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ABSTRACT

The gamma-ray line produced at 0.51-MeV in solar flares is the

result either of free annihilation of positrons with electrons

or of the decay of positronium by 2-photon emission. Positron

annihilation from the bound state of positronium may also pro-

ceed by 3-photon emission, resulting in a continuum with energies

up to 0.51-MeV. Accurate calculations of the rates of free

annihilation and positronium formation in a solar-flare plasma

are presented. Estimates of the positronium-formation rates

by charge exchange and the rates of dissociation and quenching

are also considered. The temperature and density dependence

of the ratio of 3-photon to 2-photon emission is obtained. For

temperatures less than 10 6 K, this ratio is found to depend pri-

marily on the density of the annihilation region. The observa-

bility of the 3-photon emission is hindered by the flare-produced

continuum radiation and other anticipated line emission but aided

by the inherent delay in the production and slowing-down time of

the positrons. Asymmetrically-broadened 0.51-MeV line emission

could be detected at times late in solar gamma-ray events when

the continuum and prompt line emission have essentially disap-

peared. When the ratio of free electrons to neutral atoms in the

plasma is approximately unity or greater, the Doppler width of

the 0.51-MeV line is a function of the temperature of the anni:ii-

lation region. For the small ion densities characteristic of the

photosphere, the width is predominantly a function of the density.

For temperatures greater than 10 6 K, the rate of positron conver-

sion into 0 -rays is the free annihilation rate. At lower tem-

peratures this conversion rate is determined by the rates of

thermalization and positronium formation, which is faster than

free annihilation by at least two order of magnitude.
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1 . INTRODUCTION

Gamma-ray line emission at an energy of approximately 0.51

MeV was observed by Chupp et al.(1973,75) from the 1972 August 4

and August 7 solar flares. This line is believed to be due to

the annihilation of positrons which result from the decay of ^-

mesons and radioactive nuclei produced in nuclear reactions of

flare accelerated particles with constituents of the solar atmos-

phere (Lingenfelter and Ramaty 1967; Ramaty and Lingenfelter 1973;

Ramaty, Kozlovsky and Lingenfelter 1975).

The formation of the 0.51-MeV line depends on the sources of

the positrons, on the propagation of the positrons in the solar

atmosphere, on the density and temperature of the ambient medium

in which the positrons slow down and annihilate, and on the mode

of positron annihilation since the positrons may annihilate freely

or from a ground state of positronium.

Four distinct observable parameters related to the annihila-

tion of positrons may yield information about the ambient medium

or the source of positrons. These are the width of the 0.51-MeV

line, the strength of this line relative to the intensity of

ocher gamma lines, the strength of the three gamma continuum below

0.51-MeV which comes from triplet positronium decay, and the

time dependence of the 0.51-MeV line. The time dependence has

already been analyzed by Wang and Ramaty (1975),and the number

of positron emitters relative to the rrimber of neutrons has been
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related to the spectrum of primary particles	 (Ramaty, Kozlovsky,

and Lingenfelter, 1975). In the present paper we investigate in

detail the slowing down and annihilation of positrons and the

formation of positronium in a solar flare plasma. We then con-

sider how the width of the 0.51-MeV line and its strength rela-

tive to the 374 continuum from positronium decay depend on the

temperature and density of the medium in which the positron

comes to rest.

Positrons in a solar flare are created with energies of the

order of 1 MeV or higher (e.g. Ramaty, Kozlovsky and Lingenfelter

1975). They subsequently lose energy at least as fast as the

standard ionization energy loss of charged particles in matter.

Approximate calculations indicate that only 10% or fewer of the

positrons undergo annihilation in flight before slowinq to thermal

velocities, if they are in a plasma, or before slowing to veloci-

ties at which positronium formation can occur in the neutral qas.

In general, the Doppler shift of the gammas from the free annihila-

tion of high energy positrons will be so great that the gammas will

not be counted as part of the 0.51-MeV line.

Positronium, denoted by the symbol Ps, is the bound state of

a positron and an electron. In a fully ionized plasma it can be

formed by the two body radiative recombination reaction with free

electrons, or by three body processes only important at very

high densi t ::s.
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The positronium atoms are formed in triplet or singlet

spin states according to the statistical ratio of 3:1. If

undisturbed for times long compared to their "atural decay

times the positronium decays via the emission of either 3a 's

or 2 
'
0^'s. 3 Ps ­v­ 3 / with a time constant of C 3 = 1.4 x 10-7

sec and 1 Ps-f22r with a time constant of ,^, = 10 -10 sec, for

triplet and singlet states respectively. The 3 e decays produce

a gamma ray continuum with a maximuie, energy of 0.51-MeV while

the 2 t decays appear as a discrete line. Because the cross

section for free annihilation of an electron positron pair in a

triplet state is more than two orders of magnitude smaller than

for a singlet pair, the observation of a three-gamma continuum

is pro^f of positronium formation and decay.

Positronium once formed in a plasma can be dissociated by

collisions with free protons or electrons whenever the energy

available in the center-of-mass frame is above 6.8 eV.	 Since

2
the atomic cross sections are typically of the order of -Ira 0

the critical density for dissociation of the triplet state is

about 10 
14
"m,3 while the singlet positronium begins to be broken

up at N 2L10
17 
 cm-3 . Another process which depletes positronium

in the triplet state is the flipping of the spin from triplet to

singlet through elastic or inelastic collisions with free electrons.

The density at which this quenching occurs is also of the order of

10 14 cm-3.
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Since temperatures high enough to maintain a fully ionized

plasma do not ordinarily occur in regions of the solar atomsphere

when densities are as high as 10 14 cm-3 , dissociation ana quenching

processes in a fully ionized plasma are not considered in the

present work.

Another set of processes characterize annihilation of

positrons in a neutral gas. While the energy loss of positrons

in a plasma is due to many small angle scatterings with electrons

in the electron gas, in a neutral medium energy loss takes place

through ionization and excitation of' atoms or ions. Once the

energy of a positron has dropped to about 75 eV, the cross section

for positronium formation through charge exchange with atoms be-

comes significant. In fact it dominates the energy loss cross

sections below 30 eV. As we shall show, in a neutral medium nearly

all of the positrons form positronium before dropping below 6.8 eV.

However, if sufficiently high atomic densities obtain, N2!10 
14

10 cm -3

the longer lived triplet positronium will be dissociated by atomic

collisions or will be quenched through spin flip collisions with

unpaired atomic electrons. The latter process depletes even those

3 P atoms which end up with energy below 6.8 eV, the threshold

energy for dissociation.

The effect of the dissociation of the triplet state is to in-

crease the number of 2 e annihilations of the positrons either by

the formation of 1 s subsequent to break-up or by the free annihi-

i

lation of positrons that have fallen to energies less than 6.8 eV.
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The breakup reaction is a very efficient energy loss mechanism

since a pcsitron,which goes through the c_;cle of charge exchange

followed by breakup, emerges with less than half of its original

energy. The spin flip reaction also enhances the 2 	 annihilations

through conversion of 3 P to 1 Ps. At densities above 10 17 cm-3

breakup of 1 P becomes important, as is observed in a typical

laboratory situation. Since it is extremely unlikely that solar

positrons can penetrate to re g ions of such high density, singlet

breakup is ignored in the present work.

Another quenching effect, which could deplete the relative

fraction of 3 Ps, is spin flip caused by large magnetic fields.

In work reported by Wallace (1960) it was shown that magnetic

fields in excess of 7 kilogauss are needed to reduce the popula-

tion of 3 P states by approximately 30%, at which level the effect

due to the magnetic field saturates. Such fields far exceed those

expected in low-density solar regions where other quenching mechan-

isms are negligible. Since the effects of magnetic quenching in

all cases are expected to be small, they have not been considered

in the present work.

To summarize, in a fully ionized plasma, positrons thermalize

before either free annihilating or forming positronium. Positron-

ium is formed by radiative recombination. In a neutral gas posi-

tronium formation through charge exchange takes place well before

thermalization can occur. The solar atmosphere, however, is
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neither fully ionized nor completely neutral. In the present

paper, therefore, we investigate the fate of positrons in a

partially ionized medium. We limit our detailed calculations

to a hydrogen plasma and we subsequently consider the perturbing

effects of heavier ions which are fours.-1 to be negligible.

In Section 2 accurate cross sections for the free annihila-

tion, radiative recombination, and charge exchange processes are

presented. In Section 3 we evaluate the rates of positronium

fo.L.,<ati;,n and the resultant energy distributions of the positro-

nium atoms in a partially ionized medium. The results of this

section apply to a medium in which the ambient free electrons have

a Maxwell-Boltzmann distribution of finite temperature but the

density of the medium is sufficiently low such that positronium

atoms decay without further collisions following their formation.

In Section 4 we additionally consider the breakup of posi-

tronium as a function of density. The resultant energy distribu-

tions of the positronium atoms and the relative numbers of triplet

to singlet pcs tronium decays are evaluate6 for temperatures

characteristic of the solar photosphere.

In Section 5 we calculate the width of the 0.51-MeV line and

its strength relative to the 3)^ continuum as functions of tempera-

tune and density in the annihilation region. We also consider the

observability of the 3 e continuum in the presence of other solar

flare continuum radiations and we summarize our results.
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2. FREE ANNIHILATION, RADIATIVE RECOMBINATION,

AND CHARGE EXCHANGE

Free Annihilation

The annihilation cross section of positron_ with free elec-

trons, under the assumption that the initial particles are plane

waves and that the phase shifts introduced by Coulomb interactions

are negligible, is given by Heitler (1954).

z	
' ^/^' 1	 r` ^ 1 l - /t3

^^s L r-1	 d'-1

where 1mc 2 is the total energy of the positron in the electron's

rest frame, and r = 2.82 x 10 -13 cm is the classical radius of
0

the electron. In the nonrelativistic region where most of the

annihilations take place, Equation (1) reduces to 0
---
(plane wave,

non-relativistic) = r
0 
2c/u, where u is the positron's velocity

relative to the free electron. The rate of annihilation in this

case is independent of energy and given by

A
0	 Z	 (2)

- = Ne 7^ - C	 see 1

where N
e 

is the density of electrons.

Coulomb corrections are important only in the nonrelativistic

region. When they are taken into account (Landau and Lifshitz

1958), the nonrelativistic annihilation cross section can be

written as
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where o4 is the fine structure constant. Using this cross

section, the annihilation rate of positrons in thermal equili-

brium with ao isotropic electron plasma of temperature T is

given by

s P

^a	 e

where 7y, and v2 are the velocity vectors of arbitrary electrons

and positrons, and f( -,?) = (m,/ 27fkT) 3/2 exp (-mv 2 /2kT) is the

Maxwell-Boltzmann distribution for particles of mass, m, in

thermal equilibrium. Equation (4) can be reduced to a single

integral by tran

a (rp ') = A  N^
f^	 fa

sforming the variables of integration to

andi' _ 12 - vl 	We obtain (Huang 1963)

^	 2cc
13/z uz^ti z it ^ u—C- ezP ^ ^T)^^^	 /	 (51

T //J	 1 - C-X P (-2Wv<
LA

0

The rate coefficients, given by A fa (T', /Ne , have been evalu-

ated by numerical integration of Equation (5) and are presented

in Table 1. As is shown in Figure 1, the effects of Coulomb

attraction are most significant at low temperatures. The corrected

free-annihilation rate asymptotically approaches the constant

1
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9
h	 approximate value given by Heitler for temperatures ? 107K.

TABLE 1. Free-Annihilation Rate Coefficients

T in K	 Rate Coefficient in 10 -14 cm3/Sec

104 	14.9

2 x 1C4 	10.5

6 :c 10 4 	6. 1

10 5 	4.7

2 x 10 5	3.4

6 x 10 5 	2.1.

106 	1.8

2 x 10 6 	1.4

4 x 106 	1.2

9 x 10 6	1.0

Positronium Formation by Radiative Recombination

Positronium formation b y radiative recombination is

essentially the same proce • s as radiative recombination of

hydrogen except for the difference in the positron and proton

rest masses. Seaton (1959) has calculated the capture rates

for hydrogenic ions, based on an asympototic expansion de-

rived by Menzel and Pekeris (1935) and corrected by Burgess

(1958).	 in the present work, the formulation
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and numerical calculations of Seaton (1059) arc used to determine

the temperature-dependent positroni.um-formation rate. From

Equations (1) through (7) of Seaton, the total radiative-capture

rate coefficient is given by

9	 ^	 2Z 
s 11ArI 

/Z e 6 	Z	 , .nz (6)

C< =
	 Z_ r7 (- JO

C 3 h 3^'m	 r7	 T

for hydrogenic ions where the C
n 

are the coefficients containing

the contributions from all the angular momentun; states for each

principal quantum number, n.

According to Seaton (1959), the asympototic expansion enables

the rates to be calculated with errors not exceeding 2% for tem-

Feratures of order 10 4K, but possibly as great as 20% for tempera-

tures of order 10 6 K or greater. It should be noted that the

widely-used approximation derived by Kaplan and Pikel'ner (1970)

is obtained from a similar expression for the radiative recombina-

tion rate which is in agreement with that from Seaton (1Q59). But

the expression for the cross-section given by Kaplan and Pikel'ner

(1970) in their Equation (I.21) appears to be in error, that is,

too low by a factor of two. Since the expression presented t)y

Kaplan and Pikel'ner in Equation (I.22) is in agreement with

Seaton, it nay be assumed that the discrepancy is only a typo-

graphical error.

In order to calculate the radiative capture rate for posa-
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troni.um from Equation (6), the appropriate reduced mass, l" = M/2,

must be ^^ubstituted for each m. This is equivalent to putting

a factor of 7. 3/2 in the coefficient before the sum, and selecting

the C (A) from Seaton ' s tabulation for which the arguments are
r,

equal. That is

T2 - ^► 	 ( % )

for positro:-.	 n thermal equilibrium.

The re541ts of this calculation are presented in '7able 2,

and are shown for eompa,-ison with the free ...inihilatio r, races in

Figure 1. Also for comparison the radiative capture rate calcu-

lat:td by Nieminen ( 1967) is shown as a dashed line. Nieminen's

-alculation of the _ddi . ati- re capture rate is performed as a func-
0

tion of v^-I ocity which he then relates to an <!quivalt- ° t- tempera-

ture. When Nieminen's values are folded into the Maxwell -Boltzmann

velocity distribution, the resulting rate coefficient is in complete

agreement with the temperature-dependent, radiative -capture rate

presented here. Frcm Figure 1 it can be seen that including the

effects due to the Coulomb intt-raction and the Maxwell-Boltzmann

dist r ibution yields a small change in the temperature at which

the rates are equal, but yields a large increase in the calculated

rates.
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TABLE 2. Radiative Recombination Rate Coefficients

	

T in K	 C *	 Rate Coefficient in cm3/sec
n

	

5 x 10 3	1.998	 1.65 x 10-12

-13
2.5 x	 10 4 1.324 4.89 x 10

5 x 104 1.055 7.76 x 10-13

?.5 x 10 5 0.529 6.10 x 10-14

5 x 10 5 0.364 3.00 x 10-14

2.5 x 106 0.127 4.68 x 10-15

*In Seaton's notation,	 C	 =
x
nS	 ( A ).

n —	 n
n

From Figure 1 we conclude that in a fully ionized hydrogen

plasaa ` ee annihilation and radiative recombination are of

comparable size at T = 8 x 10 5x. At higher temperatar- , 'ree

annihilation dominates and at lower temperatures radiative com-

bination becomes the dominant process.

Positronium Formation by Charae Exct,ange

The alternate reaction producing positroni.um is the charge

exchange of an elect -t):: by a positron with atoms or ions in the

solar. atmosphere. Charge exchange with heavy ions is always

suppressed by their low number den-, :-y relative to hydrogen. At

high tempe-ra:.ures, T > 10 6 K, this reaction is additionally sup-

pressed by the high ionization potentials of the residual ions.

Estimates indicate that this process cannot compete with the free

inn:hilation r es presented previously. At lower temperatures,

T Z 10 6K, the only effect of charge exchange with heavy ions is to

Y
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increase slightly the rate of positronium formation. Therefore,

for simplicity, we consider charge exchange with hydrogen only.

Published cross-sections for charge exchange with neutral

hydrogen, vary greatly, ranging from peak values of 0.065 (Fels

2
and Middleman 1.967) to 3.6 (Cheshire 1964) in units of 7ta

0

where a
0 

is the Bohr radius. A recent calculation by Chan and

Fraser (1973) obtains an S-wave contribution with a peak value

of 3 x 10 -3 'l[ a 
0 
2 , for an energy slightly above the threshold

energy of 6.8	 This value, obtained with a difficult but

presumably accurate variational technique is significantly

lower than that expected from partial wave calculations employ-

i_:ig the Born approximation. As a best estimate of the charge

exchange cress section of positrons with neutral hydrogen, we

have used a calculation by Drachman et al. (to be published)

which uses the Born approximation for all partial waves besides

the S and P. The S-wave result of Chan and Fraser is used and

the P-wave is modified by scaling the Born partial wave to

agr,:^e with that calculated by Chan and McEachran ( to be pub-

fished) at one energy just above threshold. The resultant

cross section rises more slowly than the distorter:-wave calcula-

tion according to Massey and Mohir (1954) but peaks at approxi.-

0 2 
mately 3.3 7f7a	 at abort :4	 positron energy. The values of

the cross section for charge 	 with hydrogen as calcu-

lated b y Drachlman et al. and used in the present work are given

in Table 3.
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TABLE 3. Charge E•KChan eCross Sectio;.s on Atomic Hydrogen

Positron Energy	 Cross Section

(eV)	 J£ a 2)0

7.5	 0.50

10.0 2.4

15.0 3.3

25.0 2.0

50.0 0.41

75.0 0.12

Detailed calculations of rate coefficients based on the

cross sections given in Table 3 are complicated by the possi-

bility that positrons may form positronium before they therma-

lize, or that once thermalized, their energies may be below

the positronium-formation threshold. These questions are

treated in the next section. NeverthelesS an estimate of the

significance of the charge-exchange process may be obtained

by noting that at 10 eV, for example, the charge exchange rate

coefficient is approximately 8 x 10
-13 

cm3 sec-1 for a relative

-5
neutral hydrogen abundance at 10 

5 
K of 2 x 10	 (Gabriel 1971).

This rate coefficient is larger by about an order of magnitude

than the radiative-recombination rate coefficient shown in

Figure 1 at this temperature.
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3. POSIT RONIUM FORMA'T'ION AND ANNIHILATION IN A LOW DENSITY PLASMA

The calculations presented in the previous section demonstrate

that the fate of positrons in a fully ionized plasma at densities

less than 10 14 cm-3 is completely determined by the ratio of the

thermally- averaged radiative recombination rate to the free anni-

hilation rate. However, because positrons result from hadronic

reactions with relatively long interaction lengths, a more real-

istic assumption may be that the annihilations occur in the chromosphere

or photosphere. Such considerations necessitate the investigation

of positron interactions in media with temperatures as low as 104K

or somewhat less and with a wide range of densities and ion frac-

tions. In this section we re-examine the assumptions implicit

in the application of thermally averaged rates to determine the

fate of positrons in solar flares. Calculations are presented

showing to what extent positrons thermalie before annihilating

or forming positronium. For those positrons whose energy falls

below 6.8 eV, the threshold for charge exchange with a hydrogen

atom, the competing processes of free annihilation and thermal-

izing up (,populating the high energy tail of a thermal distribu-

tion) are evaluated. To facilitate these calculations the effects

of dissociation ^-ind quenching are deferred to the Monte Carlo

treatment describes in Section 4.

Energetic charged particles, which enter a Plasma of lower

ri,a:-7^}Pristic thermal energy, slow down due to long range Coulumb
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interactions. One method of treating the energy loss is by use

of a Fokker-Planck equation. The Fokker-Planck equation neglects

the generation of plasma waves but includes the Coulomb in_erac-

tion. Neglect of plasma oscillations in a thermal plasma under-

estimates the energy loss rate by at)ou` 20%. See, for t-_xample,

Sigmar and Joyce (1971). In order to calculate the relative

rates of positronium formation, terms which represent charge

j	 exchange with neutral hydrogen and radiative capture must be

added to the Fokker-Planck terms. The resulting equation is

f̂(V = FP ^^V,	 -	 Ne er +/1^n ^'ce1 flint)
it

(8)

where f (7,t) is the distribution function of the particles

entering the plasma; FP 
I I 

is the Fokker-Planck operator

(Rosenbluth et al. 1957, Montgomery and Tidman 1964); N
n 

is

the density of neutral atoms; N
e 

is the plasma density;

`r r is the radiative capture cross section (Nieminen 1967);

and ^j '	is the charge exchange cross section from Table 3.
ce

Details of this calculation have been presented by Joyce et al

(university of Iowa Research Report 76-2, unpublished).

In this treatment, the energy loss due to collisions with

the neutral "as is neglected which is a reasonable approximation

if N %N	 > 0.1	 The two cross sections for oositronium forma-
e n

tion dominate the positron loss rates for tht? range of temperatures
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and ion densities considered. We have considered plasmas with

the following properties: the temperature of the ambient plasma

and neutral gas is 1.16 x 10 4K corresponding to a kinetic energy

of 1 ev. The number density of the neutral gas plus the plasma

is 10 12 cm3 or 1014 cm 3 . The ratios of plasma to neutral gas

are 1 or 0.1. The initial distribution function of t'le positrons,

f(; o), is a delta function corresponding to an energy of 50 eV.

The results of the integrations of Equation (8) are summarized in

Figures 2 through 7.

Figure 2 shows the evolution of the positron velocity distri-

bution, N(v t) = 4K v 2 f(T,t) for equal ion and neutral densities.

The total number of positrons has been decreased by about 28% by

the time the distribution is almost thermal (t= 3 x 10 -7 sec).

Since the charge exchange cross section drops to zero at a thres-

hold energy of 6.8 ev, positronium formation continues quite

slowly after the bulk of the particles have energies characteristic

of the plasma thermal energy.

Figure 3 shows the positron evolution for N e n
 
IN = 0.1 and

N e + N n = 10 14 . In this case 94% of the positrons form positronium

by charge exchange before the distribution thermalizes.

Figure 4 shows the fraction of positronium having formed as

a function of time for two ratios of plasma to neutral density.

There are two regions of development. First, the positronium

fraction rises rapidly until the remaining positrons have thermalized.

This is followed by a region of slow increase which is approximately
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linear in time. By selectively excluding some of the processes

in the equation, we have determined that the slow rise is due

to charge exchange of positrons in the thermal tail of the dis-

tribution ..,hich extends to the energy region above the charge

exchange threshold. As positrons in the thermal tail are lost

through positronium formation, the tail is repopulated by posi-

trons which gain energy.

For N
e n 
IN = 0.1, most of positronium is formed in the first

stage so that the second stage is of no great importance. The

duration of the first stage is approximately 10 -6 sec, consistent

with the charge exchange cross section given in Table 3.

For N 
e n 
IN = 1.0, a large fraction of the positronium is

formed in the second stage. Since the number of positronium

atoms exhibits linear grow-h, we ; gave extrapolated the curve

for N
e n 
IN = 1.0 to determine the time for which all the positrons

can be converted to positronium. The results of this extrapola-

tion are presented in Table 4.

TABLE 4. Time to Convert all Positrons of Initial Energy 50 eV
to P^sitronium in a 1-eV Plasma with N= N,

e	 n

N + N
e	 n

-3	 Positronium Formation

	

in cm	 Time in sec

	

10 12	 2.3 x 10-2

	

10 13	 2.4 x 10-3

	

10 14	 2.8 x 10-4
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The characteristic times to annihilate by free annihilation

or to form positronium by radiative recombination in a medium

of any specific density and temperature can be calculated from

the corresponding rate coefficients presented in Tables 1 and 2.

A comparison of these times for a temperature of 1.16 x 104K

and the densities considered in Table 4 shows that the charge

exchange process, including the time to thermalize up, dominates

over the competing processes of free annihilation and radiative

recombination.

Figures 5 and 6 show the distribution of energies at which

positronium has formed as a function of time. At large times a

sharp peak begins to develop at low energies. This is due to

positrons being thermalized upward until they are above the thres-

hold energy for the charge exchange cross section. This effect

can be seen more clearly if the plasma temperature is slightly

larger. Figure 7 was calculated for a plasma with kT = 4 eV.

Since more of the thermal tail overlaps the charge exchange thres-

hold, the development of the peak occurs on a shorter time scale

than in the 1 eV plasma. In all of these calculations, the energy

loss due to elastic and inelastic collisions with neutrals has

been neglected. For the case N
e	 n

= N this is a good approximation,

but for smaller ionization fractions, the neutral particle interac-

tions can cause a significant amount of energy loss. The effect of

including energy loss on neutrals and the generation of plasma
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waves, mentioned previously would result in a faster energy loss

so that the mean energy of positronium at formation would be

less than predicted from these calculations.

The results of the calculations presented in this section

are applicable to positron interactions in media for which the

sum of the electron density and the neutral ion density, N = N  + Nn,

is bounded by N L 10 14 cm-3 . For the chromos phere, this density

is a reasonable upper limit and justifies the neglect of disso-

ciation of positronium by collisions with electrons, protons,

or hydrogen atoms. On the other hand, the observed rise time of

the 0.51-MeV line implies densities, N.2' 10 12 cm-3 in the annihi-

lation region (Wang and Ramaty 1975). In the chromosphere, den-

sities in the ranqe 10 12 to 10 14 cm-3 have been inferred from

analyses of white-light flares (Hudson 1972, Machado and Rust 1974).

However, because the rise-time observations set only lower limits

on the density,annihilation in denser regions such as the photo-

sphere is also possible. In determinin(i the parameters associated

with positronium formation in media for which N > 10 14 cm-3 , the

effects of dissociation and quenching may not be neglected. In

the next section these effects as well as approximations for the

energy loss processes with neutral atoms and plasma are considered.

1
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4. POSITRONIUM FORMATION, ANNIHILATION, AND DISSOCIATION
IN A LOW TEMPERATURE PLASMA

In this section we present a simplified Monte-Carlo calcu-

lation of the fate of a positron annihilating in a predominantl,,/

neutral gas of temperatures kT -̂C 1 eV and density in the range

10 12 4 N	 1017 cm-3 . The density of 10 12 cm
-3
 is inferred

from the rise time of the 0.51 MeV line as discussed in the

previous section. Densities up to 10 17 cm-3 correspond to photo-

spheric annihilation regions. Indeed, in the exposition of their

model of white light flares, Najita and Orrall (1970) show that

energetic ions between 10 MeV and 1 GeV release most of their

energy to the ambient gas in the photosphere. As far as posi-

tron reactions are concerned, that region is more nearly a

neutral atomic gas than a plasma.

The principal mechanism for energy loss by positrons inter-

acting with neutral constituents of the ambient medium is the

ionization or excitation of hydrogen atoms. Omidvar (1965) has

shown that in the ionization process, the electron carries off

a kinetic energy equal, on average, to o its binding energy of

13.6 eV. This means that the positron loses about 17 eV in each

ionizing collision. Since the 1S -o-2P excitation costs 10.2 eV,

we have taken the average loss to be about 13.6 eV and the energy

loss cross section to be the sum of the separate cross sections

for ionization and excitation of hydrogen.

F.	 '	 In addition to the neutral atoms there are also free elec-
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trons and ions in the solar atmosphere. As we saw in Section 3,

the scattering of positrons from free electrons is a very effi-

cient energy loss process. To compare it with the atomic processes

we can use the expression listed by Green and Wyatt (1965). For

the effective cross section for the energy loss Q E by positrons 	 '

of energy E in a plasma, we take

7r e

t

E Ad E

While the effective cross section is written as if it were for

a single scattering event, 

itXD=

is actually built up from many

small angle scatterings.  	 the Debye length, the range of

Coulomb force being made finite by shielding, and b is the dis-

tance of closest approach. One finds that for 50 eV positrons

with A E = 13.6 eV, for example, the effective cross section is

two order of magnitude larger than the cross sections for ioniza-

tion and excitation of hydrogen. Thus for N
e 
/N ? 10 -3 the free

electrons cannot be ignored. Since the standard solar atmosphere

with 10 12 cm- 3 L N L 10 17 cm-3 comprises relative electron densi-

ties of this magnitude, we took into account loss against the

free electrons by treating the cross section of Equation (9) in

the same way as the ionization and excitation cross sections.

Our simplfied Monte Carlo calculation has been carried

out by assigning each process an average energy loss so that

only a small set of positron or positronium kinetic energies

are associated with each initial positron energy. Then the
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probability for either triplet or singlet positronium decay

can be written as a finite series of terms, each term being

equalto the probability of occurrence for the sequence of re-

actions it represents. The four processes are: energy loss

to neutral hydrogen atoms or free electrons, A E = 13.6 eV;

positronium formation through charge exchange, A E = 6.8 eV;

breakup of the positronium thro,igh collisions with hydrogen

atoms, A E = (E (Ps) + 6.8)/2 eV; and spin flip of triplet to

singlet, 46E = 0.

From the Monte Carlo calculations we obtain the probabili-

3
ties that a positron decays via triplet positronium, P( Ps--P-3 t ),
or via singlet positronium, P( 1 Ps -► 2jr). A positron that falls

below 6.8 eV cannot form positronium so that only free annihila-

tion is possible unless the ion density is sufficient for it to

thermalize up (see Section 3). The probability of free annihila-

tion is calculated from

P(fa) = 1 - P(385 i 3J-0 - -P (.1 -'Z3') .	 ( 10)

The rates for each process, except the triplet decay rate, depend

on density and energy through the relation

(Na o-	 11)

where N is the number de -ity of target particles, u is the

relative velocity of the reactants, and O' is the total cross
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section for that process. As previously noted, for densities

characteristic of the solar atmosphere, only the triplet posi-

tronium will be broken up or quenched since the singlet decay

rate is large compared to the rates of the alternative atomic

processes.

The cross sections used in the calculation are taken either

from electron scattering experiments on hydrogen atoms or from

theoretical calculations. The cross section for the ionization

of hydrogen by positrons is taken to be equal to the electron

ionization cross sections reported in Golden and McGuire (1974).

The cross section for the 1S-+2P excitation of hydrogen by posi-

trons was taken to be the same as t experimental electron cross

section to be found in Geltman (1969). The breakup cross section

was taken from Massey and Mohr (1954) while the spin flip cross

section is a new result of Hara and Fraser (1975). The charge

exchange cross section is from Table 3. The temperatu re is

assumed to be so low that the thermal motions in the ambient

medium are negligible relative to the kinetic energies of the

incident 1,—, itrons. The relative ion densities are taken from

the standard solar atmosphere according to Allen (1973) for each

total density considered in these calculation_,.

our results are displayed in Figure B. At low densities,

the positronsi annihilate through pos —ronium decay with a 3:1

triplet to singlet ratio. As the density increases through

10 15 cm-3 the triplet positronium is either broken up or quenched
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through ;spin fl ;.p. in either case mostly singlet positronium

is .produced although the number of free positrons • ,ith energies

less than 6.8 eV increases. The probability of free annihila-

tion has probably been ovi-zestimated since we have lignored

those positrons which replenish the high-energy thermal tail

above 6.8 eV. However, this error does not affect the estimate

of the number of 2 0*4 photons per positron, N 21 , since

IV r = z [P ('P5 --P- 'ZY )  t Pa7)]
	

(12)

N214 varies between 0.5 for N = 10 12 cm-3 and 2.0 for N = 10 17 cm- 3.

At the lower densities the 1 Ps is formed, on average, at

higher kinetic energies since it does not arise from the breakup

of 3 P and the subsequent 1 P formation. Since the decay rate

is too rapid for thermalization of the poLitronium, our Monte Carlo

calculation also enables us to find the average 1 P kinetic energy

before decay. The average energy is shown in Figure 9, from

which it is clear that the mean energy decreases with increasing

density.

If we assume that positrons which fall below 6.8 eV gradually

thermalize, at T ~ 1 eV, most will free annihilate with the

center of mass motion of the e e pair being determined by the

Fermi motion of the 1S hydrogenic electron. We can assign an

approximate kinetic energy of 6.8 eV to this motion. The dotted

curve in Figure 9 shows the average kinetic energy for ail 20

sources.
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5. DISCUSSION

From the results of the calculations presented in the pre-

ceding sections, we can describe the fate of a positron in a

solar flare plasma.

For temperatures greater than 10 6 K, positrons annihilate

via free annihilation at a rate of about 10
-14 

N sec-1 as can
e

be seen in Figure 1. For this case the width of the 0.51 MeV
	

^' i

line is determined by the center of mass motion of the e + e

pair which is a function of the temperature of the medium.

The full-width at half maximum of this line, due to thermal

broadening, is given by

Q E Jr = 1.1 T4 	(keV)
	 (13)

where T4 is the temperature in units of 10 4 K. For T > 10 6 K,

0 E y 5' 11.0 keV. But because solar flare plasmas are not

expected to be hotter than ^-' 3 x 10 7 K (Neupert, 1968),

a E g► < 35 keV.

For temperatures just below 10 6 K, radiative recombination

dominates over free annihilation. The relative importance of

radiative recombination and charge exchange is determined by

the residual neutral hydrogen abundance. For the fractional

neutral densities characteristic of the quiescent solar atmos-

phere (Gabriel 1971), charge exchange is expected to be the

dominant process.
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At temperature below a few times 10 5 K, positronium forma-

tion through charge exchange is the dominant reaction through

which positrons annihilate. The relative rates of the competing

processes of slowing down and of forming positronium depend pri-

marily on the fractional ion density of the annihilation region.

When Ne /Nn > 0.5, most of the positrons first thermalize

and then form positronium by charge exchange. This sequence of

events could be maintained even if the mean evergy of the ambient

electrons were less than the threshold for positronium formation

(6.8 eV). This result follows from the fact, demonstrated in

Section 3, that the rate of upward thermalization is larger than

the rates for both free annihilation or radiative recombination.

The annihilation rate is determined by the rate of charge exchange

(-,%.-3 x 10 -8N sec	 see Tabi-e 3) if the maan energy is larger
n

th.u. x-6.8 eV, and by the upward thermali,sation rate

( -_10 -10 N  sec -1 , see Table 4), if this energy is less than

approximately 6.8 eV. Both these rates are much larger than

the free annihilation and radiative recombination rates shown

in Figure 1. when the positrons thermalize before forming posi-

tronium and the mean energy of the ambient electrons is above

6.8 eV, the width of the 0..51 MeV line is approximately

Q E r ^ (T4 - 7)	 AThen the mean energy is less than

6.8 eV, moss of the r,ositrons form positronium at an energy

just above threshold. The resultant energy of the positronium

is low, of the order of 1 e ll. In this case, A Ely
	 1 keV.
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When the fraction of ions is low, N ;N Z 0.5, most of
e n

the positrons will form positronium before they are slowed

below akinetic energy of about 15 to 20 eV for which the charge

exchange cross section is a maximum. The rate of annihilation

in this case is determined by charge exchange and is approxi-

mately 3 x 10 -8 N
n 

sec
-1

. Since the 2f decay occurs well

I
before the positronium atom can thermalize, the Doppler broad-

ening is given by

Ad 
y

E	 = 0.97 (Mean Kinetic Energy in eV) 2 (keV) .	 (14)

15	 -3
For high densities, N > 10	 cm , the mean kinetic energy is

approximately 13 eV and hence A E r = 3 eV. Also, breakup

of 3 P results in no 3 014 decays. For low densities, N < 10 13 cm-3,

the mean kinetic energy is about 25 eV so that A E'y	 5 keV.

(See Figure 9.)

The values of the measurable quantities N 3^ /N2 ^ , the

ratio of the number of 30 	 to the number of 2 0^ decays,and

Q E r	 that may be expected for various regimes of temperatures

and densities are shown in Table 6. For high temperatures,

T > 106 K, or high densities, N "> 10 14 cm-3 , N3 
t 

/N2 
)r 

-t 0.

Since the temperature in regions of densities greater than

10 14 cm	 eveneven during flares, is not expected to be greater

than a few times 104 K, these two cases can be distinguished by

the width of the 0.51 MeV line.	 For high temperatures,

A Et > 10 keV; and for high densities,	 Q E ).	 3 keV.
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For temperatures lower than 10 6K and densities less than

10 cm -3 , all positrons form positronium which annihilates be-

fore it dissociates. Thus Na t IN27,--i 4.5. The state of

ionization of the medium and its temperature determine the width

of the 0.51-MeV line. The largest width, e Er ^ 10 keV is

obtained for T = 106 K, and the smallest width, A E r. r 1 keV

is obtained for T Z. '/ x 104 K and Ne /Nn ] 0.5. However, if

Ne/Nn < 0.5, the width becomes larger, rather than smaller.

The annihilation radiation from decay of the triplet state

of positronium could possibly be observed in measurements of

the gamma-ray spectrum at energies just below 0.511 MeV with

detectors having good energy resolution. Such measurements,

however, are severely complicated by the existence of strong con-

tinuum emission (Crannell, Ramaty and Werntz 1975). A favorable

condition for observing positronium annihilation radiation may

arise at the late stages of solar gamma-ray events when the

continuum is greatly reduced. This follows from the delayed

nature of positron annihilation radiation caused by the long

half lives of some of the positron emitters ( 11 C and 13N), and

possibly also by the long slowing down times of relativistic

positrons from '7t +	 decay (Wang and Ramaty 1975). Thus, when

the numer of accelerated particles in the flare region is

already diminished and hence no nuclear reactions and brems-

strahlung are produced, positronium annihilation radiation

could be more easily observed.
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Table 6. Fate of positrons in a Solar Flare and the
Resultant Photon Signatuie.

I.

THERMALIZATION ; FREE ANNIHILATION

N3r / N2y FS

A E r = 1.1 (T4) 1/2  keV

-------------7--------------
THERMALIZATION	 CHARGE EXCHANGE

0 Er Al (T 4 1 - 7) 1/2 keV

NE /Nn^> 0.5
Q	 I	 Y
w --4.5	 N3r/N2r	 0---Ui
^	 I	 m
CL	

Ne/Nn1 < 0.5	 a

I
I
I

PARTIAL THERMALIZATION
I

CHARGEEXCHANGE

I

I

5 keV	 A E r	 3 keV

I

107
V=

z 108
J
W
Y
W
W
W
Q
WZ 10S

W
¢

Q
Wa

104

103

1012
	

1013	 1014	 1015	 1016
DENSITY IN Cm,3
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Figure 1.	 The rates for radiative capture and for free annihi-

lation of positrons as a function of temperature.

The solid lines are from the results of the present

work. The dashed lines indicate previously published

results in which significant physical considerations

are n`glected.

Figure 2.	 Positron distribution as a function of velocity in

units of

with kin

N = N
e	 n

Figure 3.	 Positron

v/v e
l	e
where v is the velocity of an electron

etic energy kT, at various times for

0.5 x 10 14 cm-3 and kT = 1 eV.

distribution as a function of velocity in

units of v/v
e ,
	

e
where v is the velocity of an electron

! 
with kinetic energy kT, at various times for

N = 0.1 N	 N + N = 10 14 cm-3 , and kT = 1 eV.
e	 n	 e	 n

Figure 4.	 Fraction of positrons which have formed positronium

as a function of time for

N = N = 0.5 x 10 14 cm-3 and kT = 1 eV;
e	 n

and for N = 0.1 N
e	 n

N + N = 10 14 cm-3 , and kT = 1 eV.
e	 n

Figure 5.	 Fraction of positrons which have formed positronium

as a function of energy at various times for

N = N = 0.5 x 10 14 cm-3 and kT = 1 eV.
e	 n

Figure 6.	 Fraction of positrons which have formed positronium

as a function of energy at various times for

14Ne = 0.1 Nn	Ne + Nn = 10	 cm-3, and kT = 1 eV.
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Figure 7.	 Fraction of positrons which have formed positronium

as a function of energy at various times for

N = N = 0.5 x 10 14 cm-3 and kT = 4 eV.
e	 n

Figure 8.	 Probabilities of 3 
14 

and 2t annihilation of posi-

tronium as a function of density in the standard solar

atmosphere. The fraction of free annihilation may be

overestimated since thermalization upward is not con-

sidered.

Figure 9.	 Average kinetic energy of the center-of-mass of the

two photons resulting from singlet positronium at

decay as a function of the density of the ambient

medium. The dashed line includes the two photons from

free annihilation.

i
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