AN ANALYSIS OF THE ERRORS ASSOCIATED WITH THE DETERMINATION OF ATMOSPHERIC TEMPERATURE FROM ATMOSPHERIC PRESSURE AND DENSITY DATA

R. A. Minzner

Goddard Space Flight Center
Greenbelt, Md. 20771
An Analysis of the Errors Associated With the Determination of Atmospheric Temperature from Atmospheric Pressure and Density Data

R. A. Minzner
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract
A graph has been developed for relating $\delta T/T$, the relative uncertainty in atmospheric temperature T, to $\delta p/p$, the relative uncertainty in the atmospheric pressure p, for situations when T is derived from the slope of the pressure-height profile. A similar graph relates $\delta T/T$ to $\delta \rho/\rho$, the relative uncertainty in the atmospheric density ρ, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or ρ, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of $\delta T/T$ is seen to depend not only upon δp or $\delta \rho$, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of Δh, the height increment between successive observations of p or ρ. In the case of pressure-height data, $\delta T/T$ is dominated by $1/\Delta h$ for all values of Δh; for density-height data, $\delta T/T$ is dominated by $\delta \rho/\rho$, for Δh smaller than about 5 km. Thus, while $\delta T/T = \delta p/p$ for $\Delta h = \sqrt{2} \cdot H$, which is about 10 km, $\delta T/T$ increases to 10, 100, and 1000 times $\delta p/p$ as Δh decreases successively to 1 km, 0.1 km, and 0.01 km respectively. In the case of T derived from density-height data, this inverse relationship between $\delta T/T$ and Δh applies only for large values of Δh, that is, for $\Delta h > 35$ km. For $\Delta h < 1$ km, $\delta T/T \approx \delta \rho/\rho$, independent of the size of Δh. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperatures with unacceptably large uncertainties.

Key Words
Temperature uncertainty, Uncertainty propagation, Error analysis, Temperature-height profile, Pressure-height profile, Density-height profile, Atmospheric data

Distribution Statement
Unclassified—Unlimited

For sale by the National Technical Information Service, Springfield, Virginia 22161
SYMBOLS

BASIC QUANTITIES AND COEFFICIENTS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Equation or Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The dimensionless coefficient indicating the factor by which ((\delta p/p)) is multiplied to yield ((\delta T/T))</td>
<td>(20)</td>
</tr>
<tr>
<td>G</td>
<td>The standard geopotential gravitational constant (9.80665 \text{ m}^2 \text{s}^{-2} \text{ (m')}^{-1})</td>
<td>(1)</td>
</tr>
<tr>
<td>H</td>
<td>Scale height in units of geopotential height, (\text{m'}) (or (\text{km'}))</td>
<td>(1)</td>
</tr>
<tr>
<td>h</td>
<td>Geopotential height in units of (\text{m'}) (nearly equal to geometric height, but accounting for height variation of the acceleration of gravity; that is, (Gdh = g(z)dz))</td>
<td>(1)</td>
</tr>
<tr>
<td>k</td>
<td>A dimensional constant (0.0341632 \text{ K/m'}) resulting from the combining of the three constants (GM/R) into a single value</td>
<td>(4)</td>
</tr>
<tr>
<td>M</td>
<td>Mean molecular weight of air (28.9644 \text{ kg kmol}^{-1})</td>
<td>(1)</td>
</tr>
<tr>
<td>p</td>
<td>Atmospheric pressure (\text{N m}^{-2})</td>
<td>(1)</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant (8.31432 \times 10^3 \text{ joules K}^{-1} \text{ kmol}^{-1})</td>
<td>(1)</td>
</tr>
<tr>
<td>R</td>
<td>Ratio of (S_{q, \text{max}}) to (S_{q, \text{min}})</td>
<td>Figure 6</td>
</tr>
<tr>
<td>S</td>
<td>The value of a particular series of terms involving density ratios</td>
<td>(30)</td>
</tr>
<tr>
<td>T</td>
<td>Atmospheric temperature (\text{K})</td>
<td>(1)</td>
</tr>
<tr>
<td>x</td>
<td>A general designation for a function of a number of generalized variables</td>
<td>(14)</td>
</tr>
<tr>
<td>y</td>
<td>A general designation for the set of variables of which (x) is a function</td>
<td>(14)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>A subscripted dimensionless coefficient with a value near unity</td>
<td>(23)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Atmospheric density (\text{kg m}^{-3})</td>
<td>(7)</td>
</tr>
</tbody>
</table>
SINGLE SUBSCRIPTS

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
<th>Equation or Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refers to a particular height (h_1) so that (p_1, T_1, \rho_1), and (h_1) in a single equation all refer to conditions at the same height</td>
<td>(4)</td>
</tr>
<tr>
<td>2</td>
<td>Similar to 1</td>
<td>(4)</td>
</tr>
<tr>
<td>i</td>
<td>Refers to an individual member of a set of related variables having the general designation (y_i)</td>
<td>(14)</td>
</tr>
<tr>
<td>i</td>
<td>Also refers to a variable in an isothermal atmosphere as (\rho_i) in the graph of ((\rho_i/\rho)) versus (h) in figure 1</td>
<td>(14)</td>
</tr>
<tr>
<td>j</td>
<td>A general designation for an integer which may vary between 2 and (q), and which is simultaneously associated with a geopotential height as (h_j) and with the related density as (\rho_j)</td>
<td>(21)</td>
</tr>
<tr>
<td>q</td>
<td>A general designation for an integer which may have any positive value, and which is associated with the lowest density-height data point (that is, (h_q, \rho_q)) involved in a particular evaluation of an integral to determine the value of the related temperature (T_q)</td>
<td>(11)</td>
</tr>
<tr>
<td>q</td>
<td>Also used as (S_q) where (q) implies the number of terms in the series (S)</td>
<td>(30)</td>
</tr>
<tr>
<td>r</td>
<td>Designates a specific reference value for the basic quantity of which it is a subscript, that is, (p_r) and (\rho_r)</td>
<td>Figure 1</td>
</tr>
</tbody>
</table>

DOUBLE SUBSCRIPTS

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>Description</th>
<th>Equation or Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Refers to a particular height layer as between (h_2) and (h_1), where (h_1) and (h_2) are ordered in such a way that the quantities within the subscripted parentheses have particular signed significance; that is, (\Delta h) is always positive while (\Delta H) is positive only when (dT/dh) is positive in the related layer</td>
<td>(4)</td>
</tr>
<tr>
<td>j-1, j</td>
<td>Similar to 1, 2</td>
<td>(25)</td>
</tr>
<tr>
<td>j, j+1</td>
<td>Similar to 1, 2</td>
<td>(26)</td>
</tr>
<tr>
<td>q-1, q</td>
<td>Similar to 1, 2</td>
<td>(27)</td>
</tr>
</tbody>
</table>
$q, \text{ max}$ Designates maximum value of S_q

$q, \text{ min}$ Designates minimum value of S_q

OPERATORS AND FUNCTIONS

$\bar{\cdot}$ Overbar as in \bar{T} or \bar{H} indicates the mean value of T or H for the related layer

$\sqrt{\cdot}$ Square root as \sqrt{T}

\int Integral as $\int \rho(h) \, dh$

∂ Partial differential as in ∂x

d Differential as in dh

\ln Natural logarithm as $\ln p$ and $\ln \rho$

Δ An increment as in Δh and ΔH

δ An increment or random uncertainty as in δy_i, δp_i, $\delta \Delta h$, δT_1, $\delta \rho_1$, δT_q, and $\delta \rho_q$

Σ A summation of a set of terms
AN ANALYSIS OF THE ERRORS ASSOCIATED WITH
THE DETERMINATION OF ATMOSPHERIC
TEMPERATURE FROM ATMOSPHERIC
PRESSURE AND DENSITY DATA

R. A. Minzner
Goddard Space Flight Center

INTRODUCTION

Relationships between pressure, temperature, and height in the earth’s atmosphere are well
known and for many years have been the basis for height determination in balloon-
radiosonde flights in which pressure and temperature were measured during meteorological
probings of the lowest 30 km of the earth’s atmosphere. When rocket vehicles extended
the potential atmospheric probing capabilities to heights up to 100 km, into regions where
pressure is still measurable, but where existing technology does not allow for immersion sen­
sing of temperature, these same mathematical relationships were used to extract temperature,
from the measured pressures and radar-derived rocket-height data. The unsmoothed temper­
ature-height values from many of these soundings represented a very jagged height profile,
with the degree of jaggedness apparently increasing as the height increment between suc­
cessive data points decreased. Investigators usually have been unable to determine how
much of this jaggedness represents real temperature variability and how much is attributable
to measurement error.

The hydrostatic equation and the equation of state lead to another set of height relation­
ships: those between atmospheric density, temperature, and height, such that temperature
can also be computed from density-height data. In cases where such computations have
been made, particularly in the height region of 30 to 100 km, the resulting temperature-
height profiles appeared to be less jagged than those derived from pressure-height data
with comparable height resolution.

The apparent difference in the jaggedness of density-derived temperature-height profiles
from those associated with pressure-height data suggest that the height increments of the
pressure and density data do affect the uncertainty in the derived temperatures, and that
the influence of height increments in relation to density data may be different from that
in relation to pressure data. Obviously, error analyses, which involve both the pressure-
temperature-height relationship in one instance and the density-temperature-height relation-
ship in another instance, are needed. The error analyses presented in this paper confirm the
fact that important differences do exist between these two sets of relationships, particularly
in regard to the influence of the height increment on the propagation of measurement un-
certainties into the temperature-height profile. These differences strongly favor the use of
density-height data over pressure-height data.

FUNDAMENTAL CONSIDERATIONS
Pressure-Height Relationships
The equation of state, when combined with the differential form of the hydrostatic equation
to eliminate density \(\rho \), yields an expression frequently referred to as the hypsometric
equation:

\[
\frac{dQ_{\text{np}}}{dh} = \frac{-GM}{RT} = \frac{-1}{H}
\]

where

\[p \] = atmospheric pressure,
\[h \] = a measure of the height above sea level, in geopotential meters \(m' \)
\[T \] = absolute temperature of the atmosphere at \(h \),
\[R \] = the universal gas constant,
\[M \] = the mean molecular weight of air,
\[G \] = a constant when \(h \) is expressed in geopotential, and
\[H \] = the scale height in geopotential units.

Solving equation (1) for \(T \) and \(H \), respectively, yields

\[T = \frac{GM}{R} \cdot \frac{-dh}{dQ_{\text{np}}} \] (2)

and

\[H = \frac{RT}{GM} = \frac{-dh}{dQ_{\text{np}}} \] (3)

When values of \(\text{lnp} \) versus \(h \) are known from numerical data rather than from an analytical
function, it is convenient to replace the expression \(-dh/dQ_{\text{np}}\), which applies to a specific
height, with a numerical approximation \((h_2 - h_1)/(\text{lnp}_2 - \text{lnp}_1)\). In this approximation,
\(p_1 \) is the pressure at \(h_1 \), and \(p_2 \) is the pressure at \(h_2 \). The approximation therefore represents
the mean value of the reciprocal of the derivative over the height interval \((h_2 - h_1)\). When
the point value of the derivative in both equations (2) and (3) is replaced by the numerical approximation, the related values of T and H no longer apply to a single height, but rather become the mean values \bar{T} and \bar{H}, respectively, associated with the height interval $(h_2 - h_1)$. Thus, we have

$$\bar{T} = \frac{GM}{R} \cdot \frac{h_2 - h_1}{\ln p_1 - \ln p_2} = k \cdot \frac{(\Delta h)_{1,2}}{\ln p_1 - \ln p_2} \tag{4}$$

where $k = \frac{GM}{R} = 0.0341632 \text{ K/m'}$, and $(\Delta h)_{1,2} = h_2 - h_1$, and where, from the relationship between T and H implicit in equation (1), we see that

$$\bar{H} = \frac{h_2 - h_1}{\ln p_1 - \ln p_2} = \frac{(\Delta h)_{1,2}}{\ln p_1 - \ln p_2} \tag{5}$$

From equation (5), we obtain the following expression which will be of special importance in the section on Uncertainty of Temperatures Deduced from Pressures:

$$\frac{1}{\ln p_1 - \ln p_2} = \left(\frac{\bar{H}}{(\Delta h)_{1,2}}\right) \tag{6}$$

The interrelationships between $\ln p$, $d\ln p/dh$, T, and H, all as a function of height as expressed by equations (1), (2), and (3), are shown pictorially by four of the six height-related graphs of figure 1. This figure, which depicts the properties of a portion of the United States Standard Atmosphere, 1975* was developed from a preliminary set of abbreviated tables representing a portion of this revised standard atmosphere (Kantor and Cole, 1973). Geopotential height is scaled linearly along the abscissa of figure 1. Atmospheric pressure, which is plotted in the form of the natural logarithm of the ratio (p/p_r), has its ordinate scale at the left of the figure and is depicted by the lower of the three lines diagonally crossing the entire figure from upper left to lower right. In this presentation of pressure, p_r in the ratio (p/p_r) has been made equal to one newton per square meter (1 N m⁻²) so that the numerical values of (p/p_r) are those of p in N m⁻², while the scale of $\ln(p/p_r)$ at the left of the figure implies no dimensions.

The graph of $d\ln p/dh$ shows that the slope of $\ln(p/p_r)$ versus h, or equivalently the slope of $\ln p$ versus h, is constant only in height regions over which T is invariant. (The value of $d\ln p/dh$ is negative and inversely proportional to T.) These portions of the graph of $d\ln p/dh$ versus height corresponding to constant T (the three height intervals 11 to 20 km', 47 to 57 km', and 84.852 to 89.716 km') consist of horizontal straight-line segments, while the remainder of that graph consists of five curved segments. The scale height, which is directly proportional to T, is seen to remain within the range of 5.45 and 7.95 km', with a median value of 6.5 km'.

Figure 1. The U.S. standard atmosphere as represented by graphs of five atmospheric properties versus height: temperature, scale height, natural log of density ratio, natural log of pressure ratio, and derivative of natural log of pressure ratio with respect to height, plus a sixth property for comparison—natural log of density ratio versus height for an isothermal atmosphere.
Density-Height Relationship 1

When the differential form of the hydrostatic equation is combined with the differential form of the equation of state to eliminate the differential of pressure, we obtain the following relationship between temperature and the density-height function:

\[
T = \frac{-dh}{d\ln p} \left[\frac{GM}{R} + \frac{dT}{dh} \right]
\]

(7)

In the absence of an analytical expression for \(\rho(h)\), a numerical approximation for \(dh/d\ln p\) leads to a mean value of temperature \(\bar{T}\) for the height interval \(h_2 - h_1\):

\[
\bar{T} = \frac{h_2 - h_1}{\ln \rho_1 - \ln \rho_2} \left[\frac{GM}{R} + \frac{T_2 - T_1}{h_2 - h_1} \right]
\]

(8)

In terms of scale height, this expression becomes

\[
\bar{H} = \frac{h_2 - h_1}{\ln \rho_1 - \ln \rho_2} \left[1 + \frac{H_2 - H_1}{h_2 - h_1} \right]
\]

(9)

It is important to note that while equation (8) expresses the mean temperature for the layer \(h_1\) to \(h_2\), the expression involves the average gradient of \(T\) with respect to \(h\) within that layer. A similar situation prevails for the expression of the mean scale height in equation (9) where \(\bar{H} = (H_2 + H_1)/2\). Since prior knowledge of the value of neither \((T_2 - T_1)/(h_2 - h_1)\) nor \((H_2 - H_1)/(h_2 - h_1)\) is generally available, equations (8) and (9) are not of themselves useful relationships for temperature-height determination. However, one version of the following expression derived from equation (9) will be of special importance in an uncertainty analysis in the section on Uncertainty of Temperatures Deduced from Densities. This expression is

\[
\frac{1}{\ln \rho_1 - \ln \rho_2} = \frac{(H_2 + H_1)/2}{(h_2 - h_1) + (H_2 - H_1)}
\]

(10)

Equation (10) is written for the case in which \(h_2 > h_1\), as when data are being analyzed from lower to greater heights, such that \(\rho_1 > \rho_2\). If the equation is to apply to data being analyzed from greater to lower heights, as is the preferred case for the integral form of the density-height function involving the normal atmosphere, \(h_1\) is greater than \(h_2\) such that \(\rho_2 > \rho_1\), and equation (10) must be rewritten as

\[
\frac{1}{\ln \rho_2 - \ln \rho_1} = \frac{(H_1 + H_2)/2}{(h_1 - h_2) + (H_1 - H_2)} = \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{1,2}
\]

(10a)

In this expression \(\Delta h\) is always positive, and \(\Delta H\) is positive in regions of positive temperature gradients, zero in regions of zero temperature gradients, and negative in regions of negative temperature gradients.
Density-Height Relationship 2

The integral of the hydrostatic equation, when combined with the equation of state to eliminate the pressure, yields the following directly useful integral expression relating temperature to density:

$$T_q = \frac{\rho_1}{\rho_q} \cdot T_1 - \frac{GM}{R} \cdot \frac{1}{\rho_q} \cdot \int_{h_1}^{h_q} \rho(h) \, dh$$ \hspace{1cm} (11)

The temperature T_q is not the mean value of temperature for some layer, as in the case of T in equation (4), rather, it is the temperature at the specific height h_q.

It has been demonstrated (Minzner et al., 1964 and 1966) that, when applied to a helium atmosphere, the properties of equation (11) differ markedly from those observed when the equation is applied to an argon atmosphere. With an air atmosphere having a mean molecular weight of about 29, the properties of this equation are similar to those found when the equation is applied to an argon atmosphere in which the integration optimally proceeds from the greatest to the lowest altitude of the density-height data. In this situation, T_1, ρ_1, and h_1 are each associated with the greatest height of the data set, while T_q, ρ_q, and h_q are each associated with the running value of h. This is the height for which the value of T_q is being computed, a height which varies progressively from h_1 to the lowest height of the data set as the calculation of the profile proceeds.

Because $\rho(h)$ is usually known numerically rather than analytically, it is convenient to replace the integral of equation (11) with an appropriate series approximation, one of which is governed by the logarithmic trapezoidal rule (Minzner et al., 1965). With the use of this approximation, equation (11) may be rewritten as

$$T_q = \frac{\rho_1}{\rho_q} \cdot T_1 + \frac{GM}{R} \cdot \frac{1}{\rho_q} \cdot \sum_{j=2}^{q} \frac{(h_j - h_{j-1}) (\rho_j - \rho_{j-1})}{\ln \rho_j - \ln \rho_{j-1}}$$ \hspace{1cm} (12)

The logarithmic-trapezoidal rule is a particularly suitable one for the integration of atmospheric density with respect to height because this approximation very closely represents the conditions of the real atmosphere, and because, in a graph of measured values of $\ln \rho$ versus h, the straight-line segments between successive data points exactly represent the conditions of the logarithmic trapezoidal rule. The agreement of this rule with reality is evident from the nearly straight-line segments of an idealized version of the real atmosphere shown in the graph of $\ln(\rho/\rho_r)$ versus height in figure 1. For this graph, which represents the densities of the U.S. Standard Atmosphere, 1975, the value of ρ_r was chosen to be 1×10^{-5} kg m$^{-3}$, so that the single ordinate scale at the left of the figure applies to both $\ln(\rho/\rho_r)$ and $\ln(\rho/\rho_r)$. The shape of the curve $\ln(\rho/\rho_r)$ versus h is identical to the shape which the curve $\ln \rho$ versus h would have, because the values of $\ln(\rho/\rho_r)$ versus h and of $\ln \rho$ versus h are offset by the constant difference $\ln \rho_r$ at all heights.
Figure 1 also contains a graph of $\ln(p_i/p_r)$ in the form of a continuous straight line immediately above the graph of $\ln(p/p_r)$. This single straight line diagonally across the entire figure is characteristic of the density of an isothermal atmosphere extending upward from a height of 11 km, where the standard-atmosphere density is 5.4721×10^{-2} kg m$^{-3}$, and where the temperature and the corresponding scale height are 216.650 K and 6.363 km, respectively. For this specialized atmosphere, the logarithmic-trapezoidal rule represents a series which exactly duplicates the integral of equation (11). The small deviations of the slopes of $\ln(p_i/p_r)$ versus height from those of $\ln(p_i/p_r)$ versus height show the small influence of the variation of atmospheric temperature from the fixed value 216.650 K (in the height region of 10 to 90 km) on the general shape of the curves of $\ln(p_i/p_r)$ and $\ln p$ versus h. (The influence of temperature-height variation upon the curves of $\ln(p_i/p_r)$ and $\ln p$ versus h is similarly small.)

In the evaluation of T_0 by equation (11), or by any appropriate approximation of that equation as exemplified by equation (12), a knowledge of the initial temperature T_1 is of importance only for the upper regions of the profile. For $h_q = h_1$, the value of (p_1/p_q) T_1 is exactly T_1 because the integral term is zero and $p_1 = p_q$. As h_q decreases from h_1 (that is, as the value of $(h_1 - h_q)$ increases), the value of the relative contribution of the density-ratio term decreases, while that of the integral term correspondingly builds up. When $(h_1 - h_q)$ increases from zero, first by one scale height and then by three scale heights, the relative contribution of the density-ratio term to T_0 decreases from 100 to about 37 percent, and then to about 3 percent, because of the large decrease in the value of (p_1/p_q) over these height regions. Simultaneously, the value of the integral term grows correspondingly. At heights of more than three scale heights below h_1, the value of T_0 is determined almost completely by the integral term alone. Figure 2 shows the relative contributions made to T_0 by the density-ratio term and by the integral term of equation (11) as a function of the range of the limits of integration $(h_1 - h_q)$ expressed in units of scale height.

The graphs in figure 2 are based on the density-height profile for an isothermal atmosphere ($T = 216.650$ K) for which $\ln p$ is a linear function of height as previously shown in the graph of $\ln(p_i/p_r)$ in figure 1. Only small variations from the values of the two terms of equation (12) depicted in figure 2 would be seen for calculations based on a real, variable-temperature atmosphere.

The elimination of T between equation (12) and equation (3) yields the following expression for scale height:

$$H_q = \frac{p_1}{p_q} \cdot H_1 + \frac{1}{\rho_q} \cdot \sum_{j=2}^{q} \frac{(h_{j-1} - h_{j}) (\rho_j - \rho_{j-1})}{\ln p_j - \ln p_{j-1}}$$

(13)

The relative contribution of each of the two terms of this equation to H_q, as a function of the range of integration $(h_1 - h_q)$, follows exactly the same pattern shown in figure 2 with regard to T_0.

7
Atmospheric soundings of both pressure and density have for many years served as the basis for the determination of the height profiles of temperature and scale height. These profiles for temperature and scale height are obtained from pressures through equations (4) and (5), respectively, while from densities they are obtained through one or another version of equations (12) and (13), respectively. It is obvious that the uncertainties of these derived temperatures and scale heights are a function of the uncertainty in the measured quantities of pressure or density. Somewhat less obvious is the fact that the height interval between successive observations of pressure or density strongly influences the propagation of the observational uncertainties into the computed temperatures and scale heights. A rigorous error analysis of these two pairs of equations demonstrates this situation. The pair of pressure-related equations are analyzed in the following section while the pair of density-related equations are analyzed in the subsequent section.

UNCERTAINTY OF TEMPERATURES DEDUCED FROM PRESSURES

The error-analysis method employed is the first-order Gaussian method, wherein each variable y_i entering into the expression of a particular function of these variables $x(y_i)$ is
assumed to have an observational uncertainty \(\delta y_i \) which meets the conditions of a Gaussian or normal distribution about \(\bar{y}_i \), where \(\bar{y}_i \) is the mean of a set of individual observations of the \(i \)th variable or the true value of the \(i \)th variable. Thus, if the value of \(x \) is determined from the functional expression \(x(y_i) \), the value of \(\delta x \), the implicit uncertainty in \(x \), is given by

\[
(\delta x)^2 = \sum_i \left(\frac{\partial x}{\partial y_i} \cdot \delta y_i \right)^2
\]

Applying this relationship to the variables of equation (4), in which \((\Delta h)_{1,2} \) is redesignated simply as \(\Delta h \), yields

\[
\delta T = \left[\left(\frac{\partial T}{\partial p_1} \cdot \delta p_1 \right)^2 + \left(\frac{\partial T}{\partial p_2} \cdot \delta p_2 \right)^2 + \left(\frac{\partial T}{\partial \Delta h} \cdot \delta \Delta h \right)^2 \right]^{\frac{1}{2}}
\]

It may be shown from (5) that the partial derivative of \(T \) with respect to \(\Delta h \), when simultaneously multiplied and divided by equivalent portions of (6), leads to

\[
\frac{\partial T}{\partial \Delta h} \cdot \delta \Delta h = \frac{k \Delta h}{(\xi p_1 - \xi p_2)^2} \cdot \delta \Delta h \]

Because the coefficient of \(\delta \Delta h/\bar{H} \) in (16) is identically the coefficient of \(-\delta p_1/p_1 \) and of \(-\delta p_2/p_2 \) when the partial differentiation processes indicated in (15) with respect to both \(p_1 \) and \(p_2 \) have been performed, it follows that

\[
\delta T = \frac{k \Delta h}{(\xi p_1 - \xi p_2)^2} \left[\left(\frac{\delta p_1}{p_1} \right)^2 + \left(\frac{\delta p_2}{p_2} \right)^2 + \left(\frac{\delta \Delta h}{\bar{H}} \right)^2 \right]^{\frac{1}{2}}
\]

where \(\delta p_1 \) and \(\delta p_2 \) are the pressure uncertainties of two consecutive pressure-height values, and \(\delta \Delta h \) is the uncertainty of the height interval \(\Delta h \) between the corresponding two pressure-height values.

Dividing each side of equation (17) by the appropriate side of equation (4) yields the relative uncertainty

\[
\frac{\delta T}{T} = \frac{1}{(\xi p_1 - \xi p_2)} \left[\left(\frac{\delta p_1}{p_1} \right)^2 + \left(\frac{\delta p_2}{p_2} \right)^2 + \left(\frac{\delta \Delta h}{\bar{H}} \right)^2 \right]^{\frac{1}{2}}
\]

It is convenient to assume that all the uncertainty of a pressure-height point is in the pressure and that the height increment is exact. In this case, the values of both \(\delta p_1 \) and \(\delta p_2 \) are correspondingly increased over their actual values, and the term involving \(\delta \Delta h \) in equation (18) vanishes. It is further assumed that the relative uncertainty in measured values of \(p \) is the same at \(h_1 \) and \(h_2 \); that is, \(\delta p_1/p_1 = \delta p_2/p_2 = \delta p/p \). These two assumptions permit equation (18) to be reduced to the simpler form,
From equation (6) it is apparent that \(1/(\ln p_1 - \ln p_2)\) in equation (19) may be replaced by \([\bar{H}/(\Delta h)_{1,2}]\) where \(\bar{H}\) is the mean scale height for the layer \(h_2 - h_1 = (\Delta h)_{1,2}\). Thus, equation (19) may be rewritten as

\[
\frac{\delta \bar{T}}{\bar{T}} = \frac{\sqrt{2}}{\ln p_1 - \ln p_2} \cdot \frac{\delta p}{p} = A_{1,2} \cdot \left(\frac{\delta p}{p}\right)
\] (20)

This equation indicates that \(\delta \bar{T}/\bar{T}\), the relative uncertainty in the mean temperature of the layer bounded by pressures \(p_1\) and \(p_2\), is equal to the relative uncertainty in the pressure measurements times a coefficient \(A_{1,2}\). This coefficient is seen to depend upon only two quantities, the mean temperature \(\bar{T}\) of the layer \(h_2 - h_1\) (\(\bar{T}\) being implicit in \(\bar{H}\)) and \((1/\Delta h)\), the reciprocal of the thickness of the pressure-sampling interval \((h_2 - h_1)\). Since the maximum value of \(\bar{T}\) in the earth's atmosphere below \(h = 100\) km' is less than twice its minimum value, and since \(\Delta h\) can, in principle, be made to vary over many orders of magnitude, it is apparent that \(\Delta h\) is the dominant factor in determining the propagation of \((\delta p/p)\) into \(\delta \bar{T}/\bar{T}\).

A graph of the coefficient \(A_{1,2}\) as a function of \(\Delta h\) for three specific values of \(\bar{T}\), 169.10 K, 241.57 K, and 314.04 K, is given in figure 3. The first and third of these temperatures were selected in part because they are close to the lowest and highest atmospheric temperatures normally observed at heights below 100 km, while the second is the mean of these extremes. In addition, these three values were specifically selected to correspond respectively to a particular set of three scale heights: \((7/\sqrt{2})\), \((10/\sqrt{2})\), and \((13/\sqrt{2})\) km'. In each of these three cases, the value of \(A_{1,2}\) is unity when \(\Delta h\) is a particular integer multiple of one geopotential kilometer, 7, 10, and 13 km', respectively.

It is interesting to note that, for the entire range of normally observed temperatures at heights below about 100 km', the pressure-sampling interval \(\Delta h\) corresponding to unity for the coefficient \(A_{1,2}\) varies between the limited range of 7 to 13 km'. The pressure-sampling height interval, however, may actually vary over several orders of magnitude depending upon the design of the measuring system. The value of the coefficient \(A_{1,2}\) could correspondingly vary over several orders of magnitude depending upon the choice of \(\Delta h\).

Concentrating on the median value of \(\bar{T}\), and allowing the pressure-sampling interval \(\Delta h\) to decrease first from \(10^4\) m' to \(10^3\) m' and then to \(10^2\) m', causes the value of \(A_{1,2}\) to increase first from 1 to 10 and then to 100, respectively, such that the uncertainty in the value of \(\bar{T}\) as expressed by equation (20) simultaneously increases by factors of 10 and 100 for a fixed uncertainty in the pressure. Conversely, as \(\Delta h\) is increased from \(10^4\) m' to \(10^5\) m', the value of \(A_{1,2}\) decreases from unity to 0.1, such that the uncertainty in a related mean value of \(T\) correspondingly decreases by a factor of 10.
Figure 3. Value of the coefficient $A_{1,2}$ in equation (20) as a function of pressure-sampling height interval for each of three atmospheric temperatures representing approximately the maximum, median, and minimum values, respectively, for heights below 100 geopotential kilometers.
Figure 3 shows that when mean temperatures are deduced for successive layers from pressure observations having a fixed uncertainty, finer height resolution in the resulting temperature-height profile is obtained at the expense of temperature accuracy, while increased temperature accuracy is achieved at the expense of height resolution. Since the ultimate accuracy of pressures obtained from any high-altitude balloon-borne or rocket-borne pressure-sensing device is limited by considerations of various perturbing phenomena such as outgassing, boundary layer, and shock wave, the value of $\delta p/p$ has a practical lower bound. Thus, $(\delta T/T) \cdot (\Delta h \sqrt{2 \cdot H})$ which is equal to $\delta p/p$ similarly has a practical lower bound, and for this minimum value of $\delta p/p$, $\delta T/T$ is governed by the value of the ratio $(\Delta h/H)$.

Figure 3 shows the effect of variations of both T and Δh on the value of the coefficient $A_{1,2} = (\sqrt{2} \cdot \bar{H}/\Delta h)$. By expressing Δh in multiples of one scale height, the number of variables in equation (20) is effectively reduced by one, and values of $\delta T/T$ can be plotted as a function of $\Delta h = n \cdot \bar{H}$ (where n is the value along the abscissa) for any particular value of $\delta p/p$. Figure 4 presents such a graph for each of nine values of pressure uncertainty.

In figure 4, the straight-line graph for 1 percent uncertainty in p intersects the coordinate for 1 percent uncertainty in T at the abscissa coordinate value of 1.414. This same straight-line graph for 1 percent uncertainty in p intersects the ordinate values of 10, 1000 percent at abscissa values of Δh equal to 0.1414, 0.01414, and 0.001414, respectively. This series of successively decreasing values of Δh, each being one tenth of the preceding one, yields a geometric series of increasing values of $\delta T/T$, each being ten times the preceding one. A similar situation prevails for each of the eight other values of $\delta p/p$, for which lines have been plotted. The value of $\delta T/T$ is obviously varied over orders of magnitude by comparable variations of the value of the ratio $\bar{H}/\Delta h$. For height increments with a value of $\sqrt{2}$ times one scale height, however, the lines for each of the nine values of $\delta p/p$ plotted show the relative temperature uncertainties to be equal to relative pressure uncertainties.

In order to show simultaneously the small additional influence produced by the allowable range in the value of \bar{T} as it appears both in $\delta T/\bar{T}$ as well as intrinsically in H, the single-line graph for each value of $\delta p/p$ in figure 4 is expanded into a band in figure 5 where the pressure-sampling height is expressed in meters as in figure 3.

The lower left-hand edge of each band corresponds to $T = 169.10$ K, while the upper right hand edge of each band corresponds to $T = 314.04$ K with other points across each band corresponding logarithmically to intermediate temperatures. From figure 5 one may estimate the percent uncertainty in particular atmospheric temperatures computed from pressure-height data measured with a specified uncertainty over particular height increments.

Three sample applications of this graph are cited: In the first it is desired to determine the maximum pressure-gage uncertainty allowable to achieve a 1 percent uncertainty in a mean temperature of about 240 K for a layer thickness of 100 m’. We look for the intersection of the 100 m’ abscissa value with the 1 percent ordinate value, and find that it lies near the 242 K value of the 0.01 percent pressure-uncertainty band. Thus, pressures would
Figure 4. Percent uncertainty in the mean temperature of an atmospheric layer (for any one of nine uncertainties in the pressure-height data) as a function of the pressure-sampling height interval (the thickness of that layer) when that mean temperature is deduced from the atmospheric pressure at the upper and lower boundaries of that layer, and when the mean temperature is at or near 241.57 K.
Figure 5. Relative uncertainty in temperatures (calculated from pressure-height data) as a function of the pressure-height sampling interval, and as a function of the value of the temperature, for each of nine values of relative uncertainty in the pressure-height observations.
have to be measured with an uncertainty no greater than 0.01 percent to achieve the desired results. Since it is essentially impossible to achieve such a small uncertainty in any rocket or balloon measurements of pressure, this combination of height resolution and temperature uncertainty is essentially impossible to achieve from pressure-height data.

In the second example, we assume a pressure-gage uncertainty of 3 percent and a mean temperature of 180 K, and we seek the temperature uncertainty associated with particular sampling-height increments. If the pressure sampling-height interval is 3 km, this ordinate value is seen to intersect the appropriate region of the band for 3 percent pressure uncertainty at a value corresponding to a temperature uncertainty on the ordinate scale of about 7.4 percent or about 13.3 K. A doubling of the layer thickness to 6 km would halve the temperature uncertainty.

The third example involves the inverse problem of estimating the uncertainty in the computed pressure differential associated with an assumed isothermal layer of fixed thickness. If the layer has a thickness of 3 km, as may be the situation in the grenade experiment (Nordberg and Smith, 1964), and if there is an uncertainty of about 2 percent or 5 K in an assumed mean temperature of 250 K, the graph shows that the combined uncertainty of the two boundary pressures lies between 0.3 and 1.0 percent or about 0.6 percent on a logarithmic scale. For a layer thickness of 1 km, the boundary-pressure uncertainties would increase by a factor of 3. If the computed pressure-height profiles were used to generate density-height profiles, the uncertainties in the densities would be somewhat larger than in the pressures because of the required vector addition of the temperature uncertainty and the pressure uncertainty to obtain the density uncertainty.

UNCERTAINTY OF TEMPERATURES DEDUCED FROM DENSITIES

Applying the first-order Gaussian method, equation (14), to the determination of the uncertainty in temperatures deduced from density-height data through equation (11) leads to

\[
\delta T_q = \left[\left(\frac{\partial T_q}{\partial T_1} \cdot \delta T_1 \right)^2 + \left(\frac{\partial T_q}{\partial \rho_1} \cdot \delta \rho_1 \right)^2 + \sum_{j=2}^{q-1} \left(\frac{\partial T_q}{\partial \rho_j} \cdot \delta \rho_j \right)^2 + \left(\frac{\partial T_q}{\partial \rho_q} \cdot \delta \rho_q \right)^2 \right]^\frac{1}{2}
\]

(21)

provided that we assume all the uncertainty in a density-height point to be concentrated in the density. Because scale height combines the temperature with several constants, the use of scale height facilitates the expansion and analysis of equation (21). Consequently, it is convenient to rewrite that equation as

\[
\delta H_q = \left[\left(\frac{\partial H_q}{\partial H_1} \cdot \delta H_1 \right)^2 + \left(\frac{\partial H_q}{\partial \rho_1} \cdot \delta \rho_1 \right)^2 + \sum_{j=2}^{q-1} \left(\frac{\partial H_q}{\partial \rho_j} \cdot \delta \rho_j \right)^2 + \left(\frac{\partial H_q}{\partial \rho_q} \cdot \delta \rho_q \right)^2 \right]^\frac{1}{2}
\]

(22)
Both equations (21) and (22) involve \((q + 1)\) terms, where \(q\) is the number of density-height data points. The first term is associated with the uncertainty of the temperature or the scale height at \(h_1\), while the second term is associated with the uncertainty of the density of \(h_1\). Each of the \(q-1\) additional term deals with the uncertainty of one of the successive \(q-1\) density-height data points, respectively. Three of the \((q + 1)\) terms of the series have unique formats. These are the first, the second, and the last terms, those involving \(\delta T_1\) (or \(\delta H_1\)), \(\delta \rho_1\), and \(\delta \rho_q\), respectively. However, the remaining terms (the third through the 4th term involving \(\delta \rho_2\) through \(\delta \rho_{q-1}\), respectively), have a common format. Thus, the sum of these common-format terms may be expressed as the summation of a general term. Applying the operators indicated in equation (22), dividing both sides of the resulting equation by \(H_q\), and introducing equation (10a) yields the following equation:

\[
\frac{(\delta H_q)}{H_q} = \frac{H_1}{H_q} \cdot \rho_1 \frac{(\delta H_1)}{H_1} + \sum_{j=2}^{q-1} \left[\alpha_{j-1,j} \left(\frac{\rho_1 - \rho_{j-1}}{\rho_j} \right) \left(\frac{\overline{H}}{\Delta h + \Delta H} \right)_{p-1,j} - \alpha_{j-1,j+1} \left(\frac{\rho_1 - \rho_{j+1}}{\rho_{j+1}} \right) \left(\frac{\overline{H}}{\Delta h + \Delta H} \right)_{j+1,q} \right] \frac{(\delta \rho_j)}{\rho_j} + \left(\alpha_{q-1,q} \left(\frac{\rho_q - \rho_{q-1}}{\rho_q} \right) \left(\frac{\overline{H}}{\Delta h + \Delta H} \right)_{q-1,q} - \frac{H_1}{H_q} \cdot \rho_1 - \sum_{j=2}^{q-1} \alpha_{j-1,j} \left(\frac{\rho_1 - \rho_{j-1}}{\rho_q} \right) \right] \frac{(\delta \rho_q)}{\rho_q} \tag{23}
\]

where

\[
\alpha_{1,2} = \left(\frac{\overline{H}}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{1,2} \tag{24}
\]

\[
\alpha_{j-1,j} = \left(\frac{\overline{H}}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{j-1,j} \tag{25}
\]

\[
\alpha_{j,j+1} = \left(\frac{\overline{H}}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{j,j+1} \tag{26}
\]

\[
\alpha_{q-1,q} = \left(\frac{\overline{H}}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{q-1,q} \tag{27}
\]

Equation (23) (developed in appendix A) is very much more complicated than the comparable uncertainty expression in terms of pressure-height data as represented by equation (18). The considerable difference in the complexity between the two equations stems
largely from the fact that equation (18) involves the uncertainty of only two pressure-height data points and the uncertainty of the corresponding height increment, while equation (23) involves the uncertainty of all consecutive density-height data points from \(h_1 \) to \(h_q \), each of which contributes at least a small amount to the value and uncertainty of the temperature or scale height at height \(h_q \). It is emphasized that the quantities \(T_q \) or \(H_q \) in equations (11) through (13), and again in equations (21) through (23), represent values for specific heights rather than mean values for specific layers as in the case of the pressure-related equations.

Each element of equations (23) through (27) is associated either with a specific height or with a specific layer. Elements having a single subscript, for example, \(H_j, \rho_j, \rho_{j-1}, \rho_{j+1}, \rho_{q-1}, \rho_q, \) and \(H_q \), signify the value of the particular quantity at heights \(h_j, h_{j-1}, h_{j+1}, h_{q-1}, \) and \(h_q \), respectively. Quantities with a double subscript, for example, \(\alpha_{1,2}, \alpha_{j-1,j}, \) and so forth, represent a quantity associated with particular layers, that is, the layers bounded by \(h_1 \) and \(h_2 \), or by \(h_{j-1} \) and \(h_j \), and so on, respectively. Thus \(\alpha_{1,2} \), as expressed by equation (24), represents an algebraic expression of four different quantities, three of which, namely \(\bar{H}, \Delta h, \) and \(\Delta H \), are associated with the layer \(h_1 \) to \(h_2 \).

In equation (24), \(\bar{H} \) is the mean scale height for the layer \(\Delta h = h_1 - h_2 \), while \(\Delta H \) represents the change in scale height within that layer, that is, \(H_1 - H_2 \), such that only in a region where the gradient of \(H \) or \(T \) with respect to height is positive will \(\Delta H \) be positive. The quantity \(H_q \) is, of course, the value of \(H \) at height \(h_q \). Similarly, \(\alpha_{j-1,j}, \alpha_{j,j+1} \), and \(\alpha_{q-1,q} \), as defined by equations (25), (26), and (27), respectively, each represents quantities associated with the particular appropriate layers. Equation (23) also includes the doubly subscripts quantities

\[
\left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{1,2} \cdot \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{j-1,j} \cdot \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{j,j+1} \cdot \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{q-1,q}
\]

each of which represents one factor of the right-hand side of equations (24), (25), (26), and (27), respectively. The influence of nonzero gradients in the temperature-height profile is impressed upon \(\delta H_q / H_q \) through all the doubly subscripted quantities in equation (23).

In order to see more clearly the influence on \(\delta H_q \) of sampling-height interval alone, it is convenient to assume an isothermal atmosphere and to correspondingly simplify equation (23). In this case, scale height would not vary but would remain fixed at a value \(\bar{H} \) over the entire region of integration, and the following relationships would apply: \(H_1 = H_q = H, \bar{H} = H, \) and \(\Delta H \) is zero in all layers. Under these conditions, equations (24), (25), (26), and (27) become unity, as does the ratio \(H_1 / H_q \), and equation (23) may be rewritten as
\[
\left(\frac{\delta H_q}{H_q} \right)^2 = \left(\frac{\rho_1}{\rho_q} \right)^2 \left(\frac{\delta H_1}{H_1} \right)^2 + \left(\frac{\rho_2 - \rho_1}{\rho_q} \right)^2 \left(\frac{\bar{H}}{\Delta h_{1,2}} \right)^2 \cdot \left(\frac{\delta \rho_1}{\rho_1} \right)^2
\]

\[
+ \sum_{j=2}^{q-1} \left\{ \left[\left(\frac{\rho_j + 1 - \rho_j}{\rho_q} \right) - \frac{\delta \rho_j}{\rho_j} \right] + \left[\left(\frac{\rho_j - \rho_j - 1}{\rho_q} \right) \right] \right\} \left(\frac{\delta \rho_j}{\rho_j} \right)^2
\]

\[
+ \left\{ \left[\left(\frac{1 - \rho_1}{\rho_q} \right) - \sum_{j=1}^{q-1} \left(\frac{\rho_j - \rho_j - 1}{\rho_q} \right) \right] \left(\frac{\delta \rho_q}{\rho_q} \right)^2 \right\}
\]

\[
(28)
\]

It can be shown that

\[
\sum_{j=1}^{q} \left(\frac{\rho_j - \rho_j - 1}{\rho_q} \right) = \left(1 - \frac{\rho_1}{\rho_q} \right),
\]

such that these two terms in the coefficient of \((\delta \rho_q/\rho_q)\) in equation (28) cancel each other. Then, if we impose the additional condition that the height increments between successive density-height data points are constant over the entire region of integration, this condition plus equation (29) permit the further simplification of equation (28) to

\[
\left(\frac{\delta H_q}{H_q} \right)^2 = \left(\frac{\rho_1}{\rho_q} \right)^2 \left(\frac{\delta H_1}{H_1} \right)^2
\]

\[
+ \left(\frac{\bar{H}}{\Delta h} \right)^2 \left[\left(\frac{\rho_2 - \rho_1}{\rho_q} \right)^2 \delta \rho_1 \right]^2 + \sum_{j=2}^{q-1} \left(\frac{\rho_j + 1 - 2\rho_j + \rho_j - 1}{\rho_q} \right)^2 \left(\delta \rho_j \right)^2 + \left(\frac{\rho_q - \rho_q - 1}{\rho_q} \right)^2 \left(\delta \rho_q \right)^2
\]

\[
(30)
\]

If we impose still another restriction, that is, that the relative uncertainty of the density data has the constant value \(\delta \rho/\rho\) for all heights within the range of integration, we see that \(\delta \rho_1/\rho_1 = \delta \rho_j/\rho_j = \delta \rho_q/\rho_q = \delta \rho/\rho\). Thus, we may rewrite equation (30) as

\[
\left(\frac{\delta H_q}{H_q} \right)^2 = \left(\frac{\rho_1}{\rho_q} \right)^2 \left(\frac{\delta H_1}{H_1} \right)^2
\]

\[
+ \left(\frac{\bar{H}}{\Delta h} \right)^2 \left[\left(\frac{\rho_2 - \rho_1}{\rho_q} \right)^2 \delta \rho_1 \right]^2 + \sum_{j=2}^{q-1} \left(\frac{\rho_j + 1 - 2\rho_j + \rho_j - 1}{\rho_q} \right)^2 \left(\delta \rho_j \right)^2 + \left(\frac{\rho_q - \rho_q - 1}{\rho_q} \right)^2 \left(\delta \rho/\rho \right)
\]

\[
(31)
\]

The restriction permitting this simplification, while somewhat unrealistic from the point of view of any measuring system, is acceptable because the relative uncertainty of only
\(\rho_q \) enters significantly into the value of \(\delta H_q / H_q \) as shown below. It is convenient to represent the sum of the series of the squares of the several density ratios in the coefficient of \(\delta \rho / \rho \) in equation (31) by \((S_q)^2 \), such that

\[
S_q = \left[\left(\frac{\rho_2 - \rho_1}{\rho_q} \right)^2 + \sum_{j=2}^{q-1} \left(\frac{\rho_{j+1} - 2\rho_j + \rho_j - 1}{\rho_q} \right)^2 + \left(\frac{\rho_q - \rho_{q-1}}{\rho_q} \right)^2 \right]^\frac{1}{2} \tag{32}
\]

With this simplification, equation (31) may be rewritten as

\[
\left(\frac{\delta H_q}{H_q} \right)^2 = \left[\left(\frac{\rho_1}{\rho_q} \right) \left(\frac{\delta H_1}{H_1} \right) \right]^2 + \left[S_q \cdot \left(\frac{\bar{H}}{\Delta h} \right) \left(\frac{\delta \rho}{\rho} \right) \right]^2 \tag{33}
\]

Finally, recalling from figure 2 that the ratio \((\rho_1 / \rho_q)\) causes the contribution of \(H_1 \) to \(H_q \) in equation (13) to become negligible when the integration has proceeded downward from \(h_1 \) by more than about three scale heights, we recognize that the contribution of \(\delta H_1 / H_1 \) to \(\delta H_q / H_q \) in equation (33) must similarly be negligible for \(h_q \) sufficiently below \(h_1 \). Thus for this condition, equation (33) may be approximated by

\[
\frac{\delta H_q}{H_q} \approx S_q \cdot \left(\frac{\bar{H}}{\Delta h} \right) \left(\frac{\delta \rho}{\rho} \right) \tag{34}
\]

Also, because \(\delta H_q / H_q \) is identically equal to \(\delta T_q / T_q \), it is convenient at this point to return from scale-height notation to temperature notation, and equation (34)* is rewritten as

\[
\frac{\delta T_q}{T_q} \approx S_q \cdot \left(\frac{\bar{H}}{\Delta h} \right) \left(\frac{\delta \rho}{\rho} \right) \tag{35}
\]

This equation represents the relative uncertainty in \(T_q \) (the temperature at height \(h_q \)) as deduced from a set of density-height data measured with a constant relative uncertainty \((\delta \rho / \rho) \) over the entire range of a height region \(h_1 \) down to \(h_q \), where \((h_1 - h_q) \) is equal to at least three scale heights. This equation assumes the atmosphere to be isothermal at the value \(\bar{T} \) associated with \(H \), a condition which might apply to the earth's atmosphere at heights above about 400 km. Because several of the variables included in the most general form of the uncertainty expression as given by equation (23) are excluded in equation (35), this simpler version is more readily examined for the influence upon \(\delta T_q / T_q \) produced by variations in the sampling-height interval \(\Delta h \) alone.

*At this point and in the balance of the paper the word equation shall be construed to include mathematical statements of approximate equalities such as in (34).
In terms of the relative uncertainty in density, equation (35) for $\delta T_q / T_q$ is very similar to equation (20) for $\delta \bar{T} / T$ in terms of the relative uncertainty in pressure, except that S_q in equation (35) takes the place of $\sqrt{2}$ in equation (20). Therein lies a great difference, because the quantity S_q is a dimensionless function of three variables, \bar{H}, Δh, and $(h_1 - h_q)$, and has a value which varies between $\sqrt{2}$ and zero, as Δh varies from large values to zero. For $\Delta h > 5 \bar{H}$, the value of S_q approaches $\sqrt{2}$ asymptotically as Δh approaches infinity, independent of the value of \bar{H} or $(h_1 - h_q)$. For $\Delta h < 0.2 \bar{H}$, the value of S_q decreases nearly linearly with decreasing values of Δh, for any fixed value of \bar{H} or $(h_1 - h_q)$.

The influence of variations of both Δh and $(h_1 - h_q)$ upon S_q, and implicitly upon $\delta T_q / T_q$, is seen in figure 6. Here, for a fixed value of $\bar{H} = (10/\sqrt{2})$ km, a band of values of S_q is plotted as a function of Δh on a fully logarithmic scale. Ordinate values of S_q are given on the right-hand side of the figure. The upper limit of the band is designated $S_{q,max}$ and is plotted as a line of long dashes; the lower limit of the band is designated $S_{q,min}$ and is plotted as a solid line. The range of the values of S_q within the band, at any particular value of Δh, represents the influence of variations of $(h_1 - h_q)$ at that value of Δh, with the value of S_q increasing as $(h_1 - h_q)$ decreases. At any particular value of Δh, the smallest possible value of $(h_1 - h_q)$ is, of course, Δh, and hence $S_{q,max}$ depicts the locus of the values of S_q associated with the condition that $(h_1 - h_q) = \Delta h$.

Thus, this upper limit of S_q represents the value of equation (32) when that equation involves only the first two density-altitude points of a data set, that is, the value of S_q for the case when $\delta T_q / T_q$ is being computed for the height h_q associated with the second-highest density-height data point in the sounding. For this situation, the right-hand side of equation (32) reduces to $[\sqrt{2}(\rho_q - \rho_1)/\rho_q]$. As the height for computing $\delta T_q / T_q$ is lowered from h_1, such that $(h_1 - h_q)$ becomes increasingly large, the value of S_q slowly decreases and asymptotically approaches a lower limit $S_{q,min}$ when $(h_1 - h_q)$ is greater than three scale heights.

It is convenient to define the ratio of $S_{q,max}$ to $S_{q,min}$ as R and to examine the variation of R with respect to variations in Δh. As long as Δh is smaller than about 0.2 \bar{H}, R retains a nearly constant value (a value which is seen graphically to be approximately equal to $\sqrt{2}$), and the graphs of both $S_{q,max}$ and $S_{q,min}$ versus Δh are seen to make an angle of about $+45^\circ$ with respect to the abscissa. Because of the feature of a nearly constant slope of $+1$ for both $S_{q,max}$ and $S_{q,min}$ in the region where $\Delta h < 0.2 \bar{H}$, this region is hereafter designated as the small-increment regime. As Δh exceeds 0.2 \bar{H} and increases toward 5 \bar{H}, the slopes of both $S_{q,max}$ and $S_{q,min}$ gradually decrease toward zero. However, the slope of $S_{q,max}$ decreases more rapidly than that of $S_{q,min}$ so that $S_{q,max}$ approaches $S_{q,min}$ at a common value $\sqrt{2}$, while the value of the ratio R decreases from $\sqrt{2}$ toward unity. For $\Delta h > 5 \bar{H}$, the value of R is essentially constant at unity, and the slope of the line common to both $S_{q,max}$ and $S_{q,min}$ is essentially zero. The feature of an essentially zero slope for this common line representing S_q versus Δh specifies a region which, because of the related large value of Δh ($\Delta h > 5 \bar{H}$), is hereafter referred to as the large-increment regime. The region between the small-increment regime and the large-increment regime, the region for which 0.2 $\bar{H} < \Delta h < 5 \bar{H}$, is hereafter referred to as the transition regime.
In the large-increment regime, where $S_{q,\text{max}}$ and $S_{q,\text{min}}$ are essentially identical, it is apparent that S_q is essentially independent of $(h_1 - h_q)$. In the small-increment regime, the concern for the influence of $(h_1 - h_q)$ upon S_q remains only for values of $(h_1 - h_q)$ less than about 3 H. Because equation (35) is based upon the restriction that $(h_1 - h_q)$ is greater than 3 H, and because S_q approaches $S_{q,\text{min}}$ for such values of $(h_1 - h_q)$ in all three regimes, it is immediately apparent that the general factor S_q in equation (35) should be replaced by the specific value $S_{q,\text{min}}$. It is somewhat less apparent that $\delta \rho / \rho$ (the general expression for relative uncertainty of density in equation (35)) should be replaced by $\delta \rho_q / \rho_q$ (the specific relative uncertainty for h_q), particularly when equation (35) is applied to the small-increment regime. The reasons for the latter replacement stem from the facts that the following dual relationship exists for the dual conditions $(h_1 - h_q) > 3$ H and $\Delta h < 0.2$ H:

- The value of the series S_q, which becomes essentially $S_{q,\text{min}}$ for $(h_1 - h_q) > 3$ H, simultaneously approaches the value of $(\rho_q - \rho_{q-1})/\rho_q$, the last term in equation (32),
defining S_q. This near equality between $S_{q_{\text{min}}}$ and $(\rho_q - \rho_{q-1})/\rho_q$ in the small-increment regime is demonstrated graphically in figure 6.

The term $(\rho_q - \rho_{q-1})/\rho_q$ is properly associated with the specific uncertainty $\delta\rho_q/\rho_q$ rather than with $\delta\rho/\rho$. This situation is evident from the fact that the quantity $(\rho_q - \rho_{q-1})/\rho_q$ is a coefficient of $\delta\rho_q/\rho_q$ in equation (30), which, except for an isothermal condition, is a general expression equally applicable to both $\delta H_q/H_q$ and $\delta T_q/T_q$. Thus, at least for the small-increment regime, equation (35) may be rewritten as

$$\frac{\delta T_q}{T_q} \simeq S_{q_{\text{min}}} \cdot \left(\frac{\bar{H}}{\Delta h}\right) \left(\frac{\delta\rho_q}{\rho_q}\right)$$

(36)

Even in the large-increment regime where the value of $S_{q_{\text{min}}}$ approaches $[\sqrt{2}(\rho_q - \rho_{q-1})/\rho_q]$, the value of $S_{q_{\text{min}}}$ is still dominated by $(\rho_q - \rho_{q-1})/\rho_q$ (which is equal to unity in this regime); therefore, $S_{q_{\text{min}}}$ should still be associated with $\delta\rho_q/\rho_q$.

Because $(\rho_q - \rho_{q-1})/\rho_q$ approaches unity in the large-increment regime, while $S_{q_{\text{min}}}$ approaches $\sqrt{2}$, it is reasonable to write the following special form of equation (36) for that regime:

$$\frac{\delta T_q}{T_q} \simeq \sqrt{2} \cdot \left(\frac{\bar{H}}{\Delta h}\right) \left(\frac{\delta\rho_q}{\rho_q}\right)$$

(37)

This equation is seen to be analogous to equation (20) involving uncertainties in pressure-height data.

In addition to the graphs of $S_{q_{\text{max}}}, S_{q_{\text{min}}},$ and $(\rho_q - \rho_{q-1})/\rho_q$ versus Δh, figure 6 also contains a graph of the function $(\bar{H}/\Delta h)$ versus Δh for $\bar{H} = (10/\sqrt{2})$ km or for $\bar{T} = 241.57$ K. This function, which obviously varies inversely with Δh, is seen to have a constant negative 45° slope for a fixed value of H. When this function is multiplied by $S_{q_{\text{min}}}$, a quantity which according to figure 6 is seen to have a +45° slope in the small-increment regime, the product for the small-increment regime is essentially a constant (independent of Δh) with a value near unity for all values of \bar{H} or \bar{T}. This situation is depicted in figure 7 where the value of the product $[S_{q_{\text{min}}} \cdot (\bar{H}/\Delta h)]$ versus Δh is plotted in all three regimes for each of three values of $\bar{H} = (7/\sqrt{2}), (10/\sqrt{2})$, and $(13/\sqrt{2})$ km'—consistent with the mean temperatures 169.10, 241.57, and 314.04 K, respectively. Because of the characteristics of this product, equation (35) as applied to the small-increment regime may be replaced by

$$\frac{\delta T_q}{T_q} \simeq \frac{\delta\rho_q}{\rho_q}$$

(38)
Figure 7. Value of the product of two factors (comprising the coefficient of the uncertainty of observed densities) in equation (36) as a function of density-sampling height interval, for each of three values of mean scale height consistent with three specified temperatures.

Thus, three different expressions represent the value of $\delta T_q/T_q$ as a function of uncertainty in density-height data: equation (38) in the small-increment regime, equation (37) in the large-increment regime, and equation (36) in the transition regime.

As a representative of the three equations noted, the application of the data from figure 7 to each of nine particular values of uncertainty in density-height data yielded the graph shown in figure 8. This figure shows the percent uncertainty in the temperature, derived from density-height data through equation (12), as a function of density-sampling height interval for a band of normal atmospheric temperatures, 169 to 314 K, and for a wide range of density-height uncertainty, 0.01 to 100 percent. This figure can serve as the basis for estimating the relationship between the uncertainty in each value of a set of density-height data to each point of the related temperature-height profile, or vice versa, for the region of the earth’s atmosphere below about 120 km.

The examples of hypothetical use of the pressure-data graph, discussed in the section on temperatures deduced from pressures, could be readily transposed to apply to this density-data graph. In particular, figure 8 shows that the relative uncertainty in the density observations need not be smaller than 1 percent in order to have less than a 1 percent uncertainty in a 245 K temperature for a temperature height profile with a height
Figure 8. Relative uncertainty in temperatures (calculated from density-height data) as a function of the density-sampling height interval and as a function of the value of the temperature for each of nine values of relative uncertainty in the density-height observations.
resolution of 100 meters. This value is 100 times larger than the 0.01 percent uncertainty required of pressure data to meet the same conditions and represents a very significant relaxation of the measurement requirements.

The estimates deduced from the use of this graph are theoretically accurate as long as the data to which the graph is applied comply with the three restrictions imposed during the preceding development. However, it will be seen that one of these restrictions may be essentially eliminated, while a second has only a small influence. One may recall that these restrictions are:

- The height h_q associated with T_q is more than three scale heights below h, the greatest height of the sounding: $(h - h_q) > 3H$,
- The relative uncertainty of the density-height data is constant over the entire height range of the sounding, and
- The atmosphere is isothermal over the height range of the sounding.

The first of these restrictions must be retained unless one has some independent means for determining T_q or H_q and its uncertainty as required by equation (33). Only for $(h - h_q) > 3H$ will the ratio ρ_q / ρ_q be sufficiently small to permit the associated term to be neglected in equations (34) through (38).

The second restriction is not a very significant one because it has been shown that the constant factor $(\delta\rho/\rho)$, used as the general expression for density uncertainty in equation (35), is dominated by the particular value $(\delta\rho_q / \rho_q)$ associated with the density-height data at h_q. Thus, the need for $(\delta\rho/\rho)$ to be constant over the entire height range of a particular sounding can be relaxed without significantly affecting the validity of any of equations (36), (37), or (38).

The third restriction appears to be philosophically important because the earth’s atmosphere below 120 km is certainly not isothermal. Actually, however, the existence of the various nonzero gradients in the temperature profile has little effect on $\delta T_q / T_q$. This situation is due to the fact that $\delta T_q / T_q$ depends primarily on the conditions between the data points (ρ_{q-1}, h_{q-1}) and (ρ_q, h_q) and hardly at all upon the conditions between other pairs of data points. Even a nonzero temperature gradient between the two specified data points has only a small effect, and this can be readily accounted for. This is accomplished by reintroducing into equation (36) certain temperature-gradient-dependent coefficients which are associated with $\delta\rho_q / \rho_q$ in the general version of $\delta H_q / H_q$ (or equivalently $\delta T_q / T_q$), as expressed by equation (23).

To begin with, $(\bar{H}/\Delta h)$ in equation (36) is replaced by its original form $\bar{H}/(\Delta h + \Delta H)$ as used in equation (23). Then $S_{q,min}$, which has been shown to be almost exactly equal to $[(\rho_q - \rho_{q-1})/\rho_q]$ for isothermal conditions in the small-increment regime, is replaced by the product of this ratio times its associated coefficient $\alpha_{q-1,q}$ from equation (23). Thus, for an atmosphere with varying temperature or scale height, we may rewrite equation (38) for
the small-increment regime as

$$\frac{\delta T_q}{T_q} \sim \alpha_{q-1} \cdot \left(\frac{\rho_{q-1} - \rho_q}{\rho_q} \right) \left(\frac{\bar{H}}{(\Delta h + \Delta H)_{q-1}} \cdot \frac{\delta \rho_q}{\rho_q} \right)$$ (39)

Using the value of α_{q-1} as defined by equation (27) and replacing \bar{H} by $(2H_q + \Delta H)/2$ where $\Delta H = (H_{q-1} - H_q)$, and remembering that $\Delta h = (h_{q-1} - h_q)$, we have an expression for $\delta T_q/T_q$ in terms of H_{q-1} and ρ_{q-1} at height h_{q-1}, and in terms of H_q, ρ_q, and $\delta \rho_q$ at height h_q:

$$\frac{\delta T_q}{T_q} \sim \left[\frac{(2H_q + \Delta H)^2}{4H_q} \cdot \frac{\Delta h}{(\Delta h + \Delta H)^2} \right] \left(\frac{\rho_{q-1} - \rho_q}{\rho_q} \right)^{-1} \left(\frac{\delta \rho_q}{\rho_q} \right)$$ (40)

It is interesting to examine an example of the use of equation (40) in terms of a realistic set of data, applicable to the small-increment regime, as taken from the U.S. Standard Atmosphere, 1962. Choosing the height interval $\Delta h = 1$ km' between $h_{q-1} = 66$ km' and $h_q = 65$ km', in a region of negative temperature gradient $\Delta T/\Delta h = -4$ K/km', we find ρ_{q-1} and ρ_q to be 1.3482×10^{-4} and 1.5331×10^{-4} kg m$^{-3}$ respectively, $H_q = 7.0709$ km', and $\Delta H = -0.1173$ km'. The substitution of these data into equation (40) leads to a value of 1.076 for the coefficient of $\delta \rho_q/\rho_q$, a value involving only a second-order difference from the unity coefficient of equation (38); in this case, $\delta T_q/T_q$ would be 1.076 times $\delta \rho_q/\rho_q$ instead of 1.000 times $\delta \rho_q/\rho_q$ for the isothermal case. Thus the assumption of isothermality, both in the development and use of equations (36), (37), and (38), is seen to introduce only a second-order error, and accounting for this error is unnecessary in most uncertainty determinations.

CONCLUSIONS: A COMPARISON OF THE DENSITY-DATA NOMOGRAM WITH THAT FOR PRESSURE DATA

The graph relating $\delta T/T$ to sampling-height interval of density data for various temperatures and density uncertainties depicted in figure 8 is based on the same range of values of temperature and sampling-height interval used in figure 5, which relates $\delta \bar{T}/\bar{T}$ to the sampling-height interval of pressure data. In addition, the nine assumed values of $\delta \rho/\rho$ in figure 8 are identical to the nine assumed values of $\delta \rho/\rho$ in figure 5. Thus, the two figures are exactly comparable, and the only difference is that figure 8 is for density data while figure 5 is for pressure data. A comparison of these two figures shows that, at least from the point of view of height resolution and uncertainty of derived temperatures, density-height data are to be preferred over pressure-height data.

In the large-increment regime, $\Delta h > 5\bar{H}$, figure 8 is essentially identical to that of figure 5. In this regime, both figures show that the uncertainty in the derived temperature is decreased as the height resolution of the related temperature profile is decreased, that is, as the
sampling-height interval is increased. However, even the smallest sampling-height interval within this regime is so large ($\Delta h \approx 5H$ or about 30 km'), that the height resolution makes this regime essentially useless for temperature-height determinations at heights below 100 km'.

In the small-increment regime as well as in the transition regime, figures 5 and 8 are quite different from each other. Assuming that $(h_1 - h_q) > 3H$, a basic condition for the applicability of figure 8, the uncertainty in temperatures derived from density-height data is seen to be independent of both Δh and T in the small-increment regime ($\Delta h < 0.2H$). In this regime, $\delta T_q / T_q$ derived from densities is dependent only upon the uncertainty of the density-height value at height h_q. It is apparent that uncertainty considerations place no limits on the usable fineness of the height resolution of the density-height data. This situation is in contrast to that associated with pressure-height data where $\delta T / \bar{T}$ is seen in figure 5 to depend upon \bar{T} and Δh, as well as upon $\delta p / p$, and where $\delta T / \bar{T}$ becomes prohibitively large for reasonable values of $\delta p / p$ when Δh becomes smaller than about 1 km.

In the transition regime, figure 8 shows less difference from figure 5 than in the small-increment regime. In this transition regime, the characteristics of the function determining $\delta T / T$ from density-height data vary between those of the small-increment regime and those of the large-increment regime, such that $\delta T / T$ decreases slightly as Δh varies from about 0.2H to about 5H. In going from the small-increment regime to the transition regime, however, the increased coarseness of the height resolution of the related temperature-height profile would more than offset the correspondingly small decrease in temperature uncertainty, particularly since the minimum values of Δh in this regime are already of the order of 1 km'. Even in this regime, however, the density-height data yield smaller values of $\delta T / T$ than are obtained from pressure-height data.

In general, a comparison of figure 8 with figure 5 shows that the density-height data are far more desirable than pressure-height data at least from the point of view of the size of the uncertainty and of the height resolution of the derived temperature-height profile.
REFERENCES

APPENDIX A
DEVELOPMENT OF THE GENERAL EXPRESSION FOR
$(\delta T_q/T_q)^2$ AND FOR $(\delta H_q/H_q)^2$

It is well known that temperature may be deduced from density-height data by means of the following relationship:

$$T_q = \frac{\rho_1}{\rho_q} \cdot T_1 - \frac{GM}{R} \cdot \frac{1}{\rho_q} \cdot \int_{h_1}^{h_q} \rho (h) \, dh$$ \hspace{1cm} (A-1)

where

- $\rho(h)$ is the function relating atmospheric density to geopotential height,
- h_1 is the geopotential height of the upper limit of the region of integration in geopotential meters (m')
- h_q is the geopotential height of the lower limit of the region of integration in geopotential meters (m')
- G is the geopotential gravity constant $9.80665 \text{ m}^2 \text{s}^{-2} (\text{m}')^{-1}$
- M is the mean molecular weight of the air $28.9644 \text{ kg (kmol)}^{-1}$
- R is the universal gas constant $8.31432 \times 10^3 \text{ joules K}^{-1} \text{ kmol}^{-1}$
- ρ_1 is the atmospheric density at h_1
- T_1 is the atmospheric temperature at h_1
- ρ_q is the atmospheric density at h_q, and
- T_q is the sought after atmospheric temperature at h_q.

Because of the defined relationship between temperature and scale height H, $H = TR/GM$, it is convenient to rewrite equation (A-1) as

$$H_q = \frac{\rho_1}{\rho_q} \cdot H_1 - \frac{1}{\rho_q} \cdot \int_{h_1}^{h_q} \rho (h) \, dh$$ \hspace{1cm} (A-2)

where

- H_1 is the scale height at h_1, and
- H_q is the scale height at h_q.
Generally, \(\rho(h) \) is not known as an analytical function for which one might find a perfect integral, but rather is known as a set of numerical values of density versus geometric or geopotential height. Therefore, it is convenient to replace the integral term in equation (A-2) with a series approximation. One possible form of such an approximation is a series of terms each of which represents the area of a trapezoid corresponding to the area under that portion of the graph of the natural logarithm of density versus \(h \) represented by two successive density-altitude points. In such a situation, the sum of these terms represents the sum of the areas of all of the successive trapezoids between the specified limits. When the successive density-altitude points plotted on a semilogarithmic scale are connected by straight-line segments, as is frequently the situation for closely spaced density-height data, the series of logarithmic trapezoids exactly fits the area under the graph. When using this logarithmic trapezoidal approximation, (A-2) may be rewritten as

\[
H_q = \frac{\rho_1}{\rho_q} \cdot H_1 + \frac{1}{\rho_q} \cdot \sum_{j=2}^{q} \frac{(h_{j-1} - h_j)(\rho_j - \rho_{j-1})}{\log \rho_j - \log \rho_{j-1}}
\]

(A-3)

The validity of using (A-3) as an approximation of (A-2) for the case of a continuous atmosphere improves as the height increment between successive density-height values decreases.

The uncertainty in the computed value of \(H_q \) is based on a function involving the partial derivative of \(H_q \) with respect to each of the independent variables. These include \(H_1 \) and the appropriate number of density-height data pairs: \(h_1, \rho_1; h_j, \rho_j \) (for \(j = 2 \) to \(q - 1 \)); as well as \(h_q, \rho_q \). With the assumption that the uncertainty in each data pair is entirely in the density value, we can assume \(h_{j-1} \) and \(h_j \) to have no variability. Consequently we are interested in the partial derivatives of \(H_q \), as expressed by equation (A-3), with respect to only the following variables: \(H_1, \rho_1, \rho_j \) (for \(j = 2 \) to \(q-1 \)), and \(\rho_q \). The general member of this set of variables is given the general designation \(y_i \). The partial derivative \(\partial H_q / \partial y_i \) multiplied by the corresponding uncertainty \(\delta y_i \) for each of the \(q + 1 \) variables is discussed below:

The product of \(\delta H_1 \) times the partial derivative of \(H_q \) with respect to \(H_1 \) is simply

\[
\frac{\partial H_q}{\partial H_1} \cdot \delta H_1 = \left\{ \frac{\rho_1}{\rho_q} \cdot \frac{H_1}{1} \right\} \frac{\delta H_1}{H_1}
\]

(A-4)

The product of \(\delta \rho_1 \) times the partial derivative of \(H_q \) with respect to \(\rho_1 \) is

\[
\frac{\partial H_q}{\partial \rho_1} \cdot \delta \rho_1 = \left\{ \frac{\rho_1}{\rho_q} \cdot \frac{H_1}{1} - \left(\frac{\Delta h}{\log \rho_2 - \log \rho_1} \right) \left[\frac{\rho_1}{\rho_q} - \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{1}{\log \rho_2 - \log \rho_1} \right) \right] \right\} \frac{\delta \rho_1}{\rho_1}
\]

(A-5)
It can be shown, however, that

$$\frac{1}{\ln \rho_2 - \ln \rho_1} = \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{1,2}$$

(A-6)

where the double subscript “1, 2” on the right-hand member of equation (A-6) indicates that \(\Delta h = (h_1 - h_2), \Delta H = (H_1 - H_2),\) and \(\bar{H} = (H_1 + H_2)/2.\) When \(h_1\) is greater than \(h_2,\) the left-hand side of equation (A-6) is positive, \(\Delta h\) is positive, and \(\Delta H\) has the sign of the temperature gradient \(\partial T/\partial h\) in the region \(h_1\) to \(h_2\). The same equation, with other consecutive digits such as 2, 3, or 3, 4, and so on, indicates these same relationships for the corresponding height intervals.

Equation (A-6) combined with equation (A-5) yields

$$\frac{\partial H_q}{\partial \rho_1} \cdot \delta \rho_1 = \left\{ \frac{\rho_1 \cdot H_1}{\rho_q} - \left[\left(\frac{\bar{H}}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{1,2} \right] \left[\frac{\rho_1}{\rho_q} - \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{1,2} \right] \right\} \frac{\delta \rho_1}{\rho_1}$$

(A-7)

When modified by the introduction of equation (A-6), with each of two different but appropriate pairs of subscripted digits, the product of \(\delta \rho_2\) times the derivative of \(H_q\) with respect to \(\rho_2\) becomes

$$\frac{\partial H_q}{\partial \rho_2} \cdot \delta \rho_2 = \left\{ \left[\left(\frac{\bar{H}}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{1,2} \right] \left[\frac{\rho_1}{\rho_q} - \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{1,2} \right] \right\} +$$

$$- \left[\left(\frac{\bar{H}}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{2,3} \right] \left[\frac{\rho_1}{\rho_q} - \left(\frac{\rho_3 - \rho_2}{\rho_q} \right) \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{2,3} \right] \frac{\delta \rho_2}{\rho_2}$$

(A-8)

In this equation the subscript “1, 2” on each of two factors has the same significance as it has on these same two factors in equation (A-7), while the subscript “2, 3” on each of two other factors signifies that the quantities \(\bar{H}, \Delta H,\) and \(\Delta h\) within each of these factors are associated with the geopotential height increment \(h_2\) to \(h_3.\) Thus, for these two factors, \(\Delta h = h_2 - h_3, \bar{H} = (H_2 + H_3)/2,\) and \(\Delta H = H_2 - H_3.\) Equation (A-8) involves the two height increments which are separated by the height \(h_2.\)

The partial derivative of \(H_q\) with respect to each of \(\rho_3, \rho_4, \ldots, \rho_{q-2},\) and \(\rho_{q-1},\) when multiplied by \(\delta \rho_1\) (where \(j\) is successively 3, 4, \ldots, \(q-2,\) and \(q-1\)) and, when further modified by the appropriate introduction of equation (A-6), is identical to equation (A-8) except for the successive incrementing of the subscripts. Thus, a convenient form of the product of \(\delta \rho_{q-1}\) times the particular expression for the partial derivative of \(H_q\) with respect to \(\rho_{q-1}\) is
In equation (A-9) the subscript "q - 2, q - 1" on each of two factors signifies that the quantities H, ΔH, and Δh within each of those two factors are associated with the geopotential-height increment h_{q-2} to h_{q-1}, so that $\Delta h = h_{q-2} - h_{q-1}$, $H = (H_{q-2} + H_{q-1})/2$, and $\Delta H = H_{q-2} - H_{q-1}$. Similarly in equation (A-9), the subscript "q-1, q" on each of two other factors signifies that the quantities H, ΔH, and Δh within each of these two factors are associated with the geopotential-height increment h_{q-1} to h_q, so that $\Delta h = h_{q-1} - h_q$, $H = (H_{q-1} + H_q)/2$, and $\Delta H = H_{q-1} - H_q$. This expression involves the two height increments separated by the height h_{q-1}.

Because of the common form of the partial derivatives of H_q with respect to ρ_2, ρ_3, \ldots, ρ_{q-2}, and ρ_{q-1}, it is desirable to write a general version of equations (A-8) and (A-9) to express the product of $\delta \rho_j$ times the partial derivative of H_q with respect to ρ_j, where j is understood to have values ranging from 2 to $q - 1$.

This general equation is

$$\frac{\partial H_q}{\partial \rho_j} \cdot \delta \rho_j = \left\{ \left[\frac{H}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right]_{j-1,j} \left[\frac{\rho_j}{\rho_q} - \left(\frac{\rho_j - \rho_{j-1}}{\rho_q} \right) \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{j-1,j} \right] \right\} \delta \rho_j \quad (A-10)$$

Finally, the product of $\delta \rho_q$ times the partial derivative of H_q with respect to ρ_q when modified by the introduction of equation (A-6), is

$$\frac{\partial H_q}{\partial \rho_q} \cdot \delta \rho_q = \left\{ \left[\frac{H}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right]_{q-1,q} \left[\frac{\rho_q}{\rho_q} - \left(\frac{\rho_q - \rho_{q-1}}{\rho_q} \right) \left(\frac{\bar{H}}{\Delta h + \Delta H} \right)_{q-1,q} \right] \right\} \delta \rho_q \quad (A-11)$$
In this equation the subscript \(q-1, q \) on each of two factors has the same significance as in equation (A-9), while the subscript \(j-1, j \) on another factor in the general term signifies that the quantities \(\bar{H}, \Delta H, \) and \(\Delta h \) within that term are associated with the general geopotential height increment \(h_{j-1} \) to \(h_j \). Thus, for this factor, \(\Delta h = h_{j-1} - h_j, \bar{H} = (H_{j-1} + H_j)/2, \) and \(\Delta H = H_{j-1} - H_j \).

It is evident that one part of this equation deals with the data associated with the single height increment \(\Delta h = (h_{q-1} - h_q) \) between the lowest two density-height values involved in the calculation of \(H_q \), while another part of the equation deals with all the height increments between \(h_1 \) and \(h_q \) and their associated density data.

Each of equations (A-4), (A-7), (A-10), and (A-11) is directly involved in the Gaussian expression for relative uncertainty \(\delta H_q / H_q \) which follows:

\[
\frac{\delta H_q}{H_q} = \frac{1}{H_q} \left[\left(\frac{\partial H_q}{\partial H_1} \delta H_1 \right)^2 + \left(\frac{\partial H_q}{\partial \rho_1} \delta \rho_1 \right)^2 + \sum_{j=2}^{q-1} \left(\frac{\partial H_q}{\partial \rho_j} \delta \rho_j \right)^2 + \left(\frac{\partial H_q}{\partial \rho_q} \delta \rho_q \right)^2 \right]^{1/2} \quad (A-12)
\]

The first, second, and fourth terms within the brackets of this equation are seen to represent exactly the squares of equation (A-4), (A-7), and (A-11), respectively. The third term represents the square of equation (A-10) evaluated for \(j \) ranging from 2 to \(q-1 \). The bracketed portion of the right-hand side of equation (A-12) is seen to be multiplied by the reciprocal of \(H_q \), thereby implying that each term of equations (A-4), (A-7), (A-10), and (A-11) must ultimately be multiplied by \(1/H_q \), either before or after these equations are squared and summed to equal \((\delta H_q / H_q)^2 \). It is convenient in this case to do the multiplication before squaring and summing. Equations (A-7), (A-10), and (A-11), each contain the doubly subscripted factor

\[
\left(\frac{\bar{H}}{1} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)
\]

in at least one term. It is convenient therefore to accomplish this multiplication operation in the appropriate terms by introducing \(H_q \) into the denominator of this doubly subscripted factor, thereby converting this factor into a nondimensional coefficient with a value close to unity. In order to put the resulting coefficient into proper perspective with respect to the remainder of the equation and also to conserve space in the uncertainty expression being developed, it is convenient to define each of these modified factors by a specific symbol. Thus, from equation (A-7) the modified factor is defined as the coefficient \(\alpha_{1,2} \), that is,

\[
\alpha_{1,2} = \left(\frac{\bar{H}}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{1,2} \quad (A-13)
\]
while the two modified factors involved in equation (A-11) are defined as

$$\alpha_{j-1,j} = \left(\frac{H}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{j-1,j}$$ \hspace{1cm} (A-14)$$

and

$$\alpha_{j,j+1} = \left(\frac{H}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{j,j+1}$$ \hspace{1cm} (A-15)$$

the modified factor from equation (A-10) is defined as the coefficient \(\alpha_{q-1,q}\), that is,

$$\alpha_{q-1,q} = \left(\frac{H}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)_{q-1,q}$$ \hspace{1cm} (A-16)$$

Substituting equations (A-4), (A-7), (A-10), and (A-11), respectively, into the successive terms on the right-hand side of equation (A-12), dividing each of these equations by \(H_q\) (that is, replacing each of the “1’s” in the denominators of these equations by \(H_q\)), and simultaneously replacing the resulting modified doubly subscripted factors in these equations by the equivalent coefficient forms defined in equations (A-13) through (A-16) leads to the following expression for \((\delta H_q / H_q)^2\):

$$\left(\frac{\delta H_q}{H_q} \right)^2 = \left(\frac{H}{H_q} \cdot \frac{\Delta h}{\Delta h + \Delta H} \right)^2 + \frac{H}{H_q} \cdot \frac{\rho_1 - \rho_q}{\rho_q} \cdot \frac{\delta H_q}{H_q} \cdot \frac{\rho_1}{\rho_q} - \alpha_{j-1,j} \left[\frac{\rho_1}{\rho_q} \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{H}{H_q} \cdot \frac{\Delta h + \Delta H}{j-1,j} \right) \right]^2 \left(\frac{\delta \rho_1}{\rho_1} \right)^2 +$$

$$\sum_{j=2}^{q-1} \left[\alpha_{j-1,j} \left[\frac{\rho_1}{\rho_q} \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{H}{H_q} \cdot \frac{\Delta h + \Delta H}{j-1,j} \right) \right] - \alpha_{j,j+1} \left[\frac{\rho_1}{\rho_q} \left(\frac{\rho_1}{\rho_q} - \frac{\rho_1}{\rho_q} \right) \left(\frac{H}{H_q} \cdot \frac{\Delta h + \Delta H}{j,j+1} \right) \right] \right]^2 \left(\frac{\delta \rho_1}{\rho_1} \right)^2 (A-17)$$

$$+ \left[\alpha_{q-1,q} \left[\frac{\rho_1}{\rho_q} \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{H}{H_q} \cdot \frac{\Delta h + \Delta H}{q-1,q} \right) \right] - \alpha_{j-1,j} \left[\frac{\rho_1}{\rho_q} \left(\frac{\rho_1}{\rho_q} - \frac{\rho_1}{\rho_q} \right) \left(\frac{H}{H_q} \cdot \frac{\Delta h + \Delta H}{j-1,j} \right) \right] \right]^2 \left(\frac{\delta \rho_q}{\rho_q} \right)^2$$

Because \(\delta H_q / H_q\) is identically equal to \(\delta T_q / T_q\), equation (A-17) may be rewritten as

34
\[
\left(\frac{\delta T_q}{T_q} \right)^2 = \left(\frac{H_q}{H_1} \cdot \frac{\rho_1}{\rho_q} \right)^2 \left(\frac{\delta H_q}{H_1} \right)^2 + \left(\frac{H_1}{H_q} \cdot \frac{\rho_q}{\rho_1} - \alpha_{q,1,2} \left[\frac{\rho_1}{\rho_q} - \left(\frac{\rho_2 - \rho_1}{\rho_q} \right) \left(\frac{H_q}{\Delta h + \Delta H_{1,2}} \right) \right] \right)^2 \left(\frac{\delta \rho_1}{\rho_1} \right)^2 + \\
\sum_{j=2}^{q-1} \left\{ \alpha_{q-1,j} \left[\frac{\rho_2}{\rho_q} - \left(\frac{\rho_j - \rho_{j-1}}{\rho_q} \right) \left(\frac{H_q}{\Delta h + \Delta H_{j-1,j}} \right) \right] - \alpha_{q,j+1} \left[\frac{\rho_j}{\rho_q} - \left(\frac{\rho_{j+1} - \rho_j}{\rho_q} \right) \left(\frac{H_q}{\Delta h + \Delta H_{j,j+1}} \right) \right] \right\} \left(\frac{\delta \rho_j}{\rho_j} \right)^2 \tag{A-18}
\]

\[
+ \left\{ \alpha_{q-1,q,1} \left[\frac{\rho_2}{\rho_q} - \left(\frac{\rho_q - \rho_{q-1}}{\rho_q} \right) \left(\frac{H_q}{\Delta h + \Delta H_{q-1,q}} \right) \right] - \frac{H_1}{H_q} \cdot \frac{\rho_q}{\rho_1} - \sum_{j=2}^{q-1} \alpha_{j-1,j} \left(\frac{\rho_j - \rho_{j-1}}{\rho_q} \right) \right\} \left(\frac{\delta \rho_q}{\rho_q} \right)^2
\]
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546