particular, for the case of the 

two-reflector target previously considere d) the expression for range '. 

error expressed in t e rms of a time error 6 t is 

.£11 .:: ~ /_07"2-
T / -I-e9 'Z-f- 2' e9 CO.Sf Q)c 10) 

where to 
a 

Wc 

Wcto 

= 
= 
= 
= 

Target length in range direction expressed in time. 

Relative amplitude ratio of the two r efl ect ed signaJs . 

Carrier frequency. 

Relative phase of the two reflected signals. 

A plot of the range error as a function of the r e lative phase between 

the two reflected signa ls from a two-reflector target is reproduced 

below. 

FIGURE 
6 ·_;l-.3~ (! -J . · ]1.ange Error VS ,Relativ e Phase for Two-Reflector Target. 

(After Cross and Evans) 

1. Howard, D.O., Loc Cit. -
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It may be noted that Figures 6.1-2 and Q.l~3 represent the same function,the 

(Jonly difference being that Figure 6'.1'-2 _is plo:ti:ed in :l:e=s ,n£: actual 

displacement. Thus, for the case of the target being viewed head-on, 

the range error may also be read off of Figure 6.1-2. 

It is reasonable to assume that the range error for more complex targets 

will follow the same normal error distribution function as found for 

glint. It follows also that the standard deviation will be approximately 

equal to one half of the target extent in the range direction.-

As in the case of angular scintillation, the effects of range scintillation 

can be reduced by using pulse-to-pulse frequency agility and averaging 

the range measurement over several pulses. Once again, since the 

ampli tude ratio does not - change significantly with frequency agili ty, 

the range error is one sided and when averaged over all relative 

phas7 a range bias error is generated. For the case of the 18.3 meter 

target viewed head-on and with amplitude ratio equal to 0.5 the range 

bias error is about 9 meters. 

An important consequenc~ of range scintillation as applied to the 

Rendezvous Radar is that the range data will be noisy. The magnitude 

of the noise is given by thE; range error developed above. The 

bandwidth of the noise is a function of the rate of change of aspect 

angle. 

To gain some insight into the apparant range rate due to the time 

rate of change of the range scintillation; the rate of change of the 

relative phase, w t , between ::he reflected signals for the two-reflector 
c 0 

target was computed for an assumed angular rate, and the corresponding 

range rate was determined using range error data of Figure 6.1-2. 

The two-way time delay, to' of the farthest reflector relative to the 

near reflector is 

6.11 
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where 

then, 

and, 

L = Length of the target. , 
'I' = Aspect angle me,3.sured from a normal to the boresight axis. 

c = Velocity of light. 

CUe I" - 2 L CVe S-//? ~/ := 
C 

d (Ct)d;,) 
dl 

41TL 
.?I 

, 
Assuming an aspect angle 'I' of 4S o and a change of aspect angle (rotation 

i 

of the vehicle) of 0.01 radians per second, the rate of change of 

relative pha~e is 0.089 L -,,- radians per second. For the case of the 

18.3 

rate 

meter target 

of change of 

and an operating frequency of ISGHz. (,,=2cm) the 

relative phase is 82 rad/sec or 4,700 degrees per 

second. 

Referring now to Figure 6.1-2 and assl.jl1ling an amplitude ratio of, O.S 

a maximum slope of about 0.4 meters per degree of relative phase is 

noted. The maximum apparent range rate due to range scintillation 

for the conditions assumed is then (4~000/sec) (0.4m/; = 1870m/sec. 

This extremely high range rate for a relatively Im~ physical rate is a 

consequen~ of the large number of wave':'engths oetween the two reflectors. 

A potential advantage of this situation is that time averaging of the 

range data can be achieved with relatively short time constants. 

l _" ;- ... :;:. ~ - ; 
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6.~.-3 Target Generated Doppler Errors. 

In the previous section it was shown that the target generated range 

errors result in extremely high apparent range rates. If velocity 

information were to be extract6Q by examining range rate, the resulting 

data would have very high short term errors. The question then arises, 

are there similar mechanisms which give rise to errors in the doppler 

measurements of a complex target? 

Following Dunn and HOIvardl it can be shown that the distortion of the 

phase front which gives rise to the angular scintillation (glint) 

also gives rise to doppler scintillation. 

As the aspect of the target changes slightly the distortior. region 

of the phase front may rotate past the radar and cause a rapid phase 

change. The rate of this change is equivalent to frequency. The 

frequency term generated appears as a noise or modulation on the 

average doppler frequency if the target is moving. 

The doppler modulation may be determined by differentiating the phase 

deviation from that of a point souce target with respect to time 

as follows: 

where 

f(t) is the instantaneous frequency. 

dIP (t) 
dt is the time rate of change of the 'phase deviation as seen 

by the radar. 

Since hhe doppler scintillation arises from the same fundamental 

mechanism as yields the angular scintillation measured or calc'alated 

angular scintillation parameters can be used to compute the spectrum 

of the doppler scintillation as follows 2 

1,2. Dunn, J.H. and Howard, D.O. Loc cit. 
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where 

p (r) 

A 

= Probability density distribution of doppler signal. 

= RF wavelength. 

= Standard deviation of aspect angle rate. 

= Standard deviation of angular scintillation in linear 
units measured at the target. 

= Average doppler frequency. , 

= Modified Hankel function. 

For comparison purposes the amount of doppler modulation for the simple 

model of two reflectors separated by 18 meters as cons~.dered previously 

will be computed. The resulting value for velocity perturbation 

will be compared with the errors \~hich would result by determining 

velocity through differentiating the measured range data for the same 

Itarget model. 

The instantaneous pseudo doppler frequency is obtained by differentiating 

the phase deviation from th~t of a point source with respect to time. 

This is most readily accomplished as follows 

where 0/ is the aspect angle defined in Figure 6.1-1. The factor of 2 

comes about since the change in aspect angle affects both the incident 

path and the reflected path between the reflectors and the radar. 

The function d~ is the phase front distortion as a function of target 
do/ 

aspect angle, 0/. 

the linear C}ngle 

This has previously been shown to be equivalent to 

error which is equal to 
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For our purposes the expression above for the error in linear units 

~t the target is converted to dimensionless units of radians of phase 

per radian of aspect angle as follows 

dr/ == 211 diS / 
df/ T dt;J /LiJ1t'vr 

Considering the 18.3 meter two-reflector model, an aspect angle, ~, of 

45° and an amplitude ratio of O.S, the peak linear error is about 19 

meters and the value of the dimensionless error for a carrier frequency 

of lSGHz (A=2cm) is 6000. 

Assuming as before a change in aspect angle of 0.01 radians per second, 

the maximum pseudo doppler frequency is 

d¢ Zd!f/ -
d)ll dt 

6000 (2) (0. 01) -
= 

/~t1 radians/sec. 

19 Hz. 

At a carrier frequency of lSGHz.,a 19 Hz. doppler frequencj represents 

a velocity of about a .19 meters/second 

We conclude, therefore, that the quality of the velocity data obtained 

from doppler measurements of a complex target is far superior to that 

obtained by differentiating measured range data. 
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.6.2 PERFORMANCE ANALYSIS OF NON-COHERENT PULSE RADAR • 

A candidate non-coherent pulse radar, scaled to the require­
ments of the Rendezvous Radar, is described in this section. 
A summary of characteristics of the radar are given in Table 
6.2-1. A functional block diagram of the radar is gi~en in 

Figure 6.2-1. -

Range to the target i:; determined by measuring the time 
delay between the transmitted and received pulse. Velocity 
information is obtain"'t' by determining the rate of change 
of range data. The short -term quality of the velocity data 
is generally not as good as obtained by doppler processing 
of the received signal. However, the non-coherent pulse 
system has the advantage of simplicity and ability to provide 
unambiguous range to any desired value. 

6.2.1. AMBIGUITY CONSIDERATIONS. 

The ambiguity function for a periodic pulse train with pulse 
width T spaded 6 seconds and with N received pulses integrated 
is: 1 

/((rA)= e Jnff¢4 )(1' (T-I76../ r/J) S)I? (N~/n()!T¢LJ /T-114/!:'/ 
- 0 IV S"/J?1rtjJ,{j 
- elsewhere 

;"7= _(;V-I), , .. , ~ .. - - /V-I 

where X (7; /J) is the ambiguity function of the 
single pulse V 

,-ITI 9 1717¢(r-ITI) 
r ffcjJ ("/' -IT/) 

where ~= difference between time signal is received 
and time to which filter is matched 

::: ~ (I?',.. -I?'m) 
yO= difference between received doppler frequency 

and doppler frequency to which filter is 
matched. 

::: Jr(V;,-Vm) 

A sketch of this function as given by Nathanson2 is shown in 
Figure: 6.2-2. 

1. Skolnik, M.I.;Radar Handbook 
2. Nathanson, F.E.;Radar Design Principles 
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TABLE 6.2.-1. CHAP~CTERISTICS OF CANDIDATE NON-COHERENT PULSE RADAR 

t t). 

V PERFORMANCE CHARACTERISTICS 

Detection range (P
d
=0.99,swerling ~lm2 target) ••. 19km 

Acquisition time.................................................................. 60 sec 

Angular search coverage ..••......•..•.•....••••.. 80" cone 

Accuracy, 30 (at magimum range) Random las 
Angle track o-:24mR 0.1 mR 

Angle rate 0.09 mR/sec 1. 3 mR/sec 

Range (lag error) 29.7 m 

Velocity (lag error) 0.3 m/sec 

SYSTEM CHARACTERISTICS 

Frequency of operation ...•.•.•....•.... 

Antenna 

S iz e .......................................................... .. 

Beamwidth (two-way) 

Gain .......................................................... 
Scan program 

Transmitter 

Pulsewidth 

Range >9 km 

Range <9 km 

.................................. 

.................................. 

15 gHz. 

1 m diameter 

1.0 degrees 

41. 7 db 

spiral 

lllsec 

O.lllsec 

Peak power* ..••....••...••...•.•• 8. 9 kw 

PRF .......................................................... .. 

Average power* 

Transmitted frequency 

• " I • 

.................................. 
Number of discrete frequencies .•. 

Frequency separation .•...•...•••. 

Total agility bandwidth ...••.•..• 

Receiver noise temperature 

Receiver noise bandwidth 

........................ 

Range >9 km 

Range <9 km 

* with 2dB margin. 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

............................................ 

6.18 

3.7 kHz 

5.4 watts 

Frequency agile 

6 

75mHz. 

375mHz. 

l758"K 

750kHz . 

7.5mHz. 
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The ambiguity diagram showS r egions of range ambiguitie s 

spaced in time equal to the interpulse interval. Velocity 

ambigui t y peaks occur at doppler frequencies spaced by the 

r eciprocal of the interpulse interval . The velocity 

ambigui ty characteristics \~i ll be treated in a later section 

discussing doppler processing. 

Since there is complete absence of time ambiguities in t he 

region between transmitted p ulses , unambiguious range 

measurements can be achieved by making the interpulse period 

as long as required . 

Another item of interest i s the range r esolution which can 

be provided by the radar. '_he ambiguity function in the range 

coordinate is of the form: 

rect (~ ) T- ITI 
2T T 

(In o ther words ,it is of the form T- lTlover the time 
( 

intervallTI ST and zero elsewhere .) Th is d efines a triangle 

shaped function with a width at the base equal to two times 

t he pulse width , T . The r ange resolution, or the ability of 

the radar to distinguish between 2 targets closely spaced in 

range, is then equal to the t wo way range equival e nt of the 

pulse width, or 

2 Range Resolution CT 

The specified maximum operating range for the Rendezvous Radar 

in the skin track mode is 19km . To assure acquiring the target 

prior to reaching 19km, allowing 60 seconds for acquisition , 

and assuming the relative velocity is 45m/sec. , a maximum 

range ,of 21. 7km is ind icated . If the radar output were not 

used until the actual range closed to this value the pulse 

repetition i n t e rval could be made equal to the time equivalent 

of this two way range. If knOlvledge of the r elative range 

to within a few km is not availabl e an inspection of the 

ambiguity diagram indicates that the radar would read a 

range oflOkm shoul d the target be detected at 21 .7+10 or 

31. 7km. 

Modulation methods such as pulse-to-pulse frequency agility 

avoid this situation by in ' effect frequency taging each return 

pulse with a given transmitter pulse . For a simple non­

coherent p ul se rada r it is customary to set the PRF about a 

factor of two lower than that value which corresponds to the 

maximum range. 
I 

We will treat two cases in this study . The first assumes that 

approximate knowledge of the target range is available so that 

an unambiguous range inte rval of 22km can Qe used . The second 

assumes no a priori knowledge of target range and an unambiguous 

range interval of 40km . In the first case the pulse repe tition 

frequency (PRF) is 6 . 8KHz . and in the second case it is 3 .7KHz . 

6.20 , 
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I I ~.2.2. TARGET AMPLITUDE FLUCTUATION MODEL. 

, 
.j 

A Swerling Class 1 fluctuation model has been specified as a 
baseline for the Rendezvous Radar Study. This model applies 
to targets characterized by a number of independent scattering 
surfaces of about equal echoing area. The assumption is also 
made, in the case of a pulse radar, that 'the echo pulses are 
correlated pulse-to-pulse during the time target but that the 
fluctuations are independent scan-to-scan. In our case the 
time between antenna scans while searching for the target will 
likely be between 15 seconds and 60 seconds. 

The question then becomes, is there sufficient relative 
angular motion between the target and the radar to result in 
a decorrelation time of the echo signal of 15 to 60 seconds 
or less? In absence of information on the angular rates of 
the target itself about its own axis we examined the relative 
motions between the orbiter and the target for the nominal 
mission 3-B. Figure 5.5-2 6f a JSC reference document entitled 
"Rendezvous" \"as used as a reference. The angle and angular 
rate between the radar and the target for this mission is 
plotted in Figure 6.2-3. The data points are in 1 minute 
~indrl3ments . 
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Refe rring to Figure ~.2-3 we note that the angular rates near 
the maximum r adar r ange is greater than 2.8 d egrees per 
minute or 0.047 degrees per second . Assuming that zero angle 
corresponds to viewing the targe t broads ide , the change in 
path length from one end of the t a rget to the other in the 
first 1 minute period (19.3 to 17.6km) is about 0.042L whe re 
L is t he l ength of the t a rget in meters . . The rate of change 
may also be expressed 0.042L wavelengths/min. The ne t 

- >.-
reflected signal f rom the two ends of the target wil l 
essentially decorre l ate as the path difference changes >./2 . 
~~:ndecorrelation time , Tc' for the condi tions assumed is 

Tc :: :Ii . 60 ~ecol7c1s 
z (O.042)L 

which for the case of operation at 15GHz . (>'=0.0 2m) become s 

T = c 
1 4 .3 

L 
seconds. 

In the 15 second minimum scan period,targe t e l ements spaced 
0.95 meters \~ill d e correla te bet\~een scans . Therefore , the 
assumption of independence of the amplitude f luctuations 
between scans is valid for mission 3-B for targets several 
meters in l ength . 

6 .• 2.3. EFFECTS OF FREQUENCY AG ILITY ON TARGET FLUCTUATION 
MODEL. 

One means of achieving a greate r number of independent samples 
in a given period of time is to alter the phase relationship 
between the signals r eflected by the var ious scatte ring elements 
of the t a rget on a p ulse to pulse basis . This can be 
accomplished by c hanging the transmitted frequency f r om 
pulse-to-pulse. If complete decorr ela tion bet\~een pulses 
can be achieved , Swerling Case 2 detection char acteristics 
can be use d for a targe t previously considered Case 1. 

The benefit of pulse- to-pulse decorrelation in reducing the 
signal - to- noise ratio fo r a given probabil ity of detection 
is a function of t he si~gle scan probability of detection 
desired , as illustrated in Figure 6 . 2-4.For s ingle scan 
probabili ties below 30% S\~erling 1 characteristic s are more 
favorable . For a single scan probability of 90 %, the signal­
to-noi se r atio required for acquisition is r educed about 8db 
by pulse-to-pulse , decorrelatio n. 
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The amount of frequency change required to achieve decor relation 

was treated earlier while discussing reduction of angular 

scintillation by frequency agility. It was shown that 

decorrelation occurs when the frequency change bet\~een pulses 

is greater than a critical difference frequency fifc 

c 
fifc'" 2D 

where c is the velocity of light and D is the depth of the 

target (scattering elements) in the range direction. 

A listing of potential targets for the Rendezvous Radar given 

in a se:t:ies of sheets entitled "Automated Payload" were 

examined -to determine a representative minimum physical size 

target. The majority of the small satellite targets are 

4 to S meters in size although a few, such as the Hi9h Altitude 

Explorer and the GRAVSATJhave smallest dimensions between 

1 and 2 meters. 

For purposes of preliminary sizing of the amount of frequency 

agility required, a minimum target dimension in the range 

direction of 2 meters will be assumed. The critical difference! 

frequency, fife' is then 7SMHz. 

Bartonl has developed an empirical relationship between the 

number of independent signal samples n e , and the reduction in 

a term'he refers to as fluctuation loss, Lf . (the difference 

in 4verage signal-to-noise ratio required for a given 

probability of detection for a fluctuating target and for a 

steady target). 

/0 /09 C0e) ==(i--;f) /0/09 L,c(/) 

where G (ne ) '" frequency agility gain 

Lf (1) = fluctuation loss for single frequency system 

The number of independent samples is related to the total 

frequency ba~dwidth, fiF, and critical_ frequency fife as follows: 

A plot of the reduction in signal-to-noise ratio required 

for detection, or frequency agility gain, relative to that 

required for a Swerling 1 target is given in Figucq 6.2-S as a 

1. Barton, D.K.;"Simple Proceedures for Radar Detection 

Calculations" IEEE Transactions AESS No.S, Sept. 1969. 

6.2S 
. -

----~-~---
-" .. 

i 



..... ' 

( 
"""J 

'- ) . 

;-' 

". , 
, " 1 ' 

.:E/9t/rC" 6.2-5. " ____ 1 

, 
f 

"." ffB?Uc9:''Cj/vt9¥.1· 
, .,' 'Y.S /Vt0t.I.?L~X.:?Z: ·/""'l?:-,;~&r9W:r.-9)

':t'" 

:WOi$;,-::. : :->c0J.pks I,,' 
c.=::c:-,~!';C":::, -:Y3~.i-(0 6 __ . !. 

, " ' .. f~~f, i :: ... :; " 

:_"-" -1·-"-' ;~:' I 

;~s=:.::r,:,,::,,:,,=-r:~
wr--'·":·-: , :·,-·-:-,--'r­" (:. i ,:":," 

.------" , '-- ~~:::-. --, -" -'~-l-
,. . 1 . 

. - i •. " 

' . . , 

6.26 

, I , 
c 
i 
; 

I ,-
! 
( 

r 

i 
:-,,j 

,> . '\."..~. ~ .. ",,",_'.J.. ' 



I 
~ 
n 
I 

i 

.I 
i 
I 

I 

.~ 

"., ;.- r 
_ ~:-~;~~ :'/;" c 

, , 

-.. -----~----~.,...,-,-.,"'",-.. ~ -' .... 

function of the number of independent frequency samples 
provided. Also shown on the figure is the Swerling 2 limit, 
or the maximum gain which can be achieved with complete 
independence pulse-to-pulse for the total number of pulses received. 

A brief examination of Figure 6.2-5 indicates that ~he greatest 
gain is obtained from the first few independent samples. 
The improvement for a nurr~er of samples above about six is 
quite slow. In our case, six independent samples, corresponds 
to six frequency positions and a total frequency agility 
bandwidth of 

6f = (ne -l)6fc = (6-1)75 = 375MHz. 

6.2.4RANGE EQUATION. 

The various parameters affecting radar performance are placed 
in perspective by the radar range equation. A general form of 
the range equation, useful for comparison of candidate radar 
types, can be written in terms of the ratio of received 
energy, Er , to noise density, No, as follows: 

where; 
P t = Transmitted power 

G = Antenna gain (assuming the same antenna is 
used for transmit and receive) 

A = Wavelength of radiation 
cr = Radar cross section of target 
R = Range 
K = Boltzman's constant 
Ts = System noise temperature 

L = Losses 

The general form of the radar range equation is adapted to 
the non-coherent pulse radar by noting that the transmitted 
energy per pulse is the peak transmitted power times the 
pulse width and the energy received per pulse is equal to the 
peak received power times the pulse width. Then the range 
equation may be written 
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The commonly used detection criterion is based on the signal­
to-noise ratio defined as the ratio of the peak received 
signal power to the noise power in the band\'lidth, B. 

Pr 
NoB 

SNR 

t.hen: 

SNR 
ptG2 )..2cr 

(411) 3R4kTsBL 
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6.2.5 TARGET ACQUISITION. 

6.2.5.1 ANTENNA SCAN PARAMETERS. 

The signal-to-noise ratio required for acquisition is a 
function of the amplitude fluctuation characteristics of the 
target, the number of pulses received during the antenna 
scan past the target.and the allowable f~lse alarm rate. 
The number of pulses received is a function of the PRF, 
antenna beamwidth and antenna scan characteristics. 

The antenna scan options are to cover the required 80° 
conical sector once in the 60 second allowable acquisition 
time or to scan at a higher rate and obtain two or more looks 
at the target in the 60 second period. The higher scan 
rates result in less time on target per scan which results 
in a lower probability of detection. However, an offsetting 
factor is that the required probability of detection per 
scan to obtain a given cumulative probability of detection 
also decreases with the number of scans. 

The probabilitY'of detection per scan Pd required for a given 
cumulative probability of detection P , for a given number 
of sweeps, n, in the acquisition intefv.al is given by 

n 
Pc= l-'(l-Pd ) 

To achieve a cumulative detection probability of detection 
of 0.99 the required detection probability per scan is given 
below as a function of the number of scans in the acquisition 
interval. 

1 0.99 
2 0.90 
3 0.79 
4 0.68 

In order to ~ptimize the overall radar system the antenna 
gain, beamwidth and scan rate will be treated as variable 
parameters at this time. The antenna gain and beamwidth 
are a function of antenna size. Three different size 
antennas will be considered along with various scan rates as 
listed in Table 6.2-2. The time on target and the number of 
pulses received as the antenna scans by the target are also 
indicated in the 'rable. 

The antenna sizes and scan rates 
values for the Repdezvous Radar. 
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are representative of possible 
The antenna scan rates are 
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Antenna Gain, Two-way Search Frames 
Size, meters db Beamwidth, Deg. in 60 sec. 

1.5 45.2 0.66 1 
2 

1.0 41. 7 1.0 1 
2 

-

0.5 35.7 2.0 1 
2 
3 
4 

Table 6.2-2. ANTENNA AND SCAN PARAMETERS 

\ 
• 

,_,,~_. ______ • ~ r=-.,,,.r.-"~_' __ . 

'-.-

i , 
Number of 

, 

1 

Scan Rate Dwell time, Pulses Received '--Deg/sec millisecond PRF-3.7KHz PRF-6.8KI 

;".1 

170 3.9 14 26 
374 loB 6 12 

111 B.9 32 60 
227 4.4 16 29 

55 36.0 133 244 
III 17 • 8 65 121 
165 12.0 44 B1 
220 9.0 33 61 
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based on a spiral scan program discussed in Section 5.2. 
The maximum scan rates indicated 

are for the constant angular velocity phase of the scan, 
which is the outer portion of the scan envelope. Near the 
center of the search area the scan rates are lower. 

A maximum of 2 scan ·frames were considered in the 60 second 
acquisition interval for the 1.0 and 1.5 meter antennas to 
limit the angular scan rate required to reasonable values. 

6 • .2.5,.2 DETECTION STATISTICS. 

The signal-to-noise ratio required for a given probability 
of detection of a Swerling Class 1 target with a given number 
of pulses available for non-coherent integration is conveniently 
obtained from Fehl~er's treatment of Marcum's and Swerling's 
data on detection. The detection G~ta is referenced to a 
false alarm number which in turn i3 related Lo the false alarm 
time. The false alarm time is defined as the time during 
\~hich the probability is 0.5 that there \~ill not be a false 
alarm. 

In view of the maximum search time of 60 seconds, a reasonable 
false alarm time is about 600 seconds. This \~ill result in 
only a momentary halt in the antenna scan with a probability 
of 0.5 once every 10 search intervals. During tracking only 
those false alarms which occur within the range gate are 
important and these are filtered by the range tracking loop. 
The false alarm time <will be optimized later in the study. 

Fehlner defines the false alarm number as the number of 
independent opportunities for a false alarm in the false alarm 
time. It is related to false alarm time, t f , as follows: 

I 
n = tf(PRF) G 

where; 

mN 

G = number of range gates (of width T) per range s\~eep 
m = number of pulses integrated coherently (m>l) 
N = number of pulses integrated incoherently (N)l) 

If range 
gates of 

gating is not used the number of effective range 
width T in the interpulse interval 1 is:::-J~l,=,,,_ 

PRF T(PRF) 

and for this case, 1 (PRF) G = --
T 

and 

1. Fehlner, L.F.;"Target Detection by Pulsed Radar", John 
Hopkins University Report TG451. 
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Considering the 
alarm number in 
time t g , to the 

For the 

I 

use of range gates we may express the false 
terms of the ratio, a, of the range gate on 
interpulse period, 1 , as 

PRF 

radar case m~l and 

For the case of the 6.8 KHz. PRF the range gate is on approx­imately for the entire interpulse period and a=l. For the case of the 3.7 KHz. PRF the range gate is on for 22km or 147 ~sec out of the 270 ~sec interpulse period and a=O.SS. 

An investigation Ivas made to determine if it is more efficient, in terms of signal-to-noise ratio require~ to use a range gate equal in width to the range interval to be searched or to search in range with a narrow range gate at the same time as the angle search is in process. 

If a priori range information is available to an accuracy of ±2km as indicated for mission 3-B then it is more efficient to use a 4km range gate to capture all of the received pulses while minimizing the opportunities for false alarm. The benefit of using a 4km wide range gate rather than a 22km Ivide gate amounts to about O. 4db at a 90% single scan probabili ty for a SIverling 1 target. 

If a priori range information is not available and the 22km interval is searched by a 4km I"ide range gate, the number of pulses available for integration is reduced by a factor of 22/4. The signal-to-noise ratio required for acquisition of a Swerling 1 target is a bout 3. 6db greater for the swept 4km gate than for a "wide open" gate 22km wide. 

Consequently, we I"ill assume -that for acquisition the range gate is equal in width to the range interval to be searched. 

For comparison and sizing purposes a pulse width of l~sec I"ill be used to compute the false alarm number. Variations up to a factor of 5 from the l~sec value will result in less than O.Sdb change in the computed value of signal-to-noise ratio required for acquisition. 

A plot of the signal-to-noise ratio required for acquisition for a SIverling 1 target as a function~f the number: of scan frames in the 60 second acquisition interval is given in Figure 6.2-6.A 
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simi l ar plot for the same target with 6- step frequency 
~gility is given in F i gure 6 . 2- 7. 

S~nce the pulses are essentially uncorrelated pulse- to 
pulse when frequency agility is used the signa.l.-t:o-noise 
ratio required ~s essentially independent o f the number of 
s 'can frame s in the 60 .econd interva l . 

6.2.6 TRANSMITTER AND RECEIVER PARAMETERS . 

Having established the signal-to-n oi se r a tio required f or 
a 0.99 probability of de t ection in a 60 second i nterval for 
various radar conditions , we will next deter mine the 
transmitte r and receiver c haracter istics wh ich are requ i red 
to acquire t he 1m2 targe't before the range closes to 19km . 
Considering the maximum velocity of 45m/sec and an acquisition 
time o f 60 seconds , the acquisition process mus t start at 
21. 7km. 

The range equatio n d iscussed previously will be r eferenced 
in the following d iscussion . It is repeated for reference 
below. 

SN'X'== ,tf'C"t.),-:'(j 
(411) 'S X"'l/<, 7.;5 L 

Values for the parameters L , Band Ts are established i n 

the following paragraphs . The othe r parameters are ei the r 
given or are to be determi neu . 

6.2 . . 6.1. LOSSES. 

The general loss t erm L, will be defined to include the 
follOlving: 

L 

where; 

"" L L L m s f 

L = MicrOlvave loss in transmit path . 
L

m = Beam Scanni ng loss . 
L~ = Fil .o r mi~.Him~\ ·b:h 10:111 . 

r 
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The total loss 
to be about 1.6 dB. 
at 1.5 dB. 

in the transmit path, L , is estimated 
The loss in the receiv~ path is estimated 

The beam scanning loss, L I pertains to the fact that the 
signal is not received at fullsamplitude except at the peak 
of the beam as the beam scans past the target, \~hereas in 
computing signal-to-noise required for acquisition we assumed 
the pulses integrated were all the same amplitude. 

Typical values for beam scanning loss given in the literature 
is 1.6 dB for each scan dimension or a total of 3.2 dB for a 
two dimensional scan. These values are based on the use of 
l-way beamwidths in determining time on target and scan 
spacing. In this study 2-\~ay beam\~idths are used throughout. 
An integration over the two-way power pattern of a uniformly 
illuminated circular aperture between the two-way half power 
points indicates an average scanning loss of 1.0 dB. Using a 
30% overlap of successive scans the loss in the cross scan 
dimension is equal to 0.55 dB. The total scan loss is then 
equal to 1. 55 dB .. 

The maximum signal-to-noise ratio, SNR, occurs when the 
recei ver bandw5_dth is matched to the pulsewidth. HO\~ever, to 
m~n~mize complexity in the receiver the matched filter is usually 
approximated by a passive circuit. In particular, using two 
synchronously tuned stages as an IF filter the filter mismatch 
loss, Lft is abo~t 0.56 dB for the optimum 3 dB bandwidth time 
product of 0.61. The noise bandwidth for this filter is a 
factor of 1.22 times the 3 dB band\~idth. 

For a given pulsewidth, T, the 3 dB bandwidth should then 
be equal to 0.61 Hz. The noise bandwidth, Bn' for this filter 

T 
is a factor of 1.22 times the 3 dB bandwidth or 0.75 Hz. --

T 

6.2.6.2. SYSTEM NOISE TEMPERATURE, Ts. 

The system noise temperature, Ts' may be expressed: 

where: 

T +T +LT are 

T = Antenna noise temperature. 
Ta = Transmission line noise temperature = T(L-l). 
Tr = Thermal temperature. 
L - Transmission line loss factor. 
Te = Receiver noise temperature = To(NF-l). 

To = R~ference temperature =290 o K. 

NF = Receiver noise figure. 

1. Skolnik, M.I.; Introduction to Radar Systems. 
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The antenna temperatu~e due to cosmic radiation looking into 
space is about 2.7°K. 

The physical temperature of the transmission line will be 
assumed to be 290 0 K which with the receive path loss 
of 1. 5dB yields a transmission line noise temperature of 
119°K. 

The receiver will be assumed to be a microwave mixer type 
without RF amplification for preliminary sizing purposes. 
Using a balanced Schottky diode type mixer a noise figure of 
about 7.0db can be realized at any given frequency from 
9.3GHz. to 16GHz. The equivalent receiver noise temperature 
is then 1160 o K. 

The r~t system noise temperature becomes 

TS = 2.7+119+1636 = 1758°K 

6.2.7. TRANSMIT ENERGY REQUIRED FOR ACQUISITION. 

The transmitted energy per pulse required to achieve a given 
signal-to-noise ratio is computed in Table 6.2-3. 

The sUbstitution F =0.75, is made in the radar range equation n , 
to relate the receiver noise bandwidth, B , to pulsewidth,T. 
This assumes the use of a two stage synch¥onous filter as 
discussed previously. The tran~mitted energy per pulse can 
then be written: 

where the symbols are as defined previously. 

The result of the calculation in Table 6.2-3. 

Pt , = 47.0+1010g(SNR)-2010gG dB W sec 

6.2.7.1 AVERAGE TR.lI.NSMITTED POWER REQUIRED :r'OR ACQUISITION. 

The amount of transmitted energy per pulse required for 
acquisition is found by substituting the value for antenna 
gain given in Tableb.2·,{into the expression for transmitted 
energy per pulse .given in Table 6.2-3 along with the value 
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Symbol 

SNR 

= (SNR) (41T) 3R4kTS (0.75)LmLsLf 

G2 ;\2cr 

Parameter 

Signal-to-noise ratio 

(41T) 3 (0.75) \ 

R4 (Range) 4 

K Boltzmann's Constant 

Ts System Noise Temperature 

Lm Microwave loss in transmit 

Ls Scan loss 

Lf Filter Missmatch loss 

G2 (Antenna Gain) 2 

;\2 (Wavelength) 2 

cr Radar cross section 

PtT (Peak Transmit Power) (Pulse width) 

Value Value in db 

10 log (SNR) 

1500 31. 8 
(21.'7xl03m) 4 173.6 

-228.6 

1758°K 32.4 

path 1.6 dB 1.6 

1.6db 1.6 

0.6db 0.6 

G2 -20 log G 

2xlO-2m 34.0 
1m2 0 

47. 0+1010g (SNR) - 20 log G 

Table 5.2-3 COMPUTATION OF TRANSMITTED ENERGY PER PULSE FOR 

INCOHERENT PULSE RADAR. 
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of signal-to-noisp. ratio required for acquisition from 
Figures 6.2-6 and 6.2-7. 

The average transmitted power required for acquisition 
is obtained by mUltiplying the required transmitted eneray 
per pulse by the pulse repetition frequency. The average 
transmitted power required for acquisition of a 1m2 Swerling 
1 target is given in Figure 6.2.-8 as a function of antenna 
size and the number of scan frames in the 60 second acquisition 
interval. 

The corresponding value of average transmitted power for the 
case of six-step frequency agility is given in Figure 
6 •. 2. -9. The average pm'ler required in this case is 
essentially independent of the number of scan frames in the 
60 second interval since the pulses are uncorrelated pulse­
to-pulse. 

The use of frequency agility has two important benefits. 
First, ·the average transmitted power required for acquisition 
is substantially lowered. Secondly, it is not ne~essary to 
program more than 1 scan frame in the acquisition interval. 
The later factor translates into lm'ler weight and power 
consumption of the antenna drive mecnanism. 
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6.2.8. RANGE TRACKING ACCURACY. 

The range tracking errors may be grouped into deterministic errors, 
which are fixed for a given set of operating parameters; fixed 
random errors, which are random but relatively constant over the 
period of time the radar· is in use; and fluctuation errOl:S which 
have periods of a few seconds or less. A tabulation of range 
tracking errors is given in Table6.2-4.A brief discussion of these 
errors is given in the following paragraphs. The error in the range 
tracker itself is assumed negligible for signal-to-noise ratios 
above unity due to digital implementation of the tracking loop. 

The net long term, or bias error, is the sum of the deterministic 
error and the fixed random error. For pulse widths of l~sec or less 
the maximum error (deterministic plus 3a fixed random) is equal 
to 48.5 meters. However, if the lag error is removed by computation 
the net bias error is about 25.5m 3a which is near the 24m 
specified maximum value. 

The fluctuating· error is dominated by target induced range errors. 
The net 3a fluctuating error considering a 18.2 m target at 30° 
aspect is about 15m. This is half of the allowable error of 30 m. 

6,2.8.1. VELOCITY LAG. 

The range data is filtered by the equivalent of a low pass f~lter 
with a time constant of 0.5 seconds. The resulting lag error for 
a steady velocity of is equal to 0.5 (velocity). This error can be removed 
by computation since velocity and time constant are known. 

6.2.8.2. CLOCK FREQUENCY. 

The basic timing reference for the radar is a 30 MHz. crystal 
controlled clock. An accuracy of about 0.01%, la is adequate 
for this application. 

6.2.8.3. START PULSE STABILITY. 

A "start" pulse is generated to start the time measuring interval 
by detecting the leading edge of the transmitted RF pulse. The 
variation in delay between the transmitted pulse and generation 
of the start pulse is less than ± 2 nsec. Assuming a uniform 
distribution of error the la value is about 1.2 nsec or 0.18 meters. 
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ERROR SOURCE Deterministic 
error 

Velocity lag*. 
. . 

0.5 V 

Clock frequency (0.01%) 

Start pulse stability 

i Propagation delay in .. receiver pulsewidth= 
0.1,1.0, ).Isec. 

Gating and threshold delay 

Calibration 

Quantizatio~ 

Range tracker jitter 
).Isec pulsewidth,SNR=3db 

** 
Target induced range errors 
(IS. 2m target,30oaspect) 

Total RSS la error 0.5 V 
) 

* Error may be removed by computation. 

** Error may be reduced to 1. 4l])eters r 1 a, , 

Net error = ,0,Sv.+ .{ (.00 OlR) 2+ (4. S ) 2 

~qsv~ ~(.0001R)2+ll.7)2 Net error = 
\ 

Net error = ~O~v+ i(.000lR)2+(9.S)2 

Net error = .\o~v+ V(.000lR)2+(S.4)2 , 

: 

I TABLE 6.2-4 RANGE TRACKING ERROR 

6.43 
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la error value, meters 

Fixed random 1F1ilctuatiIigg 

.0001 R 
0.2 

0.S3,S.3, 

0.1 

0.3 

0.05 

4.6 

~(.0001Rf+C.91) 4.7 

1'1(. 0001R)_2+ (S. 4 '2 

\Ising. frequency agility. 

R:;.9km 

R5.9km,Freq. agile 

R~9km 

R~9km,Freq. agile 

t . .., 

i 
I 

I 
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6.2.8.4. PROPAGATION DELAY IN RECEIVER. 

~he signal propagation through the microwave and electronic 
portions of the receive;:- will amount to several hundred nanoseconds. 
However, the nominal delay can be removed in calibration and only 
the variation over temperature and aging constitutes an error. 
We have assumed, to minimize matching loss, that the dominant 
filter are two synchronously tuned stages. considering cases of 
pulsewidths of 0.1 and 1.0 the corresponding receiver noise 
bandwidth will be about 7.5 mHz. and 0.75 mHz. respectively. 
The time delay through each stage is approximately equal to the 
reciprocal of the bandwidth of each stage, which is approximately 
a factor of ~ greater than the net resultant bandwidth. The net 
delay through the receiver is then about 0.19 Jlsec and 1.9 Jlsec 
corresponding to the bandwidths of 7.5 and 0.75 respectively. 

Assuming the use of an attenuator pad t.ype of AGC to hold the signal 
level relatively constant, the variation in delay can be held to 
about ±5%. Taking this as a maximum value with a uniform error 
distribution the 10 ~alue is about 2.9%. The propagation delay 
in terms of range is then O. 83m",arid.· 8: 3m for the bandwidths of 
7.5 and 0.75 mHz. respectively. 

6.2.8.5. GATING DELAY STABILITY. 

variation in the propagation delay of the signal through the range 
gate and counter start/stop circuitry are sources of error. 
The nominal delay through, tl),ese circuits will typically be about 
10nsec with a variation of less than ±3nsec maximum. Assuming a 
uniform distribution of error the 10 value is 1.7nsec or about 
0.12 meters. 

6.2.8.6. CALIBRATION. 

We estimate that a calibration of the range measurement portion 
of the radar can be made to an accuracy of ±0.5 meters at any 
range to 19km. Assuming a uniform distribution of error, the 10 
value is about 0.3 meters. 

6.2.8.7. QUANTIZATION. 

A 30 mHz. crystal controlled clock is used as the basic t!Wing 
reference for the radar. One clock cycle is then 3.33xlO seconds 
which is equivalent to·S meters of range. 
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The RMS value of the quantization error for asynchronous counting 

of a pulse train is related to the sample value and number of 

samples as follows: 

RMS error = Sample val.ue 

{6 V Nmiiber of samples 

In our case the sample value is 5 meters. The number of samples 

for a half second accumulation time at a PRF of 3.7 KHz. is 1850. 

The RMS error is then 0.05 meters. 

6.2.8.8.· RANGE TRACKER JITTER. 

For purposes of system sizing and comparisons; a split-gate range 

tracker will be assumed. This type of tracker is approximately 

~atched to the received signal when the receiver bandwidth is 

selected to optimize tignal-to-noise ratio. Other tracker 

configurations such as a leading edge tracker which can yield 

better accuracy but requires wider receiver bandwidths, will be 

treated later in the study. 

1 
Barton has developed expressions for the one sigma value of the 

random error or noise at the output of a split-gate range tracker, 

or' as follows: 

where; 
T 

Kr 

SNR 
PRF 
Br 

T 

(SNR) (PRF) 
Br 

= Pulse width. 

(SNR > 1) 

= Error slope factor = 2.5 when gate width and bandwidth 

is matched to 2ulse width. 

= signal-to-noise ratio .. 
= Pulse repetition frequency. 
= Bandwidth of range tracking loop. 

The bandwidth of the range tracking loop can be relatively long 

for the skin track mode due to the moderate dynamics involved. 

The bandwidth must be sufficiently high to prevent the tracker 

from lagging off of the pulse during target-radar dynamics and to 

prevent excessive lag error in t;1e data. 

Since the lag· error ca~ be removed from the range data by computation, 

a time constant of 0.5 seconds which restricts the lag to a small 

fraction of the l~sec pulse width was chosen. 

1. Barton, Loc Cit. 
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The lcr value of the fluctuating component of range error due to 
themal noise is plotted in Figure 6.2.-10 as a function of signal-to­
noise ratio and pulse width. A PRF of 3.7KHz. was used. 

6.2.8.9. TARGET INDUCED RANGE ERRORS. 

The subject of target induced range errors was discussed in 
sec~ion 6.1. .. 'fhe lcr value of the range fluctuations due 
to target effects is equal to about one half of the target depth 
in the r'mge direction. For the 18.2 meter target at a 30 0 aspect 
the range fluctuations will be about 4.6 mJlcr. 

This error can be reduced ny a factor of about 3.4 using pulse-to­
pulse frequency agility with a total bandwidth of 375 Hz. 

6.2.9. ACCURACY OF THE VELOCITY MEASUREMENT. 

Relative velocity is determined in the non-coherent pulse radar 
by taking range differences per unit time. Since we have assumed 
a digital range tracking mechanization, the velocity data can be 
obtained by implementing a digital filter. The filter would 
consist of a near perfect differentiator followed by a low pass 
filter. The filter would be of the form: 

H(S) = S 

where; 
Tf is the time constant of the low pass filter. 

The response of the range tracker will also be approximated by a 
low pass filter having a time constant Tt = 0.5 seconds as discussed 

previously. 

The tnansfer function of the tracker plus diff~rentiator plus 101" 
pass filter may then be expressed as: 

H(S) ___ -=-S __ _ 

(1+Tt S) (l+TfS) f 

For: the ,case bf" a constant range'rate of V meters per second the c~'.';:.I:r':'L co: ! 
output of the filter can be expressed: 

V 
F 0 (S)=-2 

S 

S 

which in the time domain is equal to: 

fo(t) = V [ 1 + (Tte T -T 
t f 

1 
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In th\3 steady state (t»T) the output is a steady signal of 
amplitude V meters per second as desired. 

For the case of a constant re2ative acceleration between the target 
and the radar of A meters/sec , the output of the filter becomes: 

which in the time domain is: 

~(f)::::: A rl-7;-7; - / (~e- t1F _ p;2e -0;)7 
L (7i--7F 'IJ 

In the steady state (t»T) the output becomes: 

fo'&)~~::: A [1-(77+7;)J 

Thu~for the case of changing velocity at a constant rate the output 
will lag the input by (Tt+Tf) seconds. 

Item C.2 of the Functional Requirements for the Rendezvous Radar 
specifies that "the radar range rate shall not lag the true range 
rate by more than 2 seconds." Since the range tracker time is 
about 0.5 seconds the time constant of the low pass velocity 
~er should be less than 1.5 seconds. A value of 1.0 second 
,-Till; -be used for preliminary computation purposes. 

The error in the velocity measurement can be expressed as a steady 
term plus a fluctuating error component. 

The steady error will be proportional to the range error plus the 
error in the differentiating process. The latter error is 
negligible for the digital mechanization. The steady error is 
also very low because all except the fluctuating errors and the 
error in the clock frequency listed in Table 6.2-4 are slowly varying 
(constants) which drop out in the differentiation process. The 
steady velocity error will then be about 0.01% of the velocity. 
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ConsiderL'1q the fluctuating component of the velocity 'Jrror we will· treat first the fluctuating error due to tracker jitter due to thermal noise. lVe define a range spectral density, IVr(IV), which exists prior to the effective filter in tho range tracKer. IVr(w) is essentially flat over the frequency region of interest or IVr(w)=lVr • Then, the total noise at the velocity output port is: 

#= f1? r ao 
aJ"Z- dcu ~ Li/-(o,s-a;)''jj)r(;.aC<J):! • 

'This ltntegi-al was evaluated by numerical means with a result of 

The range noise spectral density, IVr ' at the input to the tracker low pass filter is equal to 
2 ar T

t 
m2/radian 

1.57 

where ar is the RMS range noise at the couput of the range tracker 
low pass filter and the factor of 1.57 relates to the ratio of effective noise bandwidth to 3db bandwidth of a single section low pass filter. 

For a value for the time constant of range tracker filter of 0.5 seconds and a time constant of 1.0 seconds for the low pass filter following the differentiator, the total noise power at the velocity output port of the filter is: 

2 
N = _1_._8_5 __ a_r ___ 0_._5_ = 0.59 ar

2 

1.57 

The RMS or la value of the.noise is ~N= 0.77or • 

To maintain the velocity noise below a la value of O.lm/sec as specified (0.3m/sec,3a), the rangp. noise must not exceed 0.13 meters, la. Referring to Figure 6.2-10 and considering only therrnalnoise we see that for pulse width of l~sec a signal-to-noise ratio of 13db is required to achieve this low value. 
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The largest contributer to noise on the velocity output will be 
due to tarqet induced range noise. This subject was discussed 
in Section 6.1 where it was shown that extremely Idgh .. 
apparent range rates can be generated due to very small changes 
in target aspect. 

Considering the lS.2 meter target with two dominant reflecting 
surfaces on either end with a ratio of effective scattering 
area of 0.5 and a relative change in aspect angle of 2.So/min 
at an aspect angle of 30° as discussed previously for mission 3-B, 
a maximum range rate of about 122m/sec is indicated. The rate 
of this variation will be about 0.S7Hz. This rate will be 
attenuated by a factor of about 5 by t-l-te velocity filter ,1etwork 
to about 24 m/sec. 

An appreciable reduction in the target induced noise can be obtained 
by the use of frequency agility. By using the six step frequen~y 
agility and a PRF of 3.7KHz. the lowest frequency component of 
the range noise will be increased to 617Hz. A 617Hz. variation 
wi.ll be attenuated approximately a factor of 4000 by the velocity 
filter network. The 1.22m/sec peak velocity noise would then be 
reduced to about 0.03 m!iJec. 
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6.2.10 ANGLE TRACKING ACCURACY. 

The accuracy of the angle track of the target can be expressed 

in terms of bias errors and fluctuat'ng errors. The former may be 

caused by offsets in the positioning servo and phase errors in the 

antenna feed lines, in the monopulse combiner and in past cor.miner 

circuits. Fluctuating errors may be caused by re~eiver noise and 

glint of the target. 

The allowable error (30) in line-of-sight angle (LOS) is 

60 milliradians (3.4°) bias error and 10 milliradians (0.57") 

random error. The allowable error (30) in LOS angle rate is ' 

0.14 mR/sec (0.008°/sec) bias and 0.14 mR/sec random. We note 

that with the narrow 'beam antennas cO:ltemplated that the allowable 

bias angle error is well off the main lobe of the antenna. Further, 

the allowable angular rate error is extremely small. 

6.2.10 •. 1 ~BIAS",~GLE TRACKING ERRORS. 

The tracking error introduced by phase errors in the monopulse 

combinp-r process and antenna feeds has been analyzed by Dunn and 

Howardl who give the following expression: 

where 

E = e 
K = 

Error in pointing angle 

Gain constant 

'!' = Pre-combiner phase error 

~ = Post-combiner phase error 

(assumed small) 

The gain constant K relates the output of the phase sensitive 

detector to small angUlar displacements from boresight for a given 

; 1. Dunn, J.H. and Howard, D.D. "Precision Tracking with Monopulse 

Radar" Electronics, April 22,1960. 
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signal amplitude. Bartonl has shown that the error slope for 

typical monopulse antennas is equal to 1.57 times the maximum 

voltage of the sum channel per beamwidth error. In Dunn and 

Howards equation then, assuming unity max reference voltage, the 

value of K is equal to 1. 57 divided by the beull!\"idth. 

The error equation may then be written in terms of the antenna 

beamwidth, a, as follows 

a'll tan<J> 

3.14 

Typical monopulse combiners at Kuband, such as those buil'c 

by MDL, have phase errors of about 5° over a 10% bandwidth. 
, , 

Allowing an additional 5" of ph~se error in the feeds a total 

pre-combiner error of 10° will be assumed. The post-combiner 

phase error, principally that associated with the IF amplifier 

can be maintained less than 10° over the range of input signal 

levels. 

The net bias error is then computed to be 0.24 milliradians 

(0.014°) for the I meter diameter antenna and 0.48 milliradians 

(0.028°) for ~he 0.5 meter antenna. These values are two orders 

of magnitude better than the 60 milliradian allowable bias error. 

We conclude that the phase match tolerances can be appreciably 

larger than those assumed and still meet the angle accuracy 

requirements. 

6.2.10.2 FLUCTUATING ANGLE TRACKING ERROR. 

The fluctuating error due to receiver noise in a monopulse 

tracking system has been treated by Barton who gives the following 

1. Barton, D.K. Radar System Analysis. 
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expression: 

SNR STfr 
C [3 

/ 

where j. 

0t = RMS antenna pointing error 

Km = Slope of monopulse error 

SNR = Signal-to-noise ratio in bandwidth H 

'( 

f' 
r 

[3 

ct 

C 

= Pulsewidth 

= Pulse repition frequency 

= Antenna servo bandwidth 

= Antenna 
l+SNR 

SNR = 
beamwidth 

The parameter C takes into account the fact that b01:h the 

reference and the signal input to the phase sensitive detectors 

are noisy and that the output signal-to-noise ratio of the detector 

is reduced from the input signal-to-noise ratio of the difference 
l+SNR channel by the facter SNR where SNR is the signal-to-noise 

ratio in the sum channel. 

Barton shows that the error slope, K , is equal to 1.57 m 
for typical monopulse antennas. The servo bandwidth must be 

optimized for best tracking performance with minimum random 

error or noise. For preliminary sizing purposes a value of 1Hz. 

for the 1 meter antenna and 0.5 Hz for the 0.5 meter diameter 
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anten;~.a, which' are indicated from search requirements, will be 

used. The bandwidth can be changed during the tracking mode if 

required to optimize tracking . 

The resulting RMS noise for the two antennas is tabulated 

below. The sighal-to-noise ratio used is that obtained at about 

19km range which is about 2.3 dB greater than at 21.7 km where 

acquisition must begin. The IF noise bandwidth was taken as 

0.75 mHz., the pulsewidth at l~sec and the PRF at 3.7 kHz. 

Antenna Beamwidth SNR IF noise Servo noise RMS 
size, m one-way,Uad dB BW,mHz. BW,Hz. tracking 

noise,mR 

0.5 0.049 4.3 0.75 0.79 0.311 

1.0 0.024 8.3 0.75 1. 57 0.15 

The tracking data is smoothed tvith a time constant of 

2 seconds which has an equivalent bandwidth of 0.08 Hz. The RMS 

tracking noise on the data is then reduced by the square root of 

the ratio of data smoothing bandwidth to servo bandwidth or to 

G.12 mR for the 0.5 m antenna and 0.034 mR for the 1.0 meter 

antenna. The 3<1 values are 0.36 mR and 0.1 mR for the 0.5 and the 

1.0 meter antennas respectively. 

Angular scintillation (glint)· of the target also contributes 

to the random tracking error. As reported.in section 6.1 of this 

repor~ test data on aircraft models and on aircraft in flight 

indicates that the standard deviation of the glint error is between 

0.3 and 005 times the target extent. In the case of the 18 meter 

target, and assuming an aircraft-like scattering properties 

rather than the dumbbell model also treated in Section 6.1, the 

,6.54 
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RMS glint is about 9 meters. At ranges 

tracking error due to glint exceeds the 

error. 

less than 2.7 kill the 

3.3 mR RMS allowed random 

The use of frequency agility can reduce angular scintillation 

as long as the scintillation arises from scatterers distributed 

in the range dimension as well as in the angular dimension. 

Lindl shows' that the decrease in spectral density of the glint 

at zero frequency is approximately equal to the frequency agility 

bandwidth divided by 2 times the critical frequency. The critical 

frequency, 6fc ' as discussed in Section 6.1 is equal to 

where c is the velocity of light and D is the range depth of the 

target. 

The reduction in tracking error by frequency agility is the 

square root of the reduction in spectral density as given below: 

Reduction =' V -S~ 

where S is the frequency agility bandwidth. 

The: 18 meter target has a radius of about two meters. In 

the case of this target viewed broadside (which appears to be 

the condition for Mission 3-B at a range of about 7 km), D='2 meters. 

With the 375 mHz. frequency agility bandwidth previously 

oonsidered for aoquisition the reduotion in tracking error with 

frequenC',y agility is a faotor of 1. 6. 

1. Lind, G. "Reduction of Radar Tracking Errors with Frequenoy 

Agility", IEEE Transaotions AES-4 No.3, May 1968. 
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At a range of 2.7 km for Mission 3-B the target is viewed 
at an angle about 20 degrees from broadside and D becomes equal 
to about 6.5 meters and the reduction in tracking error is about 
a factor of 2.9. At 1 km range the viewing angle is about 32 
degrees from broadside and the reduction in tracking error is about 
3.B. 

A plot of the RMS angle tracking noise due to glint for the 
IB meter target and Mission-3-B is shown in Figure 6.2-11 for the 
frequency agile and non-frequency agile cases. It is noted that 
there is a significant reduction in the tracking noise due to 
glint when frequency agility is used, particularly when the 
target is viewed at an angle off of broadside. 

We will next estimate the spectral characteristics of the 
glint. 

The IB meter target-viewed near broadside passes through 
glint cycles about every 0.04° of aspect angle change for dominant 
reflectors on either end and at a slower rate for reflectors 
nearer the center._ At a maximum LOS rate of about 0.20 per second 
indicated for 14ission 3-B, a maximum angular scintillation rate 
of about 5 Hz. can be expected without frequency agility. The 
glint spectral density, assuming a flat response to the maximum 
frequency of 5 Hz. and for the RMS value of 6.2 mR, indicated 

-6 2 in Figure 4-3 for a 1 km range, is 7.7xlO Rad /Hz. Using 375 mHz. 
bandwidth frequency agility/the spectral density is reduced about 
a factor of 14 to about 5.5xlo-7Rad2/Hz. 

The 1 Hz. servo bandwidth associated with the 1 meter antenna 
will then result in tracking noise due to glint equal to about 
0.93 mR RMS. The 0.5 Hz. servo bandwidth of the 0.5 meter antenna 
yield tracking noise of 0.66 fiR RMS. 
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In addition, if the angle data is smoothed with a time constant 

of 2 seconds (0.08 Hz. bandwidth) the RMS noise on the angle 

readout- for either antenna will be 0.2 mR RMS or 0.6 mR, 3a. 

6.2.11 ANGLE RATE ACCURACY. 

The error in the angular rate measurement includes errors 

contributed by the rate gyro, dynamic response of the tracking 

system and noise due to differentiation of antenna positioning 

noise caused by thermal noise and glint. 

Angular rates up to 5 degrees per second as specified can be 

measured with an accuracy of .005 degrees per second or about 

0.09 milliradians/sec., using a good quality rate gyro. The 

standoff error is also about this same value. The rate errors 

due-to dynamic response of the servo is a function of the angular 

acceleration of the target. This error will not be treated in 

this study due to lack of information on the parameters involved. 

The response of the rate measuring device to antenna jitter 

due to thermal noise and glint is treated next. The parameters 

involved in rate response to antenna jitter are shown below. 

tv -I / 

1 -I s 
/-r.:52S .1.--__ -11 ' 1-1_/_/_2s_:-->-/II 

A/19k #Cl'.ft" Al?leF7r?U' xC7le 
L?C"I1'.f1i4/ Servo Gyro 
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Carrying out the operations indicated above, the mean square 

noise on-the rate output, N, can be expressed in the case of the 

0.5 meter antenna 

N= 

l 
carrying out the indicated integration by numerical means we find 

For the 1.0 meter antepna the relationship is 

N=2 .12W i:-.') 

The density function in the case of antenna jitter due to 

thermal noise is developed from the previous -expression 

K d SNR BTfr 
m y ci3 

to be equal to 

W(w) = 

In the case of the 
-6 2 

1.12xlO Rad /Rad 

9xlO- B Rad2/Rad. 

0.5 meter antenna W(w) is computed to be 

and for the 1.0 meter antenna case it is 
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The resultant RMS noise on the angle rate output in the case 

() of the 0.5 meter antenna is then computed as follows: 

-3 
1.07xl0 Rad/sec 

In the case of the l.v meter antenna the RMS angle rate 

noisD due to thermal noise is 4.4xlo-4Rad/sec. 

Considering next the effects of glint on the rate output, 

we use the expression 

density due to glint, 

previously determined for the angular noise 

-7 2 
5.5xlO Rad /Hz., and compute the resultant 

noise on the angle rate output as above. The result for the case 

of the 0.5 meter antenna is 

and for 

glint is 

the 1.0 meter antenna the RMS 

-3 
equal to 2.7xlO. Rad/sec. 

-3 
1.9x10 Rad/sec 

angle rate noise due to 

The 30 values of the angle rate noise are tabulated below. 

Antenna size Angle rate noise, mRad/sec.,30 

Due to thermal noise Due to glint 

at 19km 

0.5 m 3.2 
5.7 

1.0 m 1.3 
8.1 

We note that the maximum error due to ~hermal noise occurs 

at maximum range whereas the maximum noise due to glint occurs at 

shorter ranges. The angle rate noise in either event is predicted 

to be substantially larger than the specified value of 0.14rnR/sec,3cr. 

The total random angle rate error is the RSS of these values 

, 
and the rate gyro error of about 0.09 rnR/sec. 
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6.3 •. ~ANALYSIS OF COHE~ENT PULSE RADAR. 

A oandidate coherent pulse radar scaled to the requirements 

of the rendezvous radar is described in this section. 

characteristics of the radar is given in Tabl~ ~.3-1 

block diagram of the radar is given in Figure 6.3~1 

A summary of 

A functional 

The range to the target is determined by measuring the time delay 

between the transmitted and receive pulse in the same mann~~ as 

described for the non-coherent pulse radar. The relative velocity 

between the radar and the target is determined by extracting and 

measuring the doppler shift on the received signal. 

6.3-1 AMBIGUITY CONSIDERATIONS. 

The ambiguity diagram for a uniform pulse train was discussed in 

Progress Report #2. The diagram is shown again for reference in 

Figure 6.3-:-2. 

peaks occur for doppler frequencies spaced 

ambiguity function is of the form sin Nn$b. 

Velocity ambiguity 

by the PRF = (~). The 
b. 

Nsinn$b. 

along the velocity axis where N is the number of pulses integrated 

and $ is the difference between the received doppler frequency and 

the doppler frequency to which the filter is matched. 

For the number of pulses integrated, N, equal to 16 or greater, 

as is the case with both the 0.5 ~nd 1.0 meter antennas and a PRF 

of 3.7 KHz., the amplitude of the first sidelobe is about 15.7 db 

below the main lobe. 

It is apparent from the ambiguity diagram that t·o avoid the 

possibility of tracking the wrong doppler peak the PRF should be 

higher than the greatest spread in doppler frequencies, considering , 
both opening and closing velocities. 
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TABLE 6.3-1 CHARACTERISTICS OF CANDIDATE COHERENT PULSE RADAR 

PERFORMANCE CHARACTERISTICS 

Detection range (PD=0.99,S,,,erling III m2 target) .••••• 19km 

Velocity capability .................................................................... -20 to +46 rn/sec 

Acquisi tiorl time ........................................................................ .. 

Angular search coverage ............................................................ 
Accuracy, 30 at maximum range 

Bias Random ---
Angle track 0.24 mR 0.1 mR 

Angle rate 0.09 mR/sec 1.3 mR/sec 

Range (lag error) 29.7 m 

Velocity (lag error) V(. 03 2+ (. 006V) 2 

SYSTEM CHARACTERISTICS 

60 sec 

BOO cone 

Operating frequency .................................. 15 gHz. 

Antenna 

Size ........ "............................................................................... 1 rn diameter 

Beamwidth (two ,'lay) ............................. 1. 0 degrees 

Gain ........................................................................................ 
Scan program ........................................................................ 

TRANSMITTERl 

A. During angle and range acquisi'tion. 

Pulsewidth , .......................................................................... .. 

p~' ............ \0 .......................................................................... .. 

Pea~ power .......................................................................... .. 

Average power .................................................................... ;, 

41. 7 dB 

spiral 

1. 0 ,lsec , 
4.B kHz. 

1.3 kw 

6. watts 

1. A margin of 2 dB has been applied to transmitted pm"er. 

2. Changed to 4.B kHz due to revised velocity limits. 
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TABLE 6.3.-1. (continued)' 

Transmitted frequency .••••..••••••••••••••••• Frequency agile 

Number of discrete frequencies .••.••.. 6 

Frequency separation ...........•....•. 75 mHz. 

Total agility bandwidth •••.•.•••••••••. 375 mHz. 

B. During velocity acquisition and target tracking. 

Pulsewidth 

Range <9km............................................... J...OlJsec 

Range <9km........................ O.l)Jsec 

PRF.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .. 8 kHz .. 

Peak power ............................................ ""............ 1.3 kw 

Average potver.................................................... 6 watts 

Transmitted frequency .•.•..••••••.••••• Frequency agile 

Receiver noise temperature ••..••.•.•••.••••• 1758°]{ 

Receiver noise bandwidth 

Range >9km .•.•.•••.•.••••..••••.•••••• 750 kHz. 

Range <9km .............................. 7.5 rnHz. 

Doppler tracking filter width ••..••..•••.•.• 200 Hz. 
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The maximum velocity for the rendezvous radar in the skin 

track mode has been specified by JSC as ±150 fps or ±46 m/sec. l 

Plots of allowable range velocity envelopes to avoid range and 

velocity ambiguities at transmitted frequencies of 10, 15 and 30GHz. 

are given in Figure 6.3-3 along with the specified operating envelope. 

Also shown in the figure is the nominal range-velocity profile 

for mission 3B. The range and velocity uncertainties for that 

mission are also shown for the maximum specified operating, range of 

19 km. 

It may be observed from the figure that even without allowances 

for a dead band beyond the upper limits of range and velocity, that 

it is not possible to obtain unambiguous range and velocity data over 

the limits specified at the favored operating frequency of 15 GHz. 

There is the possibility that t.he maximum opening velocity will 

not be as high as the maximum closing velocity. The profile of 

mission 3B, for example, indicates a closing velocity for most of 

the rendezvous. If we assume a maximum closing velocity of 46 m/sec 

as specified, but a maximum opening velocity of 20 m/sec the doppler 

frequency spread is 6.6 KHz. In this event a PRF of 6.8 KHz. can be 

used as discussed for the non-coherent pulse radar. This results 

in unambiguous range information to 22 km and unambiguous velocity 

information over the velocity range +46 m/sec to -20 m/sec • 

.6.3.2. METHOD OF RESOfNING RANGE AMBIGUITIES. 

In the event that the total velocity spread is too large to 

allow unambiguous operation at maximum range, methods exist to 

resol ve 'the ambigui ties as discussed in the following paragraphs. 

It is apparent from the ambiguity diagram for a periodic 

pulse train, Figure 61.3-2 that the range and doppler ambiguities 

1 . The velocity range was later modified to -38m/sec to +7.5m/sec. 
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are a result of the equal spacing of ide~tical transmitted pulses. 

Two commonly used approaches can be taKen to expand the non-ambiguous 

range-velocity region. ~'~he first is to sequentially transmit 

multiple fixed values of PRF and r~solve the range ambiguities in 

data processing. The second is to use a random PRF which in effect 

smears all but the central ambiguity peak into a broad area, allo\~ing 

the ambiguity to be resolved through amplitude discrimination. 

The multiple discrete PRF approach is the easier to implement 

of the two and it will be used for reference purposes in this study. 

A dual sequential PRF system uses two values of PRF switched to resolve 

range ambiguities. The two PRFs are chosen to have a common sub­

mUltiple frequency and a ratio of highest PRF to lowest of ml/m2 , 

where ~l andn2 are integers. The maximum unambiguous range may 

then be expr~,ssedl: 

'm C 
R = _~2 ______ _ 

unamb. 
PRFmin 2 

In our case to avoid velocity ambiguities over a ±46 m/sec velocity 

interval the minimum PRF must be twice the doppler frequency or 

PRF = 2 (~v) = 9.2 KHz. at a transmitted frequency of 15 GHz. 

To provide a margin to facilitate filtering, a PRF of 10KHz will 

be selected. The parameter m2 becomes eq~~l to 1.47. Since m2 

must be an integer its value will be 2 and the unambiguous range 

becomes equal to 30 kn. The two values of PRF are then: 

PRF 2 = 2 ~ = 10 KHz. 

PRF l = 3 ~ = 15 KHz. 

where ~ is a parameter used for convenience in calculating the value 

of PRF 1 given PRF 2' 

1. Skolnik, M.I. Radar Handbook 
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In this dual PRF system the initial angular search for the target 

would be conducted with a PRF of 10 KHz. After acquisition and stop 

of the antenna scan the range tracker woulQ be allowed to search 

the 15 km range associated with the 10 KHz. PRF, lock on, and measure 

a range which we will call R'. The measured range can eiti:er be 

equal to the true range o:r: equal to the true range minus J::; km • 

The PRF is then changed to 15 KHz and the range gate is 

positioned in the various positions tabulated below and a 'test is 

made for signal presence. 

Gate positions S~gnal presence True 
for 15 KHz. PRF range 
.. 

.. 
. - . 

R' G, G? G, G2 
<10 km R/ - .-

V R 

<10 km - R +5km V- R' +15km 

, 
R' >10 km R -lOkm - v 

>10 km - R' -5km V R' +15km 

The true range is then determined by noting which gate the signal 

appeared in as indicated in the table. 

After resolving the range ambiguity the PRF is switched back 

to the 10 KHz. mode and range tracking proceeds. A digital 

implementation of the range track7r is assumed so that the 15 km 

offset can be readily switched in to the data registers. When the 

measured range approaches 15 km the PRF is' switched to 15 KHz, to 

avoid eclipsing the return signal by the transmit interval. When 

the measured range decreases below 15 km the PRF is switched back 

to 10 KHz. 
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6.3.3. TARGET ACQUISITION. 

Three conditions will be considered during initial acquisition. 

(1) That the velocity range is -20 to +46 m/sec and the target range 

is known within an uncertainty of ±2 'km so that a PRF of 6.8 KHz. 

may be used. (2) That iqe have the same velocity range but no 

a-priori information so that a PRF of 3.7 KHz. must be used for initial 

acquisition and switch to 6.8 KHz. for tracking. (3) That the 

velocity range is ±46 m/sec and a dual PRF mode is used with a PRF 

of 10 KHz. and 15 KHz. 

In conditions (1) and (2) the acquisition characte. 'stics and 

average power required for acquisition are the same as previously 

established for the non-coherent radar with a PRF of 3.7 KHz. or 

6.8 KHz. We note also that since there is only one pulse "in flight" 

within the range interval of interest (22 km) that pulse-to-pulse 

frequency agility can be used just as in the case of the non-coherent 

radar previously discussed. The only complication, as discussed 

later, is that the frequency agility program results in a spreading 

\.) of doppler frequency which complicates acquisition and tracking 

of the doppler signal 

Considering the third~ case of the dual PRF of 10 and 15 KHz. 

we note that we can not use frequency agility when the target signal 

return time may be greater than the interpulse period. The reason 

being that the local oscillator is normally s,qitched to the new 

frequency when the next pulse is transmitted and the retain signal 

from the first pulse would then not be recognized. 

In order to take advantage of the benefits of frequency 

agility a lower PRF could be .used for initial acquisition and range 

determination and then the PRF increased to 10 and 15 KHz. as requi~ed. 

This sequenc~ would be as follows: 

i Ij) 

~, I 
i, t: 

i. '. 'I"' .ff ~ 
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Conduct the initial angular search at a PR,' of either 6.8 or 3.7 KHz. 

depending if a-priori range information is, or is not available. 

Frequency agility would be used. This search program is the same as 

discussed for the non-coherent radar-and the acquisition 

parameters developed previously apply. 

After initial acquisition and stop of the antenna scan, the range 

tracker is allowed to search for and acquire the signal. At the lowe)_-

3.7 KHz. PRF the tracker can search through the entire interpulse 

region moving 1 range gate width per pulse in about 0.073 seconds 

assuming a range gate width of 1 V sec. 

Allowing a dwell time of 10 pulses per range position, the total 

range search time is about 0.8 secDr,<is. Now having the true target 

range contained in the tracking register the PRF can be increased 

to 10 KHz. to provide unambiguous velocity information. A switch 

would be made to 15 KHz for a short period when required to avoid 

eclipsing. 

Having knowledge of target range the local oscillator signal can 

be programmed for the proper frequency to correspond to the transmitted 

pulse being received. 

5.3.3.1.DOPPLER FREQUENCY SEARCH AND ACQUISITION. 

The amount of power in the carrier term, Pc' or central line, 

which will be processed by the doppler tracker, is related to Lhe 

-peak pOl1er of the received pulse train, P r' as follows: 

P ~ P ~ (PRF)2 c _ r 

where r is the pulse width. 

,-
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Assuming the use of 2 synchronously tuned IF stages as before! 

the noise bandwidth! B! is equal to 0.75 and the signal to noise 
T 

ratio at IF as previously developed for the non-coherent 

is SNR/if = Pr T where No is the nois~ density. 

0.75 No 

signal to noise density ratio becomes 

0.75 
SNR/if ) = 

T 

pulse radar 

The peak 

Finally! the carrier to noise density ratio can be expressed: 

= SNR/if ( 0.75) T (PRF)2 

The doppler tracker is fed from the range gated IF signal. 

Consequently, the amount of noise 

ratio of the range gate acting on 

gate equal to the pulse width, D 
n 

power is reduced by the duty 

the noise, D. Assuming a range 
n 

= T (PRF). 

The signal to noise ratiG within the doppler ttacking filter 

having an effective noise bandwidth; Bt~ can then be expressed: 

SNR/tracker = 

6.72 

(0.75) PRF 
B
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6.3.3.2. SELECTION OF DOPPLER FILTER WIDTH. 
The optimum doppler tracking filter width is a function of 

the acceleration to be tracked, closed tracking loop bandwidth, 
allowable doppler search time and IF signal-to-noise ratio 
available. 

Considering first the acceleration to be tracked, at maximum 
range (19 km) for mission 3-B the rate of change of velocity is 
only about 0.1 fps or 0.03 m/sec. During the braking sequ!;!nc'e 
commencing at about 7.5 kill range the velocity is decremented in 
5 fps steps. Using a value of 6v = ~ 10 fps/sec 2 or 3.05 
m/seo 2 the rate of change of doppler frequency is 305 Hz./sec. 

The doppler trac:king loop can be implemented Iqith a rather 
fast closed loop time constant, 0.05 to O.l.seconds is typical, 
to allow tracking during each 6v step. The velocity data can be 
smoothed later to the extent required. 

A first order tracking loop Iqi th a transfer function of the 
form 1 with T = 0.1 seconds will be assumed. Since 1+ T S 

accurate velocity data is apparently not required during the 
actual velocity step a second order loop is not =equired. 

The loop Iqill then track the frequency change during 1:he 
step with a lag (in the steady state) of 30.5 Hz. To maintain 
track during the step the one sided tracking filter bandwidth 
should be 30.5 Hz. or 61 Hz. total. 

By the time the range ha •. decreased to 7.5 km the signal-to­
noise ratio in the IF bandwidth has increased by about 18 db from 
its value at initial angle acquisition beginning at about 22km. 
~his results in a high signal-to-noise ratio in the doppler 
tracker during the tim~ of maximum acceleration. The signal-
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to-noise ratio within the tracking filter which is required for 

good tracking performance is about 3 db. 

Considering next doppler tracker acquisition and operation 
at maximum range, the rate of change of doppler frequency is 

extremely small, about 3 Hz /sec. The choice of doppler tracking 

filter width in this region is dictated by signal-to-noise ratio 
and acquisition considerations. 

The probability of acquisi!:ion per doppler search cycle 

will be a function of the fluctuation rate of the target return. 
From considerations of rate of change of relative target aspect 

angle for mission 3-B as dis-cussed previously it appears that 
targets 3 meters in length or greater will decorrelate in about 

5 seconds for a fixed transmit frequency. Therefore it is reasonable 

to select the doppler search period to be about this value since 
little benefit is gained in searching at a higher rate. 

Adopting a 5 second search rate we can determine the appropriate 

doppler filter ,'lidth to cover the ±46 m/sec. velocity or ±4.6 KHz 

doppler frequency band in the interval. If we assume the tracking 

filter is made up of a dual section RC filter as will be discussed 

in a later section the equivalent time constant of the filter, 

Tf , is equal to: 

1 

4 fr 

where fr is the one sided noise bandwidth, which in turn is equal 

to 1.22 times the 3db corner frequency of the dual section filter. 

The 3 db filter width, B, is then selected such that the dwell 

time on any frequency is equal to Tf when the filter is swept over 
the 9.2 KHz. doppler range in 5 seconds. This criterion results 

6.74 
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in a two-sided, 3 db doppler filter width, B, of 28 Hz. 

is 

Using 

34 Hz. 

this value for 3 db bandwidth the noise band\~idth, Be 
The signal-to-noise ratio 'in the tracking band\~idth is 

related to the signal-to-noise ratio in the IF bandwidth as follows: 

SNR/tracker 

SNR/if 

= 0.75 (PRF) = 19 db for PRF = 3.7 KHz. 

= 21.8- db for PRF = 6.8 KHz. 

6.3.3.3. DOPPLER SIGNAL ACQUISITION. 

Assuming the frequency search time equal to the target 

decorrelation time for the case of a fixed transmitter frequency 

the doppler acquisition problem involves Swerling case 1 statistics 

(an independent look each data sample) with a single pulse 

integrated. Allowing 2 sweep intervals at 90% probability of 

acquisition per sweep a signal-to-noise ratio of about 21 db 

in the doppler tracker bandwidth is required. This corresponds 

to a signal-to-noise ratio af IF of 2 db at a PRF of 3.7 KHz. 

and -0.8db at a PRF of 6.8 KHz. This is appreciably less than 

required for initial angle and range acquisition. 

The SNR required for initial acquisitio~as given in 

Section6,,,2 is as follows for 2 angular searCh, frames in 60 seconds. 

Antenna size 

O.Sm 

0.5m 

1.Om 

LOrn 

PRF 

3.7 

6.8 

3.7 

6.8 

SNR 

KHz. 

KHz. 

KHz. 

KHz. 

required for acquisition 

9 db 

7.5 db 

13 db 

11.3 db 

We conclude that initial angle acquisition is the driving 

requireiaent \~ith respect to signal-to-noise ratio required, rather 

than doppler acquisition and tracking. 
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Considering next the use of frequency agility, the doppler 

o frequency spread due an agility band\'/idth of 375 MHz. is 2.5%. 

To accomodate the resulting doppler frequency spread of 115 Hz. 

at a velocity of 46 m/sec, the doppler tracking filter bandwidth 

should be at least 115 Hz. A filter bandwidth of 200 Hz. was 

selected to decrease acquisition time as discussed later. 

Rather than calculate the signal-to-noise rat~o required 

for acquisition for a signal spectrum of this type, some.measured 

data was examined. For a Gaussian shaped doppler signal spectrum 

with a half power bandwidth of 100 Hz and a 100 Hz. tracking 

filter searching at a rate of 1.6 KHz /secJa signal-to-noise 

ratio of 4 db is required to achieve an acquisition probability 

of 0.90 per scan. The total doppler frequency range, ±4.6 KHz., 

could be searched in 5.8 seconds at the 1.6 KHz./sec rate. The 

search rate can be increased by using a wider tracking filter 

width at a corresponding loss in signal-to-noise ratio. A filter 

width of 200 Hz. for exam~le allows a search rate of 2.8 KHz./sec 

,) to be used which corresponds to a search time of 3.3 sec per frame. 

'.~' 

A 4 dB SHRin the doppler tracking bandwidth corresponds to a -:-6.6dB 

signal-to-no:Ls(,) ratio in the IF bandwidth at a PRF of 3.7 Hz. 

and -9.2 db at a PRF of 6.8 KHz. 

For comparison purposes the signal-to-noise ratio required 

for initial angle acquisition using frequency agility is tabulated 

below: . (see Section 6. 21 

Antenna size PRF SNR reguired 

0.5m 3.7 KHZ. 2.1 db 

0.5m 6.8 KHz. 0.6 db 

l.Om 3.7 KHz. 6.0 db 

1.Om 6.8 KHz. 4.4 db 
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It is apparent that initial angle acquisition is again 

the driving requirement so far as sizing the system parameters 

which affect signal-to-noise ratio rather than doppler frequency 

acquisition and tracking. Therefore~ the transmitted power 

requirements developed tor the non-coherent pulse radar in 

Section 6.2 also apply to the coherent pulse radar as 

discussed in this section. 

6.3.4. DOPPLER FREQUENCY MEASUREMENT. 

A block diagram of a candidate doppler frequency tracker 

is given in Figll.1;-e_6.3-4. The signal at the output of the IF 

amplifier is converted to audio (zero IF frequency) by mixing 

with a quadrature signal at the IF frequency which is coherent 

with the transmitted frequency. The conversion to audio frequency 

facillitates filtering of the signal to avoid the doppler shifted 

signals associated with other spectral lines. The conversion to 

audio is done in quadrature to preserve the sign sense of the 

velocity data. The quadrature signals are applied to a single 

sideband modulator where they are mixed with quadrature signalS 

generated by the tracking loop. One pair of mixed signals is 

used to operate the acquisition circuit. The other pair is 

summedJwhich effectively cancels one sideband of the mixing 

process. The single sideband error signal is equal to a fixed 

loop reference frequency, F , which can be any convenient frequency c 
above the maximum doppler frequency, plus the tracker error 

frequency. This signal is mixed in quadrature with the reference 

frequency and the resulting quadrature components of the error 

frequency are £iltered and limited and applied to a discriminator. 

The low pass filters form the doppler tracking filter. Either 

an up pulse or a down pulse is generated each cycle of the error 

frequency depending if the error frequency plus reference frequency 

is above or below the reference frequency. The discriminator 
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output is applied to an up/down counter which counts up or down o depending on the sense of the error frequency. 

, .J 
. ,".,,/ 

The output of the up/down counter controls a binary rate 

multiplier, BRM, which operates on the clock frequency. The 

BRM generates a frequency whichJafter adding in an offset 

frequency and debunchinq,is applied to the simgle sideband modulator . , 
to close the tracking loop. To avoid the complication of 

determining sign sense the loop is offset with a frequency ,equal 

to the maximum expected negative doppler frequency, Fn' 

The parallel binary signal at the output of the up/down 

counter is transferred into a shift register. The doppler frequency 

measurement is then shifted out toa display upon command. 

Signal search and acquisition is achieved by applying a 

clock signal to the discriminator which causes it to generate up 

pulses which are used by the up/down counter to generate a frequency 

sweep. The frequency transitions back to the lower sweep limit 

when the counter overfIOl'ls. 

Big~alacquisition is based on a correlation process in the 

two acquisition channels. If noise alone is present the signals 

in the two channels are uncorrelated and the average value at the 

multiplier output is zero. If signal is present the multipler 

output has a net positive average value which is sensed by the 

threshold detector when the signal-to-noise ratio :reaches.a 

preset value (about 3 db). Upon sensing the presence of a signal 

the frequency search is halted and doppler tracking is initiated. 
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6.3.5. ACCURACY OF MEASUREMENT OF DOPPLER FREQUENCY. 1Li The accuracy of measurement of the average doppler frequency 

; \ . 

will be better than 1 Hz. (0.01 m/sec) with the digitally implemented 
frequency tracker described above. This accur.acy value was obtained 
from examination of test data on similar frequency trackers 
and under conditions of doppler spectrum widths up to the 
tracking filter bandwidth and signal-to-noise ratios as low as 
3 db. 

In the case where frequency agility :'.s not used, the central 
doppler line has a very small bandwidth after mixing ~lith the 
coherent source and the fluctuation error of the frequency tracker 
is mainly a function of the tracker bandwidth and signal-to-noise 
ratio. For this case the rms value of noise at the tracker 
output, crT' is approximated by the 

1 2' ]1/2 = [ .07BB (l+S7N l . 

L T (1 + S/Nll/
2 

expression 

where B = tracking filter bandwidth 
T = averaging time 
S/N= signal-to-noise ratio 

Considering operation at the maximum rang~the signal-to-noise 
ratio available at angle acquisition varies from about 9 to 13 db 
deDending on PRF and antenna size. Using the 9 db value and a 
tracking filter width of 200 Hz. with a 2 second data smoothing 
time the rms value of the noise at the tracker output after 
smoothing is 1.B Hz. This is equivalent to a rms velocity 
fluctuation of O.OlB m/sec. 

The noise at the output of the frequency tracker for the case 
of frequencyggility if a complex function of the fluctuation 
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characteristics of the target. This comes about since the 

discrete doppler spectrum will peak at various frequencies 

depending on what carrier frequency yields the highest target 

return.at a given instant of time. 

A maximum value for this variation is equal to the extent 

of the doppler spreading due to frequency agility. This is equal 

to ± 1.25% of the center doppler frequency for the 375 MHz 

frequency agility bandwidth considered previously. However, this 

is clearly an extreme case requiring the return from the first 

or last agility positions to be at least an order of magnitude 

larger than from any other frequency agility step over the 2 

second allowed averaging time. 

A more reasonable model would be a.linear variation from zero 

at one side of the spectrum to a maximum at the other. The tracking 

pos'ition for this case, assuming a tracking filter wider than the 

doppler spectrum, is about 0.47 times the half spectrum width, 

displaced from the center of the spectral band. In our case it 

amounts to about 0.6% of the center doppler frequency. This will 

be taken as a 3cr value. The lcr value of fluctuation noise for the 

maximum velocity of 46 m/sec is then 9.2 Hz. which is equivalent 

to 0.09 m/sec. 

Another approach to determining the fluctuating component of 

the error is to approximate the discrete doppler spectrum by a 

continuous doppler spectrum of the same bandwidth. For the case 

of signal-to-noise ratios greater than 10 db the tracker noise 

for the continuous Gaussian doppler spectrum case given by the 

expression: 

cr = T [~ .T 
:i J B2+B!] 

1/2 

I 

where T = averaging time 
B. = doppler spectrum bandwidth 
B~ = tracking filter bandwidth 
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Taking a 2 second averaging time (time constant) corresponding I:J to the 2 second allowable dynamic lag in velocity data, a doppler 
spectrum width of 115 Hz. and a tracking filter bandwidth of 

" 
" 

" -
I , 

200 Hz. the RMS noise is 2.3 Hz. The equivalent RMS velocity 
noise is 0.023 m/sec. 

As would be expected this approach results in a smaller value 
of noise than the former method since the high frequency spectral 
components are filtered by the 2 second filter. The more 
conservative 0.006V m/sec value \~ill be used for this study . 
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6.4 . . ANALYSIS QF PULSE DOPPLER RADAR WITH FM RANGING. 

A candidate high duty ratio pulse doppler radar with FM 

ranging is described in this section. A summary of characteristics 

of the radar is given in Table 6.4-1. A functional block diagram 

is given in Figure 6.4.-1. 

The duty ratio of the radar is approximately 0.5. ·The 

transmitter is operated in a fixed frequency mode during initial 

acquisition then s\~itched to an alternating fixed frequency and 

linear frequency modulated. mode as illustrated in Figure 6.4-1. 

Velocity is measured during the fixed frequency mode and range 

is measured during the FM P§lriod. 

During the velocity measuring mode the difference between 

the transmitted and received frequencies is related to velocity 

through the doppler relationship, 

During ranging the difference between the received and transmitted 

frequencies is equal to the doppler shift plus a frequency 

proportional to range as follows: 

where 

V = velocity 

A = Wavelength of radiation 

S = Slope of linear frequency modulation 

R = Range 

c = Velocity of light 

Range is determined after subtracting off the doppler shift 

obtained during the velocity measuring mode. 
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TABLE,6.4-1 CHARACTERISTICS OF CANDIDATE PULSE DOPPLER RADAR. 

PERFORMANCE CHARACTERISTICS • 

Detection range (PD=0.99 for 1 m2 Swerling I target) ••.•• 19 km Velocity capability.......................................................................... -38 to 

+7.5 m/sec Acquisi tion time................................................................................. . 60 seconds Angular search coverage ............................................ <>............. 80°cone Accuracy, 3a 

1 Angle track 
Angle rate l 

Range: 

R >2 km 
R <2 km 

Velocity 

Bias 

0.24mR 

ri.09mR/sec 

o 
o 
o 

SYSTEM CHARACTERISTICS. 

Random 

0.15mR (at maximum rL,nge) 
0.62mR~(at maximum range) 

V(;005R)2+(.57)2+(.85V)2 
V (. 005R) 2+ (5.7)2+ (. 85V) 2 
V (.03)2+(.006V)2 

Operating frequency............................................................... 15 gHz .. Antennai' 

Size ................ II .................... II .. • .. .. .. .. .. .. .. • • .. .. .. .. .. .. .. • .. .. .. .. • • 1 m diameter Bearnwidth ( two-way) ................................................... .. Gain .......................................... ' ............................... .. Scan program ................................ ~ ...................... .. Transmitter characteristics 
PRF ..................................... : •••••••••••• Pulsewidth ... a ............................................................. .; ••• Peak power2 .................................................................... .. Average J:?ower 2 ................................................................... .. 

1. Not including glint effects. 
2. A margin of 2 dB is included in transmitter power. 
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1.0 degrees 
41. 7 dB 
Spiral 

4.8 kHz. 

100 llsec' 
10 watts 
5 watts 
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FREQUENCY AGILITY PROGRAM. 

Angle acquisition .......•.......••......... 6 frequencies 

75 mHz. apart 

Step duration 1.5msec 

Tracking. . . . .. .. . . . . .. . .. . . . . . .. . .. . . .. . . . . . . . . .. . . 6 frequencies 

75 mHz. apart 

Step duration 13msec 

Receiver noise temperature ••. ; .•...••.••••••••.• 1758°K 

Doppler filter bank: 

Filter bandwidth........................... 267 Hz. 

Number of filters........................... 17 

Frequency tracking ~ilter bandwidth .•...••.••••• 267 Hz. 

. Frequency modulation program 

Deviation: 

R > 2km................................... 2 rnHz. 

R < 2km.................. ................ 20 mHz. 

Time of linear sweep .•........••••..•.••..• 13 m/sec 

Time of retrace .. ;............................ .5 rn/sec 
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6.4.1. PRF CONSIDERATIONS. 

POl: the skin track mode the velocity limits of -3Bm/sec 

and +7.5 m/sec yield doppler shifts of -3.B kHz. and +750 Hz. 
The PRP should then be greater than 4.55 kHz. 'to avoid velocity 

ambiguities. In the case of the cooperative mode the velocity 

limits are ±91 m/sec and the PRP must be greater than IB.2 kHz. 

Considering f~rst the cooperative mode, a minimum PRP of 

20 kHz. I-Till be selected. A fixed 20 kHz. PRF would result in 
blind ranges where the signal returns at the time the transmitter 

is on and the receiver is off as illustrated in Figure 5.4-2. 

It may be noted that at a range of 7.5 km and multiples, the 

received signal is completely eclipsed by the transmitter pulse. 

To avoid blind ranges the PRF may be changed either in a 

regular or random manner. The first range hole at 7.5 km is 
completely filled by changing to a PRP of 30 kHz. as illustrated 

in the figure. Por the cooperative mode the PRF will be dithered 

in a linear manner between the limits of 20 kHz, and 30 kHz. 

The dither rate must be such that the full PRF range is covered 

during the dl-Tell time of the antenna beam and the' target. For 

the skin track case and 1 search frame in 60 seconds the dl-Tell 

time for a 0.5 m diameter antenna is 35.6 m/sec and for a 1 m 

diameter antenna it is B.9 m/sec. The dither frequency, assuming 

a triangular function, should then be 14 Hz. for the 0.5 m diameter 

antenna and 5.6 Hz. for the 1 m diameter antenna. 

To make most efficient use of the average transmitted pOl'1er 

the transmit and receive duty ratios are made equal. To operate 
at a minimum range of 30 meters the receiver recovery time must 

be less than o.~ microseconds. The duty ratio at a 30 kHz. PRF 

is then 0.497. POI: analysis purposes the duty ratio for transmitter , 
and receiver I-Till be assumed to be equal to 0.5 
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6.4.1.1 ECLIPSING/CONVERSION LOSS. 

Only the power in the central spectral line of the 

received signal, Pc' is processed by the doppler filter. The 

other lines which are separated by the PRF fall well outside of 

the filter band\~idth. Pc is related to the peak received po\~er, 

Pr ' as follows: 

where '1 is the effective pulsewidth received after eclipsing 

by the transmitter on time. For example, at a range of 7.5 km 

the effective pulsewidth is about 17nsec at a PRF of 30 kHz. 

It decreases to zero -as the PRF is varied to 20 kHz. 

The the case of transmitter and receiver duty ratio equal 

to 0.5, the average factor between peak power and the power in 

the central spectral line, when integrated over a co;nplete dither 

cycle, was computed as -10.8 dB. This factor will te referred 

to as the eclipsing/conversion loss factor, Le' in later signal­

to-noise ratio calculations. 

The aclipsing/conversion loss term contains both a factor 

of 0.25 (6dB) representing the conversion peak power of a 50% 

duty ratio IF signal to the amount of power in the central spectral 

line, and the additional loss due to eclQPsing which with PRF 

dither averages to 4.8 dB. 

the 

The eClipsing 

PRF is matched 

portion of the loss can be reduced to zero if 

to the target range. 

previously, the PRF is const.rained by the 

Ho\~ever, as discussed 

maximum doppler frequency 

to be encountered. The doppler iu-qllency range corresponding to 

the skin track velocity limits -38m/sec to 7.5 m/sec is -3800Hz. 

to +750Hz. a PRF equal'to the total frequency range above plus 

a margin of 250Hz. or a total of 4800Hz. is about the 101-lest 

value which can be used and resolve the velocity ambiguities. 
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A plot of the eclipsing loss, including the,6dB conversion factor, 

is given as a function of range for a PRF of 4800 Hz. in Figure 

6.4-3. Two conclusions are drawn from the figure: (1) The average 

loss over the initial acquisition region is about 9 dB and (2) 

using the 4.8 kHz value for PRF it would be mor~ efficien~ not 

to dither the PRF until the range has decreased to be10\'l 9 km. 

The eclipsing/conversion loss can be expressed in terms of 

the PRF and Range as follows: 

L = r: (PRFY R :> c 
e ) 4PRF 

[1 
- 2R 

(PRF)] 2 } 
R > c 

Le = -- 4PRF c 

It may be noted from'the first expression that the loss 

.) increases as R2 with decreasing range. Thus
J 

the PRF could be 

held constant at 4.8 kHz in the skin track mode for ranges below 

9 kHz as 

as 1/R4. 

well since the peak 

However, since the 

signal 

dither 

from the target 

capability must 

is increasing 

be incorporated 

for the cooperative mode anyway, one might as well obtain the extra 

SNR available and dither the PRF as the range decreases below 9 km. 

The PRF program would be the same as used in the cooperative mode. 

Another possibility to minimize eclipsing is to set the PRF 

to an optimum value based on a-priori knowledge of target range 

and velocity. Assuming, for example, that the Velocity is either 

unknown or is the maximum value of 38 m/sec and it is desired to 

minimize the eclipsing at a range of 21 km. .Then the PRF can 

be made equal to two times 3.6 kHz (the optimum value at 21 km if 

velocity were not a constraint), or 7.2 kHz. At 21 km the 
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eclipsing is zero and the combined eclipsing/conversion loss is 
6 dB. If the uncertainty in the a-priori knoKledge of range is 
± 1 J;:m the loss increases to 6.9 dB, if the uncertainty is ±2 km 
the loss is 7.9 dB and if the uncertainty is ±3 km the loss is 
8.9 dB. Therefore, if a-priori range information is available 
to an accuracy better than ±3 km we recommend that it be used to 
set on the PRF for initial acquisition. The PRF in this event 
can be made equal to a multiple of the lowest optimum PRF to 
minimize eclipsing; the higher the multiple the greater the 
eclipsing loss due to a given error in the knowledge of range. 

6.4.2. SIGNAL AND NOISE CONSIDERATIONS. 

The peak received signal power, P r , is related to the radar 
system parameters as follows: 

PtG2A2
(l 

P = 
r (411) 3R4LfL L 

s m 

where the symbols are as defined in section 6.2. 

The power in the central spectral line,Pc ' which is that 
processed by the system is related to the peak power through the 
eclipsing/conversion loss term, Le' as 

The nDise power in the doppler filter bandwidth is equal to 
kTsBTDN where k_is Boltzmanns constant, TS is the system noise 
temperature, BT is the noise bandwidth of the doppler filter and 
DN is the duty ratio of the noise applied to the doppler filter. 
In our case DN=O.S sinpe the IF amplifier is blanked when the 
transmitter is on. 
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The net signal-to-noise ratio within the doppler filter 

may t.hen be expressed: 

SNR 

where the eclipsing 

expressed in ratios 

loss L 
e 

greater 

and the general loss terms,L, are 

than unity. 

6.4.3 SELECTION OF DOPPLER FILTER BANDWIDTH. 

During initial angle acquisition the dwell time on the target 

is 4.4 msec (assuming 2 angle search frames) with a 1 meter 

diameter antenna) and_17.B msec ,~ith a 0.5 meter antenna. If we 

consider initial acquisition on doppler alone before the range 

modulation is applied the frequency search interval is 4.6 KHz. 

for. the skin track mode and lB.2 KHz. for the beacon track mode. 

We will first explore the feasibility of searching for the doppler 

signal with a frequency tracker while the angle search is in 

progress. To achieve a good compromise between false alarm rate 

and sensitivity during acquisition with the searching filter it 

has been found in practice oesirable' to follow the filter with a 

post detection time constant which is about 5 times longer than the 

reciprocal of the tracking filter bandwidth, B. 

5 
Allowing a dwell time of -a seconds for each of the 

intervals the total search time, TS' can be expressed: 

2.3xt0 4 

B2 
seconds. 

4.6 KHz 

B 

For the 0.5 meter antenna dwell time of 17. B msec) and assuming 

two frequency search frames in this period) the tracking filter­

bandwidth is equal to 1.1 KHz. For the case of the 4.4 msec 
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antenna dwell time the bandwidth must be 2.3KHz. 

For the longest antenna dwell time considered the tracking filter bandwidth required to meet the acquisition time requirements 
is more than a factor 01;-10 greater than required to accomodate the dynamics of the signal. The transmitted pOlver required for acquisition would be correspondingly larger for acquisition than required for tracking. To minimize the transmitted powE'r requirements a filter bank will be used for acquisition, f?llowed by a frequency tracker for accurate frequency measurements. 

Even if a-priori velocity information is available for all missions it does not appear feasible to omit the filter bank. For example,if_'relative velocity is known within ±S m/sec (a factor of 2.5 larger than the uncertainty indicated at a 19 km range for mission 3-B) the tracking filter width decreases to 750 Hz. for the- longest antenna dwell time considered, which is still several times greater than needed for tracking. 

The optimum bandwidth of the individual filters in the filter bank will be determined next. Assuming the filters consist of single tuned circuits the optimum half power bandwidth is equal to about 0.4 times the reciprocal of the pulsewidth. The missmatch 
loss of this filter to a rectangular pulse input is about 0.9 db. The loss to the actual signal form due to the antenna pattern will 
be somewhat less. For the 4.4 msec dwell time on target associated with the 1 meter diameter antenn~_the optimum bandwidth is 91 Hz. For the 17.8 msec dwell time of the 0.5 meter antenna the optimum bandwidth ,is 22 Hz" If filters with these' bandwidths were implemented to cover the 4.6 KHz doppler band a bank of 50 filters would be required for the 1 meter antenna and 207 filters for the 0.5 meter antenna. For preliminary system sizing purposes these values for bandwidth will be used. However, it is not 
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attractive hardware-wise to have so many filters and a trade-off 

between ~ransmitted power and numbers of filters can be made. 

An alternate approach is to implement the filter bank with a 

microcomputer using Fast Fourier Transform techniques. 

The number of fLl terscan also be reduced if a-priori 

velocity information is available. Some examples of this are 

given in Table 6.6-2 

6.4.4. TARGET ACQUISITION. 

Target acquisition in the uncooperative radar mode will be 

considered in the ,fo~~owing.paragrap~s. 

We note that it is not feasible to use frequency agility on 

a pulse-to-pulse basis with the high PRF radar considered sinc~ 
several pulses are "in flight" to the target at a given time. The 

feasibility of us', ng frequency agility on groups of pulses will 

be explored later. 

Using a single transmitted frequency the target return is 

assumed to follow Swerling 1 fluctuation statistics. For the case 

of the filter bandwidth essentially matched to the dwell time of 

the target during the antenna scan, the effective number of 

pulses integrated is one. A false alarm time, t F , of 10 minutes 

will be used as before which results in a momentary hesitation 

in the antenna scan program once each 10 minutes. The false 

alarm number n l as discussed in the treatment of the non-coherent 

pulse radar is equal to: 

where tF = false alarm time 

CI. = ratio of range gate time to 
1 

on PRF N = number of pulses integrated 
T = pulsew:i:dth 
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TABLE 6.4-2 

NUMBER OF DOPPLER FILTERS REQUIRED AS A FUNCTION OF A-PRIORI 

VELOCITY INFORMATION. 

A-priori velocity Velocity search Number of filters reqd 
information range 1 m antenna 0.5 m antenna 

None 
., Beacon mode ±91 m/sec 200 827 

• Skin track mode .,.38 to -7.5 roS ec 50 207 

Sign (opening or closing) 

• Beacon mode 91 m/sec 100 414 

• Skin track mode 38 m/sec 42 173 

Value and sign within flO m/sec 22 91 
±lOm sec 
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In the case of the pulse doppler radar the pulsewidth,T, 

becomes equal to the reciprocal of the doppler filter bandwidth, 

the receiver gate on time is equal to 0.5, N = 1 and the false 

alarm time per filter becomes equal to the total number of filters 

times the system false alarm time. 

Using ., system false alarm time of 10 minutes and the number 

of filters and filter bandwidths previously determined for the 

0.5 meter and the 1.0 meter antenna the false alarm number,'nl , 

. ,becomes equal to 1. 4xlO 6 for both antenna cases. 

The signal-to-noise ratio required for acquisition for 2 

scan frames in the acquisition period and a detection probability 

of 0.9 per scan is obtained from Fehlners treatment of Marcum's 

and Swerling's data on detection as before. The signal-to-noise 

ratio required is 21.ldB. 

6.4.5. TRANSMITTED POWER REQUIRED FOR ACQm SITION. 

The transmitted power required to achieve a given signal­

to-noise ratio within a given doppler filter bandwidth is computed 

in Table 6.4-3. The peak transmitted power required was found to be: 

Pt = 54.5+101ogSNR+lOlogBT-201ogGdBW 

The parameters associated \~ith the 1 mt;ter and the 0.5 meter 

diameter antennas are tabulated below along, with the peak 

transmitted power and average transmitted power required for 

acquisition. 

Antenna Antenna Filter Bandwidth SNR Trans. Pm~er 
size gain 3 dB noise required Peak. Average 

I 

0.5 m 35.7 dB 22Hz. 35Hz. 21.,1 dB 91.2 W 45.6 W . 
1.0 m 41. 7 dB 91Hz. 143Hz. 21.1 dB 24.0 W 12.0 W 
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TABLE 6.4-3 
COMPUTATION OF PEAK TRANSMITTED POWER REQUIRED FOR ACQUISITION 
FOR PULSE DOPPLER RADAR. 

Pt '" 
SNR(4n)3R4KTsBTD~eLMLsLF 

G2).2a 

S:r:robol Parameter 

SNR Signal to noise rat:'.o 
(4n)3 

R4 (Range). 4 

K Boltzmann's constant 
Ts System noise temperature 

BT Noise bandl.,idth of doppler 

DN Duty ratio of noise gate 

LM Microwave loss in transmit 

LS Scan loss 

Le Eclipsing loss 

LF Filter mismatch loss 

G2 
(Antenna gain)2 

).;! (Wavelength) 2 
a Radar cross section 

Peak transmitter pm.,er 

6.98 

filter 

path 

Value Value in 

SNR lOlogSNR 
1984 

4 33.0 
(21. 7xl03) 173.6 

-228.6 
1758°K 32.4 

BT lOlogBT 
0.5 -3.0 

1.6 db 1.6 

1.6 db 1.6 

9.0 9.0 

0.9 db 0.9 

G2 
-2010gG 

2xlO-2m 34.0 
1m2 0 

54.S+1010gSNR+IOlogBT 
-2010gG 
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6.4.6. USE OF FREQUENCY AGILITY. 

It: appears feasible to use frequency agility \"ith the 

pulse doppler, FM ranging radar by applying the frequency agility 

to groups of pulses. 

During acquisition six frequency steps, as discussed previously 

in the case of the non-coherent pulse radar, would be programmed 

during the d.,ell time of the antenna' beam on the target. 

be 

After angle acquisition the individual frequency steps would 

made the sam~i~~t~he frequency modulation ramp time, or 13.3 

milliseconds. A total of six frequency agility steps as considered 

previously would then take about 80 milliseconds. The time the 

frequency tracker dwells during the doppler or ranging measurement 

would be made equal to 80 milliseconds to average the measurement 

over the six frequency agility steps. 

Considering initial target acquisition with frequency 

agility, the antenna would be programmed to scan the angular 

search area once in the 60 second search period. The dwell time 

of the antenna beam on target is then 8.9 msec for the 1 meter 

diameter antenna and 36 msec for the 0.5 meter diameter antenn~. 

The duration of each frequency position is then about 1.5 msec 

for the 1 meter antenna and 6 msec for the 0.5 meter antenna. 

To accomodate these six independent samples the doppler 

filter bandwidth must be increased, to 267 Hz. for the 1 meter 

diameter antenna and 67 Hz. for the 0.5 meter antenna. In addition 

we note that at the maximum velocity of 38m/sec the doppler spread 

due tb frequency_agility is equal to 95Hz. Thus, the bandwidth in 

the case 'of the 0.5,m antenna will be increasea to 100 Hz~ 

The signal-to-noise ratio required for acquisition \'lith the 

six-step f~equency agility is found as before by determining the 

frequency agility gain,' G (nel ,relative to the Swerling 1 case for 

ne frequency states. 1 

1. Barton, D.K. Loc Cit. 
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where Lf(l) is the fluctuation loss for a fixed frequency. 

In our case for a probability of detection of 0.99 the frequency 

agility gain is about 14 dB. 

The signal-to-noise ratio required for acquisition is obtained 

by finding the SNR required for a detection probability of .0.99 

per scan with 6 pulses integrated with a false alarm number of 

1.4xl0 6 =2.3xlO S for a Swerling case 1 fluctuation characteristic 
6 

and subtracting the frequency agility gain from it. The result 

is as follows: 

SNR (with frequency agility)=24.8dB-14dB=10.8dB. 

Alternately, we note that since the number of frequency agile 

steps is equal to the number of independent samples during the 

time on target that a SIverling Class 2 detection model also applies. 

For these conditions the SNR required for acquisition using 

Swerling 2 statistics is 1.0.8 dB which agrees with the previous value. 

The system parameters associated with the two antenna sizes 

are tabulated below along with the transmitted power requirea for 

acquisition using six-step frequency agility. 

Antenna Antenna filt,er Bandwidth SNR Trans. Power 
size gain 3 dB noise requirec Peak Average 

0.5 m 35.7 dB 100Hz 157 Hz 10.8 dB 38.9W 19.5W 
1.0 m 41.7 dB 267Hz 419 Hz 10.8 dB 6.4w 3.m 

6.4.7. SYSTEM IMPLEMENTATION. 

A block diagram of the candidate pulse doppler radar system 

with linear FM ranging 'is given in Figure 6.~-1. 

The antenna is fed from a standard monopulse combiner. The 

transmitted energy is applied to the sum port and the sum received 

signal is also extracted from this port. Elevation and azimuth 
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received difference signals are ,)btained from two separate 

difference channel ports. 

During initial acquisition the transmitter operates at a 

50% duty ratio and without ranging frequency modulation applied. 

The received signal in the sum channel is applied to the sum 

receiver where it is converted to an IF frequency by mixing with 

a local ascillator signal off-set but coherent with the 

transmitted signal. A double conversion would be used; the first 

to an IF of about 10 MHz and the second to an IF of about 1 MHz. 

This allows filtering against PRF harmonics whil~ providing an 

IF output compatible with operation of the filter bank and 

frequency tracker which follow. The bandwidth of the IF amplif~er 

needs only to be broad enough to pass the received doppler plus 

ranging frequency band. 

The 1 MHz. IF signal is applied to the filter bank which for 

the case of a radar with a 1 meter diameter antenna consists of 

51 filters each with a bandwidth of 91 Hz. One method of 

mechanizing the signal detection process is to follow each filter 

in the filter bank with a detector feeding two smoothing filters 

in parallel. One smoothing filter would have a long time constant, 

at least 10 times the reciprocal of the doppler filter width to 

develop a good estimate of the noise level out of the doppler 

filter. The other smoothing filter would have a time constant 

matched to the doppler filter bandwidth so that it responds 

promptly to the signal when the target is intercepted. The 

output of the two filters is fed to a coinicdence detector, 

biased off by the amount required to yield the desired false 

alarm time. 

The advantage of the dual time constant acquisition approach 

is that it is adaptive and independent of the amplitude or shape 

of the noise spectrum br gain of the individual filter channels. 
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When the signal exceeds threshold in any filter in the bank 

the antenna search command is inhibited and the antenna scan is 

,~"" stopped. When the antenna scan is stopped the dual time constant 

acquisition system no longer functions and instead of comparing 

the short time constant smoothing filter outPllt with that of the 

long time constant filter it is compared with a reference voltage 

derived from the broad band noise level. This less precise 

1 

means of signal detection can be used after initial acquisition 

because the average signal-to-noise ratio in the doppler filter 

is relatively high. 

After stopping the antenna scan the frequency tracker, which 

has a digital type veo, is set on the frequency of the filter 

which responded in t~e doppler filter bank. If the antenna scan 

was stopped due to a false alarm in the filter bank, the frequency 

tracker will not acquire and after approximately one second the 

an~enna search is resumed. (On the average one false alarm will 

be experienced ina 10 minute period.) 

./ When the frequency tracker acquires, within one second after 

being set to the approximate frequenc~ a readout of velocity is 

made available and the angle tracking loops are activated. 

The IF signals from i:he sum and difference receivers are 

applied to mixers along with a corresponding signal from the 

frequency tracker such that the IF signals are converted to a 

fixed frequency of about 16 KHz. (which is the loop reference 

frequency of the frequency tracker). A bandpass filter centered 

at 16 KHz. with a bandlvidth about twice the frequency tracker 

bandwidth is used to extract the signal after mixing. The broad 

bandwidth minimizes differential phase shift between the sum 

and difference channels of the monopulse tracking loops. 
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The angle error is developed by comparing the difference 

channel outputs with the sum channel outputs by means of synchronous, 

or phase sensitive, detectors. The resulting error signals are 

used to drive the antenna to a monopulse null in each axis. 

After the antenna has been driven to fine alignment with 

the target, the ranging mode is initiated by frequency modulating 

the transmitter. A linear triangular modulation is used such 

that the net signal frequency is the sum of the doppler shift 

and the range frequency as indicated below: 

where the doppler frequency, f D, is either plus or minus depending 

if the range is opening or closing. 

To minimize the frequency search required;.the slope of the 
[ 

frequency modulation function is selected as tl'le<'minimum;-.allowing 

frequency to be processed with an ample margin relative to the 

accuracy requirements. (bias error of 24m and random error of 

91m for R >9 km and O.olR or 30 m for R <9 km). A range scale 

factor of 1.OHz. per meter for ranges greater than 2 km and 

10 Hz per meter for ranges less than 2 km was selected as a 

compromise between the two requirements. 

During search and acquisition of the range signal the FM sawtooth 

function is repeated until acquisition occurs. 

In absence of a-priori range information the frequency 

tracker is programmed to search upwards in frequency from the 

known doppler frequency an amount equivalent to 20 km of range, 

or 20 KHz. 
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I The bandwidth of the frequency tracker must be wide enough to 

encompass at least three spectral lines of the ranging signal, 
which are 75 Hz apart, or 225Hz. 

After acquisition of the range plus doppl~r signal the 
measured frequency is put into temporary storage, the transmitter 
resumes a.fixed frequency mode and the tracker VCO is positioned 
to the last measured doppler frequency. If acquisition does not 
occur within 5 seconds during the range acquisition period the 
tracker is again set on frequency by noting which filter in the 
filter bank is responding. 

After acquisition of both doppler and ranging signals the 
frequency tracker is ~ime shared between these two functions, 
dwelling about 80 msec on each function. A separate tracking/ 
holding register is used to control the VCO for doppler and range 
tracking. 

applied to 

", 

The output of the two tracking/holding registers is 
the data converter ~Ihere the frequency information is 

~onverted to digital signals representing velocity and range 
to the target. 

6.4.8. ACCURACY OF VELOCITY AND RANGE MEASUREMENTS. 
The measurement errors may be grouped into fixed random 

errors, which are random but relatively constant over the period 
of time the radar is in use and fluctuation errors which have 
periods of a few seconds or less. 

VELOCITY MEASUREMENT ERROR. 
A tabulation of velocity measurement errors is given in Table 

6.4-4. A brief description of these errors is given in the 
foliliowing paragraphs. The net 30 error is aboutY/(.03)2+(.006V)2 m/sec. 
At the maximum velocity for skin track of 38m/sec the 30 error is 
0.23 m/sec. 
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ERROR SOURCE 3 (J ERROR VALUE, 

Fixed random 

I 
j 

Transmitter -3 Negligible frequency; 10 % 

Frequency tracking 0.03 

Data processing Negligible 

.:.".y..-•• 

Total, rms 0.03 

* Assuming the use of frequency agility. 

, -.: 

TABLE 6.4-4.. VELOCITY MEASUREMENT ERROR. 

,; 6.105 
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METERS/SEC. 

Fluctuating 

-

0.006V* 

Negligible 

0.006V 
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TRANSMITTER FREQUENCY. 

The amount of doppler shift is directly proportional to the 

transmitted frequency. Therefore, a given per7entage uncertainty 

in transmitted frequency results in the same percentage velocity 

measurement error. Since this is a coherent system the transmitted 

frequency will be referenced to a crystal oscillator. The 
5 -3 

oscillator stability will be better than 1 part in 10 or lxlO %. 

The resulting velocity measurement error is negligible. 

FREQUENCY TRACKING. 

Test data indica~es that the error in measurement of average 

doppler frequency can be maintained less than 1 Hz. (0.01 m/secl 

under conditions of doppler spectrum widths up to the tracking 

fil~er bandwidth and signal-to-noise ratios as low as 3 dB. 

This will be taken as a la value. The 3a value is 0.03 m/sec. 

We will next consider the fluctuation error, or noise at 

the tracker output after smoothing. 

For the non-frequency agility case the spectral width of the 

central line is v8ry narrow and RMS value of the fluctuations 

at the tracker output, aT' can be expressed as before by: 

aT = [. 078 B(l+ ~) 2T/2 

T (1+S/Nl l /1' 
where the filter bandwidth, B, is equal to 225 Hz and the aVeraging 

time T equals 2 seconds. 

At the signal-to-noise ratio required for acquisition in 

the filter bank the si~nal-to-noise ratio in the tracking filter 
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is about 16 dB for the case of the 1.0 meter antenna and 10.5 dB 

for the case of the 0.5 meter antenna. 

noise is less than 1 Hz. 

In either case the RMS 

For the frequency agile Case the fluctuat"ion error will be 

about the same as developed previously for the coherent pulse 

radar in Section 6.3.6. The la fluctuation error vlaS found to 

be equal to 0.002V meters/sec where V is the velocity in Ill,,=ters. 

The 3a error is equal to o.006V m/sec:. 
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RANGE MEASUREMENT ERROR 

A tabulation of error sources in the range measurement is 

given in Table 6.4.~. A brief description of the errors is given 

in the following paragraphs. 

The net 3 cr range error combining 

fluctuating errors is (O.005R)2+(B)2 

for R>2km. The relatively large error 

due to fluctuation error caused by the 

from frequency agility. ItaSStimes the 

Slope Of Freguency Modulation. 

both fixed random and 

for R<2km and (0.005R)2+(BO)2 

for R>2km is primarily 

doppler 

maximum 

spectrum 

velocity 

resulting 

of 46 m/sec. 

The FM/CW radar altimeter used in the Apollo Landing Radar 

contained a linear frequency modulator with 20 MHz. deviation 

at X-band which had a maximum slope errorofQ:6% over a wide 

temperature range. We will assume a value of 0.5% over the more 

restricted temperature in this application. 

Quantization Errors Associated With FM!CW Ranging. 

Linearly modulated FM ranging systems tend to exhibit a 

range quantizing error if there is no relative motion bet,1een 

the radar and target. The quantization is a consequenc~ of the 

interruption of the range frequency waveform in mid-cycle 

at the end of the linear modulation period. If zero crossing 

frequency counters are used the quantization interval for a single 

axis crossing counter is equal to. 

C 
411F 

where lIF is the frequency deviation. 

The count jumps back and forth one as the range changes a 

quarter wavelength. It changes.an average of one count as the 
. , 

range changes-one quantization interval. 
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TABLE 6.4-5. RANGE MEASUREMENT ERROR. 

ERROR SOURCE 3 cr ERROR VALUE, 

Fixed Random 

R<2km R>2km 

Slope of freq .OO5R .OO5R 
modulation 

Quantization 0.38 3.8 

Doppler 0.3 3.0 
compensatiC'n 

Frequency 0.3 3.0 
tracking 

" 

Net 3cr error V( . 00 SR) 24 ( • S 7)' 2 V<.OOSR)2+(S.7)2 

Combined error: 

R < 2km, V(.OOSR)2+(o.S7)2+(.08SV)2 meters 

R > 2km, V ( . 00 SR') 2 + (S. 7) 2 + (0. 8 SV) 2 meters 

6.ll0 

',1" F, 

METERS 

Fluctuatinq 

R<2km R>2km 

- -

- -

0.06V 0.6V 

0.06V O.6V 

0.08SV 0.8SV 
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The quantization effect can be observed, although reduced, 

if a frequency tracker is used to determine frequency rather than 

the simple zero counter. The quantization can be essentially 

eliminated from the data by placing a small amount of diths;r' on 

the vco of the frequency tracker using a dither frequency well 

above the response of the outpu~ data smoothing filter. This 

technique was used with excellent results in the radar altimeters 

used in the landing radars for both the Surveyor and Lunar Module 

spacecraft. The quantization error was reduced to values less 

than 10% of those computed for a zero crossing counter type 

processor. 

Using these general values for the case of 20 mHz deviation, 

R<2km, the a to peak quantization noise will be less than 0.38 

meters. For the 2 mHz deviation used for R>2km the a to pea.k 

quantization noise will be less than 3.8 meters. 

DOPPLER COMPENSATION ERROR. 

Since the doppler frequency is in effect subtrac'ted from 

the range plus doppler frequency during the ranging mode in order 

to separate th~ ~,ange term, an error in the velocity measurement 

translates into an error in the range measurement. The 3cr velocity 

error is O. 03 m/sec random error plus a fluctuating en:or (with 

frequency agility) of 0.006V m/sec. The resulting equivalent 

3cr range error is 3 meters fixed random plus O. 6V m€,ters fluctuating 

at ranges greater than 2km and one tenth these values at ranges 

less than 2 km. 

FREQUENCY TRACKING. 

The fixed random tracking error will be less than 3 Hz, 3cr 

as discussed for the velocity measurements. This is equivalent to 

3 meters' for ranges greater than 2km and 0.3 meters for ranges less 

than 2 km. 
Assuming the use of frequenc:: agility the fluctuation erro:: 

will be about the same as developed for the velocity measuring 

mode. This amounts to 0.6V meters, 3cr for R>2km and 0.06V me':ers 

3cr for R<2km. 
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6.4.9. ANGLE TRA~KING ACCURACY • 

The analysis of angle tracking accuracy for the pulse 

doppler radar is similar to that given in Section 6.2.10 for the 

non-coherent pulse radar. Consequently, only'a summary of the 

differences and the end results will be given in this section. 

6.4.9.1. ANGLE TRACKING BIAS ERROR. 

The angle tracking bias error will be about 0.24 mR 

for the 1,0 meter antenna and 0.48 mR for the 0.5 meter antenna. 

6.4.9.2. ANGLE TRACKING FLUCTUATING ERROR. 

doppler 

where 

The fluctuating error 

type radars is given by 

a 
crt '" 

KmV 
SNR B 

c S 

a '" one way antenna 

Km '" constant 1.57 

SNR'" signal-to-noise 

B = IF bandwidth 

SNR+l 
c '" SNR 

/3 = servo bandwidth 

due to receiver noise 
1 Barton as follows: 

beamwidth 

ratio 

in monopulse, 

The resulting RMS noise for the conditions associated with 

the 0.5 meter and the 1.0 meter antennas is tabulated below for 

operation at 19km range. 

1. Barton, D.K. Radar System Analysis. 
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Antenna 
size 

0.5 m 

l.Om 

Beamwidth SNIt 
one way,Rad dB 

0.049 10.6 

0.024 13.0 

Tracker noise Servo RMS 
BW, Hz. noise tracking 

BW,Hz. noise,mR 

270 0.79 0.50 

419 1.57 0.21 

The tracking data is smoothed with a time constant of 

2 seconds prior to readout which ~educes the RMS tracking 

noise to 0.16 mR in the case of the 0.5 meter antenna and 

0.05 mR for the 1.0 meter antenna. The corresponding 3cr 

values are 0.48'mR for the 0.5 meter antenna and 0.15 mR 

for the 1.0 meter antenna. 

The fluctuating error due to glint will be the same as 

developed for the non-coherent pulse radar or about O. 6 mT~, 

3cr after smJothing by the data output filter. 

6.4.10 ANGLE RATE ACCURACY. 

The determination of angle rate accuracy follows 

the material presented in Section 6.2.11 for the non-coherent 

pulse radar. 

The bias error is essentially that due to the "hang off" 

of the rate gyro or about 0.09 mR/sec. The random error 

component of the gyro is also about 0.09 mR/sec, 3cr. 

The noise on the rate output due to response of the rate 

measuring device to antenna jitter due to thermal noise and 

glint is determined in the same manner as in section 6.2.11. 
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The results are summarized below. 

Antenna size Angle rate noise, mRad/sec, 3 cr 
Due to thermal noise at 19km Due to glint 

0.5 meter 1.4 5.7 
1.0 'meter 0.61 8.1 .. 

Once again, the noise on the angle rate data due to low 
signal-to-noise ratio is largest near maximum range Ivhereas 
the noise due to glint is largest at shorter ranges. 

The total random error is given by the RSS of the 
error due to the gyro \'lith the appropriate values above. 
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6.4.11 TRANSMITTER STABILITY REQUIREMENTS FOR PULSE DOPPLER RADAR. 

The allowable FM and AM noise on the transmitter output is 

considerably higher for the pulse doppler radar ill the Rendezvous 

Radar application than in applications where a high clutter 

environment exists. 

Frequency modulation noise is of most importance in our 

application. It can create sidebands on the signal which lowers 

the power in the received carrier as well as increasing the 

fluctuation error at the output of the signal processor. 

Treating first the power lost to sidebands, we can define 

the transmitted signal as 

where 

ET A.(t)Cos (wct- l!.w 
wmt) = - (;os 

wm 

A(t) = Amplitude function 

Wc = Carrier radian frequency 

wm = Modulating frequency 
l!.w - Peak frequency excursion. 

The received echo signal is of the form 

2R)1_l!.w Cos [w (1+2V) (t+2R)] 
c~ w m c c . m 

where 

R =Range 

V =Velocity 

The major portion of the FM noise is generated in the cornmon 

lower frequency stages of the Exciter/Local Oscillator. The noise 

is therefore highly correlated between the transmitter and local 

oscillator. 
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The difference frequency after mixing the received signal 

with the local oscillator is then of the form: 

where 

wd'" 2V w 
c c = doppler shift. 

This expression can be written in terms of Bessel functions as 

follows: 
11O 

e(t):: COS(Wd1:+e) [r.,UC-)+ 2 £. J2n(tt) co'!?n (w .. ,t H/J) 

. n.=/ 

- S Ifl (W" t raj [2 {: J;. n-,(.(/) S/Vl (~n-iJ((dt}1 t+r/J)j 

where u = modulation index '" 

The desired doppler shifted signal has the J O c
oefficient 

and the sidebands have the J l
, J 2

, etc. coefficients. 

A plot of the modulation index as a function of modulating 

frequency is given in Figure 6.4-4 for a maximum range of 22 km 

(the range at which acquisition must start for skin track to be 

acquired by a range of 19 km) and ,for a range of 560 km 

associated with the cooperative mode. A peak deviation of 100 Hz. 

was chosen for reference • 

The' loss, in carrier power for modulating frequencies giving 

the highest modulation index is plotted in Figure 6.4-5 as a 

function of peak deviation of the frequency modulation. To 
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restrict the loss to 1 db for example the peak deviation should 

be less than 27 Hz. (19 Hz. RMS) for the cooperative mode 

(560 km range) and less than 700 Hz. (495 Hz. RMS) for the skin 

track mode (22 km range). The value given for the cooperative 

mode does not take into account FM noise which may be added by 

the transponder. 

The FM noise deviation for typical frequency multipliers at 

X-band is in the order of 0.1 Hz. RMS in a 1 Hz. bandwidth' over 

a range of 10 Hz. to 100 KHz_ from the carrier. 1 At a frequency 

of 15 GHz the noise would be about 1.5 times this value or 

0.15 Hz. RMS in a 1 Hz. bandwidth. 

For the skin track mode and a maximum range of 22 km, lie 

note from Figure 6.4-4 that modulating frequencies up to about 

3 KHz are important. The total RMS deviation in the 0 to 3 KHz 

band is then computed, based on a reference of 0.15 Hz RMS in 

a 1 Hz, bandwidth, to be B.2 Hz. This value is well below the 

value of 495 Hz. RMS which results in a 1 db loss in carrier 

power,for the skin-track'inode and thEl loss in signal due to FM 

noise will be negligible. In the_cooperative mode the round trip 

loss due to FM noise will be about 0.2 dB. 

6.5 OPERATION OF RENDEZVOUS'RADAR IN THE COOPERATIVE MODE. 

Operation of each of the three basic radar systems analyzed 

previously for the skin track mode is treated for the cooperative 

mode in this section. The specifi'ed operating limits for the 

cooperative mode are 560 km to 30 m in range and ±91 m/sec in 

Velocity. At the maximum range (Mission I and II) the angular 

search angle is 10 degrees by 10 degrees and the allowable 

acquisition time is 5 minutes. 

1. "Microwave Power Sources", Microwave Journal, April, 1975. 
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6.5.1. NON COHERENT PULSE RADAR IN COOPERATIVE MODE. 

A summary of system parameters o~ the non-coherent radar 

and transponder is given in Table 6.5-1 A functional block 

diagram of the transponder is given in Figure 6.5.-1. 

The received signal is passed through the diplexer which 

provides at least 40 db of 'isolation to the transmitted signal. 

The signal i 80nverted to an IF frequency of about 60 MHz. To 

accomodate the very wide dynamic range of the signal the IF 

amplifier which follows is designed to go into limiting once 

the peak signal to average noise ratio exceeds about 13 db. 

A threshold detector which is referenced to the average 

noise level detects the presence of a pulse as it rises above 

the noise. When a given number of radar pulses is received in 

a fixed time period,' the signal presence detector allows the 

trigger pulses...£rom the threshold detector to pulse the modulator 

which in turn activates the transmitter. The pulse width received 

from the radar is monitored and when the radar swi l:ches to a 

0.1 ~sec pulse width the transponder pulse width is switched 

accordingly. Since the peak transmitter power required is 

relatively Iowan injection locked impatt solid state transmitter 

can be used. 

6. 5. 1.1. SELECTION OF PRF. 

An unambiguous range interval of 700 km rather than 560 km 

was selected to expand the range between first and second time 

around echo returns. A PRF of 214 Hz. is indicated for this range. 
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TABLE 6.5-1. CHARACTERISTICS OF NON COHERENT PULSE RADAR IN 

COOPERATIVE MODE. 

PERFORMANCE CHARACTERISTICS 

Range for 0.99 probability of detection .••.• 

Acquisition time ........................... . 

Angular search coverage •...•••.••••.•.•.•.•• 

Accuracy, 30 (at max range) 

Range 
Velocity 
Angle 
Angle rate 

Bias' 
(Lag error; 
o...~' -:'. "·,n·v r 
0.24 rnR 

0.09 rnR/sec 

Random 
30 m 
0.3 m/sec 
0.34 rnR 
7.2 rnR/sec 

>560 km 

5 minutes 

10oxlO'osector 

RADAR CHARACTERISTICS (Different from skin track case) 

Antenna size ............................................................. .. 
PRF 

R > 40 km .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
R < 40 km .......................................... It ............ .. 

Pulsewidth ...................... " ......................................... .. 

TRANSPONDER CHARACTERISTICS 

1 meter diameter 

214 Hz. 

3.7 KHz. 
0.1 Ilsec 

Antenna gain ........................................................................ o db 

Peak transmitted power *(lm radar antenna) ....•.• 4.0 watts 

Pulse width ........................................................................ .. 

Average transmitted power (lllsec pulse width) •.•• 

IF noise bandwidth .......................................................... .. 

1.0llsec & O.lllsec. 
-4 8.6xl0 watts 

1.5 MHz. 

Noise temperature ........................ It ............ 0. .. .. .. .. .. .. .. .. .. .. .. 1670 

* with 2dB margin added 
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6.5.1. 2. SELECTION OF ANTENNA SCAN FRAME TIME. 

The optimum antenna scan program for the long range cooperative 

mode (Mission I and II) is determined in the following paragraphs. 

The specified allowable acquisition time is 5 minutes for 99% 

probability of detection. The specified search area is 10oxlOo. 

The antenna scan parameters are summarized in Table 6.5-2 for 

various antenna scan frame times considered. Also given are the 

associated signal-to-noise ratios required for acquisition·. 

The signal-to-noise ratios required were taken from Fehlnerl.as 

before but for the case of a non-fluctuating target. 

A false alarm time of one hour was assumed which implys 

that the antenna scan will momentary pause on the average once 

an hour and then 

confirmed. 

on time to 

The 
1 
PRF 

resume scanning if signal presence is not 

60 minute false alarm time, with a ratio of range gate 
I 

of 0.84 results in a false alarm number, n , of 

where N is the number of pulses integrated. 

It is apparent from the table that the longer frame times 

require less signal-to-noise ratio for acquisition than the 

shorter frame times. Further, the signal-to-noise ratios 

indicated are generally below zero db. Consequently, range and 

range rate measurement accuracy will be the driving requirement 

for transmitted power from the transponder rather than acquisition 

considerations. 

An antenna scan frame time of one minute which is used for the 

skin track mode with frequency agility appears reasonable with 

ei ther the 0.5 meter or the 1 •. 0 meter diameter antenna. 

I 

1. Fehlner, L.F. Marcum and Swerling's Data on Target Detection, 

John Hopkins UniVersity Report TG 451. 
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TABLE 6. 5-2 ANTENNA SCAN PARAMETERS FOR COOPERATIVE MODE. 

Antenna Two way Frame time, Single scan Scan rate, 
size, m B. W., deg. min. Pn deg/sec 

0.5 - 2 5 .99 0.24 

J ~ 2.5 .90 0.48 

1 .60 1. 23 

0.5 2 .5 .37 2.62 

1.0 1.0 5 
. 

.99 ' 0.44 

! .~ 2.5 .90 0.9 

1.0 .60 2.42 

1.0 1.0 ·.5 .37 5.47 

\ . 

l 

,-

Dwell Number pulses SNR Req'd, 
time,sec. received db 

8.48 1814 -7.2 

4.19 

1

897 -6.6 

1. 63 349 -4.5 
" 

0.76 164 -3.0 

2.26 484 -3.5 

1.10 236 -2.5 

.413 88 -1. 8 I 0.18 39 0.8 
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6.3.1.3. COOPERATIVE LINK CALCULATIONS., 

The amount of peak transmitted power required from the 

transponder to produce a given signa~:;-to-noise ratio in the radar 

receiver is calculated in Table 6.5-3. The radar receiver parameters 

are the same as developed previo'ls1y for the non-coherent pulse 

radar. The resulting expression for peak transpondey transmit 

power, Pb
, is 

Pb=39.S+101ogSNR-10logGr dBW. 

The peak transmit power required for the 0.5 meter and the 1.0 

meter diameter radar antennas is tabulated below for a 6 db 

signal-to-noise ratio. This SNR yields adequate accuracy at 

maximum range. 
_. -

Radar antenna Antenna gain, SNR req'd. Peak transmit Average transmit 

size, meters db db power power 

0.5 35.7 6.0 10.2 watts 
-3 

2.'2 xlO watts 

1.0 41. 7 6.0 2.5 watts -4 I 5.4){10 watts 
__ 1.,,0 .. __ 

.---~-

6.125 

, --.-' 

I I 
1 

I 

j 
I 

1 
I 
i 
j 
1 
1 

;~ l 
J 
1 

, j , • " 
J 

1 , 

, I 

;.<~"~ 



I 1 
'I 

-' 

TABLE 6.5-3' CALCULATION OF PEAK TRANSMITTED POWER REQUIRED BY 
TRANSPONDER FOR NON-COHERENT PULSE RADAR. 

SNR(4n)2R2KTSB~LSLfLp 
G G ).2 
rb 

Symbol Parameter 

SNR 

(4n) 2 

R2 

K 

Ts 

B 

Lb 

Signal-to-noise ratio 

Constant 

(Range) 2 

Boltzmann's constant 

System noise temperature 

Receiver noise bandwidth 

Transponde}: transmi t path loss 

Scan loss 

Filter miss-match loss 

Polarization loss 

Radar antenna gain 

Transponder antenna gain 

(Wavelength) 2 

Peak transmitted power 

6.126 

Value 

SNR 

(4n)2 

(587, km) 2 

1758°K 

Value in db 

1010gSNR 

22 

115.4 

-228.6 

32.4 

f). 75 MHz. 58.8 

0.6 db 

1.6 db 

0.6 db 

3.0 db 

G r 

0.6 

1.6 

0.6 

3.0 

o db 0 
. 2 
(0.02rr;) 34 

3~.8tlOlogSNR-10logGr 
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6.5.1.4. SIGNAL-TO-NOISE RATIO AT TRANSPONDER. 

The transponder recei ver \~ill be configured \~i th a 7.5 MHz. 

noise bandwidth to accomodate both the 1.0 and the 0.1 llsec 

radar pulsewidth and to minimize propagation delay errors. 

Modifying the resuJts of the link calculation' given in Table6.S-2 

for the increase in receiver band\~idth, and differences in microwave 

losses, the SNR m the beacon receiver can be expressed as follO\~s: 

1010gSNR = 101ogPt +10logGr -48.6dB 

A tabulation of SNR at maximum range for the cases of a 1 meter 

diameter radar antenna and a 0.5 meter antenna is given belOl~. 

-
Radar Antenna Radar peak SNR at 

antenna size gain transmit po\~er transponder 

0.5 meter 35.7 db 5.4 kw 24.4 dB 

1.0 meter 41. 7 db 0.9 kw 22.6 dB 

6.5.1.5 ACCURACY OF RAWGE MEASUREMENT. 

A tabulation of range measurement error for the cooperattve 

mode is given in Table 6.5-4. Most of the errors wi thin the r<\dar 

are the same as described previously for the skin track mode. 

The rem&ining errors are briefly described in the following 

paragraphs. 

The resultant error includes a deterministic component of 

42.7 meters, (primarily due to lag in the range readout at 

91 m/sec velocity), a fixed random component of 10.lm, 10 and a 

fluctuating or noise term of 0.57m, 10. The total random error 

at maximum range is about 30.3 meters, 30. 
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TABLE 6.5-4 ERROR ANALYSIS OF NON-COHERENT RADAR IN COOPERATIVE 

MODE AT 560 km RANGE. 

Error Source Deterministic 1(1 error value, mete.rs I 
error, meters' Fixed random Fluctuating I I 

Radar errors 

Velocity lag (at 91m sec) 

Clock frequency(O.oOUY 

Start pulse stability 

Propagation delay in 
receiver (l.O~sec 
pulsewidth) 

Gating & threshold delay 

Calibration 

Quantization (PRF=2l4) 

Range tracker jitter 
(6db SNR) 

Transponder errors 

Propagation delay in 
receiver 

Calibration 

Propagation delay in 
threshold detector and 
trigger circuits 

Noise bias (at 23db SNR) 

Delay in modulator and 
transmitter 

Jitter in threshold output 
due to noise 

Net error 

41 

1.7 

42.7m 

5.6 

0.2 

B.3 

0.1 

0.3 

0.83 

0.3 

0.1 

0.9 

10.1 m 

0.14 

0.3 

Negligible! 

0.57 m L-_______________________ ~. __________ _L _______ • __ ~ ______ __ 
1 
! 
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Propagation Delay in Transp~nder Receiver~ 

Considering as before tl'lO synchronously tuned IF stages 

with a 7.5 MHzo noise bandwidth the propagation delay is about 

0.19 ]Jsec. 

vary about 

The variation in delay from the calibrated value can 

±S% maximum or about 2.9% RMS. The error due to 

changes in the propagation delay is then equivalent to 0.83 m RMS. 

Calibration Error. 

A calibration error of 0.3 meters la is assumbed as developed 

previously for the radar. 

Propagation ~eJ,..~ in Threshold Detector and Trigger Circuits. 

The nominal delay through these circuits is about 10 nsec 

with a variatior. of i:3nsec maximum. Assuming a uniform 

distribution of error the la value is 1.7 Dsec 0" about 0.12 meters. 

Noise Bias. 

A slight shift towards a lower range is incurred on the 

leading edge of the pulse due to addi tion of recei '/er noise. 

Skolnikl has developed an expression for the RMS value of this 

error, aT, as follows, 

aT = 
(2 SNR) 1/2 

where tr is the rise time of the pulse which is approximately 

equal to the ceciprocal of the receiver bandwidth. 

The 3 db 

yields a rise 

bandwidth of the receiver is about 
-7 time of about 1.6xlO seconds. 

6.1 MHz. which 

The noise bias error at the signal-to-noise ratio at maximum 

range of about 20db is 11.3 Dsec or 1.7 meters. 
I 
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Delay in Modulator and Transmitter. 

Z.J' At the transmit power levels considered for the transponde~ 

solid state transmitters are feasible. The variation in delay 

through a solid state modulator and transmitter is conservatively 

estimated to be ± 10nsec. Assuming this error to be uniformly 

distributed the RMS value is 5.8nsec or 0.9 meters. 

Jitter in Thresholding Time Due to Noise. 

'I'he jitter in the time the signal detect threshold is· 

crossed in the transponder will be of the same order of magnitude 

as the noise bias error treated previously. At 20 db signal­

to-noise ratio at maximum range this term is equal to about two 

meters. A new independent value of the jitter will be obtained 

on each pulse, or at"a 214 Hz. rate. After smoothing by the range 

tracker time constant of about 0.5 seconds the jitter is reduced 

to a negligible value (.003 meters RMS). 

6.5.1.5. ACCURACY OF RANGE RATE MEASUREMENT. 

Range ra te \~ill be determined as before by taking range 

differences as a function of time. The analysis for the accuracy 

of the range rate measurement proceeds in the same manner as in 

the skin track case for the non-coherent radar. 

The steady error in the velocity measurement will be 

neglibible using a digital implementation of the range tracker 

and differentiator. The 10 value of the noise term is equal to 

about 0.770R as before, \~here oR is the 10 value of the range 

tracker jitter. Again using expressions for oR developed in 

the literature for a split gate tracker as representative, oR 

is equal to 0.3 meters at a 6 db signal-to-noise ratio and l~sec 
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pulsewidth. The lcr value of noise on the range rate output is then 0.23 meters/sec. 

The net error in measuring range rate is a fluctuating term with a lcr value of 0~23 m/sec at maximum range. This error decreases as the range decreases. 
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6.5.1.6. A~CURACY OF ANGLE MEASUREMENTS. 

A bias error can be generated in the angle measure­

ment due to phase errors in the monopulse combiner and IF 

stages. This bias error will be the same as developed 

previously for the skin track mode, or about 0.48 mR for the 

O. t> meter antenna end 0.24 mP for the 1. 0 meter antenna. 

The fluctuating error due to thermal noise is developed 

in the same manner as in Section 6.2.10. The resulting 30 

error at a 6 dB signal-to-noise ratio at maximum range and 

a PRF of 214 Hz is 1.2 mR for the 0.5 meter antenna and 

0.34 mR for the 1.0 meter antenna. 

We assume that the glint from the transponder signal is 

negUg:.ble. 

6.5.1.7. ACCURACY OF ANGLE RATE MEASUREMENT. 

The angle rate error will include a stand offe:ror 

of.09 mR/sec plus a random error of 0.09 mR/sec in the ·gyro. 

The angle rate noise due to jitter of the antenna due 

to thermal noise at a 6 dB signal-to-noise ratio is computed 

as in Section 6.2.11. The results indicate a 30 value of 

noise on the angle rate data of 10.5 mR/sec for the 0.5 ~eter 

antenna and 7.2 mR/sec for the 1.0 meter antenna. 

These values are appreciably above the 0.14mR allowable 

random error. In the ~ase of the 0.5 meter antenna in order 

to reduce the noise to allowable random error, the transmitted 

power of the transponder would have t: be increased from 10 W 

peak to about 55KW peak. Alternately, the data smoothing time 

may be able to be increased at the maximum range to decrease 

the noise on the data. 
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6.5.2. COHERENT PULSE RADAR IN COOPE~~TIVE MODE. 

A summary of system parameters for the coherent pulse radar 

and transponder is given in Table 6.5.-5. A functional block 

diagram of a candidate transponder is given in Figure 6.5-2. 

The received signal in the transponder passes through the 

diplexer, which has at least 40 db isolation to the transmitted 

signal, and is mix'ed with the local oscillator signal to generate 

a 60 MHz. IF signal. The IF amplifier is designed to limit once 

the signal exceeds about 13 db signal-to-noise ratio in the IF 

bandwidth. This provides a relatively constant 60 MHz. signal 

during the duration of the pulse. The IF signal is dm.,n converted 

to an IF frequency around 1 MHz where the doppler shift is 

extracted by using either a frequency tracker or a phase lock 

loop. The smoothed doppler signal is up converted to a 60 MHz 

IF and then to a carrier frequency of 14.54 GHz, which is filtered 

and used to drive the transmitter. 

A threshold detector senses the presence of a signal above 

a preset threshold. When some high percentage, say 90% of the 

radar pulses are received in a given time interval the signal 

presence detector actuates a gate which allows the trigger pulse 

to be applied to the modulator. The radar PRf can be coded to 

command a 1 nsec pulse from the transponder at long ranges and 

0.1 nsec pulses at short ranges. This command would be decoded 

and the modulator set accordingly. The modulator pulses the solid 

state transmitter which in turn g~nerates the trahsponded signal. 

6.5.2.1. PRF CONSIDERATIONS. 

In order to accomodate a velocity range of ±9l m/sec 

unambiguously, and assuming no a-priori velocity information, the 

PRF of the radar should be at least 18.2 KHz. A minimum value of 
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TABLE 6.5.-5. CHARACTERISTICS OF COHERENT PULSE RADAR IN 

COOPERATIVE MODE. 

PERFORMANCE CHARACTERISTICS 

Range for 0.99 probability of detection ••..••• 

Acquisi tion time ........................................................ .. 

Angular search coverage .................•.... 

Accuracy, 30 (at max range) 

Bias' . 
Range 
Velocity 
Angle 
Angle rate· 

(Lag error) 
(Lag error) 
0.24rnR .. 

~andom 
30m 
0.3 m/sec 
0.34 mR 
7.2 rnR/sec 0.09rnR/sec 

RADAR CHARAC1'ERISTICS (Different from skin track case) 

Antenna s~ze ................................. ,. ............................ .. 

PRF 

Acquisition ••...•.•..••• 

Track (dithered) ••..••.. 

Pulsewid th .•.•.•••••.•..•..•• 

TRANSPONDER CHARACTERISTICS 

214 Hz. 
20-30 KHz. 

O.lJ.lsec 

Antenna gain .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
Peak transmitted power *( 1 m radar antenna) •..• 

Pulsewidth ........................................................................ .. 

Average transmitted power( ll!sec pulsewidth) ••.• 

IF noise bandwidth ....................................................... .. 

Noise temperature ...................................... ' ....... , ........... .. 

* with 2 dB margin added. 
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19.2 KHz. will be assUll\ed to provide some margin for filtering. 

A PRF of 19.2 KHz. results in range ambiguities each 7.8 km. 

Consequently, some method of res olving the range ambiguities are 

required. The same approach as discussed previously for the 

coherent pulse radar in the skin track mode can be followed 

but using 3 values of PRF related through ratios of ml ' m2 m3 

(all integers). The unambiguous range Ru may be expressed 

m2 m3 C 

2 PRF 

Using ratios ml , m2 , m3 = 8,9, 10 and a minumum PRFo'f 19.2 KHz. 

the maximum unambigueus range is 703 Km. 

The three values of PRF used by the radar would then be 

19.-2, 21.6 and 24.0 KHz. The range ambiguities would be 

resolved by the radar using,an .. algOrithm such as the Chinese 

remainder theorem • 

An alternative way of obtaining unambiguous range is to 

perform initial target acquisiti0n with a PRF of 214 Hz. as 

in the non-coherent radar case. After angle and range aCCl'~isi tion 

have been achieved the PRF would be switched to about 20 KHz to 

allow unambiguous doppler frequency measurement to be made. 

Once the range tracker has been locked to the signal it will 

continue to track the target at the proper range despite the 

ambiguities caused by the high PRF. 

To avoid range holes, caused by the signal returning while 

the. transmitter is pulsing, the PRF would be varied from 20 KHz. 

to 30 KHz. in a regular manner. 

6.136 

... - ···1·...-.:r··------

,', -" i .... \... 

I 

r 

i 
! 
j 

I 
. "'/ 

I 
1 

i 
J , 

'I ,~ 

'/ 
I , 
I 

.j 

,~ 
;~ ,/ 1 

. I 

,~J 



. ,--

6. 5 •. 2.2. TRANSMITTED POWER REQUIRED FROM TRANSPONDER. 

~he peak power required from the transponder will be essentially 

th~ same as developed previously for ,the non-coherent transponder 

since the driving requirement on signal-to-no~se ratio is measure­

ment accuracy rather than on acquisition. 

Transponding a lpsec pulse at an average PRF of 25 KHz. the 

average power required from the transponder is tabulated below: 

-
Radar Antenna Size Peak Transmit Power Average transmit 

power 

0.5 m 10;2 watts 0.26watts 

1.0 m 25 watts 0.063 watts 

6.5.2.3. SIGNAL-TO-NOISE RATIO AT TRANSPONDER. 

The peak power required for the coherent pulse radar in the 

skin track mode is 5.4 kw with the 0.5 meter antenna and 0.9 kw 

for the 1. 0 meter ant,enna. In order to maintain the same peak 

transmitted power and about the same average power when the PRF 

is changed to an average value of 25 KHz. required for the 

cooperative mode, the pul"ewidth must decrease to about 0 .15 \lsec. 

Since a pulsewidth of 0.1 :Jsec has previously been considered 

for the skin track mode when then the range decreases belo·.. 9 km, 

this same value will be used for the cooperative mo1e. 

Using a two stage synchronously tuned IF filter with a 

noise bandwidth of 7.5 MHz. in the transponder and other parameters 

as considered previously, the signal-to-noise ratio in the 

transponder will be 24.4 dB for the 0.5 meter diameter radar 

antenna and 22.6 dB for the 1.0 meter antenna. 
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6.5.2.4. SIGNAL TO NOISE RATIO IN DOPPLER FREQUENCY TRACKER IN 
TRANSPONDER. 

The signal-to-noise ratio within a doppler tracking filter 
bandwidth, Bt' can be expressed in terms of the IF signal-to-noise 
ratio as before by 

SNRj = SNR/ Tracker IF 

Assuming a 6V of 10 fps/sec 2 during the braking phase the 
one way rate of change of doppler frequency is 153 Hz/sec. ]h order 
to remain within the tracking filter band,17idth during this 
acc.eleration with a typical tracking loop time constant of about 
0.1 seconds the one sided filter width should be about 16 Hz. which 
gives a total bandwidth of 32Hz. The equivalent noise bandwidth 
is about 39 Hz ~ Ii '::h a pulse,17idth of 0.1 lJsec, an average PRF 
of 25 KHz. and a noise bandwidth of the tracking filter of 
39 Hz. the signal-to-noiseratio in the tracking filter is about 
0.8 db greater than in the IF band'17idth. Thus a signal-to-noise 
ratio in excess of 20 db will be available in the frequency 
tracker which affords a good operating margin over the value of 
4 db SNR required for normal operation. 

6.5.2.5. ACCUR~CY OF MEASUREMENTS. 
The ranging accuracy \17ill be 'essentially the same as previously 

determined for the non-coherent transponder.case. 

The velocity accuracy will be determined by the accuracy 
of tt~e frequency trackers in the radar and transponder and the 
accuracy of the transmitted frequencies. 
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The largest error in the system will be due to the uncertainty 
in the fixed off-set between the received and transmit fJ:equencies. 
We could time duplex the signals and retransmit the same 
frequency as received to eliminate the offset frequency. However, 
this wOll1d result in interference from skin return when the target 
is at short range. A separation of at least 200 MHz is desirable 
to allow discrimination of the skin track signal. In order to 
meet the velocity accuracy requirements the variation of the 
frequency reference in the transponder must be in the orde+ of -7 10 over the operating period. This value is obtainable with 
a good quality aged crystal oscillator. This tolerance will 
result 

offset 

of 0.2 

in the 

in a frequency uncertainty of 20 Hz in the 200 MHz 
frequency which corresponds to a velocity uncertainty 
m/scc. In addition, the error in the frequency tracker 
i.:ransponder and radar can be about 1 Hz (0.01 m/sec)each. 

The signal-to-noise ratio in the tracker bandwidth in the radar 
is about 4 db with a 6 db peak signal to average noise ratio in 
the IF bandwidth. The tracker noise at this SNR is about 2.9 Hz 
or 0.03 mjsec, lao The SNR in the transponder frequency tracker 
bandwidth is ""bout 20 db and the tracker noise is negligible. 

, , , 

The total velocity measurement error is then as follOl'ls: 
.. , . 

'" .. ' 

3a Value m/sec ERROR SOURCE Slowly varying Fluctuating 

Frequency offset 0.2 
Transponder tracker 0.01 
Radar tracker ' , 

0.01 
Radar tracker noise 0.09* 

Net er);'or , 0.29 m/sec. 

*Decr~ases as SNR increases. 
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6.5.3. PULSE DOPPLER RADAR IN COOPERATIVE MODE. 

A summary of system parameters for the pulse doppler radar 

and transponder in the cooperative mode is given in Table 6.5-6. 

A functional b19Ck diagram of a candidate transpoDder is given 

Figure 6.5.-3. , 

6.5.3.1. TRANSPONDER OPERATION. 

The signal received by the transponder passes thr.ough the 

diplexer and is converted to an IF frequency of about 60 MHz. 

The IF signal is amplified by an··.amplifier with about 20 db 

in 

AGC range and applied to a limiting amplifier which is designed 

to ~imit and maintain a constant output at a level equivalent to 

the minimum expected signal at maximum range. 

to about 6 db signal-to-noise ratio in the IF 

This corresponds 

bandwidth. 

The bandwidth of the IF amplifier is made slightly greater 

than 2 mHz at ranges greater than 2 km to pass the 2 mHz 

deviation of the linear frequency modulation on the radar signal. 

A~ ranges less than 2,km the radar deviation increases to 20 mHz 

and the transponder IF bandwidth is switched to 20 mHz upon 

detecting the change. The limiter maintains a nearly constant 

signal into the single sideband up converter over the wide 

dynamic range of the signal. 

The amplified and filtered IF signal. is up converted to about 

14.76 GHz. by a single sideband, suppressed carrier up converter. 

The up converted signal is further cleaned up by passing through 

a microwave filter and then applied to the driver and 

transmitter. The transmitter can be a' low power Gunn·or Impatt 

solid state smplifier. 
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TABLE.6.S-6. CHARACTERISTICS OF 'PULSE DOPPLER RADAR IN CO~PERATIVE 
MODE. 

." 

PERFORMANCE CHARACTERISTICS. 

Range for 0;99" Fobab±lityo'f 'detecti·on.-~' .• -.; >560 km 

Acquisi tion time ....................... ' ... -... ".......................... 5 minutes 

~gular search coverage •••••.•.•.•••••••.•.•• 10oxlOo sector 

Accuracy, 3cr (at maximum range) 

Range 
Velocity 
Angle 
Angle rate' 

Bias 

(Lag, error) 
(Lag error) 
0.24mR 
0.09mR/sec 

Random' 

Y(.00SR)+(68)2 
0.3 m/sec 
0.17 mR 
2.0mR/sec 

RADAR CHARACTERISTICS (Changes from skin track mode) 

Antenna size .... ,", .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 meter diam,c:ter 

• 

Frequency modulation 

Deviation 

R < 2 km ............................... .. 

2 km < R':' 20 km .••.•••.• 

R > 20'km .............................. 
Duration of sweep 

R<2km ................. . 

2 k~ < RL 20 km .......•. 

R > 20 km .......................... .. ". 

TRANSPONDER CHARACTERISTICS 

Antenna gain ........................................... .. 

Peak transmitted po'wer •• : •.•••••••• 

Duty ratio .................. 1'1 .......................... _. 

IF bandwidth 

R > 2 km 

R < 2 km 
.. "'j" ........................ " ......... .. 

.......................................... 
Noise temperature of receiver .••••.• 

Transmi t path losses ••••.••. , ••.• , •••• 

2G MHz' 

2 MHz, 

214Hz. 

13> msec 

13 msec 

67. msec 

o db 

10 m W* 

0.5 

4. MHz. 

20 MHz, 

l6700K 

0.6 dB 

*Results in a margin of about.5 .d~,relative to required value. 
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6.5.3.2. SIGNAL-TO-NOISE RATIO AT TRANSPONDER 

The peak signal to average noise ratio within the 2.4 MHz. 

IF noise bandwidth is computed in Table 6.5-7'0. The result is: 

SNR = -43.4+10 logPt+10logGr 

where P t is the radar peak transmitted power and G is the radar 
r . 

antenna gain. The value of SNR for the two radar antenna sizes 

considered is giVen below: 

RADAR RADAR RADAR TRANSPONDER 

ANTENNA SIZE ANTENNA GAIN PEAK POWER SNR 

0 .• 5 meter 35.7 db 38.9 watts 13.2 db 

1.0 meter 41. 7 db 6.5 watts 6.4 db 

6.5.3.3. TRANSMIT POWER REQUIRED OF TRANSPONDER. 

Using the same values of filter bandwidth in the radar as 

determined for the skin track mode with frequency agility, 

100 Hz for the 0.5 meter diameter antenna and 267 Hz. for the 

1.0 meter antenna, the signal-to-noise ratio required for acquisition 

of a steady beacon signal with a false· alarm rate of one hour is 

tabulated below. 

ANTENNA FRAME SINGLE BANDWIDTH DWELL NUMBER SNR 

SIZE TIME SCAN Pd 
(3 db)' TIME 

INDEPENDENT REQUIRED 
SAMPLES 

0.5 m 1 min. 0.9 100Hz. 1. 63sec lG3 -4 db 

1.0 m 1 min. 0.9 267 Hz. 0.41sec 109 -2.8 db 

It is apparent that the signal-t6-noise ratio required for 

accurate tracking, about 4 cb, will be the driving factor rather 

than signal-to-noise rktio required for acquisition. 
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TABLE 6.5-7. SIGNAL-TO-NOISE RATIO AT TRANSPONDER 

SYMnOL 

Pt 

Gr 

Gb 

1.2 

(411.) 2 
R2 

K 

Ts 

, B 
1 

LR. 

Lp 

SNR 

\ 

SNR = 

PARAMETER 

Radar peak power 

Radar antenna gain 

Transponder antenna gain 

(Wavelength) 2 

Constant 

(Range) 2 

Boltzmann's constant 

VALUE 

Pt 

Gr 

o db 

(0.02 m)2 

(411)2 

(587km) 2 

Transponder noise temperature 1670 0 K 

Receiver bandwidth 2.4 mHz 

Radar transmit path loss 

Polarization loss 

1.6 dB 

3.0 db 

VALUE ;tN 

1010gP
t

' 

1010gGr 

0 

-34 

-22 

-115.4 

228.6 

-32.2 

-63.8 

-1.6 

-3.0 

Signa1-to-noise ratio -43.4 +10,logPt+1010gG . r 
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Using a value of 4 dB for SNR required, the amount of peak 

transmitted power required from the transponder is computed in 

Table 6.5-B. The resulting peak transmitted power required 

is given below as a function of radar antenna size. 

ANTENNA SIZE DOPPLER TRACKER ANTENNA GAIN PEAK TRANS 

BANDWIDTH (noise) POWER REQ'D 

0.5 meters 275 Hz 35.7 dB 0.011 watts 

1.0 meters 320 Hz 41. 7 dB 0.003 watts 

At the maximum 7ange, the peak signal power to average 

noise power ratio transmitted by the transponder is about B.2 dB 

in a 2.4 mHz noise bandwidth for the 0.5 meter antenna case and 

6.4 dB for the 1.0 meter antenna. Thus, the signal transmitted is 

greater than BO% of the total 'transmitted power or less than 1 dB 

below the total power transmitted. 

The transmitted signal to noise ratio from the transponder 

of 6 to B dB in a 2.4 mHz bandwidth at maximum range results in a 

much greater signal to noise ratio within the bandwidth of the 

doppler tracking filter in the radar. 

Converting from peak power to the amount of power in the central 

spectral line, and considering eclipsing as discussed for the case 

of skin track with the pulse doppler radar, the average signal to 

noise ratio within the tracking filter wil·l be 10.8 dB less than 

if computed using peak power. The net effective signal to noise 

ratio within the radar tracking filter bandwidth is listed below: 
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t)" T.',BLE 6.5-;8. CALCULATION OF PEAK POWER REQUIRED BY TRANSPONDER 

FOR PULSE DOPPLER RADAR 

3YfI,BOL 

SNR 

(41T) 2 

R2 

K 

Ts 

B
t 

Lfu 

PARAMETER 

Signal-to-noise ratio 

Constant 

(Range) 2 

Boltzmann's constant 

System noise temperature 

Tracker noise bandwidth 

Transponder transmit path loss 

: .; -, 

Polarization loss 

Eclipsing loss 

Duty ratio of noise gate 

Radar antenna gain 

Transponder antenna gain 
. 2 

(Wavelength) 

Peak transmit power 

VALUE 

4 db 

(47f) 
2 

(587km) 2 

1758°K 

Bt 

0.6 dB 

3.0 db 

10.8 db 

0.5 

Gr 

Odb 

(0.02m)? 

VALUE IN DB 

4 

22 

115.4 

-228.4 

32.4 

1010gBt 

0.6 

3.0 

10.8 

-3.0 

~lOlogGr 

0 

34 

·1 

l 

j', 

" I 
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RADAR J TRACKER S,JR OF TRANSPONDED EFFECTIVE SNR OF 

ANTENNA BANDWIDTH SIGNAL IN 2.4 mHz TRANSPONDl:D SIGNAL 

SIZE (noise) BANDWIDTH 

. 
O.S meters 27S Hz. 8.2 db 36.8 dB 

1.0 meters 320 Hz. 6.4 db 34.4 dB 

Since the transmitted power from the transponder will be sized to 

provide a 4 db signal to thermal noise ratio in the tracking 

filte.r., it is clear that thermal noise density is the dominant 

factor in determiningsignal-to-noise ratio in the radar at 

maximum range rather than the noise transmitted by the transponder. 

6.S.3.4. ACCURACY OF MEASUREMENTS. 

The accuracy of the velocity measurement will be essentially 

the sarna as described for the coherent pulse system in the 

cooperative mode except the transponder frequency tracker is 

eliminated. The net error will be about 0.29 m/sec, 30. 

The accuracy of the range measurement is tabulated below: 

0 Error Value, meters 

ERROR SOURCE Fixed random Fluctuating 

R<2km 2km <R<20km R>20km R<2km 2km<R<20km 

Slope of frequency 
, . 

. 

Illodulation rOOSR O.OOSR O.OOSR 

Quantization .38 m 3.8 m 19.0 m 

" 

~oppler, c:om~e~s~~tI m 3.0 m lS.O m negl. neg1. 

Frequency trackinr O. 3m 3.0 m lS.0 m neg1. neg1. 

J 
I 

* At maximum range. Decreases with increased SNR. 

R>20km 

44* 

44* 

The parameters in the table are the same as discussed previously 

for the range accuracy of the pulse doppler radar in the skin track mode. 
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The combined errors are as follows: 

R < 2km, V (.00SR)2+(o.S7)2 

R > 20km, v (. OOSR) 2+ (68) 2 

6. S. 3. S. ACCURACY OF ANGLE MEASUREMENTS. 

The bias errors .Ti11 be the same as computed for the skin 

track mode, or about 0.48 mR for the O.S meter antenna and 0.24 mR 

for the 1.0 meter antenna. 

The fluctuating error due to thermal noise is developed in the 

same manner as for {;he skin track mode. Based on a 4 dB signa1-to­

noise ratio the 30 value of the noise on the angle data is 0.39 mR 

for the O. S meter antenna and 0.17 mR for the 1. 0 meter antenna. 

Once again we assume the glint on the transponded signal is 

negligible. 

6.S.3.6. ACCURACY OF ANGLE RATE DATA. 

The errors in the angle rate data include a "hang off" 

error of 0.09 nffi/sec and a random error Qf 0.09 mR/sec, 30 in the 

rate gyro as discussed previously. 
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The noise on the angle rate data due to thermal noise in the 

receiver is computed in the same manner as for the skin track mode. 

The result, for a 4 dB signal-to-noise ratio at maximum range, is 

3.3 mR/sec, 3cr for the 0.5 meter antenna and 2.0 u~/sec, 3cr for 

the 1.0 meter antenna. 

Once again, these values exceed the 0 .14 I,,-~/sec stated allO\~ance 

and either an increase in transponder transmitted power or an 

increase in data smoothing time is required to meet the specified 

values. 
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6.6 SYSTEM IMPLEMENTATION OF RECOMMENDED RENDEZVOUS RADAR. 

6.6.1 RATIONALE FOR SELECTION QF RECOMMENDED RADAR. 

A pulse doppler radar with linear FM ranging and 

£requency agility is recommended for the Rendezvous Radar 

application. The general form of the radar is described in 

Section 6.4 of the report. Other types considered were a 

non-coherent pulse radar and a coherent pulse radar which 

Wc)re analyzed in Sections 6.2 and 6.3. 

The rationale for seJ'3ction of the recommended radar 

is briefly summarized below: 

The peak transmitter power required is the 
lowest of the radar types considered. 

The relativ~ly low peak transmitted power 
required minimizes breakdown problems and 
it can be provided by the communications 
TWT transmitter or by a solid state source. 

High velocity accuracy rather than high range 
accuracy is the driving requirement of the 
radar. The pulse doppler radar with FM 
ranging fits well with these requirements. 
(The pulse doppler radar inherently provides 
the most accurate velocity measurement of 
the systems considered.) 

The signal form of both the velocity intelligence 
and range intelligence is the same (frequency 
difference) which ai-lows 'a common, time shared 
signal processor to be used for both velocity 
and range measurements. 

6.6.2 SUMMARY OF CHARACTERISTICS OF PULSE DOPPLER RENDEZVOUS RADAR. 

I 

A summary of performance and system characteristics of the 

recommended Rendezvous Radar system is given in Table 6.6.1. 
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Table 6.6-1 PRINCIPAL CHARACTERISTICS OF PULSE DOPPLER 

RENDEZVOUS RADAR. 

PERFORMANCE CHARACTERISTICS 

Operating range 

Target model 

Acquisition time 

Probability of acquisition 

False alarm time 
During acquisition) 

Angular search sector 

Relative velocity 

Accuracy,3cr 

Velocity, m/sec. 

Range, meters 

R~2km 

2km<R<20km 

20km<R<560km 

Angle, m:t:~_ .. 
Angle rate, 

mr/sec 

Bias 

0.2 

o 
o 
o 

0.24 

0.09 

*Principally due to glint. 

Cooperative 
mode 
560km to 3u m 

Transponder 

300 seconds 

0.99 

10 minutes 

5° cone 
(half angle) 

±91 m/sec 

Random 

O.lm/sec 

"'1(. 005R) 2+ (.57) 2 

lI(.005R)2+(5.7)2 

lI(·005R)2+(68)2 

0.17 
0.01 

2.0 
0.07 

6.151 

R=560km 
R=20km 

R=560km 
R=20km 

Bias 

o 

o 
o 

Skin track 
mode 
19km to 30m i ",: 

Im2Swerling 1 

60 seconds 
r 

0.99 

10 minutes 

40° cone 
(half angle) 

-38,+7.5m/sec 

Random 
V( . 03) 2 ~-(-. -0 0-6-V-) 2"-

v (.005R) 2+ (057) 2+ (.085V); 

V ( • 00 5R) 2 + (5 • 7) 2+ ( . 8 5V) 2, 

0.24 0.6 

0.09 8.1* 
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S Y S T E M C H A R ACT E R I S TIC S 

carrier l!~requency 

Antenna 

Size 
Beam width (2 way) 
Gain 
Scan program 
Scan frame time 
Max search rate 
Max tracking rate 

Transmitter 

Cooperative Mode 

15 GHz 

1 meter 
100 degrees 
40.6 dB 
Spiral, 100 

1 minute 

5 deg/t;ec 

cone 

Skin Track Mode 

15 GHz 

1 meter 
1.0 degrees 
40.6 dB 
Spiral, 800 cone 
1 minute 
110 deg/sec 
5 deg/sec 

PRF 20.to 30 (Dithered) 
4.8 
20 to 

for acquisitio. 
30 Dithered 

for track 

Pulse width 
Duty cycle 
Peak po"ler 
Average power 

Frequency Agility Program 

Acquisi tion 

Tracking 

25 to 17 n 
50% 
8.9 watts 
4.5 watts 

none 

none 

Frequency Mo~ulation Program 

Deviation 

R< 2 km 20 mHz. 

R> 2 km 2 mHz. 

Time of Linear Sweep 

R< 20 km 1303 m sec 

R> 20 km 67 m sec 

Time of retrace 0.5 m sec 

6.152 

sec 

I . 

50% 
8.9 watts 
4.5 watts 

6 frequencies 75 mRz. 
apart. dwell 1.5 m sec 
6 frequencies 75 mHz. 
apart. dwell 13 m sec 

20 nrnz. 

2 mHz. 

13.3 m sec 

0.5 m sec 

','. 
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Doppler Scale Factor 

Range Scale Factor 

R< 2 km 
2 kro< R< 20 kro 
20 kro< R< 560 km 

Receiver Noise Temperature 

Doppler Filter Bank 

Cooperative Mode 

100 Hz/m/sec 

10 Hz/m 
1 Hz/m 
0.2Hz/m 

18580
k 

Filter bandwidth 267 Hz 
Effective number of 

filters 69 
(FFT implementation) 

Frequency Tracking"Filtex 
bandwidth 267 Hz 

Data Smoothing Time 

Velocity 
Range 
Angle 
Angle Rate 

... - .............. ~ .. . 
(,.153 

Skin Track Mode 

100 HZ/m/sec 

10 HZ/m 
1 Hz/m 

267 Hz 

18 

267 Hz 
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P H Y SIC A L C H A RAe T E R I S TIC S 

Weight 

Antenna Assembly 

Boom Assembly 

Electronics Assembly 

Total Weight 

Size 

Antenna Assembly 

Boom Assembly 

Electronics Assembly 

Power 

An.tenna Assembly 

Peak 

• Average during 

Average dUring 

Boom Assembly 

Electronics Assembly 

During search 

During track 

Total Power 

• Peak 

Average during 

Average during 

search 

track 

search 

track 

6.154 

10.6 kg 

5.1 kg 
4.8 kg 

:20,5 kg 

,See Figure 5.5-7 

See Figure 5.5-7 
25 x 17 x 18 em 

100 watts 

34 watts 

13 watts 

122 watts 

81 watts 

71 watts 

303 watts 

237 watts 

206 watts 
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ANTENNA CHARACTERISTICS 

Frequency of ope~ation 

sum Pattern Characteristics (at 15gHzl) 
Gain 
Beamwidth, one-way 
Minor lobe level below main lobe 
VSWR 

Difference Pattern Characteristics (at 15gHz)" 
Gain 

Beamwidth, one-way 
Minor lobe level below main lobe 
VSWR 

Transmitted Power Capability 

Antenna Scan Coverage 
Azimuth 

Elevation 

Scan Coverage During Acquisition 

Scan Frame Period 

Frequency Response 

6.155 

" 

13.75 to 15.121gHz 

41.6dB 

1.4 degrees 

17 dB 

2:1 max 

37.5 dB 

1.1 degrees 

15 dB 

2:1 max 

100 watts peak or CW 

360 0 

320 0 

40 0 half angle cone 

60 seconds 

1 Hz. 
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6.6.3. IMPLEMENTATION OF MAJOR ELEMENT OF THE RADAR LOCATED 

:"'i, ON THE DEPLOYED ASSEMBLY. 
'{. ";:/" 

A block diagram of that portion of the radar located 

on the deployed assembly is given in Figure 6.6.-1. 

A dedicated transmitter for the radar function is assumed 

in this study. However, the communications TWT transmitter 

could be used for the radar as well. The 50 watt transmitter 

power level being considered for communications is adequate 

for the radar, even using the 0.5 meter minimum size antenna. 

Potential disadvantages of a combined transmitter are: 

1. The los's of both communications and rendezvous 

capability should the transmitter fail. 

2. The requirement for a high voltage modulator, a 

control grid in the tube to cut off the noise generated by 

the tube during the radar receive cycle, or a fast action 

switch at the transmitter to attenuate the transmitter noise 

during the receive cycle. 

The latter would introduce additional loss in the system. 
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A tabulation of microwave losses for the transmit and 
recei'lre paths indica ted in Figure 6. 6-1 are given belo\q. The 
losses of major microwave components were taken from supplier 
catalogs. 

Losses in transmit path 

Waveguide & bends (1.5 meters) 
Rotary joints (2) 
Circulator 
Monopulse Combiner 
Transmitter switch 

Losses in receive path 

Waveguide 
Monopulse Combiner 
Circulator 
Diplexer 
Limiter 

0.6 db 
0.2 db 
0.4 db 
0.2 db 
0.2 db 
1.6 db 

0.1 db 
0.2 db 
0.4 db 
0.3 db 
0.7 db 
1. 7 db 

The net microwave loss is about 3.3 db. 
temperature, Ts, "becomes 

The system noise 

Where 

Then, 

Ts = Ta + Tr + Te 

Ta 
Tr 
T 

'L 
Te 
To 
NF 

Ts 

= Antenna noise temperature = 2.70 k 
= Transmission line noise temperatgre = 
= Physical temperature (assume 290 k) 
= Loss factor = 1.48 (1.7db) 
= Receiver noise temperature 0 To (NF-l) 
= Reference temperature = 290 k 
= Receiver noise figure'= 5 (7db) 

= l8580 k 

T (L-1) 
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The parameters associated with 'the 1 meter and the 0.5 

meter diameter antennas are tabulated belm.; along with the 

peak transmitted power and average transmitted power required 

for acquisition using six step frequency agility. 

'Antenna Antenna Filter Bandlddth SNR Trans. Power 

Size Gain 3 db NOJ.se Req'd Peak Avg. 

0.5 m 34.6 db 100 1:1 157 1:1 8.2 db 33.9 17 W 

1.0 m 40.6 db 267 1:1 419 1:1 8.2 db 5.6 2.8 W 

6. 6. 3. 2. TRANSMITTED pm'1ER REQUIRED. 

An updated calculation of transmitted pm'ler required, 

B~~~a on the implementation of system 

this section is given in Table 6.6-2. 

power required was found to be 

parameters shown in 

The peak transmitted 

Pt = 56.1 + 10 log SNR + 10 log Bt - 20 log G dEW. 

6.159 
J'I;:j 

"i' -'. r 

, 
. , 

, ' 

) 

'-

, ''''.j ''C'c' _ 



JI 

'. ~ 
n 
fI 

" II 
\1 

" II 
" d 

Ii 
'II I ' I 

/i 
II 
I I I, 
iI 

" ..... · ..... H 

,t. 

II 
Ii 
1\ 

!/ 
" 1; 
I! 
I, 

" I, 
H 
I' ,I 
i: 
I' 
): 
r 
" ) 

L 1'. 
Ii 

" 
, , 

f( 
j: 

i" 
i 

'l ~,:/ 

Table 6.6.-2. COMPUTATION OF PEAl{ TRANSMITTED POWER REQUIRED 
FOR OPERATION OF PULSE DOPPLER RADAR. 

Symbol 

SNR 
{47r)3 
R4 

K 

T s 

BT 

DN 

LM 

LS 
Le 

LF 

G2 

}..2 

cr 

Parameter 

Signal-to-noise ratio 
Constant 
(Range) 4 
Boltzmann's constant 

Value 

SNR 

1984 4 
(21. 3xI0 3) 

System noise temp.: "'~c::t:iL858° 

Noise bandwidth of 
doppler filter BT 

, Duty ratio of 
noise gate 
Microwave loss 
(transmit path) 
Scan loss 
Eclipsing/conversion 
loss 
Filter mismatch loss 

(Antenna gain) 2 
2 (wavelength) 

Radar cross section 

0.5 

1.6 dB 
1.6 dB 

9.0CdB 
0.9 dB 

G2 

Value in dB 

10 log SNR 
33.0 
173.1 
-228.6 
32.7 

10 10g BT 

-3':'0 

1.6 
1.6 

9.0 
0.9 

-20 log G 

34.0 

0 

Peak transmitter power 54.3+1010gSNR+IOlog BT-20 log G. 
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6.6.3.4. TRANSMITTER IMPLEMENTATION. 

Allowing a 2 dB margin for radar system degradation 

due to environment and agin~ the peak transmitted power 

required is 62 watts' for the 0.5 meter antenna and 10 watts 

for the 1 meter antenna. The average power.is half of these 

values. 

These peak and average power levels for the 1 me~er 

antenna case are well within the state-of-the-art 'of solid 

state impatt diode transmitters. However, in the case of the 

0.5 meter antenna it FlPpears better to use a parametric " 

amplifier in the receiver as discussed later which would 

reducp. the required transmitted power by 5 dB to 19 "'latts 

which can be achieved with a solid state transmitter. 

The Hewlett Packard 5082-0716 series of impatt diodes 

can generate about 7- watts of pow'er at 15 gHz. at a pulse 

width of 10 ~sec and 25% duty ratio. l The efficiency is about 

11%. At a 50% duty ratio an:d pulse width of 104 ~sec, which 

corresponds to a PRF of about 4.8 kHz. used during acquisition 

in the skin track mode, a power output in excess of 3 watts 

peak can be obtained. The efficiency is about 9%. 

The desired peak power of 10 watts associated with the 

1 meter antenna can be provided by 3 impatt devices operated 

in parallel. Allowing a loss, of 0.2 dB for the power" combiner 

the total output power of the impatt diodes is 10.5 watts. 

This requires each diode to provide 3.5 watts peak power. 

I 

1. "Silican Double-Drift Impatt Diodes for Vlse Applications"; 

HP Application Note 961. 
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The transmitter ~ould operate in an injection lock mode. 

a 400 MH bandwidth can be obtained with an injection lock 

gain of 10 dB. An imput drive power of about 1.0 watts peak , , 

is therefore required for the three injection locked impatt 

'modes. Allowing a power loss of 0.3 dB for the driver power 

divider, a total drive, power of 1.1 watts peak is required. 

This drive, signal would be provided by another impatt amplifier 

which in turn would be driven by a 110 milliwatt source. 

This power level can be readily furnished by a frequency 

multiplier driven by the frequency synthesizer. 

The efficiency of the high level impatt stages will be 

about 9% and the lower power drive stage wili have an efficiency . 
of about 5%. Assuming an efficiency of 80% for the modulato~, 

which consists of a,pulsed current generator, the average 

dc input power required for the 10 watt transmitter is about 

88 watts. ' 

The size of the 8.9 watt trahsmitter and modulator will 

be about 12x12xlO cm. Its weight will be about 1 kg. 

If a parametric amplifi,er' is used in the receiver the 

transmitted power required for the 1 meter antenna is reduced 

to 3.2 watts peak. This power level can be obtained by one 

impatt diode driven by a second impatt diode. The driver 

impatt amplifier w8uld provide about 0.3 watts peak power 

with an imput signal level of'30 milliwatts. The total dc 

input power would be about 29 watts. ,The size of the 3.2 watt 

transmitter and modulator would be about 6x12xlO cm. Its 

weight would be about O. 5 kg. 

The estimated dc power, siLz:eJ and weight of the 19 watt 

peak pm;er transmitter required with the 0.5 meter antenna 
I 

and a parametric amplifier preamplifier is 190 watts, 

16x12xlO cm and 1.5 kg respectively. 
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Since greater peak power and efficiency can be obtained from 

the impatt diodes when operated at 25% duty ratio, an investigation 

was made to determine the difference in peak power required if the 

system were operated at a 25% duty ratio rather than at 50%. Oper-

ation at 50% duty ratio had previously been found to be the most 

efficient usage of average transmitted power. 

It was found, considering both eclipsing loss and receiver 

noise grating, that the net increase in peak power required to 

obtain the same performance at a 25% duty ratio as at 50% duty 

ratio is about a factor of 3. Therefore, operating at the 50% 

duty ratio is more favorable. 
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6.6.3.5. RECEIVER IMPLEMENTATION. 

5,C6.'3:':S.'l:. ,MONOPULSE CONFIGURATION. 

Consideration was given to using a three channel monopulse 

receiver, (E,8a ,8e ), a two channel receiver with one time 

shared difference channel (E,8 ), and a single channel a,e 
receiver where the difference channels are time shared and 

alternately added and subtracted from the sum channel ,(E±8 ) • a,e 

The single channel approach results in additional loss 

in the sum receiver channel of at least 1 dB and consequently 

it is not attractive for this application. 

The feasibility of mUltiplexing the two difference 

channels to minimize hardware was considered. Phase multi­

plexing is not attractive for this application due- to potential 

cross coupling between channels due to the finite isolation 

obtainable. Time division multiplexing appears feasible with 

the relatively low tracking rates encountered. The JSC 

defined requirements for the purpose of this study specify 

a maximum tracking rate of SO/sec. Examination of the 

Mission 3-B rendezvous trajectory indicates a maximum line 

of sight rates of about 0.2°/sec at ranges greater than 1 km. 

It appears reasonable then to time share the difference 

channels, keeping the time share rate at least an order of 

magnitude above ~,he frequency response, pf the antenna positioning 

system. The time sharing would be accomplished by a solid 

state microwave switch which' alternately applies the 8EL or the 

8A signal to the receiver. 

I 
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6.6.3.5.2. USE OF AN RF PREAMPL~FIER IN THE SUM CHANNEL. 

Consideration was given to using a tunnel diode 

or·a pa~etric pre-amplifier in 'the sum channel in the 

receiver to lower the receiver noise temperature. Neither 

pre-amplifier can operate effectively at the maximum return 

signal in excess of 0 dBm which is possible at the minimum 

range of 30 meters. An attenuator would be switched into the 

receive line at a range of about 0.3 km tr. limit the maximum 

power to about -30 dBm. 

The noise figure obtainable from a tunnel diode amplifier 

at 156 Hz. is about 6 dB. This is close to that obtainable 

with a good quality diode mixer and no significant benefit 

is obtained. 

Parametric amplifiets can provide noise figures better 

than 2 dB which is an improvement of 5 dB relative to a diode 

mixer. It does not appear desirable to use the communications 

parametric amplifier for the radar function because (1) it 

must be tuned from 13.8 gHz. to the radar frequency of about 

15 gHz. and (2) the diplexer also must be tuned or switched. 

If the communications transmitter is used fc;.r the radar, 

the signal-to-noise ratios will be adequate without a 

parame'cric amplifier T even for the minimum size 0.5 meter 

antenna. 

In the case of the 1 meter diameter antenna the transmitter 

power requirement can readily be achieved with a solid state 

transmitter and the extra complexity of a parametric amplifier 

is not required. In the case of the 0.5 meter antenna the 

trade-off favor the use of a parametric amplifier rather than 
I 

the larger transmitter.if a separate transmitter is used for 

the radar. 
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6·.6.3.5.3. MIXE\tS. 

Using a balanced Schottley diode type mixer such 

as' the Hewlett Packard No. 5082-2724, and allowing 0.5 dB for 

mismatch and resistive 105S of the diode holder, a I~ixer noise 

figure of 7 dB can be.realized over a wide temperature range. 

6.6.3.5.4. IF AMPLIFIERS. 

A total gain of about 154 dB is required at 

intermediate frequency to raise a signal at zero dB SNR in 

100 Hz. bandwidth referred to the mixer input to a level of 

1 volt for the signal processing circuits. The total dynamic 

range in the skin track mode is the sum of the range variation 

(22km to 30 m) which causes a 115 dB change in signal level, 

and a radar cross section change from 1 m2 to perhaps 100 m2 

which adds another 20 dB to the dynamic range. The total 

dynamic range required for the cooperative mode considering 

a range variati'on from 560 km. to 0.03 km is 85 dB. 

To avoid overloading the receiver, a 30 dB attenuator 

would be switched in the receive lines in front of the mixers 

at a range of about 300 meters to 1imit ·the maximum signal to 

about -20 dBm at the minimum range of 30 meters. 

An IF pre-amplifier mounted on the back of the antenna 

along with the mixer provides about 30 dB gain. Its output 

remains linear over the 105 dB dynamic range of the signal 

at that point. The amplified 10 mHz. IF signal is fed over 

a transmission line to the 10 mHz. IF amplifier located on the 

boom. 

I 
The 10 mHz •. IF amplifier has about 80 dB gain and 65 dB 

AGe range. The signal is down converted to 1 mHz. and 

further amplitied by 44 dB. The 1 mHz. IF amplifier has an 
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AGC range of about 40 dB. 

The gain and phase match of the t,qO receiver channels 
t~ the output of the 1 mHz. amplifier will be within 1.5 dB 
and 10° respectively. 

6.6.3.5.5. LOCAL OSCILLATOR. 
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The mixer diodes require a microwave local oscillator 
signal level of 1 milliwatt for best noise ;igure. The two 
'balanced mixers require a total of 4 milli>qatts which must 

;f , . 

be coherent with the transmitted signal. The local oscillator 
signal is generated by a frequency multiplier which ~ccepts 
a signal near 100 mHz. from the frequency synthesizer and 
multiplies it to the LO frequency near 15 gHz. 

6.6.3.6. PHYSICAL CHARACTERISTICS OF DEPLOYED EQUIPMENT. 

A summary of weight and pOW8r requirements for the 
elements of the radar located on the antenna and on the boom 
is given in Table 6.6.-3. The use of a 1 meter diameter 
antenna was assumed in sizing the transmitter. 

A summary of overall weight and power required by the 
deployed portion of the radar. is given in Table 6.6.-4. 
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TABLE 6.6-3 PHYSICAL CHARACTERISTICS OF MAJGR ELEMENTS OF DEPLOYED PORTION OF RENDEZVOUS RADAR 

Elements Mounted on Antenna 

Monopulse Combiner 
Circulator 
Limiter 
Switch (SPDT) 
Balanced l-lixers (2) 
IF Preampli£iers (2) 
Frequency Multiplier . 
Mounting Structure & Cover 
Cabling & Connectors 

Elements on Boom 

Transnti. tter/Modulator 
Freq. Multiplier 
Freq. Synthesizer 
10 MH IF AmpI (Dual) 
1 MH IF Ampl (Dual) 
Structure (Part o£ boom) 
Cabling & Connectors 

6.168 

Weight, kg 

0.2 

0.15 
0.1 
0.1 
0.2 

0.1 
0.15 
0.5 
0.2 

1.5 

1.0 

0.5 
0.2 

0.2 

0.1 

0,.2 

2.2 
t ,:: 

Power, watts 

0 

0 

0 

0 .1 
0 

0 .4 
5 

5. 5 

88 : 

30 

1, 
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1 

122 
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TABLE 6.6-4 PHYSICAL CHARACTERISTICS OF DEPLOYED EQUIPMENT. 

Element Weight, kg Power, watts 

Electronics & microwave 
'jl' on antenna 1.5 5.5 ,. ,- ~.' 

Electronics on boom 2.2 122 , 
Antenna and feed 1.6 

Antenna gimbals including 
· i elevation and azimuth motors, 

rotary joints, l1aveguide and 
synchros 6.6 100 peak, 

i 

34 average during · i 
search 

Boom structure 3.1 
· , 

Rate gyros (2) 0.91 6 
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6.6.4. IMPLEMENTATION OF MAJOR ELEMENTS OF ELECTRONICS 
ASSEMBLY. 

A block diagram of the electronics 
in Figure 6.6.-2. A detail description of 
processing is given in Section 6.4. 

6.6.4.1. VELOCITY AND RANGE MEASUREMENT. 

assembly is given 
the signal 

The sum IF signal, at a frequency of about 1 mHz. 
plus doppler and ranging frequency, is applied to tl10 mixers 
excited in quadrature from a 1 mHz. reference frequency. The 
I and Q outputs of the mixer are amplified and limited and 
applied to the frequency tracker and to a fast Fourier transform 
processor which functions as a filter bank. The digitizer 
for theFFT processor samples the hard limited doppler, or 
doppler plus range signal at rate 
frequency and provides an I and Q 
the FFT processor. 

twice the maximum signal 
set of digital words to 

The FET processor is mechanized in software within a 
small micro-computLr to function essentially as a bank of 
contiguous filters with a dB bandwidths of either 100 or 
267 Hz. corresponding to the use of the 0.5 meter diameter 
antenna or the 1.0 meter antenna respectively. The presence 
of the signal is detected by the FFT processor which generates 
a "signal detected" signal which stops the antenna search 
p:l!ogram. 

The antenna would be allowed to coast past the target 
where the search program is terminated. However, the antenna 
location at the in~tant of signal detection is placed into 
memory and the antenna is driven back to that location. 
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The frequency tracker is slewed to the signal frequency by 
a digital command from the FFT processor. After initialization 
of the velocity, range and angle measurements as described in 
section 6.4, the tracker alternately tracks the doppler and the 
doppler plus range signal. Digital words representing these 
two quantities are applied to the data converter \~hich is mech­
anized in soft\~are \~ithin the microcomputer. The computed range 
and velocity information is applied to a data formatting function 
within the microcomputer which provides target range, velocity, 
azimuth angle and angle rate, and elevation angle and angle rate 
in a format compatible with the space shuttle data systems. 
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6. 6. 4 • 2 ANGLE TRACKING 

The 1 MH sum and difference signals are mixed with a sig-z 
nal from the frequency ,tracker which is maintained 5 KHz above 
the doppler or doppler plus range frequency. The signal frequency 

applied to the angle track circuits is thericonstant at 5 kHz. 
Th~ difference channel is demultiplexed and both the sum and dif-
ference signals are filtered by band pass filters centered at 5 KH 
with a bandwidth of about 500 Hz. The filters are made about twice 
the bandwidth of the doppler tracking filter to minimize phase shift. 

The filter outputs are applied to phase sensitive detectors 
which yield a dc output related to the angular displacement of 
the target from the monopulse axis. The detector outputs are 
filtered and applied as an error signal to the servo amplifiers 
which drive the antenna positioner. 

The antenna search program is generated in the microcomputer, 
~J converted to an analog voltage by the digital to analog converters 

and is applied to the servo amplifiers during the search mode. 
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6.6.4.3 PHYSICAL CHARACTERISTICS OF ELECTRONICS ASSEMBLY 

A sunL~ary of estimated weight and power for the subassemblies 

and structure of the eiectronics assembly is given in table 6.6-5. 
The power supply is sized to provide power for the 10 watt peak 

power solid state transmitter. 

The size of the electronics assembly is estimated at about 

7500 cubic centimeters (25.4 x 16.6 x 17.8 em). The weight is 

about 4.8 kg {10.6 pounds} and the power dissipated within the 
assembly is about 81 watts. 

The total amoUnt of regulated power required is about 20.7 watts 

for the electronics assembly and 119.5 watts for the deployed assembly 
for a total of 140.2 watts. An efficiency of 70 % ,'las assumed for the 

power supply which results in a power dissipation within the supply 
of 60 w'atts. 
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TABLE 6.6.5 PHYSICAL CHARACTERISTICS OF THE ELECTRONICS 
ASSEMBLY 

Subassembly 

Angle Track 

Servo Amplifiers (during search) 

Synthesizf,r 

Mixer Li"liter & Digitizer 
Frequency Tracker 

Microcomputer 

SynchrojDigital Converter 

Buffer ~~d Interface 

Power Supply 

Chassis & Interconnect 

6.175 

Weight, kg 

0.14 

0.18 

0.14 

0.14 

0.28 

0.28 

0.14 

0.14 

2.27 

1.10 

4.81 kg 

Power, watts 

0.3 

10 

1.0 

0.3 

0.3 

8 

0.3 

0.5 

60 
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80.7 \ 
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