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FLOW VISUALIZATION OF VORTICES LOCKED BY SPANWISE BLOWING OVER 

WINGS FEATURING A UNIQUE LEADING- AND TRAILING-EDGE FLAP SYSTEM
 

By Gary E. Erickson - George Washington University, Joint Institute of
 
Acoustics and Flight Sciences and
 

James F. Campbell - NASA Langley Research Center
 

ABSTRACT
 

Flow visualization studies were conducted to qualitatively determine the
 
effects of active generatiofi and augmentation of vortex flow over wings by
 
blowing a discrete jet in a spanwise direction in the channel formed by exten
sion of upper surface leading- and trailing-edge flaps. Spanwise blowing from
 
a reflection plane over a rectangular wing was found to generate and "lock" a
 
dual co-rotating vortex system within the channel and, at sufficient blowing
 
rates, cause the separated flow off the upper end of the leading-edge flap to
 
reattach to the trailing-edge flap. Observations suggest the external vortex
 
flow induced by the lateral jet developed a thick, highly-cambered airfoil
 
shape, the effective camber and thickness of which were dependent on flap
 
extension angles. Sweeping the wing leading-edge to 450 appeared to reduce,
 
r'elative to the rectangular wing, the blowing rate required to develop a dual
vortex system and induce flow reattachment to the ttailing-edge flap. Test
 
parameters included wing angle of attack, jet momentum coefficient, leading
and trailing-edge flap deflection angle, and jet location above the wing sur
face Effects due to removal of the leading- and trailing-edge flap were also
 
investigated.
 



SUMMARY
 

Flow visualization studies were conducted in a small pilot wind tunnel at
 

the NASA Langley Research Center to qualitatively determine the effects of
 
active generation and augmentation of vortex flow over wings by blowing a dis

crete jet in a spanwise direction in the channel formed by extension of upper
 
surface leading- and trailing-edge flaps. Test parameters included wing angle
 
of attack, jet momentum coefficient, leading- and trailing-edge flap deflection
 
angle, jet location above the wing surface, and leading-edge sweep angle.
 
Effects due to removal of the leading- and trailing-edge flap were also inves
tigated.
 

Spanwise blowing from a reflection plane over a rectangular wing featur
ing extension of leading- and trailing-edge flaps was found to generate and
 
"lock" dual co-rotating vortices within the upper surface channel and at
 
sufficient blowing rates cause the separated flow off the upper end of the
 
leading-edge flap to reattach to the trailing-edge flap. The external vortex
 
flow induced by the lateral jet appears to develop a "fictitious" airfoil
 
shape possessing a large amount of camber and thickness. Extension or retrac
tion of the leading- and trailing-edge flaps increases or decreases, respec
tively, the volume of the vortex channel, suggesting a possible means of vary
ing the effective wing camber and thickness. Increased blowing rate at a given
 
angle of attack decreases the size and growth rate of the vortices within the
 
channel and appears to influence a larger mass of air passing over the wing.
 
Observations suggest that higher blowing rates are required to maintain a stable
 
vortex system to a given span distance as angle of attack is increased. Test
 
results also indicate that jet location above the wing surface is possibly
 
more effective relative to jet location at the wing surface in generating the
 
vortical flow and inducing flow reattachment to the trailing-edge flap. The
 
flow studies suggest that the presence of the leading- and trailing-edge flaps
 
aids in developing a stable dual-vortex system over the wing. Extension of the
 
leading-edge flap initiates flow separation at all angles of attack whereas the
 
trailing-edge flap appears to act as a "turning vane" which aids in the develop
ment of a rotating mass behind the jet. Sweeping the wing leading-edge to 450
 

induces a favorable spanwise pressure gradient which appears to reduce, rela
tive to the wing with zero leading-edge sweep, the blowing rate required to
 
generate a dual-vortex system and cause flow reattachment to the trailing-edge
 
flap at given flap deflection angles and angle of attack.
 

INTRODUCTION
 

The concept of inducing high lift by means of a separation induced vortex
 
flow over a wing has received considerable attention in recent years. Vortex
induced lift increments for take-off and landing are a design feature of
 
supersonic cruise aircraft such as the Anglo-French Concorde which features a
 
thin highly-swept, low aspect ratio wing and the type of flow involved is shown
 
in Figure 1. Development of a vortex flow over a wing is also important to
 
the maneuver performance of the F-16 fighter. In order to achieve these
 
beneficial lifting effects associated with the vortex, the flow over the wing
 



must separate near the leading edge, which results in high wing drag. It is,
 
therefore, desirable to incorporate into the wing design the capability of
 
transitioning from a high-lift configuration featuring external vortex flow to
 
a low-drag cruise configuration without compromising the aerodynamic efficienc
 
during either flight mode.
 

Reference 1 has investigated one promising concept which consists of
 
"locking" an external vortex flow over a semi-span rectangular wing by span
wise blowing in the channel formed by extension of upper surface leading- and
 
trailing-edge flaps. The configuration and flow situation are illustrated in
 
Figure 2 which shows how the flow separates from the upper end of the leading
edge flap and rolls up into two discrete vortices within the channel. At
 
sufficient blowing rates the separated flow reattaches to the trailing-edge
 
flap after passing over the vortex channel, which results in large increases
 
in lift. This flow situation is somewhat analogous to the stable, leading
edge vortices which are passively generated over thin, highly-swept low aspect
 
ratio wings, previously shown in Figure 1, and also to the leading-edge separ
 
tion vortices augmented by spanwise blowing over moderately-swept, higher
 
aspect ratio wings which have been investigated in refs. 2-7 and are illus
trated in Figure 3. Figure 4 shows data taken from reference 1 which indicate
 
the significant vortex-induced lift increments obtained at all angles of attac
 
by blowing spanwise in the wing cavity. The data also suggest that increased
 
blowing rate increases the positive lift increments induced by the vortex flow
 

The present qualitative flow visualization studies were conducted to
 
obtain additional information on the rectangular wing "locked" vortex concept
 
considered in ref. 1 and to extend the concept to swept wing configurations.
 
Test parameters included wing angle of attack, jet momentum coefficient, flap
 
deflection angle and jet location above the wing surface. The effects on the
 
flow situation due to removal of the leading- and trailing-edge flap were also
 
investigated for a range of angle of attack, blowing rate, and flap deflection
 
angle. Tests were conducted in a small pilot wind tunnel at the NASA Langley
 
Research Center. Visualization of the flow process was made possible by a
 
unique helium-filled bubble generator which produced neutrally-buoyant bubbles
 

NOMENCLATURE
 

ae Sonic velocity at nozzle exit
 

A Nozzle exit area
 
e 

AR Aspect ratio, (= b 2/S) 

b Wing span
 

2-D lift coefficient
 

cr Wing root chord 

r3
 

c 



ct Wing tip chord
 

CL- 3-D lift coefficient 

C Jet momentum coefficient, 


d Nozzle di.ameter
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h Normal distance from wing upper surface to nozzle center 
line 

LE Leading-edge 

M 
e 

Pe 

Mach number at nozzle exit 

Static pressure at nozzle exit 

p
o0 

Free-stream static pressure 

Pt,e Total pressure at nozzle exit 

S Wing planform area 

T Nozzle thrust 

TE Trailing edge 

Ve Jet exit velocity (See eq. 1) 

V Free-stream velocity 

xn 

a 

Nozzle chordwise location measured from wing apex 

Wing angle of attack 

7 Ratio of specific heats (air:If= 1.4) 

LE TE Leading- and trailing-edge flap deflection angles, re
spectively 

Pe Air density at jet exit (assumed equal top.) 

POO Air density of free stream 

2y/b Wing span location 

/4 



WIND TUNNEL TESTS
 

Flow visualization tests were conducted in a small pilot wind tunnel at
 
the NASA Langley Research Center. The semi-span wing models were mounted on a
 
vertical reflection plane located in the tunnel test section. A circular in
sert provided angle of attack Lapability. A free-stream dynamic pressure of
 
1.5 psf and free-stream velocity of 35.5 fps were maintained throughout the
 
tests.
 

MODELS
 

Two models constructed of 0.25" - thick plexiglass were used in the.
 
experiments, and the wing and jet assemblies which were mounted on a circular
 
insert made of 0.25" - thick plexiglass are illustrated in Figures 5(a) and
 
5(b). The AR= 2.0 rectangular wing shown in Figure 5(a) had a chord length
 
(flaps retracted) of 6.0 inches, semi-span length of 6.0 inches, and leading
and trailing-edge flaps having constant-chord dimensions of 1.8 in. and
 
3.0 in., respectively. The leading-edge flap, which was an arbitrary airfoil
 
shape with round leading edge and sharp trailing edge, wag hinged at its
 
quarter-chord whereas the trailing edge flap having sharg leading and trailing
 
edges was hinged at its -half-chord line. The AR= 1.8 45 swept trapezoidal
 
wing illustrated in Figure 5(b) had root and tip chord lengths of 10.0 in.
 
and 3.5 in., respectively, when the flaps were fully retracted. The leading
edge flap had a round leading edge, sharp trailing edge, and chord dimension
 
which tapered linearly from 2.5 in. at the root to 0.7 in. at the tip. The
 
trailing-edge flap', with sharp leading and trailing edges, had a constant
chord dimension of 3.0 in. The leading- and trailing-edge flaps were hinged
 
at the quarter-chord and half-chord lines, respectively. Test configurations
 
considered in the flow visualization studies are illustrated in Figure 6.
 

Compressed air was brought over the wing through flexible tubing coupled
 
to a length bf stainless steel tubing having an inner diameter of 0.17 in.
 
which extended outward slightly from the reflection plane and in a direction
 
parallel to the wing leading -edge.
 

INSTRUMENTATION
 

A flow meter indicated the volume flow rate (CFM) through the air supply
 
system and the flow was regulated by a valve between the flow meter and
 
nozzle. The volume flow rate and the compressed air pressure were adjusted
 
to provide the desired nozzle flow-,conditions.
 



The total pressure at the nozzle exit (pte ) was measured with a pitot
tube, and jet exit velocities were calculatedtsing the compressible flow
 

equation:
 

V
e = aeM
e eea
a 

\t 
 Ye.\Pt,e)
 

V is the jet velocity that results when the flow expands isentropically 
from pte to pe' where it is assumed that pe = 

Nozzle thrust was estimated by suspending the nozzle vertically at one
 
end of a platform balance and measuring the thrust for a range of blowing
 
rates. This measured thrust is plotted as a function of C in Figure 7 along
 
with the thrust calculated from the equation:
 

T = ( PeAaVe)Ve 
 (2)
 

A helium - filled bubble generator was used to produce neutrally-buoyant
 
bubbles which, when emitted into the flow, would reveal the general flow
 
about the model. A mixture of air, helium, and soap solution ejected at the
 
end of a converging nozzle produced bubbles, the diameter of which could be
 
varied by adjusting the air, helium, and soap supplies. A bubble diameter of
 
about 0.1" was found to provide good flow'definition. A sketch of the nozzle
 
arrangement is presented in Figure 8. The flow at any wing station could be
 
examined by moving the bubble nozzle to the desired location.
 

A high-intensity light source was placed behind the model and facing
 
upstream such that the bubbles would appear white in constrast to the black
 
surfaces of the model and reflection plane. Proper location of the light
 
source was most critical in obtaining good flow photographs. Placement of a
 
high-intensity lamp downstream from the model and oriented approximately
 
parallel to the wing chord plane ensured that the bubbles passing over the
 
wing would be exposed to the light for a sufficient length of time. A second
 
light source directed into the cavity defined the vortical flow within the
 
channel and also the flow slightly forward of the wing which was not exposed
 
to the light source located downstream. In general, the location(s) of the
 
lamp(s) was dependent on model configuration and angle of attack.
 

A Hasselblad 500 EL-M camera mounted on a tripod was used in the tests.
 
F-stop and shutter speed settings were 5.6 and 1/8 second, respectively,
 
which enabled each bubble to appear as a streakline in the photographs. The
 
camera was positioned so as to minimize glare from the model and reflection
 
plane surfaces, and the distance between the camera and model was generally
 
1.5 - 2.0 ft. The development process of the Kodak Tri-X Pan 70mm film
 
(ASA 400) increased the ASA rating to 1000 to heighten the contrast between
 
the helium-filled bubbles and the wing and reflection plane surfaces.
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RESULTS AND DISCUSSION'
 

The results of this study are in the form of photographs taken of the
 
flow visualization process for the test configurations previously shown in
 
Figure 6. In all of these photographs, the free-stream flow is from left to
 
right. The photographs are side views taken approximately in the wing chordal
 
plane. Exceptions are noted in the discussion and the figures.
 

The following sections discuss the principle parameters investigated in
 
the flow studies and are summarized in Table 1. A comparison of theoretical
 
and experimental values of lift for the rectangular wing is presented at the
 
end of section 2.
 

TABLE 1
 

3ection Wing Model Principle Parameters
 

1- Rectangular Jet momentum coefficient; angle of attack
 

2 Rectangular Flap deflection angle
 

3 Rectangular TE flap removal
 

4 Rectangular LE flap removal
 

5 Rectangular Nozzle displacement above wing surface
 

6 450 swept LE sweep; jet momentum coefficient; angle
 
trapezoidal of attack
 

The results presented in sections 1-4, and 6 were obtained with the jet
 
located at xn/cr = 0.4 and h/d - 1.0.
 

Spanwise Blowing on the Rectangular Wing
 

1. Fixed Flap Deflection Angles, aLE = 6TE = 600 

The results obtained for blowing in the channel of the rectangular wing
 

for 5LE = 6TE = 600 are presented in Figures 9 - 35 for angles of attack from
 

100 to 400 and jet momentum coefficients from 0.,0 to 0.75.
 

In general, with blowing off flow separation occurs at the upper end of
 
the leading-edge flap at all angles of attack and a large rotating mass exists
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downstream of the wing. A typical result obtained with blowing off (CA = 0.0) 
is shown in Figure 9 at U= 300. 

Blowing spanwise from x /c = 0.40-and h/d = 1.0 generates and augments

vorexflwithn hecaitn r 0
 

vortex flow within the cavity as illustrated in Figures 10 - 12 for a= 100.
 
The separated flow off the upper end of the leading-edge flap rolls up-into a
 
dual'co-rotating vortex system within the cavity for the range of blowing
 

rates from 0.21 to 0.57. Figures 10 and 11 are for Cp = 0.21 and 0.30,
 
respectively, and show the clockwise-rotating vortex of relatively large dia
meter behind the jet within the cavity and also indicate the flow reattachment
 
on the trailing-edge flap. The vortex appears bounded by the lateral jet,
 
wing surface, trailing-edge flap, and- the flow passing over the "locked"
 
vortex channel. The vortex located forward of the jet is shown in Figure 12
 

for CA = 0.57. At this blowing rate, a large number of helium-filled bubbles.
 
constitute the forward vortex flow, which suggests that at higher blowing
 
rates the induced pressure created by the spanwise jet influences a greater
 
fluid mass passing over the wing. The investigation of ref. 1 did not observe
 

this vortex forward of the jet. This may be a result of an inherent disadvan
tage in generating smoke forward of the model, which was the flow visualiza
tion technique used in ref. 1. The helium-filled bubble generator used in the
 
present studies is unique in that the details of the flow are better revealed
 
by the individual bubbles, and the flow at a particular location along the
 

wing may be isolated and closely examined by moving the nozzle to the desired
 
location.
 

Figures 13 - 21, 22 - 29, and 30 - 35 present results obtained for a= 200,
 
300, and 400, respectively. The effect of increased angle of attack is to
 
increase the blowing rate required to "lock" the vortex system within the
 

channel and to cause flow reattachment on the trailing-edge flap. The discus
sion of the vortical flow at a= 100 applies equally well to the flow situation
 

observed for a = 200, 300, and 400. 

Figures 19 - 21 and 26 - 29 are oblique views which indicate the effect 
of blowing rate on the vortex flow ahead of the jet for a= 200 and 300 
respectively. (Note: The large obstruction in the photographs is the bubble 
nozzle, tubing, and support assembly. Proper visualization of the forward 

vortex required emission of the bubbles in close proximity to the wing;) At 
a given angle of attack, increased blowing rate increased the spanwise effect
iveness of the lateral jet, as suggested by a decrease in vortex size 'and 
growth rate and a delay of vortex bursting to greater span distances. Figure 
29 is a result for a= 300 and Cp = 0.75 which shows that vortex stability is 
maintained to approximately one-half of the semi-span. The vortex maintains 
a nearly constant circular cross-section to the bursting point. The vortex 
axis also remains approximately parallel to the leading edge as a result 
of the shielding provided by the leading-edge flap from local cross-flow 
effects. The photographs suggest that vortex size and growth rate increase 
rapidly due to jet decay and consequent insufficient flow along the vortex 
axes. The vortices and jet appear to coalesce and emerge prematurely from 
the channel, at which point the cross-flow deflects the jet-vortex system 
downstream. Inboard of the bursting point, the dual-vortex and jet system 

appearsto develop a flow situation somewhat analogous to the flow about a 



rotating cylinder in a uniform stream.
 

2. Variation of Flap Deflection Angles
 

Figures 36 - 50 illustrate typical results obtained by blowing for
 
xn/cr = 0.40, h/d = 1.0 for various leading- and trailing-edge flap deflection
 

angles. The majority of photographs shown are for a= 300, except as noted,
 
and ate indicative of the results obtained for all angles of attack.
 

The presence of the vortices in the channel appears to develop a "ficti
tious" airfoil surface possessing a large amount of camber and thickness.
 
Observations suggest it may be possible to generate a series of airfoil
 
shapes by variation of leading- and trailing-edge flap deflection angles.
 
Figures 36 -38 and 39 - 42 show for L = 600, 5 = 300, and S LE = 900
 

LE TE
 
8TE = 450, respectively, howthe flow passes over the closed turbulent region, 

which consists of the-vortices and jet, and at sufficient blowing rates re
attaches to the trailing-edge flap. A "tear-drop" airfoil shape is developed 
which appears dependent on flap deflection angles and blowing rate. Figures
 
43 - 50 depict further airfoil shapes that might be,developed by changing
 
the flap extension angles.
 

The data suggest that as 5LE is increased, larger blowing rates are re

quired to "lock" the vortex system in the wing channel and to reattach the
 
flow to the trailing-edge flap. This appears to be a result of the larger
 
distance between the jet and the separated region that occurs when 5LE is
 

increased. The C value must be appropriately larger in order for the jet
 
pressure field to influence a given mass of air at larger distances. A com
promise appears to exist, therefore, between the generator of a thick or
 
highly-cambered airfoil shape and the blowing rate available.
 

Calculations were performed utilizing a numerical procedure from ref. 8
 
to obtain theoretical,lift coefficients for two-dimensional inviscid flow
 
about a 25 percent-thick, highly-cambered airfoil for angles of attack from
 
00 to 400. Airfoil coordinates were estimated by assuming smooth flow off
 
the upper end of the leading-edge flap and reattached flow on the trailing
edge flap of the semi-span rectangular wing of ref. 1. Leading- and trailing
edge flap deflection angles for that investigation were 30 and 2 0R, respec
tively. A computer plot of pressure coefficient versus chordal distance and
 
also a plot of airfoil surface coordinates are shown in Figure 51 along with
 
the integrated aerodynamic characteristics at each angle of attack. The two
dimensional lift coefficients were adjusted to thiee-dimensional lift values
 
for incompressible flow by the technique described in ref. 9. The two- and
 
three-dimensional results are compared in Figure 52 to the experimental data
 
previously shown in Figure 4. Applying the theory from ref. 8 to the assumed
 
airfoil shape and correcting the results to 3-D by the method of ref. 9 appear!
 
to yield a reasonable estimate of the experimental lift values of ref. 1 for
 
CA = 0.3 and 0.4 for a wide range of angle of attack. Care should be exercisec
 
however, in interpreting the results since the experimental data of ref. 1 wer
 
highly dependent on Reynolds number. The theory presented in Figures 51 and
 



52 may be a possible method of estimating the induced-lift increments due to
 
the "locked" vortex flow, but investigation of the dependence of this flow phe
nomenon upon Reynolds number is necessary before a direct comparison of experi
ment and theory can be attempted.
 

3. Leading-Edge 	Flap On, Trailing-Edge Flap Off
 

Results for the case with upper surface trailing-edge flap off are pre

sented in Figures 53 - 56 for Z= 30 , 8 LE= 600, and Cvalues from 0.0 to 

°
 0.57 and are typical of the observations for a= 10 , 200, and 400.
 

With blowing on, a distinct vortex was developed ahead of the jet, but a
 
stable vortex was not observed behind the jet for the range of blowing rates
 
considered from CA= 0.21 to 0.57. The results suggest an analogy to the
 
flow situation previously sketched in Figure 3 for spanwise blowing over a
 
thin, moderately-swept wing at moderate to high angles of attack. In both
 
cases, the separated flow in the vicinity of the leading edge rolls up into
 
a discrete vortex ahead of the jet and flow reattachment is forced to occur
 
aft of the jet. Figures 53 - 56 indicate, however, a tendency for the flow
 
to roll up into a vortex behind the jet which implies that a stable vortex
 
might possibly be developed for particular values of C , 8 LE' and a . The
 

photographs suggest that the trailing-edge flap acts as a "turning vane" which
 
aids in deflecting the flow which is entrained into the cavity forward towards
 
the jet.. The trapped fluid is drawn towards the jet-induced low pressure
 
region and is subsequently deflected by the jet, which appears to act essen
tially as a solid body in the flow. The boundaries created by the trailing
edge flap, wing surface, jet, and fluid passing over the wing appear to
 
"lock" the vortex within the cavity.
 

4. 	Leading-Edge Flap Off, Trailing-Edge Flap On
 
(Sharp Leading Edge)
 

Results were obtained for the rectangular wing with the trailing-edge
 
flap on and the leading-edge flap removed. The remaining leading edge was
sharpened to obtain the photographs presented in Figures 57 - 59 and 60 - 61
 
for 5TE = 300 and 600, respectively, anda!= 300.
 

A leading-edge vortex was, observed to roll up ahead of the jet for the
 
range of blowing rates considered from CA = 0.21 to 0.57, but the generator
 
of a stable, rotating flow aft of the jet appeared to be very dependent on
 
blowing rate and flap deflection angle. Since a well-defined dual-vortex
 
system was not observed for the range of angle of attack, blowing rate and
 
flap deflection angle considered, this phase of the test program was terminated.
 

5. Vertical Jet Location
 

Shown in Figures 62 - 67 are comparative results obtained for blowing
 
.
from h/d = 1.0 and 4.0 for a= 300, xn/cr = 0.40 and 6LE = 8TE = 45'
 

Figures 68 - 71 further illustrate the effect of vertical displacement ot
 
= = 
the nozzle for similar conditions with the exception that 8LE 6TE 60.
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Observations suggest that vertical-displacement of the nozzle reduces the
 
blowing rate required at given flap deflection angles and angle of attack to
 
develop an external vortex flow and cause flow reattachment to the trailing
edge flap. The relative distance between the lateral jet and separated region
 
is reduced by raising the nozzle above the wing surface and, at a given blow
ing rate, a larger mass-of air appears to be influenced by the jet relative to
 
the low nozzle location. This is indicated in the photographs by a compres
sion of the streaklines and a greater deflection of the flow passing over the
 
wing.
 

Spanwise Blowing on the 450 Swept Trapezoidal Wing
 

61E = 8 TE = 60?
6. Fixed FlapDeflection Angles, 


The results obtained for the case of blowing at xn/cr = 0.40, h/d = 1.0
 

in the channel of a 450 swept trapezoidal wing are summarized in Figures 72 
86 for the range of angle of attack from a = 100 to 400, blowing rate from
 
G 0.0 to 0.095, and E = 8TE = 600. 

With blowing off (CA = 0.0), a weak vortex was observed over the channel
 
emanating from the trailing edge of the leading-edge flap, and the flow pass
ing over the wing appeared to experience a downward deflection as shown in


0 0 0 0 
Figures 72, 75, 79, and 83 for a= 100, 200, 30 , and 40 , respectively.
 

With blowing on, the vortex previously observed without blowing was en
hanced and drawn into the channel and a second rotating flow was generated be
hind the jet. The discussion pertaining to the vortex flow within the channel
 
for the rectangular wing applies equally well to the flow situation for the
 
450 swept trapezoidal wing. The favorable spanwise pressure gradient provided
 
by leading-edge sweep appears to reduce the blowing rate required, relative
 
to the rectangular wing, to induce vortex flow within the channel and to
 
cause flow reattachment to the trailing-edge flap, as indicated in Figures 73
 

°
 74, 76 - 78, 80 - 82, and 84 - 86 at a = 10 , 20 , 30 , and 40 , respectively. 
Observations suggest that at blowing rates sufficient to maintain vortex 
stability to the wing tip, the tip vortex might possibly be displaced outboard 

11 



RECOMOENDATIONS
 

The encouraging qualitative results' obtained from the present flow visual
ization studies and also force data for a semi-span rectangular wing from
 
ref. I indicate the desirability for further investigation of the concept of
 
vortex-induced lift by spanwise blowing over wings featuring upper surface
 
leading- and trailing-edge flaps. The latter type of configuration may have
 
-possible application to short take-off and landing (STOL) aircraft and is
 
appealing in that the flow phenomenon described in this report might possibly
 
be generated at low angles of attack, thus improving pilot visibility at
 
take-off and approach. Wing design featuring the "locked" vortex flow at
 
low speed must provide the capability of transitioning to an efficient, low
drag cruise configuration by retraction of the leading- and trailing-edge
 
flaps. Further design considerations might include a low-speed flap arrange
ment- coupled with spanwise blowing over moderately-swept wings of existing
 
jet aircraft.
 

Recommended areas of research include parametric wind tunnel studies of
 
full-span wings to determine quantitative effects of blowing rate, angle of
 
attack, flap deflection angles, nozzle location, and leading-edge sweep
 
angle, and investigation of Reynolds number effects on vortex characteristics
 
and blowing effectiveness.
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CONCLUDING REMARKS
 

Flow visualization studies were conducted in a small pilot wind tunnel at
 
the NASA Langley Research Center to determine qualitative effects of generatin
 
and "locking" vortex flow over wings by spanwise blowing in a channel formed bi
 
extension of upper surface leading- and trailing-edge flaps. Blowing from a
 
reflection plane in the upper surface channel of a rectangular wing induces a
 
dual, co-rotational vortex system within the channel and, at sufficient blow
ing rates, causes the separated flow off the upper end of the leading-edge
 
flap to reattach to the trailing-edge flap. Increased blowing rate increases
 
the spanwise effectiveness of blowing at a given angle of attack, as indicated
 
by a decrease in size and growth rate of the vortices bounding the jet and a
 
delay of vortex bursting to greater span distances. The effect of increased
 
angle of attack is to increase the blowing rate required to maintain vortex
 
stability to a given span distance and to cause flow reattachment on the trail
ing-edge flap. The vortex flow appears to energize the flow such that attachec
 
flow is provided over an "effective" airfoil shape possessing a large amount ol
 
camber and thickness. Two-dimensional inviscid flow calculations were perform
ed applying the theory of ref. 8 to an airfoil shape comparable to that which
 
might be developed by the model of ref. 1 and these results were corrected to
 
three dimensions by the technique of ref. 9. The theory appears to estimate
 
reasonably well the experimental data from ref. 1 for a wide range of angle
 
of attack, but the apparent dependence of the "locked" vortex flow phenomenon
 
upon Reynolds number necessitates discretion when making a direct comparison
 
of theory and experiment. Variation of flap deflection angle and blowing
 
rate appear to be two means of altering the effective wing camber or thickness,
 
Observations suggest that" the presence of both the leading- and trailing-edge
 
flaps aids in the development of the two distinct vortex flows over the wing,
 
the former component initiating flow separation at all angles of attack and
 
the latter acting as a "turning vane" which is a factor in the formation of a
 
second rotating mass in the channel. Test results indicate that a jet located
 
above the wing surface is more effective relative to blowing at the surface in
 
developing the vortical flow. Test results also suggest that leading-edge
 
sweep, which provides a favorable spanwise pressure gradient, reduces Ehe blow
ing rate required, relative to the rectangular wing, to generate and "lock"
 
vortex flow in the channel and to induce reattached flow to the trailing-edge
 
flap.
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Figure 1.- Stable leading-edge vortices over a slender wing. 
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Figure 2.- Generation of a dual vortex system by spanwise 
blowing over a rectangular wing. 
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Figure 3. - Leading-edge vortex enhancement by spanwise blowing. 
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Figure 4.- Lift -augmentation by spanwise blowing over an AR =4. 0 rectangular wing; 
=V,, 68. 9 fps; Re =150, 000; 8LE 300; 8TE z200 
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Figure 5.- Flow visualization models. (all dimensions in inches) 
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Figure 5.- Concluded. (all dimensions in inches) 



QI) rectangular wing. (iii retnglrwin 
xn/C 0.4; hid= 1.0. x /Cr-0.4; hid 1.0; (v 45 swept trapezo

wing. x /c =0., 
sharp leading-edge. h/d 1.0. n r 

(ii) rectangular wing; (iv)rectangular wing. 
= 
upper surface TE Xn/Cr= 0.4; h/d 3.0. 

flap removed. 
xn/Cr =0.4; hId = 1.0. 

Figure 6.- Experimental configurations. 
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Figure 7 .- Nozzle thrust versus jet momentum coefficient. 
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Figure 8.- Helium-filled bubble nozzle and supply lines. 



Blowing Off
 

Figure 9.- Flow about the rectangular wing without blowing for 
a= 300; 8LE =aTE =600. 
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Blowing On
 

Figure 10.-	 Spanwise blowing on the rectangular wing for a= 100 and C,= 0.21; 

=BLE BTE = 6 0 ; xn/Cr = 040; hid = 1.0. 
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Blowing On
 

= 0.30;Figure I.- Spanwise blowing on the rectangular wing for a 100 and 0C. 
=aLE =STE 6o; xn crr =0.40; h/d 0.' 



Blowing On
 

Figure 12.- Spanwise blowing on the rectangular wing for a= 100 and C,7 0.57; 
=S8 6 0; X/C 0.40; hId 1.0.LE TE "nr= 
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Blowing On
 

=Figure 13.- Spanwise blowing on the rectangular wing for a 200 and C= 0.30; 
=8 =8TE =600; Xn/Cr =040; hid 1.0. 



Blowing On
 

Figurt 14.-Spanwise blowing on the rectangular wing for a= 200 and C= 0.35; 

B IE = ;0 r =0.40; h/d = 1.0.Xn I 
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Blowing On
 

Figure 15.- Spanwise blowing on the rectangular wing for a= 200 and C = 0.40; 

BLE =8 =600; xn/cr =0.40; hid = 1.0. 



Blowing On
 

Figure 16.- Spanwise blowing on the rectangular wing for a= 200 and Cg,= 0.45; 
=O187V. Sjj =600 XnCr. 0.40; hid = 1.0. 

LOpn 



Blowing On
 

Figure 17.- Spanwise blowing on the rectangular wing for a= 200 and y= 0.50; 
=SLE =STE = 600; Xn/Cr --0.40; hid 1.0. 



Blowing On
 

Figure 18.-Spanwise blowing on the rectangular wing for a= 200 and C - 0.55; 

BILE =TE = 609; xn/cr = 0.40; h/d - 1.0. 



Blowing On 

Oblique View 
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Figure 19.- Spanwise blowing on the rectangular wing for a- 200 and CA 0.35; 

SLE - TE 60 ; xncr = 0.40; hd = 1.0.ADPAG 
OF POOR QUALM: 



Blowing On
 

Figure 20.- Spanwise blowing on the rectangular wing for a= 200 and Cu= 0.45; 
= =BLE =TE 0; xn/cr =0.40; h/d 1.0. 



Blowing On
 

Figure 21.- Spanwise blowing on the rectangular wing for a= 20 and Cu= 0.65; 
=8L 8_6T_60; XnlCr =0.40; hId 1.0.E E 



Blowing On
 

Figurent- Spanwise blowing on the rectangular wing for a= 300 and C,= 0.50; 
LE TE 0; Xn/C r = 0.40; h/d = 1.0. 
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Blowing On
 

'[F iT n 

Figure 23.- Spanwise blowingan the rectangular wing for a= 300 and C,=0.57; 

8 E 8TE=600 xnICr= 0. 40; h/dL . 



Blowing On
 

Figure 24.-Spanwise blowing on the rectangular wing for a= 300 and C= 0.60; 

8LE BTE ° 600; xn/cr -0.40; hid --1.0. 



Blowing On
 

Figure 25.- Spanwise blowing on the rectangular wing for a- 300 and C,= 0.65; 

8LE =aTE =600 Xn/Cr -_0.40; hId =1.0. 



Blowing On 

lique View 

Figure 26.- Spanwise blowing on the rectangular wing for a = 300 and C,= 0.45; 
TE = 6 0 8LE 0;xC 1.0.0.4;h/d 
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Blowing On
 

Figure 27.- Spanwise blowing on the rectangular wing for a= 300 and CA= 0.50; 

BLE =8TE = 60 ; xn/Cr 0.40; h/d 1.0. 



Blowing On
 

Figure 28.-Spanwise blowing on the rectangular wing for a= 300 and Cu= 0.65; 
=8LE S8TE =600; XnIc r =0.40; hid L0. 



Blowing On
 

Figure 29.- Spanwise blowing on the rectangular wing for a= 300 and Cg 0.75; 

SLE =STE =600; XnCr =0.40; hid =1.0. 



Blowing On
 

Figure 30.- Spanwise blowing on the rectangular wing for a= 40° and Cg= 0.50; 
8BLE =8TE =600 XnICr =0.40; h/d = LO. 
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Blowing On
 

Figure 31.- Spanwise blowing on the rectangular wing for a= 400 and C,= 0.55; 
BLE 8TE 0 ; xn/Cr = 1.0.I = 0.40; h/d 



Blowing On
 

Figure 32.- Spanwise blowing on the rectangular wing for a= 400 and C,, 0.60; 
aLE _8E 600; xnCIr _0.40; hd = 1.0. 



Blowing On
 

a = 400 and C = 0.65;
Figure 33.-Spanwise blowing on the rectangular wing for 

8LE 8TE =600 ; XnlCr =0.40; hid =LO. 



Blowing On
 

Figure 34.-Spanwise blowing on the rectangular wing for a = 400 and CA= 0.70; 

81E 8TEr =6;,JolCr =0.40; hid =tO. 

(OGt0 



Blowing On
 

Figure 35.- Spanwise blowing on the rectangular wing for a= 400 and C,= 0.75; 

8LE =STE = 60o; xn/cr =0.40; hid - 1.0. 



Blowing On
 

a- 300 and COr 0.45;Figure 36.-Spanwise blowing on the rectangular wing for 

0. 300;xxC 0.40; h/d =LO.8LE=60 1TE nro 



Blowing On
 

Figure 37.- Spanwise blowing on the rectangular wing for a= 300 and C,= 0.55; 
3LE = 600; 8TE - 300; xnIcr =0.40; h/d = 1.0. 



Blowing On
 

Figure 38.- Spanwise blowing on the rectangular wing for a= 300 and C,= 0.60; 

8LE600; 8 30p; x /c =0.40; h/d - L0. ii,-fW 
*TE rLE n 4pojt 



Blowing On
 

Figure 39.- Spanwise blowing on the rectangular wing for a-- 30 and C. 0.55; 

8LE = 900; 8TE = 450;xn kr = 0.40; hid =1.0. 



Blowing On
 

Figure 40.- Spanwise blowing on the rectangular wing for a= 30o and Cu= 0.60; 

=8LE a e00 STE 450; xn/cr - 0.40; hid LO. 



Blowing On
 

Figure 41.- Spanwise blowing on the rectangular wing for a= 300 and C/ 0.70; 

ZLE 9o ; aTE = 450; xn/Cr =0.40; hId = 1.0. 



Blowing On
 

Figure 42.- Spanwise blowing on the rectangular wing for a= 300 and ,= 0.75; 

8LE - 900; 8TE =4 5 ;xn Icr = 0.40; hid --1.0. UMMAD ,AGC IS 
of p0o QUO 



Blowing On
 

Figure 43.-Spanwise blowing on the rectangular wing for a= 300 and C.= 0.40; 
8 = 60X00LE - 900; Xn/C r 1.0.8TE 0.40; hid = 



Blowing On
 

Figure 44.- Spanwise blowing on the rectangular wing for a= 300 and Cie 0.45; 
aLE =60°; 8TE = 900; Xn/Cr 0.40; hd =LO. 



Blowing On
 

Figure 45.- Spanwise blowing on the rectangular wing for a= 300 and C,,= 0.50; 
=8LE = 600; 8 TE - 900; XnICr =0.40; h/d 1.0. 



Blowing On
 

.--


Figure 46.- Spanwise blowing on the rectangular wing for and C/,= 0.57;
 
900 =L =600 T - x = 0.40; h/d 1.0. 4!A, x.LE 8TE n r 0.40 hN LO. A 



Blowing On
 

Figure 47.- Spapwise blowing on the rectangular wing for a= 200 and Cr= 0.30; 
=8LE =450; 8TE 300;xn/Cr 0.40; hId 1.0. 



Blowing On
 

Figure 48.- Spanwise blowing on the rectangular wing for a= 300 and C= 0.35; 

8LE " 450; 8TE =300; XnICr =0.40; hid =1.0. 



Blowing On
 

Figure 49.-Spanwise blowing on the rectangular wing for a= 200 and C= 0.45; 
8LE TE = 5 ; n r = = 45;x /Ic = 0.40; h/d 1.0. 



Blowing On
 

Figure 50,-Spanwise blowing on the rectangular wing for a= 300 and Cu = 0.45; 
00 

BLE = ATE 45; xn/kr=0.40;hid = 1.0. ORIGINL pAGIHUXOF POOR QUA IJ 
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Exp. (ref. 1) Theory (inviscid, incompressible) 
C-, 2-D (ref. 8) 

0 0 .	 2-D corrected 
o. 	 0. to 3-D 

(ref. 9)S0.3 

5.0 

4.0 

3000 

10- 0 
2.o -1 -a 

0/ 2.0 
0 

00 

0 10 20 30 40 

a, deg 
Figure 52.- Theoretical and experimental lift coefficients for 

the locked vortex rectangular wing; V0 =68.9 fps; 
Re = 150,0 00;8E 3 8T 200. 



Blowing Off
 

Figure 53.- Rectangular wing with upper surface TEflap off for a- 300 and 
blowing off; 8 L = 60". 



Blowing On
 

Figure 54.- Spanwise blowing on the rectangular wing without upper surface 
=TE flap for a- 300 and C,=0.35; 8LE 6o; xn/k r a 0.40; hid 1.0. 
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Blowing On
 

Figure 55,-Spanwise blowing on the rectangular wing without upper surface 
=TE flap for a- 300 and C =0.50* 8LE =600;xncI- r 0.40; h/d 1.0. 

'Ltn 



Blowing On
 

Figure 56.- Spanwise blowing on the rectangular wing without upper surface 

=0.57; 8LE = 60';Xn/Cr - 0.40; hid = 1.0.TE flap for a 300 and C,



Blowing Off
 

Figure 57.- Rectangular wing without LE flap for as 30o and blowing off; 

sharp LE; 8 TE =30P. 



Blowing On
 

Figure 58.- Spanwise blowing on the rectangular wing without LE flap for 
a- 300 and C 0.21; sharp LE; 8E 0 30o; Xn/Cr " 0.40; hid - 1.0. 
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Blowing On
 

Figure 59.- Spanwise blowing on the rectangular wing without LE flap for 
0 

a= 300 andyC 0.30; sharp LE; 81TE 30,x. n/c rm0. 40;h/dL . 



Blowing On
 

Figure 60.- Spanwise blowing on the rectangular wing without LE flap for 
a= 300 and C, 6= 0.35; sharp LE; UTE Xn Cr 0.40; hid = 1.0. 



Blowing On
 

Figure 6L- Spanwise blowing on the rectangular wing without LE flap for 
= a- 300 andC,= 0.45; sharp ; BTE = 60;Xxn/C r a0.40; h/d 1.0. 



Blowing On
 

Figure 62.-Spanwise blowing from low nozzle location on the rectangular wing 

for a- 3O' and C,= 0.45; == TE -450; xnCr 0.40; hid =1.0. 



Blowing On
 

Figure 63.-Spanwise blowing from high nozzle location over the rectangular 

wing for a=30 and C,=0.45; 81L =8TE =450 ;Xn/Cr " 0.40; hid - 4.0. 



Blowing On
 

Figure 64.-Spanwise blowing from low nozzle location on the rectangular wing 

for a-300 and C =0.50; LE 8TE 450;x Icr0.40; hd 1.0. 



Blowing On
 

Figure 65.-Spanwise blowing from high nozzle location over the rectangular 

wing for a- 300 and C =,50; . =8 =450. x Ic a0.40; h/d =4.0,LE TE n r 



L! Blowing On 

Figure 66.- Spanwise from low nozzle location on the rectangular wing 
=for a300 and C =0.57; 8 450; x /c - 0.40; hid = 1.0.

ILE ' n r 
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Blowing On
 

Figure 67.- Spanwise blowing from high nozzle location over the rectangular 

wing for a= 300 and CA= 0.57; 8LE = 5TE ' 450 ; xnlcr 0.40; hd = 4.0. 



Blowing On
 

Figure 68.- Spanwise blowing from low nozzle location on the rectangular wing 

for a- 300 and Cu= 0.40; SLE = 8TE ; 600; xncr a0.40; h/d O1.0. 



Blowing On
 

Figure 69.- Spanwise blowing from high nozzle location over the rectangular 

wing for an 300 and C,= 0.40; = 8TE n60o xn/c r *0.40; h/d = 4.0.OLE 



Blowing On
 

Figure 70.-Spanwise blowing from low nozzle location on the rectangular wing 
= = Xn/Cfor ,= 400 and C = 0.60; L STE 600 x; 0.40; h/d 1.0.PALE T n r 



Blowing On
 

Spanwise blowing from high nozzle location over the rectangularFigure 71-


wing for a= 400 and C,,- 0.60; BILE = TE 600; Xn/cr z0.40; h/d = 4.0.
 



Blowing Off
 

Figure 72.-Trapezoidal wing with 450 leading edge sweep for a= 100 and 

blowing off; 8L 8TE 600. 
-PA.E T. 



Blowing On
 

Figure 73.- Spanwise blowing on the 450 swept trapezoidal wing for a- 1o 
==and C.- 0.04; 8LE TE m60 ; xncr 0 0. 40; hId 1.0. 



Blowing On
 

Figure 74.- Spanwise blowing on the 450 swept trapezoid'I wing for an 100
 

and C 0.057. L T = 600;6 xnIcr 0.40; hfdL0.

An 00; 3LE TE Xn r 



Blowing Off
 

Figure 75.- Trapezoidal wing with 450 leading edge sweep for a= 200 and 

blowing off; L = Br =60° " 

LE TE 



Blowing On
 

Figure 76.- Spanwise blowing on the 450 swept trapezoidal wing for a- 200
 

and CU-0.04; BLE =8TE 600;Xn/Cr 0.40; hi/d 1.0.
 



Blowing On
 

a- 200

Figure 77.- Spanwise blowing on the 450 swept trapezoidal wing for 

60o; c x /C 0.40; h/d --1.0.
andiu,=.057; 8ILE TE 0 nr 



Blowing On
 

a= 200
 
Figure 78.-Spanwise blowing on the 450 swept trapezoidal wing for 

and C 0.075; 8 =8 E 60;Xn/Cr = 0.40; h/d = 1.0. 



Blowing Off
 

a- 300 andFigure 79.- Trapezoidal wing with 450 leading edge sweep for 

8TEblowing off; 8LE = = 600
 



Blowing On
 

Figure 80.-Spanwise blowing on the 450 swept trapezoidal wing for a-300 and 

and CO 0.057; 8LE 2 TE =60°; xn/k r =0.40; hid- 1.0. 
TEILETOA nIr 



Blowing On
 

Figure 8L- Spanwise blowing on the 45 swept trapezoidal wing for a- 300
 
==and C/j= 0.065; 8 8TE 60°;Xn/cr 0.40; hId = 1.0. 



Blowing On
 

Figure 8.-Spanwise blowing on the 450 swept trapezoidal wing for an300 

0600; xn /Cr 0.40; hid = 1.0.and Cm 0.095; 8LE = aTE 
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Blowing Off
 

Figu re 83.-Trapezoidal wing with 450 leading edge sweep for c= 400 and 

blowing off; L = = 00° 
LE TE 



Blowing On
 

Figure 84.-Spanwise blowing on the 450 swept trapezoidal wing for a= 400
 

and C,= 0.057; SLE = 8TE 60° ;XnCr 0.40;hIdhL.
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Blowing On
 

Figure 85.- Spanwise blowing on the 450 swept trapezoidal wing for a= 400
 

and C,= 0.075; 8LE = 8TE = 600; xn/Cr 0.40; hid = 1.0.
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Blowing On 

Spanwise blowing on the 450 swept trapezoidal wing for a= 400
Figure 86.-

= 600 ; x k 0.40; hd = 1.0.and C= 0.095; 8 BLE TE 'nr 
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