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Correlation of Turbulent Trailing Vortex Decay Data 	 ,/1
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Iowa State University, Ames, Iowa

Abstract

A correlation function, derived on the basis of self-simila- vari-

able eddy-viscosity decay, is introduced and utilized to correlate air-

craft trailing vortex velocity data from ground and flight experiments.

The correlation function collapses maximum tangential velocity data from

scale-model and flight tests to a single curve. The resulting curve clearly

shows both the inviscid plateau and the downstream decay regions. A com-

parison between experimental data and numerical solution shows closer

agreement with the variable eddy viscosity solution than the constant vis-

cosity analytical solution.

Notation

a =	 Squire's coefficient, Eq.	 (1)

AR =	 aspect ratio,	 b 2 /S ^^	 2 3 q^ ^^	 ;^ y	 !`^^,

b = r h,wing span b 9 a ;, Lo 	 j

R =	 mixing length
cli R50^ ^^, V ^t^'^

N =	 similarity variable, r 2	 t
oosl

r =	 vortex radial coordinate
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r l =	 vortex core radius (at maximum tangential speed)

ro =	 initial core radius

S =	 wing area

t =	 time

UGO
=	 free-stream speed

V =	 tangential vortex speed

V 1 =	 maximum tangential vortex speed

x =	 distance downstream from generating aircraft

a =	 mixing length proportionality constant

Y =	 reduced circulation, rV

YO =	 y	 at large radius

t =	 circulation, 2ry

r, =	 circulation at core radius

To =	 circulation at large radius

V =	 kinematic viscosity

=	 turbulent eddy viscosityV

Introduction

A correlation function is introduced and utilized to correlate aircraft

trailing vortex velocity data from ground and flight experiments. Recent

water channel tests by Ciffone and Orloff l have identified two distinct

streamwise regions in the decay of trailing vortices. The near-field is

an essentially inviscid 'plateau' region, existing for some distance

downstream after rollup, in which vortex decay is very slow. Farther

downstream, the vortex decays as a function of the square root of down-

stream distance, as would be expected from a similarity type solution.
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Since the water-channel data and existing wind-tunnel test results

concerning trailing vortices have been obtained at relatively low Reynolds

numbers, a search was initiated for a correlation function that weld sub-

stantiate ground-based scale-model data by comparison with large Reynolds

number flight test. The correlation function introduced in this paper is

derived on the basis of self-similar turbulent decay of a line vortex.

Since the function is based on similarity of an isolated, infinitely

long vortex, it would be expected to strictly hold only for the similarity

region far downstream of the generating aircraft, where three-dimensional

effects would.be negligible. However, it is shown that the similarity

parameter can be manipulated (considering plateau-region vortex charac-

teristics) so that maximum tangential velocity data from a large range of

Reynolds numbers can be collapsed to one curve. The final result clearly

illustrates both the near-field plateau region and the downstream decay

region.

The correlation function is derived by numerical solution of the

similarity differential equation, using a variable eddy viscosity model.

The only empiricism involved is the evaluation of a mixing-length pro-

portionality factor by using large Reynolds number flight data in the

similarity region. The correlation function substantiates the validity

of small Reynolds number experiments as long as they are correctly inter-

preted and should aid in understanding the turbulent vortex decay problem.

Eddy_y*§;9§aX and Girculation,Relationshi

Squire2 hypothesized that, since the principal permanent character-

istic of the line vortex is the circulation for large radius, ro, the

eddy viscosity vT could be assumed to be proportional to ro, i.e.:

V  - aro/2n - ayo	 (1)
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Since Eq. (1) is equivalent to the assumption of a constant eddy viscos-

ity that is independent of radius, the solution s for laminar viscous

flow could be used, hopefully, to interpret experimental data; it has been

so used by various investigators. Owen, 4 partially on the basis of exper-

imental data from various sources, derived an expression for Squire ' s coef-

ficient" a as a surprisingly strong function of Reynolds number (role):

a = 2rA 2 ( r 0 /^}) 1/2 	 (2)

where A2 was presented as approximately constant.

Decax of a Line Vortex

If it is assumed that the flow in a trailing vortex is approximately

analogous to the time -dependent flow of an infinite line vortex, then,

for variable viscosity, the equation for circulation Y (=rv) can be

written

ay/at = r(a/ar)[vTr(a/ar)(Y/r 2 )] + 2vTr ( a / ar)(Y/r2 )	 (3)

Assume that the flow is similar, so that Y = y(N), where N - r2/4YOt.

Condition 1: If v  = vo, a constant, the Lamb vortex results

Y = Yo(1 - e 
YON/v0) = Yo(

1 - e-N/a)	 (4)

Condition 2: If v  
= 

2. 2 1ra/ar (Y/r2 j + v, where k is a mixing

length, and v is molecular kinematic viscosity, an eddy viscosity vari-

ation more representative of turbulent flows is obtained. For similarity,

it is necessary that the mixing length be proportional to radius, k = ar,

which is satisfying on physical grounds and is representative of recent

numerical calculation - 5 Equation (3) then becomes

	

-Y, - (4INY- - Y1 * v/a 2YO )Y--	 {S)
N	 N	 NN

Thus

	

Y ' Y(N , v/a 2yo)	 (N = a2N , Y = YoY)
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Solution for Variable Edd Viscosit

Numerical solutions of Eq. (6), satisfying boundary conditions

Y(0) - 0 and Y(m) - 1, where obtained for values of a2YO/v ranging

from 0.01 to 10000. The solutions approach purely viscous flow for very

small values of this parameter, and become independent of molecular vis-

cosity for large values. Equation (6) can be rewritten

Vb/Y O - (b/r)Y(Iq , v/Yp)	 (7)

At the core radius (point of maximum tangential velocity)

V lb/YO = (b/rl)Y(r1 2/ 4Y Ot , v/Y O )	 (8)

But r1 2/4yot - r12Uo,/4y,x - N 1 , a constant. Thus

b/r1 = (b2U. /4N1YOx)1 /2

and

Vlb/YO = [(b/x)(U„b/YO)/4N 1] 1/2Y(N 1 , V/YO)

or

(V1b/ro)[(x/b)(ro/UWb)]1/2 = C og (r o/ v)	 (9)

Values of the quantity on the left-hand side of Eq. (9) were found

from flight data from Refs. 6-9. The average value of 46 data points

(far downstream values to ensure that the data points were all in the

similarity region) was found to be 5.80, so that C O is 5.80 if $ is

set equal to one for large ro/v. The maximum value of (Y/N 1 / 2), cor-

responding to maximum tangential velocity, was found from the numerical

solutions to approach a constant value for large ro/v of 0.539. Since

(Vb/ro)[(x/b)(ro/U,,b)]1/2 = (Y/&1/2)/[2(2n)1/2a]

a is found from the flight data to be 0.01854.
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Once a is known, and if it is assumed to be independent of Reynolds

number, velocity profiles corresponding to solutions of Eq. (6) can be

found for any Reynolds number, ro/v. The velocity profile for large

Reynolds number is shown in Fig. 1, along with the constant eddy viscosity

solution for the same value of maximum tangential speed (v T = 0.0000766ro).

Comparisons of the computed variable eddy viscosity profile with experimental

data from Refs. 1, 6, and 10 are shown in Figs. 2 through 4, with better

agreement than for constant viscosity. Figures 2 and 3 illustrate that

the value of the ratio of core-radius circulation to large-radius circula-

tion, r l/ro, is much larger for the constant eddy viscosity solution than

for either the experimental data or the numerical solution of Eq. (5).

The large data scatter in Fig. 4 has two causes: (i) Since the data points

are instantaneous readings and not time-averaged, turbulence is a factor.

(ii) If the measuring instrument (in this case a laser-doppler velocimeter)

misses the vortex core, then the velocity data will be lower than the

desired value on the average, and, as shown, most of the scatter falls

below the theoretical curve. For this relatively low Reynolds number, a

comparison of the velocity profiles for constant and variable eddy vis-

cosities shows that these curves are not far apart, however, the variable

viscosity curve seems to represent the data more closely, if the two

causes for scatter are taken into account.

The variation of circulation with radius is shown for three Reynolds

numbers in Fig. S. The left curve is essentially identical to Lamb's solu-

tion. The right curve holds for large Reynolds number, and the central curve

illustrates an intermediate Reynolds number example in the region in which

eddy and molecular viscosities are of the same order of magnitude. The value

i
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of circulation at a position of maximum tangential velocity is shown as a

function of Reynolds number in Fig. 6. The values of maximum velocity and

core radius are shown as a function of Reynolds number in Figs. 7 and 8,

respectively. The data points shown in Figs. 6 and 7 substantiate the trends

of the numerical solution.

Concerning the lack of circulation overshoot (i.e., y > 1) somewhere

within the vortex profile (Fig. S), as predicted by Govindaraju and Saffmanll

and Saffman, 12 for large Reynolds numbers; Govindaraju and Saffman state

that the turbulent shear stress tends to zero for large radius faster than

1/r2 ; they obtain an expression for their angular momentum function J(x)

dependent upon Reynolds number. According to Saffman's result, the core

radius rl is proportional to (vr l ) 1/4 t 1/2 for a self-similar vortex

so that J(x) approaches zero for large Reynolds number; this indicates

the necessity for circulation overshoot in order to conserve angular momen-

tum. In the current model, however, the shear stress tends to zero exactly

as 1/r2 for large radius; thus Saffman's function J(x) remains finite

for large Reynolds number. Also, the core radius r l , for large Reynolds

number, is proportional to rl l / 2t l / 2 , which is independent of Reynolds

number. The function J(x) then remains finite as mentioned, and cir-

culation overshoot is not necessary, which agrees with experimental data,

as Saffman 12 notes.

Data Correlation

Recent water channel data l show that a "plateau" region exists in

the vortex trail for some distance aft of the generating aircraft, in

which vortex decay is much slower than required for similarity. The

characteristics of the plateau region may be at least partly due to non -

_	 equilibrium turbulence, and similarity would not be expected to hold until

010GQ1AL PAd19 YS



upilibrium is reached. Calculations 5 • 15 which include nonequilibrium

turbulence models show evidence of the plateau region. Velocity profiles

of the vortices within the plateau region have been used by Rossow 14 to

obtain span loadings by means ofan inviscid inverse-Betz method. These

span loadings agree well with experimental and theoretical span loadings,

which indicates that the plateau-region velocity profiles have not been

greatly affected by viscosity or turbulence except in the relatively small

core region.

If similarity is reached far downstream, Eq. (9) should be useful

as an experimental correlation parameter. Spreiter and Sacks is equated

the kinetic energy of . rotation in the vortex core per unit length to the

induced drag of the wing, and thus found an expression for core radius

that is proportional to wing span. However, the experimental data con-

sidered in this investigation do.not justify their result. if instead,

it is assumed that the axial momentum deficit in the core is related to

the momentum deficit caused by the wing boundary layer, then the core

radius must be related to the wing chord, since momentum loss within the

wing boundary layer increases with chordwise distance. The best correla-

tion of experimental data in the plateau region (for aspect ratios of

5.33 to 12) is obtained if it is assumed that the core radius in the

plateau region is proportional to the average chord S/b. Then, since

the velocity in the vortex would be proportional to centerline circula-

tion ro, the maximum velocity V 1 would be proportional to ro/ro or

Vlro/ro - V 1S/rob r V 1 b/r 0AR a CONSTANT	 (10)

in the plateau region. Equation (9) can be rewritten

V lb/rom - Co/[(x/b)(ro/u,,b)(AR)2 f(ro/v)) 1 / 2	(11)
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or, including the plateau region,

v iblromt " f i [ (xlb) (ro/u^b) (At)2 f (ro/v) ]	 (12)

where

f(ro/y) • (5.80) 2/[(vix/ro)(ro/u^x) 1/2 ] 2	 (13)

Note that the functional relationship, Eq. (12) also holds for Eq. (4), if

Squire's coefficient a is assumed to be a function.of ro/y.

Experimental water-channel, wind-tunnel, and flight data from Refs. 1,

6 through 9, and 16 through 19 are plotted in terms of V ib/rolR and

(x/b)(ro/u,b)(AR)2 f(ro/v) in Fig. 9. The solid line represents a value

for Vi [ (x/urr0 ) f(roiv) ] 112 of 5.80. The similarity region appears to

begin at a value of the abscissa of about 50, corresponding to approximately

12 span-lengths aft of a typical aircraft at a lift coefficient of 1. The

function f(ro/v) is shown in Fig. 10.

An effective constant eddy viscosity, based on maximum tangential speed

and Eq. (4), was calculated from similarity region data and also from the

variable eddy viscosity solutions. The results (Fig. 11) show that, for a

constant eddy viscosity assumption, Squire ' s hypothesis, Eq. (1), is valid

for values of ro/v > 106 . A different value of eddy viscosity would be

obtained if circulation ri or radius ri were used as a basis, since the

Lamb solution, Eq. (4), does not well represent velocity profile data or the

variable eddy viscosity solution.

A correlation equation, based on Owen's result, Eq. (2), would result in

f (roly) - ( ro/v)-1/2

This equation would approximate Eq. (13) only in a narrow region from

ro/v n 104 to 3(10) 4 , and a correlation equation, based on Owen's result,

cannot be used to correlate scale -model and flight data.
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Conclusion

The numerical solution of the decay of a self - similar line vortex

with variable eddy viscosity has been used to derive a correlation func-

tion for comparison of scale-model and flight data. It has been shown that

the velocity and circulation profiles vary significantly from the constant-

eddy-viscosity Lamb solution. Plotting the scale-model and flight data in

terms of the vortex velocity scaling parameter V lbjrom versus the distance

scaling parameter (xlb)(r8/U.b)(AR) 2 €(r 0/v) effectively collapses the

data to a single curie. Although there is, of course, much scatter in the

data correlated in Fig. 9, the correlation Eq. (12) collapses the data

reasonably well, and should serve as a basis for evaluation of future scale -

model and flight tests.
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Fig. 1 Vortex velocity profiles, similar solutions, variable and

constant eddy viscosity.

Fig. 2 Circulation profiles.-variable and constant eddy viscosity,

comparison with experiment.
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