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_ SUMMARY i

" /
An experimental evaluationwas conducted with NASA-designed self-acting

._._ !

: face and circumferential se_Is intended for use in the main shaftpositions

_, of gas turbine engines. Self-actingseals incorporated Rayleigh step-lift
pads on the carbon sealing faces to provide a self-acting force that separ- ' _'

ates the sealing surfaces during operation.

"'" In a previous program (Reference I)the self-actingseals were evaluated, _
and the face seal configurationproved superior to conventional seals for

' advanced gas turbine engine operation. Areas of design improvement for
_ both the face and circumf_-rential seal were determined fron_ these tests;

as a result, modifications were incorporated in the seals evaluated in the
subject testprogram.

A totalof 126 hours of testingwere conducted on the self-actingface-
seal design at speeds to 214m/s (700 ft/sec, 63700 rpm), air pressures

to 216.8 N/cm 2 abs (314.7 psia), and air temperatures to 688 K (778 °F).

"_ A problem involving carbon oxidation was encountered during testing a;:
temperatures above 650K (710 oF). Also at speeds of 198 m/s (650 ft/sec,
59t50 rpm), seal-seat distortion resulted in carbon contact and we,_r,

A total of 138 hours of testing were conducted on the self-acting circum-
ferential design at speeds to 183 m/s (600 ft/sec, 47700 rpm), air pres

sure to 61._ N/cm 2 (89.7 psia), and air temperatures to 711 K (82,0 °F).
Some wear was experienced at pressure differentials of 13, 1.Nfcm n (19

psi) when operating at speeds of 183 m/s (600 ft/sec, 47700 rpm).

The self-actingface seal was shown to be capable of operating at conditions

more severe than experienced in present gas turbine mainshaft applications.

Air pressures of Z16.8 N/cm 2 abs (314.7 psia) were successfull_ sealed at
at high speeds, and pressure does not appear to be a limiting factor to

seal operation.

The TZM seal seat extended the speed and temperature capabilitiesof the

self-act;ngface seal by reducing distortionca,tsedby temperature. Also,
the result of car[',,-sealseat contact was not as catastrophic as experienced

in the previous tes ?-ogram (Reference l) with a 4340 seal s,-.at.

R_d ° _'
i , 4 , _ I'
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_:_, IN TROD UC TION ,_"
L

? o

The performance of main shaft seals in advanced gas turbine engines for
helicopters has become increasingly critical. As shaft speed, air

/ _emperature, and air pressure have increased, engine qize has decreased, ,
I. leaving less envelope to accomplish the sealing function. -'

' , ] The purpose of this program was to develop main shaft seals that are

.. _:i capable of operating in gas turbine engines at conditions more severe :.
than those experienced in engines currently in operation. "

-'" Advanced Avco Lycoming engines in the 1.36 to 4. 54 kg/s (3 to 10 lb/sec)i
_.; class incorporate main shaft seals of positive-contact configuration that

_ t operate with surface speeds to 137 m/s (450 ft/sec), air pressure differ-
'_ ential to 55 N/cm 2 (80 psi), and air temperatures to 816 K (1000°F). In

_L. , future high-performance engines, operating conditions that seals are
_ subjected to will be more severe, and existing seals of the positive-

!_ contact configurations may not be adequate. At high s1_eed and pressures,
_ positive-contact carbon seals ha,,e a tendency to wear, generate heat, and
:. coke=up.

_,_ An alternative to the positive-contact type seal is the labyrinth type of.,,

seal. Because of its noncontacting feature, labyrinth seals offer infinite
"_ life; however, at high air pressures and temperatures, simple labyrinths

:' willnot suffice and complicated multistage labyrinths must be used. :

" These latter configured seals incorporate venting and pressurization
passages that -xre costly to produce and difficult to accommodate in small,

! high-performance engines. Compared with positive-contact seals, lab7- ::
. rinths also permit higher leakage airflows that must be absorbed by the

lubrication system; this cau.oes a loss in engine performance.

The self-acting seal, a newly desi, ed concept, incorporates the best

features of positive=contact seals (loxJ leakage) and labyrinth seals (non-

! contacting). During operation, self-act_ng seals are noncontacting be-
cause the eeali_g surfaces are separa_,'d by a thin gas film (sealing g_p)
that limits gas leakage_ also at shutdown, the seal faces are in contact.
Self-acting seal designs incorporate Rayleigh step lift pads on the pri-

mary (carbon) sealing faces. These lift pads provicie a hydrodynamic ¢
force that separates the sealing surfaces, and the gas film is sufficiently
stiff so that the primary (carbon) ring tracks the runout motions of the
seat w_thout rubbing contact, ,:Previous programs (References 1 and 2) have demonstra_-d the speed . :

and pressure capability of self-acting seals under environments more _'. "
severe than experienced in present engines. Face seals successfully _ " :..

completed 500 hours of endurance testing at speeds of 18 _ m/s (600 ft/sec,

,$
,#
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54600 rpm) and pressure differentials of 137 N/cm Z (198.7 psi), In

addition, tolerance for sand and dust environments ,_nd seal-seat axial

: ] runout were demonstrated. ,_r_

"._ t.
-: Initial operation of tbe face-seal configuration revealed the tollowing areas ,,

_, of potential design improvements: :.--
4"

a. Use of a seal-seat material with low coefficient of expansion "

and high thermal conductivity to reduce distortion caused by
-"" "" temperature. TZM, a Titanium-Molybdenun_ alloy, was
_,. chosen.
h

b. Reduction of the carbon sealing nose mass to reduce dynamic

/ effects at high speed.
1

:, c. Redesign of the oil dam and heat shield to provide better

support for the seal seat.

"'_, , Operation with the circumferential seal revealed that changes in the lift- :_
;i pad geometry would increase the lift force.

The objective of this progr-Lm was to incorporate the modifications de-

scribed above and experimentally evaluate seal performance.

I"

The experimental evaluation was carried out in a test rig that simulat=s
i

engine conditions in an advanced gas producer turbine bearing location. !,

All seal and bearing package hardware was lightweight and typical of A_',o

Lycoming engine design practice.

i-

',=

!

. .e _e

',_ 3

4
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APPARATUS AND PROCEDURE

"_ Test Vehi el e '

: f The test rig bearing compartment (Figure 1 ) is typical of advanced, high- _:

_ speed gas turbine packages. Sealing positions are located forward and aft _'

of the bearing, which enabled two seal samples to be tested simulf:aneously, i ,._

The rig prime mover is a 100-horsepower, Z0,000- rpm steam turbine.

: Connecting the steam turbine tJ the rig is a 3:1 ratio speed increaser. The : _'

: test installation is shown in Figure Z.

. The shaft is supported by a 35- ram, split, inner - race ball bearing in !

the test position; and by a 25 - m._1 split, _nner - race bearing in the sup- _

port position. Both bearings are hydrau T.cally mounted, and thrust load- _ :

ing is supplied by coil springs acting o', the outer race of the support bear- !

_ ing and by pressure differentials acr',ss the loading wheel, i }

-2,

_: A single batch of MIL-L-Z3699 oi_ at 367 =+5K (ZOO _ !0°F) was used _:
. throughout the test program. Oil flow to the face seal test package was • ,:

:i' 180 kg/hr (400 Ib/hr). The bearing was lubricated by four 0.81 mm :

_. (0.03Z in.) jets and each seal ,by two 0.81 mm (0.03Zin.) jets. Maxi-
'_ mum oil flow to the circumferential seal package was 136 kg/hr (314 Iblhr). ,;

" Oil from the bearing compartment drains by gravit_ into a static air-o_l
separator. The minimum scavenge area is 93 mm (0. 144 in.z). Desired

air pressure is introduced into the cavities adjacent to the test seals, and

the air that leaks past the test seals is conveyed through a flowmeter from

the air-oil separator to obtain a measare of seal performance. ,_-

Recorded Parameters .."

" Instrumentation incorporated in the test rig is listed in Table I. The

location of the pertinent instrumentation is shown in Figure I. All measure- (".

% ments were made with instruments calibrated in English units that were ;',
J

then converted to SI units.

2

Test Seal s _!

The test program was conducted with NASA-designed self-acting face and <:

circumferential seals for use in the main shaft position of advanced gas '_

turbine engines. . ,:

,,_
?

: 4 -
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; TABLE I. INSTRUMENTATI ON PLAN

k
i i

C_orrespond- , -,
parameter To ing Number .,
Be Measured Sensing Device Location in Figure I

......-- Shaft Speed Magnetic pickup Steam turbine shaft 8

:" Air Pressure Gage Fwd wheel cavity ? :

Gage Fwd seal cavity 12

-.' • Gage Aft seal cavity 3 "_
3;

_'.., Air Temperature Tbermocouple Fwd wheel cavity I0
f- Thermocouple Fwd seal cavity II "'
_ Thermocouple Aft seal cavity 4 ',

_-' Seal Air Leakage Glass tube Scavenge air-oil 7
,; rotameter mixture is passed through

a static separator and the :

! dry airflow is passed _

through the flowmeter

Oil Temperature Thermocouple Oil feed line 2 _ "
Thermocouple Scavenge line 7 _

Oil Flow Glass tube Oil feed line 2 . '!

rotameter i_ _/,

Oil Pressure Gage Oil feed line 2 _,_

_, Bearing Cavity ,.,_"
Pressure Gage Within bearing cavity 6

Scavenge Pressure Gage Scavenge line 7 _:_

_. Seal Temperature Thermocouple Seal case or carbon 5 ,_

Vibration Velocity pickup 1

Chips Chip detector Scavenge line 7 "

9760 035-0 7
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RESULTS AND DISCUSSION /i

]] Self-Acting Face Seal Design ,_

" The self-acting face seal used in the test program. _s shown in Figure 3.

It is similar to a conventional face seal except for the addition of the self- -:

acting geometry for lift augmentation.

The primary sealing interface consists of the rotating seat, which is key- r f

_'* _' ed to the shaft, and the nonrotating primary ring assembly, which is free

to move in an axial direction; this configuration accommodates axial

• motions caused by thermal expansion. Axial springs provide a mechanical

force of 31N (71b) to maintain contact between the seat and primary ring at

shutdown. The secondary seal is a carbon piston ring that is subjected to

only the axial motion of the carrier assembly. :

,_ Great care is taken to ensure flatness of the sealing surfaces. The rotat-

ing seat is keyed to the shaft spacer and is clamped axially by a machined

bellows that minimizes distortion of the seat, since the major portion of

i t_e clamping force acts through the shaft spacers. The bellows also acts

as a static seal between the seat and the shaft spacer. Oil for cooling is

passed through the seat to reduce thermal gradients, and an oil-dam disc •

also serves as a heat shield. Windbacks are u_ed to prevent contaminants

from approaching the sealing surfaces.

In operation, the sealing faces are separated slightly, in the order of
t-

O. 03508 mm (0. 0002 in.), by action of the self-acting lift geometry. This

positive separation results from the balance of seal forces and the gas-

film stiffness of the self-acting geometry. The primary ring carbon face

with the lift pads is shown in Figure 4.

To determine film thickness and air leakage in a self-acting face seal, the

axial forces acting on the primary ring assembly must be determined for

' ea_=h operating condition. These forces comprise the self-acting lift force, _

the spring force, and the pneumatic forces due to the sealed pressure.

Essentially, the analysis requires finding the film thickness for which the ; ;
opening forces balance the closing forces. When this equilibrium film thick- :

hess is known, the leakage r=_tc can be calculated. References 3 through _ •
9 detail the design procedure. _ :

p_, ':

_ _:'_

4

,r
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|. OIL DAM _ HEAT k3k0 7. HOUSING INCONEL 750
SHIELD

2, SEAL SEAT TZM SPRAYED WITH 8, PISTON RING CARPENTER k2
CHROME CARBIDE CARRIER

3, THERMOCOUPLE 9, CONTAMINATE
LOCATION WINDBACK

k. OIL W|NDBACK INCONEL 750 10. PISTON RING HIGH TEMPERATURE
CARBON

5. NOSEPIECE HIGIt TEMPERATURE
CARBON _ TZH 11. PISTON RING INCONEL 750 •

HOLDER
6. COMPRESSION SPRING INCONEL _50

12. BELLOWS SPACER INCONEL 750 ,

\

Figure 3. Self-Acting Face Seal.
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/

_::-" Previous self-acting face-seal test programs (References I and 2) re-
_' vealed the following areas in which the seal design could be modified to

• improve operations:

iv. I a. Seal Scat Distortion - Previous testingshowed thatat seal

'_ -. _" temperatures of approximately 450 i_ (350 OF) seal-seat dis- _ •
tortion became a problem. The face of the seat closest to _:

' the hot ambient air tends to expand more quickly than the

:, face exposed to the oilside, resulting in a rotationof the
'" seat and contact with the carbon at the inside diameter of

_,-:_:: the sealing interface. This carbon-se_t contact generates

:'. additionalheat4 thisca,uses increasing distortionand in-

... creasingly severe rubbing contact thatfinallyresults in seal
" failure.

In order to minimize seal seat distortionp TZM, a Titanium-
- Molybdenum alloy, was chosen as the material for the seat,

This alloy has a low coefficient of expansion and high thermal

-; conductivity. The previous seal seat was made of SAE 4340
"- " material.

,j.

" b. High-Speed Dynamics - In order to minimize inertia loads,
','_. the primary carbon ring was redesigned to reduce its mass. ,

', c. Oil Dam and Heat Shield - The oil dam was redesigned to pro-
vide better support for the seal seat and, thereby, reduce dis-
tortions.

The previous design, which was modified, is shown in Figure 5.
i"

Resul ts
!'

_: A series of ten tests was performed on the self-acting face seal configu°
ration. Table II lists test duration and maximum operating parameters, i
Tests 4, 5, 80 and I0 consisted of endurance, operation &t elevated temper-

- ature. Tests 1, 2, 3, 6, and 7 were shorter ev,_luation runs at ambient
•: air temperatures. One set of seals was used fo:' the first 8 tests and

: then replaced with new forward and aft carbons ,Lnd seats for Tests 9 and
I0.

: II
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_- The most critical parameter for judging seal performance is airflow into
the bearing cavity. As the test program progressed, airflow through the

i I seals increased. V_gure 6 shows the envelope of test results for evalua- :
tion Tests 1, Z, and 3 compared with evaluation Test 6 and 7, iUustrat-

I.
'" ing the performance degradation. The magnitude of airflow, however, is

!. ., significar, tly less than that experienced with conventional seals at these ,
_,. operating conditions (Reference I). ::

; The carbon-lift pad depth, prior to testing and after Test 8, was mea-
"_*""', sured at 4 pads of both the forward and aft seal and found to be as shown '

on Table ]XI.

Table IV liststhe carbon wear during each of the firsteight tests. To
.- _i illustratethe measuring technique used, Figures 7 through lZ show

_ _ charts ot Pad 4 of the aft seal new, and after Tests Z, 4, 6, 7, and 8 to

i11ustratethe wear progression.

L Table V liststhe seal seat surface textures. Figures 13 through 18 illus-
'_' irate the measuring technique showing the aft seat new, and after Tests Z,

4, 6, 7, and 8. The carbon sealing face is superimposed on these charts
I

;: to show where the contactingareas are. Figures 19, 20, and Zl depictseal-seat flatnessbefore and after testing.

i_ : Flatness of the assembled seats was held below Z.541_m (I00uin).i

_,

Test 1

i -._ Table VI listsoperating conditions and test results. The forward carbon
did not wear during these runs. The aftcarbon wore ml average of 0.0013

mm (0.00005 in.). Seal seat surface texture did not change on the forward .
seat and there were negligiblechanges on the aftseat (Tables IV and V). .'-

Test 2 _

Table VH listsoperating conditions and test results. The i_rward carbon

did not wear and the aft carbon wore an average of 0.0010 mm (0.00004 in.).
The aftseat surface did not change during this test;however, the waviness

_" and flatness of the forward seat increased (Tables IV and V).2

Teet 3

-' Table VIIIlistsoperating conditions and test results. Inspection following _ _
• testing revealed negligiblecarbon or seat wear. Waviness and flat'_ess,_f :"

i_- , 14theaft seal increased slightly(Tables IV and V). i__"

r_
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Figure 6. Self-Acting Face Seal - Airflow.
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TABLE IIL CARBON-LIFT " ,_D DEPTH (NEW AND AFTEI_ TE_T) _

Pad Pos. No. New After Test 8

._ Fwd Sea/ (ram) (in,) (ram) (in.) !

1 0.019ram (0.00075in.) 0.016ram (.00065in.) _
'_ 2 O. 024 (0. 0009Z51 O. OZZ (. 000875)

';" 3 0. 020 (0.0008) 0.018 (. 00071 :

_ 4 0.0ZZ 10.0008751 0.019 1.00075)

Aft Seal
, i

1 0.018_ {0o0007 in.) 0.008 mm (.00035 in.)

z o.o18 (0.00071 0.006 (.ooozs)
3. o.o18 1o.ooo7) o.o 1o.o1
4 0.014 10.000551 0.004 1. 000175)

, 16 _
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Figure 19. Self-Acting Face Seal Seat Face Flatness

in the Free State Before Testing.
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Figure 20. Self-Acting Face Seal Aft Seat Face . ,
Flatness in the Free State After Test 8.
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TABLE VIII - Continued _,

.?

Aft Seal Aft Seal _

t_un Air Temp. Temp.

(K) (°F} (K) {°r} _

I 3Z4 122 357 182 '_

2 328 130 368 202 -:

3 336 144 377 218

4 344 158 388 238

5 336 144 357 182 2,

6 338 148 368 202

7 342 156 379 222 _

Shutdown

8 316 110 366 198
9 327 128 379 222 :_

I0 318 112 346 166 "=_

1 I 322 120 3bl 190 ._
lZ 3Z9 13Z 370 206

13 338 148 384 232 :'

2
,!

.?!
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Test 4

This was a ZS-hour endurance test with a maximum air temperature o,_

433K (3Z0 OF). Table IX llst test conditions and resulting airflows, cavity
pressures, and sealtemperatures. Up to the l?+thhour, cooling airflow was ,e
fed into the center of the shaft at the aft seal position; this was discontinued

at the 12th hour. A heater malfunction in the l 3th hour allowed air temper- t
atures to rise to 57+?+K(480 OF) in the forward area and 516 K (486 OF) in the
aft area.

Inspection following the test revealed that the forward carbon had worn an
average of 0. 001 mm (0. 00004 in. _ and the aft carbon had worn an average
of 0.002 :rim (0.00009 in.) (Table IV). The seal seat roughness had not ,:

changed, however, waviness and flatness increased slightly (Table V).
Visual inspection showed tha_ the seats were in excellent condition.

Test 5

This was a ?+5-hour endurance test with a maximmn air temperature tff
. 588K (598°F). Table X lists test conditions and resulting airflows, cavity

+

presst_re, and seal temperatures.

Inspection following the test revealed no carbon wear. Seal seat surface
texture did not change except for a slight increase in waviness of the for-
ward seat.

Test 6

b

The seals were subjected to air pressures up to 216.8 N/cm?+ (314.7 psia) +:

during Test 6. Table XI lists operating conditions and test results. The ,++

forward carbon did not wear and the aft carbon wore aa average of
0.00037+ mm (0.00001?+5 in.) (Table IV). Waviness and flatness of tJ_e for- +:_

ward seat increased slightly as did aft-seat waviness° +:

Test 7

?

During Test 7, seal speeds of ?+13 m/s (700 ft/sec, 63,700 rpm) were
attained. Table XIIlists operating conditions and test results•

Inspection following testing revealed 0.0013 mm {0.00005 in.) average • .+",+
wear on the forward carbon and 0. 0008 mm (0. 000032 in.) average wear
on the aft carbon.

r,

'" _,_+ , : ++ , , |
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Figures Z2 and 23 illustrate tb _ condition of the carbons and seats after

testing. The aft _eat shows heavier contact. _

Inspection of the seats r-'vealea _,,at the flatness and waviness of the for- _ ,
ward and aft seat incre Lsed (Table V). Roughness at the dam areas d_.. ._ ,e_
creased because of the carbon deposited.

Test 8 _

This was an endurance test with the following maximum operating con- _ ,_

ditions: _ .,

Speed 197 rnls (650 ft/sec, 59,150 rpm) _t
Air Temperature 687 K (778 OF) '!
Air Pressure 147.9 N/cm 2 (214.7 p,_ia)

The seals operated for 7 hours at the maximum speed and pressure con-

ditions with temperatures ranging from 588 to 687 K (600 to 778°F). _ ,_
Table XIII lists test conditions and resulting airflows cavity pressures,
and seal temperatures for the full 19. ZS-hour test.

Operation was terminated because of increasing airflow into the bearing _ :

cavity. Disassembly revealed thatthe aftpiston ring was cracked in :_
several piaces and appeared to be soft. The carbon materi 1 used has a _

hardness of 90 on the Shore 'C" scale. Hardness readings on the wall _ _
of the aft piston ring were 20, indicating that the pisto,l ring had oxidized• _,_ '_

The forward piston ring and the forward and aft carbons were checked for _ _
hardness and found to be Shore "C" 90. :_ ¢

It can be seen from Table XIII fl, at the highest forward air _emperature _ !
was 650 K (710°F), while the highest aft air temperature was 687 K i_
(778°F) with 5 },ours of operation at over 650 K (710°F). Apparently the
threshold oxidation temperature of the carbon material "s very close to

650 K (710°F). ii_

Inspectioh revealed no wear on the forward seal carbor, and an average of _ :
0.0046mm (0.000181 in.) wear on the aft (Table V). ',"he forward seat _

flatness increased and the aft seat roughness, waviness and flatncss in- _i
creased (Table V). Figures 24 and 25 show carbon and seat conditions _
afte:' testing. • z

. Figure 26 shows the back sides of the carbon nos_.,which contacts !_:e

piston rlng, revealiug some coking and varnish. !_

45 l :
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Test 9 / _

, New carbons and seats were used for Test 9. A two-hour check-out run
was conducted. Table NIV liststest conditions and results. :

A_ disassembly itwas found thatthe aft seal had contacted the seat deposit- _ i:/.d

:. ing some carbon. There was no wear on the forward carbon and an ,vet- _,
age of 0.0021 mm {0.000083 in.) on the aft {Table XV). Carbon deposits 2:j
increased the aft seat waviness and flatness and the forward seat fiat- _ r "

nasa (Table XVI).

_' Test 10 ':

"i?
,j• The same carbons s.ndseats used in Test 9 were used in Test I0, a
:! 31_ 50-hour enduranc,- • test. Table XVII lists test conditions and result-

_ ing airflows, cavity pressures, and seal temperatures. !_

_ Inspection following the test reveal_.dthe forward seal and seat to be in i ,

,!,' good condition {Table XV and XVI); however, the aftcarbotlwas worn corn- : '_i
: pletely. Figu-o_ Z7 an Z8 illustratecarbon nose and seal seat condition :

-2

fol_owing Test I0. The seals were coked and varnished as a result of high
_ temperature operation. Figure Z9 shows the back side of the carbon nosel ::

Figure 30 illustratesthe piston ring carrier and Figure 31 is a rear view i

of the seal assembly.

Conclusion :' "

Throughout the testing of the self=acting face seal configuration,the aft ':

seal exhibited more distress than the forward seal. In checking the flat- ,_
_ ness of the assembled seats, it was noted that the aft seat flatness ' ' !_

I generaUy was approximately 0. 0015 mm {0. 000060 in. ); whereas, the i
forward seat flatness was approximately 0.001 mm {0. 000040 in. ), 1_rior

i to Tests 9 and 10, the aft seat flatness in the assembled state was found to
' be 0.00Z mm (0.000080 in.), whereas the forward seat flatness was

0,0004 mm {0. 000017 in.). The assembled flatness requirement was

0.0025 mm {0.00010 in.). Therefore, when operating at high speeds
{183m/s, 600 ft/sec) and high temperatures, fla:ness requirement

should be a maximum of approximately 0.00125 mm (0. 000050 in. 1.

, t
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Self-Acting Circumferential Seal Design

The self-acSng circnmferential seal configuration (Figure 32) is similar ,.'_

- to a conventional circumferential seal with the addition of self-acting ":

geometry on the carbon bore for lift augmentation. A detail of a carbon t
segment illustrating the self-acting geometry is shown in Figure 33. ' ,

; The seal is internally pressurized with two rings, made up of three car-

:_ ben segments each, comprising the sealing elements. The segment
joints are overlapped, and an antirotation lock in the center of the seal

prevents the segments from turning with the shaft.

:_ In a previous test program (Reference 1), i* was determined that the self-

acting geometry generated insufficient lift force. Figure 34 illustrates

this lift 'pad geometry (5 pads for each segment). Design of the pad was

changed to that shown in Figure 33 for the testing of the self-acting cir-

cumferential seal (4 pads for each segment). Analysis indicated that a

4-pad design produced more lift force than a 5-pad design.

Results
i

Initially, eight evaluation tests were cono_ted over a range of speeds and

internal air pressures at ambient air temperatures. Test conditions and

resulting airflows and carbon temperatures are listed in Table XVIII.

Because the air pressure in the cavities on the air-side of the seals was
37.7 to _4.6 N/cm {54.7 to 64. 7 psia), the pressure drop across the oil-

side carbons was greater than across the a_r-side carbons. This can be "
seen in the temperature data shown in Table XVIII where the oil-side car-

bons ran hotter than the air-side carbons Figures 35 and 36 summarize• ?

the airflow and temperature data of the eight evaluation tests.

i_{easurements after each test consisted of Proficorder traces across a

center liftpad of each carbon segment, axial carbon thickness measure-

ments, Proficorder traces of runner roughness, and Indi-Ron traces of

runner roundness. Initiallift-pad depths varied from 0.0014 to 0. 019

mm (0.00055 to O. 00075 in. ). ¢

/
76 q

/
r m

(

1976011035-086



1. SEAL CASE 18-8 STAINLESS STEEL

2. COMPRESSION SPRING INCOHEL X

3. CARBON SEGMENT HIGH-TEMPERATURE CARBON _

4. RUNNER AMS6382 FLAME SPRAYED

WITH LCIC CHROME CARBIDE

5. SEALING PLATE 18-8 STAINLESS STEEL

6. GARTER SPRING INCOHEL X

.71 H (.159 Ib)

7. ANTIROTATIOH LOCK 18-8 STAIHLESS STEEL • ."

Figure 3Z. Self-Acting Circumferential Seal.
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SEALING _ DIRECTION OF ROTATION _'
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DEVELOPED STRAIGHT LENGTH OF ONE SEG/dENT

Figu,,e33. Self-Acting Circumferential Seal Details
Of Carbon Segment. " "_
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"_ 20° _ DETAIL OF

_-: / TYP i LIFT PADS LIFT.PADS (S/SEC';e,T), :/ ! .02032
t

" !" . d"o mm ! 0008 in_
n,_/ ] J. /_. -- .0"0_'_" .... "

_. . t/_z.._ I,r-(.,,s,..) _____1t-7-.D,o _.oo,_

/ !-"'-7 r
.... _ mm .... ,.. _' . mrlt

: "'t _ 3.0, .120'" (.o_,. f" _ "_.

-F-F--- _ ._--. DI,,_T,O,OF,ORATION T _*
I L- "6°96 mm ('0:4 i,._ SEALINGDAM

' J .5080 / .020 / ;:

SE_.IHG

DAM DEVELOPEDSTRAIGHTLENGTHOF ONE$EG,VENT ,:

r-

;

Figure 34. _,'evious Self-Acting Circumferential :*
Seal Lift Pad Geometry,
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0 91"MIS (300 FTISEC."

r'l 122 MIS (400 FTISEC)

152 MIS (500 FTISEC)

V 183 M/$ (600 FT/SEC)

10

0
0 0,00050,0010O,O01F

KG/s
I ., I I I

0 0,00100,00200,0030
AIRFLOW(TWOSEALS)- LB./SEC

£igure 35. A ¢'.ow Through Two Self-Acting Circumferential !
Seals Versus Pressure Differential. t
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375 400 425 450 475 500

KELVIN

....___.s n ......J n, ;
250 300 350 400

CAR_OI_TEMPEP,ATURE- °F

Figure 36. Self-ActingCircurn£erentialSeal Forwa" I Seal
Oil-Sid_ Carbon Tempera._re Vere .s l-reseure _"
Differential for Various Sl:__eds.
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:_ i Inspection following Test . revealed that the lift-paddepth had decreased /
0.0006 mm (0.0000Z5 in.) on the oil-side carbon segments of 'hieaftseal.

/i The lift-pad depth on two of the three carbon segments on the air-side of "
: l, the aftseal also decreased 0.0006 mm (0.000025 in.), while the third

did not wear. The forward seal carbons exhibitedno we_r.

There was no significant change in the surface texture of the rL',, ers
during Test I, altl-ougha thin carbon line could be seen on the -side t

" •.... edge of both runners.

No further reduction of lift-paddepth was measured from Tests 2 t_rough .:
8; but, visual observation revealed that the carbons had contacted the

ranners, particularlyat the carbon leading edges. '

_, . Figure 37 illustratesthe conditionof the runners after Test 4 showing a
carbon trace at the oiiside edge. Figure 33 shows a closeup of a carbon

segm "itafter Test 8 with some evidence of carbon scuffing.

. Traces of the liftpads indicatedthatwhile the depth of the pads did not
4, change through Test 8 the sealing dams .#ore in the order of 0.0025 mrn
;. (0.0001 in.). Figure 39 is a lift-padtrace comparing carbon condition

after Tests I and 8.

'L

The runners were in good conditionfollow_.ngTest 8. Maximum rough-

ness was 0.127 _fn (Su in. AA), and maximum waviness was I.5_ t_n
(60_tin.). Maximum out- of-roundness was 1.05_tm (65t_in.).

Test 9 was a 25-hour endurance run with the followingmaximum con-
ditions:

Speed-182m/s (600 ft/sec, 477C0 rpm)
Pressurization Air Pressure - 44.6 N/cm _ abs (64.7 psia}

Air Temperature - 478 K (400OF)
Pressure Diff.Across Air-side Carbons - 3.4 to 10.3 N/cm Z

(5 to 15 psi)
Pressure Diff.Across O;1-qide Carbons - 33 N/cruZ (48 psi)

New carbons and runners _,ere ubed for Test 9.

_6

.... , 4

1976011035-096







89 im_

1976011035-099



i

................................................. L :+.+'++.'++

+

+ After two-hours of operation, a rubbing sound was heard, and the rig /
was disassembled for inspection. The noise was caused by the forward

+ seal carbons contacting the runwcrs. Although there were carbon tracks .

on the runner, wear appeared to be insignificant, and the seMs were

judged acceptable for further operation. Table XIX lists the operating .

parameters for this two-hour run. Note the high temperatures of the +,+'i
forward seal carbon.

F

Testing continued for an additional 23 hours. Table XX lists the opera- 't , +++

_" ring parameters and resulting airflows and temperatures. ++

• Inspection following testing revealed that the forward seal oil-side carbon ;

carbons were badly worn. The forward seal air-side carbons and the

+- aft seal carbons were in relatively good condition. Figures 40 through
43 show the carbon segments following Test 9. For this test, all lift +

:'+° pads were traced before and after testing. Table XXI lists the average '+

_+ and maximum wear. , i

++ 'Fnere was a 0.00Z3 mm (0. 000092 in. ) carbon buildup on the forward ++
+T'

i+ runner where the oil-side carbons contacted and a 0. 0012 mm (0.000046
in. ) carbon buildup on the aft runner where the oil side carbons con- +'_+

._ tacted (Figure 44). Except for these areas, the texture of the runner _
surface was not affected. _

Test 10 was a 23-hour endurance run with the following operating con- ." i
;= ditions i

_+, Speed-182 m/s (600 ft/sec, 47700 rpm)

Pressurization Air Pressure-Z3.9 N/cm 2 abs (34. 7 psia) ,,++

Pressure Diff. Across Forward Air-side Carbon-10.3 N/cm 2 (15psi) i :
Pressure Diff. Across Froward Oil-side Carbon-I2.8 N/cm 2

(I 8.5 psi) J+

Pressure Diff. Across Aft Air-side Carbon-13. I N/cm 2 (19 psi)

iii Pressure Diff. Across Aft O_l-side Carbon-12.8 N/cm 2 (18.5 psi)
+.

The carbons and runners used were the same as those used in the ini'._al ::?
No. 8 evMustion tests.

Table XXII lists the resulting airflows, air tempe-'atures, and carbon ,

temperatures. The maximum air-side temperature during this test was

534 K (500 °F). . _.
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.. Inspection following Test 10 revealed no carbon wear except for the lead-

! ing edge pad on each of the forward seal oil-sidecarbons. Figure 45

t. illustrates the conditions of thisliftpad. The runners were in good con-
dition following the test,

_. Test 11 was a Z4-hour endurance test using the same carbons and runners '"
C_

a6 us d in Test 10 except for the aft seal oil-side segments. These seg-

:; ,- .: ,- ments were replaced with a new set because a segment had been broken in
handling. Test conditions were as follows: ¢

-

_ _ Speed-lBZm/s (600 ft/sec, 47700 rpm)
_' Pressurization Air Pressure-30.8 N/cm 2 abs (44.7 psia)

: ' " Pressure Diff. Across Forward Air-side Carbon-15. Z N/cm 2 (2Z psi)
Pressure Diff. Across Forward Oil- side Carbon- 19.4 N/cruZ

• (28.2 psi)
: Pressure Diff. Aft Air-side Carbon-19.7 N/cm 2 (28.5 psi)
'_• Pressure Diff. Aft Oil-side Carbon-19.8 N/cm Z (Z8.7 psi)

,:, Table XXIII lists the resulting airflows, air temperatures and carbon

temperatures. The maximumair-side temperature during this test was
':: 588 K (600 °F).

Inspection following testing revealed that several of the forward and aft

oil-side carbon lift pads were partially worn. Wear on the air-side

segment was negligible, and the seal runners were in good condition.

Test IZ was a Z7-hour endurance rua using new carbon segments. The

runners were the same as those used in Test 9; but, they were axially
positioned so that the carbons were not operating on the previous tracks.
Test Conditions were as follows:

Speed-18Zm/s (600 ft/sec, 47700 rpm)

Pressurization Air Pressure-34. Z N/cm Z abs (49.7 psia)

Pressure Diff. Across Forward Air-side Carbon-17.2 N/cm z (25 psi)
Pressare Diff, Across Forward Oil-side Carbon-Z2.8 N/cm z (33psi)
Pressure Diff. Across Aft Air-side Carb0n-23.4 N/cm z (34psi)

: Pressure Diff.Across Aft Oil-side Carbon-Z2.8 N/cm z 33 psi)

Table XXIV liststhe resulting airflows, air temperatures, and carbon
temperatures. The maximum air temperature of the forward seal was

': 710 K (820 OF), while the maximum air temperature of the aft seal was ,
62.2.K {660 OF).

10Z
• °
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The maximum air temperature of the forward seal was 710 K (820 OF),

while the maximum air temperature of the aft seal was 622 K (,660°F).

• /
L t. Inspection following testing revealed that the forward seal air-side carbon ;'
• lift pads were completely worn. The first two lift pads on the leading edge - :

of the oil-side carbon segments were also worn an average of 0. 008 mm , e
: (0.0003Z in). The aft air-side carbons did not wear. Two lift pads wore
_ _i on the aft oil-side carbons, one 0.0i I mm (0.00045 in. ) and the other
_ ': O. 002 mm (0.000075 in. ).
_o _" .

_ '_ Figure 46 shows the condition of the seal following Test 12. Note the :
coking on the aft seal case. Because the forward seal experienced higher
temperatures, the coke deposits had bur'aed off.

The runners were in good condition following Test 12. Maximum rough-
'i ness and waviness were 0.18 t/m (7u in. AA) and 2.54 ktm (I00 kLin. ). i

Maximtm'_ out-of-roundness was Z. 97 _m (117 U in. ).T

Conclusion

i In previous testing (Reference I), the self-actingcircumferential seal

?: was found to be limited to speeds of 122 m/s (400 ft/sec, 31_00 rpm)
'_ and pressure differentials of 79 N/era 2 (11 5 psi). The modified lift pad

geometry" did not demonstrate any improvement over these values. At
speeds of l..q2 m/s (600 ft/sec, 47700 rpm), the pressure differential
capability' appears to be approximately 20.7 N/cm Z (30 psi).

L

106

1976011035-116



1976011035-117



__. ,,, I ii i la -

f

CONCLUSIO S AND RECOMMENDATIONS

/ The self-actingface seal am circumferential seal configurationswere
I.

subjected to 264 hours of te ringduring thisprogram.
#

' " The self-acting face seal as shown to be capable of operating at con-

ditions more severe thar ,-xperienced in pre_ent gas turbine mainshaft
applications. Air pre. res of 216.8 N/cm ab-, {314.7Dsia) were

_-- "" successfully sealed an speeds of 214 rr./s{700 ft/sec, 63800 rpm) were
attained. There appe s to be no limitationto ambient pressure; however,
at speeds of 198 m/s 650 ft/sec, 59150 rpm) and above carbon wear occurred.

This was attributed to distortionof the seal seat. Itappears that assembled
, seal seat flatnessmay be a limiting factor to high-speed operation.

The TZM seal seat extended the speed and temperature capabilities of the
self-actingface seal by reducing distortioncaused by temperature. Also,

the result of carbon-seal seat contact was not as catastrophic as experienced
in the previous test program {Reference 1) with a 4340 seal seat.

_ The self-acting circumferential seal performance was not improved by
modification of the liftpad geometry. Previous testingfound this seal to i

be limited to speeds of 122 mls {400 ft/sec, 31800 rpm) and pressure

differentialsof 79 N/cm 2 {I15 psi). Additional development is required on :
this seal for use in advanced gas turbine engines.

The operating air temperature during the testprogram was limited to 687K

(778°F) because of carbon oxidation. Seals should be tested incorporating
higher temperature carbons.

,r
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